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Rankine-Hugoniot conditions

for fluids whose energy depends

on space and time derivatives of density

S. L. Gavrilyuk∗, H. Gouin∗

October 2, 2020

Abstract

By using the Hamilton principle of stationary action, we derive the gov-

erning equations and Rankine–Hugoniot conditions for continuous media

where the specific energy depends on the space and time density deriva-

tives. The governing system of equations is a time reversible dispersive

system of conservation laws for the mass, momentum and energy. We

obtain additional relations to the Rankine–Hugoniot conditions coming

from the conservation laws and discuss the well-founded of shock wave

discontinuities for dispersive systems.

1 Introduction

Ideal shock waves, i.e. surfaces of discontinuities crossed by mass fluxes, are
generally associated with quasilinear hyperbolic systems of conservation laws
[1, 2, 3, 4]. Such a moving surface divides the physical space into two subspaces
in which the solution is continuous but jumps across the shock. The jump
relations (Rankine–Hugoniot conditions) are derived from the conservation laws.
They relate the normal velocity of the discontinuity surface to the field variables
behind and ahead of the shock. An additional ‘entropy inequality’ is usually
added to select admissible shocks [2, 5]. For example, consider the Hopf equation
for unknown function u(t, x) (the choice of the conservative form is postulated
a priori) :

∂u

∂t
+

∂

∂x

(

u2

2

)

= 0 (1.1)

and the corresponding Riemann problem

u(0, x) =







u− if x < 0

u+ if x > 0
(1.2)
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If the ‘entropy’ inequality u− > u+ holds, a unique discontinuous solution is a
shock moving with the velocity D = (u− + u+)/2 :

u(t, x) =







u− if x < D t

u+ if x > D t
(1.3)

The entropy inequality is usually obtained by the ‘viscosity method’ : one reg-
ularizes the Hopf equation by the Burgers equation [4, 6] :

∂u

∂t
+

∂

∂x

(

u2

2

)

= ν
∂2u

∂x2
, (1.4)

where ν > 0 is a small parameter. The condition of existence of travelling wave
solutions for (1.4) joining the states u− (respectively u+) at minus (respectively
plus) infinity and having the velocityD = (u−+u+)/2 yields the inequality u− >
u+. The travelling wave solution to (1.4) converges pointwisely as ν → 0 to the
solution (1.3). However, the viscous regularization does not always prevent from
the existence of discontinuous solutions. For example, in the theory of supersonic
boundary layer, the viscosity is only present in the direction transverse to the
main stream, and it is not sufficient to prevent from the shock formation [7].
Analogous results can be found in the theory of long waves in viscous shear flows
down an inclined plane [8], and even in compressible flows of a non-viscous but
heat-conductive gas [9].

Usually one thinks that the dispersive regularization excludes the shock for-
mation. For example, this is the case of the Korteweg–de Vries (KdV) equation
:

∂u

∂t
+ u

∂u

∂x
+ ν

∂3u

∂x3
= 0 (1.5)

where ν is a small parameter. The structure of the solution of Riemann’s prob-
lem (1.2) with u− > u+ to the KdV equation (1.5) is completely different.
The shocks (first order discontinuities) become ‘dispersive shock waves’ (DSW)
representing a highly oscillating transition zone joining smoothly the constant
states u± [10, 11, 12, 13, 14]. The leading edge of this DSW approximately
represents a half solitary wave propagating over the state u = u+ while the
trailing edge of the DSW corresponds to the small amplitude oscillations near
the state u−. The dispersionless limit ν → 0 of (1.5) is the Whitham system
[14], and not the Hopf equation (1.1).

However, let us consider another type of dispersive regularization of (1.1)
called the Benjamin–Bona–Mahony (BBM) equation [15] :

∂u

∂t
+ u

∂u

∂x
− ν

∂3u

∂t ∂x2
= 0, ν > 0. (1.6)

A surprising fact is that the BBM equation admits the exact stationary discon-

tinuous solution [16]. For example,

u(t, x) =







−1 if x < 0

1 if x > 0
(1.7)
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is a stationary solution to (1.6). Thus, a priori, the dispersion does not prevent
from the singular solutions. The solution (1.7) is an ‘expansion shock’, i.e. it
does not verify the Lax stability condition. Such a shock-like solution survives
only a finite time after smoothing of the discontinuity : the shock structure is
conserved but the shock amplitude is decreasing algebraically in time [16].

One-dimensional shock-like solutions to dispersive equations connecting a
constant state and a periodic solution of the governing equations were recently
constructed in [17] for a continuum where the internal energy depended not
only on the density but also on its material derivative. Across the shock con-
sidered as a dispersionless limit generalized Rankine–Hugoniot conditions were
satisfied. These conditions are the classical laws for the conservation of mass
and momentum which are supplemented by an extra condition for the one-sided
derivatives of the density coming from the variation of Hamilton’s action. Nu-
merical experiments confirm the relevance of this supplementary condition [17].

One has also to mention the result of [18] where the fifth order KdV equa-
tion was studied. The dispersionless limit of this equation is the corresponding
Whitham system. The heteroclinic connection of periodic orbits in the exact
equation correspond to the Rankine-Hugoniot conditions for the Whitham sys-
tem.

Thus, the difference between the low order dispersive system [17] (not admit-
ting heteroclinic connections between periodic orbits) and the higher order dis-
persive equation (admitting such a heteroclinic connection) [18] is the following.
In the first case the generalized shock relations are obtained from Hamilton’s
action while in the second case they are obtained from averaged Hamilton’s
action.

We will concentrate here on two classes of low dispersive equations which are
Euler–Lagrange equations for Hamilton’s action with a Lagrangian depending
not only on the thermodynamic variables but also on their first spatial and time
derivatives. This is the case of the model of fluids endowed with capillarity (the
Lagrangian depends on the density gradient) [21, 22, 23, 24] and the model of
fluids containing gas bubbles [25, 26, 39, 27] (the Lagrangian depends on the
material derivative of density). Mathematically equivalent models also appear
in quantum mechanics where the nonlinear Schrödinger equation is reduced to
the equations of capillary fluids via the Madelung transform [28, 29, 30], and
in the long-wave theory of free surface flows [31, 32, 33] where the equations of
motion (Serre–Green–Naghdi equations) have the form which is equivalent to the
equations of bubbly fluids. We show that the Hamilton principle implies not only
classical Rankine–Hugoniot conditions for the mass, momentum and energy, but
also additional relations. The one-dimensional case where the internal energy
depends not only on the density but also on the material derivatives of the
density, the shock-like transition fronts were already discovered in [17]. So,
it is quite natural to perform the study in the multi-dimensional case. For
the continuum where the internal energy depends on the density and density
gradient, we hope to present in the future shock-like solutions in the case of
non-convex ‘hydrodynamic’ part of the internal energy (in the limit of vanishing
density gradients the energy is of van der Waals’ type).
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The technique we use to establish the generalized Rankine–Hugoniot condi-
tions in the multi-dimensional case is related with the variation of Hamilton’s
action. To show how it works, we present first a ‘toy’ system coming from the
analytical mechanics.

A heavy ring C of massm can freely slide on a heavy thread of constant linear
density γ having the total length ℓ and fixed at the end points A and B in the
vertical plane (O, i, j) where i (respectively j) are the horizontal (respectively
vertical) unit vectors (see Figure 1). We have to determine the position of C as
well as the thread form. To do so, we need to find the extremum of the system
energy :

W = gγ

∫ B

A

y(s)ds+mg jTC

submitted to the constraint :
∫ B

A

ds = ℓ (1.8)

where ℓ is a constant length. Here the bold letter C means the vector connecting
O and C, g is the acceleration of gravity, s is the curvilinear abscissa, and y(s) is
the vertical coordinate of the current point of the thread. Then, the extremum
of system energy is associated with :

W ′ =

∫ B

A

n(s)ds+mg jTC

where n(s) = gγ y(s) − Λ, Λ being a constant Lagrange multiplier associated
with constant length (1.8). Since the ends A and B are fixed, the variation of
W ′ can be written in the form [19, 20] :

δW ′ = −n(C)
[

τT
]

δC +mgjT δC (1.9)

+

(

∫ C

A

+

∫ B

C

)

(

g γ jT
(

I − ττT
)

−
n

R
νT
)

δMds = 0

where δ means the variation, τ and ν are the unit tangent and normal vectors
to the extremal curve representing the position of the thread, R is the radius
of curvature, I is the identity tensor, square brackets [...] mean the jump of τ
at C : [τ ] = τ+ − τ− (see Figure 1), M means the vector connecting O and
M , where M is a current point of the curve. Condition δW ′ = 0 implies the
equation defining the ‘broken extremal’ composed of two catenaries given by
the solutions of the following equation [20] :

g γ
(

I − ττ T
)

j −
n

R
ν = 0

This equation is supplemented by two jump conditions at point C coming
from (1.9) :

−n(C) [τ ] +mg j = 0
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O i
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+

-

Figure 1: A heavy ring C can freely slide on a heavy curve of total length ℓ and
fixed at the end points A and B in the vertical plane (O, i, j). One needs to
find the position of C as well as the corresponding equilibrium curve.

Since n(c) 6= 0, we finally obtain :







[

τT
]

i = 0

n(C)
[

τT
]

j −mg = 0
(1.10)

Consequently, the angles between tangent vectors to the curve and the horizontal
axe are opposite. The second condition determines the Lagrange multiplier
Λ. The conditions (1.10) can be seen as Rankine–Hugoniot conditions which
complement the governing equations and define boundary conditions for the
‘broken extremal’ (Figure 1).

Such a variational technique can be generalized to the case of continuum me-
chanics where the variation of Hamilton’s action should naturally be considered
in the four-dimensional physical space-time [34, 35, 36].

The remainder of this paper is structured as follows. In Section 2 the varia-
tion of Hamilton’s action with a generic Lagrangian depending on the thermo-
dynamic variables and their space-time derivatives is found. The corresponding
Euler–Lagrange equations are specified for the capillary fluids and for the bub-
bly fluids in Section 3. The Rankine–Hugoniot conditions for both models are
derived in Section 4. Technical details are given in Appendix.

2 The Hamilton action

Consider the Hamilton action :

a =

∫

W

Ldz
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where W is a 4-D domain in space–time. The Lagrangian is in the form :

L = L

(

J ,
∂J

∂z
, η, z

)

with z =

(

t
x

)

≡
{

zi
}

, where z0 = t is the time and x ≡
{

xi
}

, i = 1, 2, 3 are

the Euler space-variables. We write J =

(

ρ
ρu

)

, where ρ is the fluid density,

η is the specific entropy (the entropy per unit mass) and u is the fluid velocity.
The 4-D vector J verifies the mass conservation :

DivJ ≡
∂ρ

∂t
+ div(ρu) = 0 (2.11)

where div and Div are the divergence operators in the 3-D physical space and in
4-D physical space-time, respectively. For conservative motion, due to (2.11),
the equation for the entropy η takes the form :

Div (η J) ≡
∂ρη

∂t
+ div(ρηu) = 0 (2.12)

To calculate the variation of Hamilton’s action, we consider a one-parameter

family of virtual motions :

z = Φ(Z, ε) with Φ(Z, 0) = ϕ(Z) (2.13)

where z = ϕ(Z) represents the real motion and Φ is a regular function in the
4-D reference-space W0 of variables Z ≡

(

Zi
)

, (i = 0, 1, 2, 3) : Z0 = λ is a

scalar field (which is not necessarily the time), X ≡
(

X i
)

, (i = 1, 2, 3) are the
Lagrange variables. The scalar ε is a real parameter defined in the vicinity of
zero.
We define the virtual displacements δ̃z(Z) and the Lagrangian variations δ̃J(Z)
by the formulas :

δ̃z(Z) =
∂Φ(Z , ε)

∂ε

∣

∣

∣

∣

ε=0

δ̃J(Z) =
∂J(Z , ε)

∂ε

∣

∣

∣

∣

ε=0

Due to the fact that Z = ϕ−1(z), we can also consider the variations as func-
tions of Eulerian variables. Further, we use the notation ζ(z) = δ̃z

(

ϕ−1(z)
)

and we write δJ(z) and other quantities without tilde in Eulerian variables:
δJ(z) = δ̃J

(

ϕ−1(z)
)

. The Hamilton principle assumes ζ(z) = 0 on the exter-
nal boundary ∂W of W .

Let ζT =
(

τ, ξT
)

, where τ is the scalar part of 4 -vector ζ associated with time
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t and 3 -vector ξ is the part of 4 -vector ζ associated with space-variable x. 1

In calculations we use the relation :

δJ =

(

∂ζ

∂z
− (Div ζ) I4

)

J (2.14)

(see Appendix A for the proof).
Due to (2.12), the variation of the specific entropy is zero [37] :

δη = 0

It is the reason, we don’t always indicate η in expression of the Lagrangian,
even if the entropy is explicitly presented in the governing equations.

The variation of Hamilton’s action is calculated for the family of virtual
motions (2.13) :

δa =
da

dε

∣

∣

∣

∣

ε=0

=

∫

W

(δL+ LDiv ζ) dz (2.15)

and

δL =
∂L

∂J
δJ +Tr









∂L

∂

(

∂J

∂z

) δ

(

∂J

∂z

)









+
∂L

∂z
ζ

1We use the following definitions for basic vector analysis operations. For vectors a and b,
aT b is the scalar product (line vector aT is multiplied by column vector b); for the sake of
simplicity, we also denote aTa = |a|2. Tensor a bT (or a⊗b) is the product of column vector
a by line vector bT . Superscript T denotes the transposition. The divergence of a second
order tensor A is a covector defined as :

Div (Ah) = Div (A)h

where h is any constant vector field in the 4-D space. In particular, one gets for any 4-D

linear transformation A and any 4-D vector field v :

Div(Av) = (Div A) v + Tr

(

A
∂v

∂z

)

where Tr is the trace of a square matrix. Operators ∇ =

(

∂

∂x

)T

and Grad =

(

∂

∂z

)T

denote

the gradients in the 3-D and 4-D space, respectively. If f(A) is any scalar function of A, we
denote :

∇Af =

(

∂f

∂A

)T

with

(

∂f

∂A

)i

j

=

(

∂f

∂A
j
i

)

where A
j
i are components of A with i being the line index and j being the column index. We

also denote :

df(A) = ∇Af : dA =

(

∂f

∂Ai
j

)

dAi
j

where repeated indices mean the summation. The identity matrix and the zero matrix of
dimension k are denoted by Ik and Ok, respectively. The zero vector of dimension k is
denoted by 0k but, when it has no ambiguity, in the physical 3-D space, we simply denote
the zero matrix by O, the zero vector by 0 and identity tensor by I.
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To obtain (2.15) we use Jacobi’s identity for the generalized 4-D deformation
gradient B :

δ detB = detB Div ζ with B =
∂z

∂Z

To simplify the notation we write :

C =
∂J

∂z
, AT =

∂L

∂

(

∂J

∂z

) = (∇CL)
T

and Tr
(

AT δC
)

= ∇CL : δC

One also has :

δC = δ

(

∂J

∂z

)

= δ

(

∂J

∂Z

∂Z

∂z

)

=
∂δJ

∂z
−

∂J

∂z

∂ζ

∂z

For the sake of simplicity, in the following the measure of integration will not
be indicated. Then, we get from (2.14) and (2.15) :

δa =

∫

W

∂L

∂J

(

∂ζ

∂z
− (Div ζ) I4

)

J +Tr

(

AT

(

∂δJ

∂z
−

∂J

∂z

∂ζ

∂z

))

+
∂L

∂z
ζ + LDiv ζ

One has :

δa =

∫

W

Tr

((

J
∂L

∂J
−AT ∂J

∂z

)

∂ζ

∂z

)

+

(

L−
∂L

∂J
J

)

Div ζ +Tr

(

AT ∂δJ

∂z

)

+
∂L

∂z
ζ

=

∫

W

Tr

((

J
∂L

∂J
−AT ∂J

∂z

)

∂ζ

∂z

)

+

(

L−
∂L

∂J
J

)

Div ζ +Div
(

AT δJ
)

−Div
(

AT
)

δJ +
∂L

∂z
ζ

and finally :

δa =

∫

W

Tr

((

J
∂L

∂J
−AT ∂J

∂z

)

∂ζ

∂z

)

+

(

L−
∂L

∂J
J

)

Div ζ + Div
(

AT δJ
)

−

∫

W

Div
(

AT
)

(

∂ζ

∂z
− (Div ζ) I4

)

J +
∂L

∂z
ζ

=

∫

W

Tr

((

J
∂L

∂J
−AT ∂J

∂z
− J Div

(

AT
)

)

∂ζ

∂z

)

+

∫

W

(

L−
∂L

∂J
J +

(

DivAT
)

J

)

Div ζ +Div
(

AT δJ
)

+
∂L

∂z
ζ

=

∫

W

Div

((

J
∂L

∂J
−AT ∂J

∂z
− J Div

(

AT
)

)

ζ +AT δJ

)

−

∫

W

Div

(

J
∂L

∂J
−AT ∂J

∂z
− J Div

(

AT
)

)

ζ

+

∫

W

Div

((

L−
∂L

∂J
J +

(

DivAT
)

J

)

ζ

)

−

∫

W

Grad

(

L−
∂L

∂J
J +

(

DivAT
)

J

)T

ζ +
∂L

∂z
ζ
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Let us denote :

KT =
δL

δJ
≡

∂L

∂J
−Div

(

AT
)

then :

δa =

∫

W

{

∂L

∂z
−Div

(

JKT −AT ∂J

∂z
+ p I4

)}

ζ

+

∫

∂W

NT

(

J KT −AT ∂J

∂z
+ p I4

)

ζ +NTAT δJ

where
p = L−KTJ (2.16)

and NT is a 4-D co-vector canceling the tangent vectors to ∂W .

Due to the fact, the virtual displacement can be considered as null in the
vicinity of the boundary ∂W , the Hamilton principle simply writes :

δa =

∫

W

{

∂L

∂z
−Div

(

JKT −AT ∂J

∂z
+ p I4

)}

ζ = 0

and we get the equations of motions in a conservative form [38] :

Div

(

J KT −AT ∂J

∂z
+ p I4

)

=
∂L

∂z
(2.17)

where term ∂L/∂z is associated with the external body forces.

Let the motion be discontinuous on a 3-D surface Σ with normal N (see
Figure 2). The virtual displacement can be considered as null in the vicinity of
the boundary ∂W , and equations of motions (2.17) being satisfied, the variation
of the Hamilton action is reduced to :

δa =

∫

Σ

[

NT

(

JKT −AT ∂J

∂z
+ p I4

)

ζ +NTAT δJ

]

(2.18)

where the brackets [ ] mean the jumps of discontinuous quantities across Σ .
In the next section, we explicit the governing equation (2.17) for two cases :

second gradient fluids and bubbly fluids. Then, we present the surface integral
(2.18) for these two specific cases.

3 Particular cases

3.1 Capillary fluids

Without body forces, the Lagrangian is of the form :

L =
1

2
ρ |u|

2
− ρα

(

ρ,
∂ρ

∂x
, η

)

≡
1

2 ρ
|j|

2
− ρα

(

ρ,
∂ρ

∂x
, η

)

9



Figure 2: The shock surface Σ in W : The shock surface Σ divides the space-
time domain W into two space-time domains W− and W+ behind and ahead
of the shock in which the solution is continuous but across the shock.

Then

∂J

∂z
=











∂ρ

∂t

∂ρ

∂x

∂j

∂t

∂j

∂x











,
∂L

∂J
=

(

−
1

2
|u|

2
− α− ρ

∂α

∂ρ
, uT

)

(3.19)

We deduce :

AT =
∂L

∂

(

∂J

∂z

) =













0 0T
3

−ρ
∂α

∂

(

∂ρ

∂x

)

O3













(3.20)

and get :

Div (AT ) = −









div















ρ
∂α

∂

(

∂ρ

∂x

)















, 0T
3









KT =
∂L

∂J
−Div (AT ) =









−
1

2
|u|2 − α− ρ

∂α

∂ρ
+ div















ρ
∂α

∂

(

∂ρ

∂x

)















, uT









(3.21)
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The pressure p deduced from (2.16) is defined as :

p ≡ ρ2
∂α

∂ρ
− ρ div









ρ
∂α

∂

(

∂ρ

∂x

)









Nevertheless, p is not only a function of density as in the case of barotropic
fluids: it depends also on the density gradient. Additively :

AT ∂J

∂z
=













0, 0T
3

−ρ
∂α

∂

(

∂ρ

∂x

)

∂ρ

∂t
, −ρ

∂α

∂

(

∂ρ

∂x

)

∂ρ

∂x













JKT =











−
1

2
ρ |u|

2
− ρα− p, ρuT

(

−
1

2
ρ |u|

2
− ρα− p

)

u, ρuuT











Equation (2.17) writes :

Div













e, −ρuT

(e+ p)u− ρ
∂ρ

∂t

∂α

∂

(

∂ρ

∂x

) , −ρuuT − ρ
∂α

∂

(

∂ρ

∂x

)

∂ρ

∂x
− p I3













= 0T
4

(3.22)
where we denote by

e = ρ

(

1

2
|u|

2
+ α

)

the total energy per unit volume of the fluid; the first component of Eq. (3.22)
yields the equation of energy :

∂e

∂t
+ div









(e+ p)u− ρ
∂ρ

∂t

∂α

∂

(

∂ρ

∂x

)









= 0 (3.23)

The additive term ρ
∂ρ

∂t

∂α

∂

(

∂ρ

∂x

) is a flux of energy corresponding to the inter-

stitial working [22].
The three other components of Eq. (3.22) yield the equations of motion :

∂ρuT

∂t
+ div









ρu⊗ u+ p I + ρ
∂α

∂

(

∂ρ

∂x

)

∂ρ

∂x









= 0T (3.24)

11



Equations (3.23) and (3.24) represent the development of (2.17) for capillary
fluids.

3.2 Bubbly fluids

Without body forces, the Lagrangian is of the form :

L =
1

2
ρ |u|

2
− ρw (ρ, ρ̇, η) ≡

1

2 ρ
|j|

2
− ρw (ρ, ρ̇, η)

where
�

ρ =
dρ

dt
=

∂ρ

∂t
+

∂ρ

∂x
u ≡

∂ρ

∂t
+

1

ρ

∂ρ

∂x
j

Such a Lagrangian appears in the study of wave propagation for shallow water
flows with dispersion and bubbly flows (a complete discussion of these models
is given in [39]). Then (3.19) can be explicitly written as :

∂L

∂J
=

(

−
1

2
|u|2 − w − ρ

∂w

∂ρ
+

∂w

∂
�

ρ

∂ρ

∂x
u, uT −

∂w

∂
�

ρ

∂ρ

∂x

)

We deduce :

AT =
∂L

∂

(

∂J

∂z

) =













−ρ
∂w

∂
�

ρ
0T
3

−ρ
∂w

∂
�

ρ
u O3













(3.25)

Due to (2.11) we obtain :

Div (AT ) =

(

−
∂

∂t

(

ρ
∂w

∂
�

ρ

)

− div

(

ρ
∂w

∂
�

ρ
u

)

, 0T
3

)

≡

(

−ρ
d

dt

(

∂w

∂
�

ρ

)

, 0T
3

)

KT =
∂L

∂J
−Div (AT )

=

(

−
1

2
|u|

2
− w − ρ

∂w

∂ρ
+

∂w

∂
�

ρ

∂ρ

∂x
u+ ρ

d

dt

(

∂w

∂
�

ρ

)

, uT −
∂w

∂
�

ρ

∂ρ

∂x

)

The pressure p obtained from (2.16) is defined as :

p = ρ2

(

∂w

∂ρ
−

d

dt

(

∂w

∂
�

ρ

))

Nevertheless pressure p depends also on the material derivatives of the density.
Additively,

AT ∂J

∂z
=













−ρ
∂w

∂
�

ρ

∂ρ

∂t
, −ρ

∂w

∂
�

ρ

∂ρ

∂x

−ρ
∂w

∂
�

ρ

∂ρ

∂t
u, −ρ

∂w

∂
�

ρ
u
∂ρ

∂x












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JKT =















−
1

2
ρ |u|

2
− ρw − p+ ρ

∂w

∂
�

ρ

∂ρ

∂x
u, ρuT − ρ

∂w

∂
�

ρ

∂ρ

∂x

(

−
1

2
ρ |u|2 − ρw − p+ ρ

∂w

∂
�

ρ

∂ρ

∂x
u

)

u, ρuuT − ρ
∂w

∂
�

ρ
u
∂ρ

∂x















Equation (2.17) writes :

Div















1

2
ρ |u|2 + ρw − ρ

∂w

∂
�

ρ

�

ρ, −ρuT

(

1

2
ρ |u|

2
+ ρw − ρ

∂w

∂
�

ρ

�

ρ+ p

)

u, −ρuuT − p I3















= 0T
4 (3.26)

We denote by

e = ρ

(

1

2
|u|2 + w −

�

ρ
∂w

∂
�

ρ

)

the total energy per unit volume of the fluid; the first component of Eq. (3.26)
yields the equation of energy :

∂e

∂t
+ div ((e+ p)u) = 0 (3.27)

The three other components of Eq. (3.26) yield the equations of motion :

∂ρuT

∂t
+ div(ρu⊗ u+ p I) = 0T (3.28)

Equations (3.27) and (3.28) represent the development of (2.17) for bubbly
fluids.

4 Rankine–Hugoniot conditions

We representΣ in the form Σ = [t0, t1]×St where St is a time dependent surface.
Then, NT = (−Dn,n

T ), where Dn denotes the normal surface velocity of St

and n is the unit normal vector to St. The mass conservation law (2.11) yields
the relation :

[

NTJ
]

=
[

ρ
(

nTu−Dn

)]

= [ρ v] = 0 with v = nTu−Dn

As seen in Appendix 2, in the two particular cases, the term NTAT δJ can be
written as :

NTAT δJ = b

(

div ξ −
∂τ

∂x
u

)

13



where b is the scalar which is given in explicit form for capillary fluids by (B.37)
and for bubbly fluids by (B.38) 2.

We study the case when Σ is a shock surface and consequently ρ v = NTJ 6= 0.

Equation (2.17) being verified, we obtain for all vector field ζ the variation of
δa in the form (2.18). The surface integral (2.18) will be presented in separable
form in terms of virtual displacements and their normal derivatives along the
3-D manifold Σ [40, 41].
Using Lemmas from Appendix C, we obtain :

NTAT δJ = b

(

div ξ −
∂τ

∂x
u

)

= b div(ξ − τu) + τ b div(u)

= −Θ
T ζ − bnTu

dτ

dn
+ b

dξn
dn

+ nT rot (n× b (ξ − τu)) ,

with

Θ =







−bHnTu− divtg (bu)

bHn+∇tgb+ b
∂n

∂x
n






. (4.29)

Here we use the notations ∇T
tgb =

∂b

∂x

(

I − nnT
)

and divtg(bu) = div (bu) −

nT ∂bu

∂x
n, where index ‘tg’ means the tangential gradient and tangential diver-

gence operators to St. Also, H = −div(n) is the sum of principal curvatures of
St. From (2.18), one obtains :

δa =

∫

Σ

[{

NT

(

JKT −AT ∂J

∂z
+ p I4

)

−Θ
T

}

ζ

]

−

∫

Σ

[

bnTu
dτ

dn
− b

dξn
dn

]

+

∫ t1

t0

∫

Ct

[

b {n× (ξ − τu)}
T
t
]

Here Ct denotes the boundary of St (Σ = [t0 , t1 ] × St ), and t is the oriented
unit tangent vector to Ct. Since we are looking for shock relations, the virtual
displacements are vector fields with compact support on St, and the integral on
Ct is vanishing :

δa =

∫

Σ

[{

NT

(

JKT −AT ∂J

∂z
+ p I4

)

−Θ
T

}

ζ − bnTu
dτ

dn
+ b

dξn
dn

]

(4.30)

2We can also remark (see [35]) that δF =

(

∂ξ

∂x
− u

∂τ

∂x

)

F where F =
∂x

∂X
and

Tr

(

∂ξ

∂x
− u

∂τ

∂x

)

= div ξ −
∂τ

∂x
u. Consequently, the variation of NTAT δJ is associated

with the change of volume.
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This expression of δa is in a separable form for ζ,
dξn
dn

,
dτ

dn
, with

d

dn
= nT

∇

and ξn = ξTn. Since
dξn
dn

,
dτ

dn
are independent, it implies :

[ b ] = 0 and
[

bnTu
]

= 0

Consequently from [v] = [nTu−Dn] = [nTu] 6= 0, we obtain :

b = 0 (4.31)

Condition (4.31) implies the continuity of all tangential derivatives of b on St.
Hence, the vector Θ given by (4.29) is identically null. The relation δa = 0
given by (4.30) reduces to relations coming from the conservative form (2.17) :

[

NT

(

JKT −AT ∂J

∂z
+ p I4

)]

= 0T (4.32)

They are supplemented by an additional relation (4.31).

Remark: In the non-isentropic case (i.e. η 6= const) the shock relations
(4.32) conserve both the momentum and energy. If we restrict our attention to
isentropic (or, more generally, barotropic) flows, the conservation of energy is
not compatible with the conservation of momentum : ‘energy inequality’ takes
the place of ‘entropy inequality’. This means that depending on physical situa-
tions associated with special fluid flows, it may be necessary to consider only the

space variations ξ and
dξn
dn

, and not those associated with the time variations.

Thus, the number of shock conditions may be less than in the general case. In
what follows, we study only the general situation.

We now express conditions (4.31) and (4.32) for the two special cases.

4.1 Capillary fluids

For capillary fluids b is denoted by c (see (B.37) in Appendix B.1) :

c = ρ2 nT ∂α

∂

(

∂ρ

∂x

)

In general, specific internal energy α is quadratic in
∂ρ

∂x
:

α = β(ρ, η) +
1

2
λ(ρ, η)

∂ρ

∂x

(

∂ρ

∂x

)T

, λ > 0

with given functions β(ρ, η) and λ(ρ, η). Hence, on the shock :

∂ρ

∂x
n ≡

dρ

dn
= 0 (4.33)
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Relation (4.32) immediately yields :

[ρ vu+ pn] = 03

and
[

e v + pnTu
]

= 0

which are in the same form as the classical Rankine–Hugoniot relations for the
momentum and energy, respectively. Let us remark that e and p depend here
on the first and second order space derivatives of ρ.

4.2 Bubbly fluids

For bubbly fluids b is denoted by κ (see (B.38) in Appendix B.2) :

κ = ρ2v
∂w

∂ρ̇

In general, w is quadratic in ρ̇ :

w = β(ρ, η)−
1

2
λ(ρ, η) ρ̇2, λ > 0

with given functions β(ρ, η) and λ(ρ, η). On the shock (4.31) becomes :

ρ̇ = 0 (4.34)

Relation (4.32) immediately yields :

[ρ vu+ pn] = 03

and
[

e v + pnTu
]

= 0

which are the form of the classical Rankine–Hugoniot relations for the momen-
tum and energy, respectively, but with the pressure depending on the second
material derivatives of ρ.

5 Conclusion

We have obtained the Rankine–Hugoniot conditions in the cases where the inter-
nal specific energy depends on space and time derivatives of density. As usually,
these conditions express the conservation of mass, momentum and energy. Com-
pared to the conventional conservation laws of the momentum and energy, they
contain additional terms depending on the density derivatives. Moreover, an
additional relation (4.31) to the classical jump conditions is obtained (see also
(4.33) and (4.34)). The meaning of (4.31) can easily be understood in the case
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of capillary fluids. If we consider a rigid surface in contact with a capillary fluid,
the boundary condition when the surface has no energy is in the form [42] :

dρ

dn
= 0. (5.35)

Hence, this condition can be interpreted as the absence of the interaction be-
tween fluids separated by the shock front. For bubbly fluids the condition is

ρ̇ = 0. (5.36)

This condition can be interpreted as the absence on a moving front of the local
kinetic energy which is proportional to ρ̇2.

In both cases, the shock front has to be considered as a geometrical surface
without energy. Relations (5.35)–(5.36) are the analogs of ‘balance of hyper
momentum’ appearing in elasticity [43, 44]. An example of such a singular shock
solution was found in [17] in the case of dispersive shallow water equations which
have the same mathematical structure as the isentropic equations of bubbly
fluids. At such a shock the condition (5.36) was satisfied in addition to the laws
of conservation of mass and momentum. The energy equation played in this
case the role of ‘entropy inequality’.

Further studies are needed, both analytical and numerical, to understand
better singular shock solutions to dispersive systems of equations.
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A Variation of the Jacobian

Quadri-vector J =

(

ρ
ρu

)

is a form of W of image J0 in W0. Then, (2.11)

can be rewritten in Lagrangian coordinates as :

J =
B

detB
J0(Z) with B =

∂z

∂Z
and Div0 J0 = 0

Consequently :

δ J =

(

δ B

detB
−

1

(detB)2
B δ (detB)

)

J0

By using the Euler-Jacobi identity :

δ (det B) = det B Tr (B−1 δ B) with Tr (B−1 δ B) = Tr

(

∂ζ

∂z

)

≡ Div ζ

and we obtain :

δ J =
1

detB

(

∂ζ

∂z
− (Div ζ) I4

)

B J0 =

(

∂ζ

∂z
− (Div ζ) I4

)

J
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B Specific cases

B.1 Capillary fluids

One has from (3.20)

NTAT =









−ρnT ∂α

∂

(

∂ρ

∂x

) , 0T
3









Using (2.14) we obtain :

NTAT δJ = c

(

div ξ −
∂τ

∂x
u

)

where :

c = ρ2 nT ∂α

∂

(

∂ρ

∂x

) (B.37)

Since at the shock
NTJ = ρ

(

nTu−Dn

)

= ρ v

we finally obtain :

NTAT ∂J

∂z
= −ρnT ∂α

∂

(

∂ρ

∂x

)

∂ρ

∂z

and from (3.21) :

NTJKT = ρ v









−
1

2
|u|2 − α− ρ

∂α

∂ρ
+ div















ρ
∂α

∂

(

∂ρ

∂x

)















, uT









B.2 Bubbly fluids

From Eqs. (2.14) and (3.25) we obtain :

NTAT δJ = κ

(

div ξ −
∂τ

∂x
u

)

where :

κ = ρ2v
∂w

∂
�

ρ
(B.38)

Since

NTJ = ρ
(

nT u−Dn

)

= ρ v, NTAT =

(

−ρ v
∂w

∂
�

ρ
, 0T

3

)
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one has

NTAT ∂J

∂z
= −ρv

∂w

∂
�

ρ

∂ρ

∂z

and

NTJKT = ρ v

(

−
1

2
|u|

2
− w − ρ

∂w

∂ρ
+

∂w

∂
�

ρ

∂ρ

∂x
u+ ρ

d

dt

(

∂w

∂
�

ρ

)

, uT −
∂w

∂
�

ρ

∂ρ

∂x

)

C Technical lemmas

For any scalar field b of the 3-D physical space, we have the property :

b div ξ = nT rot (n× b ξ)+b
dξn
dn

−bnT

(

∂n

∂x

)T

ξ−bHnT ξ+
∂b

∂x

(

nnT − I
)

ξ

where H = −divn is the sum of principal curvatures of St, ξn = nT ξ, and
d

dn
is the normal derivative to St. Here one supposes that the normal vector field
n is locally extended in the vicinity of St.

Proof. Let a be a unit vector field, and b be any vector field. Then

div b = aT rot (a× b) + aTb diva+ aT ∂b

∂x
a (C.39)

To obtain the result, it is sufficient to multiply the identity

rot (a× b) = a div b− b diva+
∂a

∂x
b−

∂b

∂x
a

by aT . Also, one has the property :

nT

(

∂b

∂x

)

n =
dbn
dn

− nT

(

∂n

∂x

)T

b, (C.40)

with bn = nTb. We take a = n and b = b ξ in (C.39). One obtains

div (b ξ) = nT rot (n× b ξ)− bHnT ξ + nT

(

∂b ξ

∂x

)

n.

The property (C.40) allows us to complete the proof.

For any scalar field b of the 3-D physical space, we have the property :

b
∂τ

∂x
u = nT rot (n× b τ u)−

(

bHnTu− nT ∂bu

∂x
n+ div (bu)

)

τ + bnTu
dτ

dn
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Proof. From relations

b
∂τ

∂x
u = div (b τ u)− τ div (bu)

and

div (b τ u) = nT rot (n× b τ u)− bHτ nTu+ τ nT ∂bu

∂x
n+ bnTu

∂τ

∂x
n

we deduce the relation.
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