Keywords: shape preserving approximation, trigonometric polynomial, Jackson, convex

NEGATIVE RESULTS IN COCONVEX APPROXIMATION OF PERIODIC FUNCTIONS

GERMAN DZYUBENKO, VICTORIA VOLOSHINA, AND LYUDMYLA YUSHCHENKO Abstract. We prove, that for each r ∈ N, n ∈ N and s ∈ N there are a collection {yi} 2s i=1 of points y2s < y2s-1 < • • • < y1 < y2s + 2π =: y0 and a 2π -periodic function f ∈ C (∞) (R), such that [START_REF] Dzyubenko | Comonotone approximation of twice differentiable periodic functions[END_REF] f (t)

2s i=1 (t -yi) ≥ 0, t ∈ [y2s, y0],
and for each trigonometric polynomial Tn of degree ≤ n (of order ≤ 2n + 1), satisfying

T n (t)

2s i=1 (t -yi) ≥ 0, t ∈ [y2s, y0],
the inequality n r-1 f -Tn C(R) ≥ cr f (r)

C(R)
holds, where cr > 0 is a constant, depending only on r. Moreover, we prove, that for each r = 0, 1, 2 and any such collection {yi} 2s i=1 there is a 2π -periodic function f ∈ C (r) (R), such that (-1) i-1 f is convex on [yi, yi-1], 1 ≤ i ≤ 2s, and, for each sequence {Tn} ∞ n=0 of trigonometric polynomials Tn, satisfying (2), we have lim sup

n→∞ n r f -Tn C(R) ω4(f (r) , 1/n) = +∞,
where ω4 is the fourth modulus of continuity.

Introduction and the main results

Let s ∈ N and Y s := {Y s }, where the collections Y s = {y i } 2s i=1 of points y i ∈ R are such that y 2s < • • • < y 1 < y 2s + 2π =: y 0 . We say that a 2π-periodic function f ∈ C(R) is piecewise convex with respect to Y s , if it is a convex function on [y 1 , y 0 ] and changes its convexity at the points Y s , that is, if (-1) i-1 f is convex on [y i , y i-1 ], 1 ≤ i ≤ 2s. We denote by ∆ (2) (Y s ) the collection of all such piecewise convex functions. Note that if, in addition,

f ∈ C (2) (R), then f ∈ ∆ (2) (Y s ), if and only if, f (2) (t) 2s i=1 (t -y i ) ≥ 0, t ∈ [y 2s , y 0 ].
Denote by C (r) , r ∈ N, the space of 2π -periodic functions f ∈ C (r) (R). We also need the notation W r , r ∈ N, for the Sobolev space of 2π-periodic functions f ∈ AC (r-1) (R), such that f (r) < +∞, where

g := esssup x∈R |g(x)|.
If, in addition, g is continuous, then, of course,

g = sup x∈R |g(x)|.
Let T n be the space of trigonometric polynomials of degree ≤ n (of order 2n + 1) and, for the function g ∈ ∆ (2) (Y s ), denote by E (2) n (g, Y s ) := inf

Tn∈Tn∩∆ (2) (Ys) g -T n ,
the error of the best coconvex approximation of the function g. It is known [START_REF] Zalizko | Coconvex approximation of periodic functions[END_REF] that if f ∈ ∆ (2) , then

(1.1) E (2) n (f, Y s ) ≤ c(s)ω 3 (f, 1/n), n ≥ N
, where c(s) is a constant, depending only on s, N is a number, depending only on Y s , and

ω k (f, t) = sup h∈[0,t] k j=0 (-1) k-j k j f (• + ih) , t ≥ 0,
is the modulus of continuity of a function f of order k ∈ N. For each

f ∈ ∆ (2) (Y s ) (1.1) implies (1.2) E (2) n (f, Y s ) ≤ c(s) n ω 2 (f , 1/n), n ≥ N, if f ∈ C (1) , (1.3) E (2) n (f, Y s ) ≤ c(s) n 2 ω 1 (f , 1/n), n ≥ N, if f ∈ C (2) ,

and

(1.4)

E (2) n (f, Y s ) ≤ c(s, r) n r f (r) , n ≥ N, if f ∈ W r , 1 ≤ r ≤ 3,
where N is a number, depending only on Y s . Leviatan, Motorna and Shevchuk [START_REF] Leviatan | No Jackson-type estimates for piecewise q-monotone, q ≥ 3, trigonometric approximation[END_REF] conjectured, that (1.4) holds for all r ∈ N. However it turns out, that all these estimates in general are invalid with N independent of Y s . In other words, unlike the classical Jackson inequality, (1.4) cannot be had with N = 1. So, our first result is Theorem 1.1. Let r ∈ N and s ∈ N be given. For each n ≥ 1 there are a collection Y s ∈ Y s and a function f ∈ ∆ (2) (Y s ) ∩ W r , such that r) , where c(r) = const > 0 depends only on r.

(1.5) E (2) n (f, Y s ) > c(r) n r-1 f (
Moreover, (1.3) cannot be improved by replacing ω 1 with ω k , k ≥ 4. Our second main result is

Theorem 1.2. For each Y s ∈ Y there is a function f ∈ ∆ (2) (Y s ) ∩ C (2) , such that lim sup n→∞ n 2 E (2) n (f, Y s ) ω 4 (f , 1/n) = +∞
Clearly, f = const in all Theorems in this paper. For the completeness we formulate an easy corollary of Example 1 in [START_REF] Dzyubenko | Contrexample in comonotone approximation of periodic functions[END_REF]. (1) , such that

Theorem 1.3. For each Y s ∈ Y there is a function f ∈ ∆ (2) (Y s ) ∩ C
(1.6) lim sup n→∞ nE (2) 
n (f, Y s ) ω 3 (f , 1/n) = +∞, whence (1.7) lim sup n→∞ E (2) 
n (f, Y s ) ω 4 (f, 1/n) = +∞.
We believe that Theorems 1.1 -1.3 cover all negative results in the question of the validity of Jackson type estimates in the coconvex approximation of periodic functions. In particular, we conjecture, that for each

k ∈ N, r ∈ N, r ≥ 3, s ∈ N and f ∈ ∆ (2) (Y s ) ∩ C (r) we have (1.8) E (2) n (f, Y s ) ≤ c(k, r, s) n r ω k (f (r) , 1/n), n ≥ N (k, r, Y s ).
In other words, we conjecture, that the truth table of the validity of Jackson type estimates in the coconvex approximation of periodic functions has the same form as the truth table of Jackson type estimates in the coconvex approximation of non-periodic functions by algebraic polynomials, see [START_REF] Leviatan | Coconvex polynomial approximation[END_REF], Page 114, Fig. 3, or [START_REF] Kopotun | Uniform and Pointwise Shape Preserving Approximation by Algebraic Polynomials[END_REF], Page 62, Table 24.

Remark 1.4. We do not discuss the comonotone approximation in the Introduction, we only note, that in the comonotone approximation of periodic functions more positive, but less negative results are known, see, [START_REF] Lorentz | Degree of Approximation by Monotone Polynomials I[END_REF], [START_REF] Pleshakov | Comonotone Jacksons Inequality[END_REF], [START_REF] Dzyubenko | Comonotone approximation of twice differentiable periodic functions[END_REF] for more details. However in the last Section we formulate the analogs of Theorems 1.2 and 1.3 for the comonotone (co-1-monotone) approximation. We do not discuss also co-q-monotone approximation of periodic functions for q > 2, since, in opposite to coconvex (co-2-monotone) approximation, the Jackson type estimates are invalid for all parameters, even if we allow both constants c and N in (1.8) to depend on f . This is recently proved by Leviatan, Motorna and Shevchuk [START_REF] Leviatan | No Jackson-type estimates for piecewise q-monotone, q ≥ 3, trigonometric approximation[END_REF].

We prove Theorem 1.1 in the next Section, and Theorems 1.2 and 1.3 in the last Section. In the proofs we apply the ideas from [START_REF] Dzyubenko | Shevchuk Piecewise monotone pointwise approximation[END_REF] and we have to overcome the constrains and challenges of periodicity. Proof. Assume to the contrary, that (2.1) is invalid. Then without loss of generality we assume that T = 1. Put τ := T . By Bernstein inequality, τ ≤ n and τ

≤ n 2 . Let t 0 ∈ [-δ, 2π -δ] be a point, such that |τ (t 0 )| = τ = 1. Since, for t ∈ [-δ, δ], |τ (t)| =|τ (t) + t -δ 2δ τ (-δ) - t + δ 2δ τ (δ)| = 1 2 |τ (θ)|(δ -t)(δ + t) (2.2) ≤ 1 2 n 2 (δ 2 -t 2 ) < 1,
where θ ∈ (-δ, δ), we conclude, that t 0 / ∈ [-δ, δ], whence τ (t 0 ) = 1. Then,

1 -τ (t) = τ (t 0 ) -τ (t) ≤ n|t -t 0 |, that is τ (t) ≥ 1 -n|t -t 0 |, t ∈ R, that implies (-δ, δ) ∩ (t 0 -1/n, t 0 + 1/n) = ∅ and t 0 +1/n t 0 -1/n τ (t) dt ≥ 1 n . Therefore 0 =T (2π -δ) -T (-δ) = 2π-δ -δ τ (t) dt ≥ t 0 +1/n t 0 -1/n τ (t) dt + δ -δ τ (t) dt ≥ 1 n - 1 2 n 2 δ -δ (δ 2 -t 2 ) dt = 1 n - 2 3 n 2 δ 3 ≥ 1 3n = 0 -a contradiction.
Proof of Theorem 1.1. Let S ∈ C (∞) (R), be a monotone odd function, such that S(x) = sgn x, |x| ≥ 1, and

S(x) := 1 2 + 1 2 S(x).
Put s j := S (j) , j ∈ N 0 .

Take h := 1 3n , y 2s = -3h, y 1 = 3h, and, if s ≥ 2, then let -h ≤ y 2s-1 < .. < y 2 ≤ h, say

y i = h -2h i -2 2s -3 , i = 2, . . . , 2s -1.
We will prove, that the desired 2π periodic function f can be taken in the form

f (x) := x 0 f (t) dt,
where f is a 2π-periodic odd function, defined on [0, π] by

(2.3) f (t) := -S t-2h h , if t ∈ [0, 1], S t-π+h h -1, if t ∈ [1, π]. Note that f (t) = -1 for 3h ≤ t ≤ π -2h. Clearly, f ∈ ∆ (2) (Y s ) ∩ W r . Since 3h = 1 n , Lemma 2.1 yields T n ≡ 0, if T n ∈ ∆ (2) (Y s ) ∩ T n , hence (the periodic function) T n ≡ const. Therefore E (2) n (f, Y s ) ≥ 1 2 (f (0) -f (π)) = - 1 2 f (π) ≥ 1 2 (π -5h) > 2 3 .
Thus, E

n (f, Y s ) f (r) = E (2) n (f, Y s ) h r-1 s r-1 ≥ 2h r-1 3s r-1 = 2 3 r s r-1 n r-1 . Theorem 1.1 is proved with c(r) ≥ 2 3 r s r-1 . (2) 

Auxiliary results

Denote by Ŝ an even function Ŝ ∈ C (∞) (R), such that x Ŝ (x) ≥ 0, x ∈ R, and

(3.1) Ŝ(x) = 0, if |x| ≤ 1, 1, if |x| ≥ 2.
Put ŝj := Ŝ(j) , j ∈ N. Fix a positive number d ≤ π/4 and for each positive b ≤ d/2 denote by q b and g b the 2π-periodic functions, such that

q b (x) := 1 -Ŝ (x/d) (cos b -cos x) sin x, x ∈ [-π, π],
and

g b (x) := Ŝ (x/b) q b (x), x ∈ [-π, π].
Clearly, q b and g b are odd functions,

(3.2) g b < 1, q b < 1,
and for each collection Y = {y i } 2s i=1 , such that y 2 + 2d ≤ y 1 = 0 ≤ y 0 -2d, we have

(3.3) g b (t) 2s i=1 (t -y i ) ≥ 0, t ∈ [y 2s , y 0 ]. Now, for a function f ∈ C[a, b] we denote by f [a,b] := f C[a,b] = max x∈[a,b] |f (x)|
and formulate Lemma 3.1, which is a particular case of Privalov Theorem (see, e.g., [START_REF] Privalov | Theory of interpolation of functions[END_REF], pg. 96-98.)

Lemma 3.1. For each polynomial T n ∈ T n and any positive number h ≤ π, we have

(3.4) h|T n (0)| ≤ cn T n [-h,h] .
Here and in the sequel c stand for different absolute positive constants. We conclude the Section with the following Lemma 3.2. We have

(3.5) ω 4 (g b , t) ≤ c 1 (b 3 + (t/d) 4 ),
and for each polynomial T n ∈ T n , satisfying T n (0) ≥ 0, and a positive number h ≤ d,

(3.6) g b -T n [-h,h] ≥ c 2 hb 2 n -3b 3 .
where c 1 and c 2 ≤ 1 are positive absolute constants.

Proof. First we show, that

(3.7) g b -q b ≤ 3b 3 . Indeed, if |x| ≤ 2b, then |g b (x) -q b (x)| = 1 -Ŝ (x/b) |(cos b -cos x) sin x| ≤ 2| sin x -b 2 sin x + b 2 sin x| ≤ 1 2 |x(x 2 -b 2 )| ≤ 3b 3 .
If otherwise 2b ≤ |x| ≤ π, then g b (x) = q b (x), so (3.7) holds.

To prove (3.5) we note, that the equality Ŝ(j

) (•/d) = ŝj d -j yields q (4) b ≤ cd -4 . Therefore ω 4 (g b , t) ≤ ω 4 (g b -q b , t) + ω 4 (q b , t) ≤ 2 4 g b -q b + t 4 q (4) b ≤ 48b 3 + cd -4 t 4 ,
that implies (3.5).

Finally, to prove (3.6), we apply Lemma 3.1. Since

q b (x) = (cos b - cos x) sin x for x ∈ [-d, d], we get 2 sin 2 b 2 = -q b (0) ≤ T n (0) -q b (0) ≤ cn h T n -q b [-h,h] ≤ cn h ( T n -g b [-h,h] + q b -g b ) ≤ cn h ( T -g b [-h,h] + 3b 3 ),
that yields (3.6).

Negative result in copositive approximation

For each collection Y s = {y i } 2s i=1 ∈ Y s denote by ∆ (0) (Y s ) the set of all 2π-periodic functions f ∈ C(R), such that

f (t) 2s i=1 (t -y i ) ≥ 0, t ∈ [y 2s , y 0 ].
For the function g ∈ ∆ (0) (Y s ), denote by

E (0) n (g, Y s ) := inf Tn∈Tn∩∆ (0) (Ys) g -T n ,
the error of the best copositive approximation of the function g. We prove

Theorem 4.1. For each Y s ∈ Y s there is a function f ∈ ∆ (0) (Y s ), such that (4.1) lim sup n→∞ E (0) n (f, Y s ) ω 4 (f, 1/n) = +∞ and (4.2) π -π f (x) dx = 0.
Proof. Without loss of generality assume, that y 1 = 0. Put d := 1 2 min{y 0 , -y 2 , π/2}, so that (3.3) implies, for all positive b ≤ d/2,

(4.3) g b ∈ ∆ (0) (Y s ),
where g b is defined in the previous Section. Following [START_REF] Dzyubenko | Shevchuk Piecewise monotone pointwise approximation[END_REF], pg.343-345, we put

(4.4) b n := 1 n 4 3 , f n (x) = g bn (x),
and note that (3.5) implies, for all n ≥ (2/d) 3/4 , so that 2b n ≤ d,

(4.5) ω 4 (g b ; t) ≤ c 1 1 + d -4 t 4 , t ≥ 1 n .
We are now in a position to define the desired in Theorem 4.1 function f . First we put ε = 0.1 and choose n 0 ≥ (2/d) 3/4 , so big that (4.6)

c 1 1 + d -4 < n ε 0 . Set d 0 := d and (4.7) d j := c 2 4 b n j-1 b 2 n j n j d j-1 , j ≥ 1,
where the increasing sequence {n ν } is defined by induction as follows. Suppose that {n 0 , . . . , n σ-1 } have been defined, then put

F σ-1 (x) := σ-1 j=1 d j-1 f n j (x), (F 0 (x) :≡ 0),
and take n σ > n σ-1 so big that (4.8)

F (4) σ-1 ≤ d σ-1 n σ , and 
(4.9) c 2 b n σ-1 > 2n - σ . Now put Φ σ (x) := ∞ j=σ d j-1 f n j (x),
where the uniform convergence of the series is justified by (3.2) and the inequality

(4.10) Φ σ ≤ ∞ j=σ d j-1 ≤ d σ-1 1 + 1 4 + 1 4 2 + ... < 2d σ-1 .
So we define

(4.11) f (x) := ∞ j=1 d j-1 f n j (x) = F σ-1 (x) + Φ σ (x),
and note, that (4.3) and (4.4) yield (4.12)

f ∈ ∆ (0) (Y s ).
Recall also that g b and, hence, f n , are odd functions. Therefore, f is odd as well, which implies (4.2).

It remains to verify (4.1). Inequalities (4.5), (4.10), and (4.6) lead to

ω 4 (Φ σ , 1/n σ ) ≤ c 1 1 + 1 d 4 1 n 4 σ ∞ j=σ d j-1 < 2c 1 1 + 1 d 4 d σ-1 n 4 σ < 2 d σ-1 n 4- σ ,
as well as (4.8) provides

ω 4 F σ-1 , 1 n σ ≤ 1 n 4 σ F (4) σ-1 ≤ d σ-1 n 4- σ .
Hence, for all σ, (4.13)

ω 4 f, 1 n σ ≤ 3 d σ-1 n 4- σ .
Finally, let us prove that if

T nσ ∈ T nσ ∩ ∆ (0) (Y s ), then (4.14) f -T nσ ≥ d σ-1 b 2 nσ n 1+ε σ -3b 3 nσ , (4.15) E (0) nσ (f, Y s ) ≥ d σ-1 n -ε-11/3 σ -3n -4 σ .
Indeed, since by (3.1) F σ-1 is zero on [-b n σ-1 , b n σ-1 ] =: J σ , we may write

f (x) = d σ-1 f nσ (x) + Φ σ+1 (x), x ∈ J σ .
Let τ nσ := T nσ /d σ-1 . Since τ nσ ∈ ∆ (0) (Y s ), we have τ nσ (0) ≥ 0, therefore by virtue of (3.6)

(4.16) f nσ -τ nσ Jσ ≥ c 2 b 2 nσ n σ b n σ-1 -3b 3 nσ .
On the other hand, (3.2), (4.10), and (4.7) yield

Φ σ+1 < 2d σ = c 2 2 b n σ-1 b 2 nσ n σ d σ-1 .
Hence

f -T nσ ≥ T nσ -f Iσ ≥ T nσ -d σ-1 f nσ Iσ -Φ σ+1 = d σ-1 τ nσ -f nσ Iσ -Φ σ+1 ≥ d σ-1 c 2 b n σ-1 b 2 nσ 2n σ -3b 3 nσ .
Now (4.14) follows from (4.9). Thus, (4.13) and (4.15) lead to

E (0) nσ (f ) ω 4 (f, 1/n σ ) ≥ 1 3 n 1/3-2 σ - 1 n ε σ
for all σ, that implies (4.1), since the chosen ε is sufficiently small.

5.

Negative results in comonotone approximation, proofs of Theorems 1.2 and 1.3

We say that a 2π-periodic function f ∈ C(R) is piecewise monotone with respect to Y s ∈ Y s , if it is a nondecreasing function on [y 1 , y 0 ] and it changes its monotonicity at the points Y s , that is, if (-1) i-1 f is nondecreasing on [y i , y i-1 ], 1 ≤ i ≤ 2s. We denote by ∆ (1) (Y s ) the collection of all such piecewise monotone functions. For a function g ∈ ∆ (1) (Y s ) denote by E (1) n (g, Y s ) := inf

Tn∈Tn∩∆ (1) (Ys) g -T n ,
the error of the best comonotone approximation of the function g. First we formulate the well known Lemma 5.1.

Lemma 5.1. For each function g ∈ C (1) and every polynomial T n ∈ T n the inequality

(5.1) g -T n ≤ c(k)(ω k (g , 1/n) + n g -T n )
holds, where the constant c(k) depends only on k.

Now we prove

Theorem 5.2. For each Y s ∈ Y s there is a function F ∈ ∆ (1) (Y s ) ∩ C (1) , such that

lim n→∞ sup nE (1) n (F, Y s ) ω 4 (F , 1/n) = +∞
Proof. Let f be a function, guaranteed by Theorem 4.1. Identity (4.2) implies, that the function

F (x) := x 0 f (t)dt is also 2π periodic. Then, F ≡ f and f ∈ ∆ (0) (Y s ) yield F ∈ ∆ (1) (Y s ). For each polynomial T n ∈ ∆ (1) (Y s ) ∩ T n (5.1) implies E (0) n (f, Y s ) ≤ F -T n ≤ c(ω 4 (F , 1/n) + n F -T n ), whence nE (1) n (F, Y s ) ≥ cE (0) n (f, Y s ) -ω 4 (f, 1/n). Therefore lim sup n→∞ nE (1) n (F, Y s ) ω 4 (F , 1/n) ≥ c lim sup n→∞ E (0) n (f, Y s ) ω 4 (f, 1/n) -1 = +∞.
We are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let F be a function, guaranteed by Theorem 5.2. Since F is a 2π-periodic function and F ∈ ∆ (1) (Y s ) ∩ C (1) , the function

f (x) := x 0 F (t)dt - x 2π 2π 0 F (t)dt
is also 2π-periodic and f ∈ ∆ (2) (Y s ) ∩ C (2) . For each polynomial T n ∈ ∆ (2) (Y s ) ∩ T n (5.1) implies

E (1) n (F, Y s ) ≤ f -T n ≤ c(ω 5 (f , 1/n) + n f -T n ) ≤ c 1 n ω 4 (f , 1/n) + n f -T n , whence n 2 E (2) n (f, Y s ) ≥ cnE (1) n (F, Y s ) -ω 4 (f , 1/n). Therefore lim sup n→∞ n 2 E (2) n (f, Y s ) ω 4 (f , 1/n) ≥ c lim sup n→∞ nE (1) 
n (F, Y s ) ω 4 (F , 1/n) -1 = +∞.

Our last formulation is is also 2π-periodic and f ∈ ∆ (2) (Y s ) ∩ C (1) . For each polynomial T n ∈ ∆ (2) (Y s ) ∩ T n (5.1) implies

E (1) n (F, Y s ) ≤ f -T n ≤ c(ω 3 (f , 1/n) + n f -T n ),
whence nE (2) n (f, Y s ) ≥ cE (1) n (F, Y s ) -ω 3 (F, 1/n). Therefore

lim sup n→∞ nE (2) n (f, Y s ) ω 3 (f , 1/n) ≥ c lim sup n→∞ E (1) 
n (F, Y s ) ω 3 (F, 1/n) -1 = +∞, which is (1.6). Finally, (1.7) follows from (1.6) and the inequality ω 4 (f, t) ≤ tω 3 (f , t).

2 . 1 Lemma 2 . 1 .

 2121 Proof of Theorem 1.1 We begin with the following Lemma 2.Let an integer n ∈ N and a positive number δ ≤ 1 n be given. If a polynomial T ∈ T n satisfies T (±δ) = 0 and T (t) ≥ 0, for δ ≤ |t| ≤ π, then (2.1) T (t) ≡ 0.

Theorem 5 . 3 ( 0 F (t)dt - x 2π 2π 0 F

 5300 [START_REF] Dzyubenko | Contrexample in comonotone approximation of periodic functions[END_REF]). For each Y s ∈ Y there is a function f ∈ ∆(1) (Y s ), such that lim sup n→∞ E (1) n (f, Y s ) ω 3 (f, 1/n) = +∞.Proof of Theorem 1.3. In fact we repeat the previous proof with minor changes. So, Let F be a function, guaranteed by Theorem 5.3. Since F is a 2π-periodic function and F ∈ ∆(1) (Y s ), the function f (x) :=x (t)dt
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