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Introduction

Deep probabilistic autoregressive models have been recently integrated into the Amazon SageMaker toolkit and successfully applied to various kinds of sequential data such as handwriting [START_REF] Graves | Generating sequences with recurrent neural networks[END_REF], speech and music (Oord et al., 2016a), images (Oord et al., 2016c;b) and time series from a number of different domains [START_REF] Salinas | Probabilistic forecasting with autoregressive recurrent networks[END_REF]. At a high level, given a sequence of input values (i.e., pen-tip locations, raw audio signals or stock market prices), the goal is to train a generative model that outputs an accurate sequence of next values, conditioned on all the previous values. The main benefit of such probabilistic models is that they model the joint distribution of output values, rather than predicting only a single best realization (i.e., the most likely value at each step). Predicting a density rather than just a single best value has several advantages -it naturally fits the inherently stochastic nature of many processes, allowing for the assessment of uncertainty and its associated risk, and has been shown to produce better overall prediction accuracy when used in forecasting tasks [START_REF] Salinas | Probabilistic forecasting with autoregressive recurrent networks[END_REF].

In this work, we develop an efficient approach for generating adversarial attacks on deep probabilistic autoregressive models. The issue of adversarial robustness and attacks [START_REF] Szegedy | Intriguing properties of neural networks[END_REF][START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF], i.e., generating small input perturbations that lead to mispredictions, is an important problem with large body of recent work. Yet, to our best knowledge this is the first work that explores adversarial attacks in a new challenging setting where the neural network output is a sequence of probability distributions. The difficulty in generating adversarial attacks in this setting is that it requires computing the gradient of an expectation that it is too complex to be analytically integrated [START_REF] Schittenkopf | Forecasting time-dependent conditional densities: a semi nonparametric neural network approach[END_REF][START_REF] Salinas | Probabilistic forecasting with autoregressive recurrent networks[END_REF] and is approximated using Monte-Carlo methods.

We address the key technical challenge of efficiently differentiating through the Monte-Carlo estimation, a necessary part of generating white-box gradient based adversarial attacks, by using two techniques to approximate the gradient of the expectation. The first approach is the score-function estimator [START_REF] Glynn | Likelihood ratio gradient estimation for stochastic systems[END_REF][START_REF] Kleijnen | Optimization and sensitivity analysis of computer simulation models by the score function method[END_REF] obtained by inverting the gradient and the expectation's integral. The second technique differentiates individual samples using a random variate reparametrizatrion and originates from the variational inference literature [START_REF] Salimans | Fixed-form variational posterior approximation through stochastic linear regression[END_REF][START_REF] Kingma | Auto-encoding variational bayes[END_REF][START_REF] Rezende | Stochastic backpropagation and approximate inference in deep generative models[END_REF].

We present the first approach for generating adversarial attacks on deep probabilistic autoregressive models by applying two techniques that differentiate through Monte-Carlo estimation of an expectation. We show that the reparametrization estimator is efficient at generating adversarial attacks and outperforms the score-function estimator by evaluating on two domains that benefit from stochastic sequential reasoning -stock market trading and electricity consumption. We make our code, datasets and scripts to reproduce our experiments available online1 .

Probabilistic Forecasting Models

In this section, we formally describe the probabilistic autoregressive model used in prior works and throughout this paper. Most notably, the model described in Section 2.1 is based on the recent work of DeepAR [START_REF] Salinas | Probabilistic forecasting with autoregressive recurrent networks[END_REF], which is now an inherent part of the Amazon SageMaker toolkit. Further, in Section 2.2 we describe an extension of this model to the Bayesian setting proposed in our work.

Sequence Modeling: Preliminaries

Given a sequential process p = (p t ) 1≤t0≤T and an index t 0 , we consider the task of modeling the distribution of predicted (future) values p t0:T = (p t0 , . . . , p T ) given the observed (past) values p 1:t0-1 = (p 1 , . . . , p t0-1 ). Using the chain rule, the joint distribution of predicted values conditioned on observed values Pr[p t0:T |p 1:t0-1 ] can be written as a product of conditional distributions:

Pr[p t0:T |p 1:t0-1 ] = T i=t0 Pr[p i |p 1:i-1 ] (1) 
In deep autoregressive models, a neural network is used to approximate the conditional distribution Pr[p i |p 1:i-1 ] by a parametric distribution q θ [p i |p 1:i-1 ] specified by learnable parameters θ. This yields a joint model:

q θ [p t0:T |p 1:t0-1 ] = T i=t0 q θ [p i |p 1:i-1 ] (2) 
This decomposed form for the joint distribution is general and independent of the particular neural architecture chosen for q θ . In principle, any type of sequential model can be used including well-known architectures such as LSTMs [START_REF] Hochreiter | Long short-term memory[END_REF], Temporal Convolutional Networks [START_REF] Bai | An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[END_REF] or Transformers [START_REF] Vaswani | Attention is all you need[END_REF]. Next, we describe an LSTM based instantiation of probabilistic autoregressive models.

Probabilistic Autoregressive Models

Let h be a function implemented by a LSTM network. Given h, we compute the hidden state h i = h(h i-1 , p i-1 , θ) for each time-step, conditioned on the previous hidden state h i-1 , previous input value p i-1 and the network parameters θ. Then, the hidden state h i is used to generate a set of parameters ψ(h i ) that specify a distribution with density ψ(hi) (p i ), giving the following form for the conditional distribution:

q θ [p t0:T |p 1:t0-1 ] = T i=t0 ψ(hi) (p i ) (3) 
The main difference here compared to the non-probabilistic models is that the network predicts parameters of a distribu-tion rather than a single value. Commonly used distributions in prior works are Gaussian distribution for real-valued data or the negative binomial distribution for count data [START_REF] Salinas | Probabilistic forecasting with autoregressive recurrent networks[END_REF]. When using the Gaussian distribution, ψ(h i ) has two components ψ(h i ) = (µ(h i ), σ(h i )), that correspond to the mean and the standard deviation, respectively. The density is defined as:

ψ(h) (p) = 1 σ(h) √ 2π exp - 1 2 p -µ(h) σ(h) 2 (4)
Note, that the choice of a Gaussian distribution corresponds to the assumption that each value is normally distributed conditioned on past values -a hypothesis which has to be assessed per application domain. In what follows, to make a clear distinction between the network inputs and outputs, we use x = (x 1 , . . . , x t0-1 ) := p 1:t0-1 to denote the inputs (i.e., observed values) and y = (y 1 , . . . , y T +1-t0 ) := p t0:T to denote the outputs (i.e., the predicted values).

Inference Performing inference for probabilistic autoregressive models corresponds to characterizing the joint distribution of the output sequence y. This includes estimating n-steps ahead both, the mean and the standard deviation of the value y n , via the first and second moments

E q θ [y|x] [y n ] and E q θ [y|x] [y 2 n ].
More generally, given the space of output sequences Y and any statistic χ : Y → R, we consider the task of estimating the expectation E q θ [y|x] [χ(y)]. The main challenge here is the complexity of the underlying integral on the distribution q θ [y|x], which is in general not analytically solvable.

During training, one can either use scheduled sampling (Bengio et al., 2015), where a single sample from the distribution ψ(hi) (•) is used, or avoid this issue completely by using teacher forcing [START_REF] Williams | A learning algorithm for continually running fully recurrent neural networks[END_REF], where the deterministic ground truth value for y i is fed back into the network in the next time-step. This setting is solvable but only because the prediction is only for a single next step. However, when performing iterated prediction at test time, the value used in the feedback loop is sampled from the predicted distribution of y i ∼ ψ(hi) (•). Therefore, the next hidden state h i+1 depends on the randomness introduced in sampling y i . This yields an arbitrarily complex form for the joint distribution q θ [y|x]. To address this issue, prior works perform Monte-Carlo inference [START_REF] Schittenkopf | Forecasting time-dependent conditional densities: a semi nonparametric neural network approach[END_REF][START_REF] Salinas | Probabilistic forecasting with autoregressive recurrent networks[END_REF] to approximate the expectation as:

E q θ [y|x] [χ(y)] 1 L L l=1 χ(y l ) (5)
That is, the Monte-Carlo estimations of the expected value of χ(y) is computed using L generated samples y 1 , . . . , y L for the output sequence.

Extension to Bayesian Setting

We extend the probabilistic autoregressive models presented in this section to the Bayesian setting, where the output sequence can be conditioned on arbitrary values (i.e., both past and from the future). Formally, we define an observation function γ : R m → {true, false}, which takes as input a sequence of values and outputs a boolean denoting whether the observation holds. As an example, using γ(y) = (y 10 ≥ 3) denotes that we would like the model to predict values y 1:9 conditioned both on the inputs x as well as on the observation y 10 ≥ 3.

There are several cases for which the Bayesian setting is useful: (i) some of the data is missing (e.g., due to sensor failures), (ii) to allow encoding prior beliefs about the future evolution of the process, or (iii) to evaluate complex domain-specific statistics. The financial domain offer good examples for (iii), in pricing exotic derivatives such as barrier options [START_REF] Rich | The mathematical foundations of barrier optionpricing theory[END_REF] whose existence depends upon the underlying asset's price breaching a preset barrier level.

To remove clutter, in the remainder of the paper we will use z = γ(y) to denote the output of the observation function when evaluated on y. In this Bayesian setting, the expectation E q θ [y|x,z] [χ(y)] can be estimated via Monte-Carlo importance sampling as:

E q θ [y|x,z] [χ(y)] L l=1 χ(y l )q θ [z|x, y l ] L l=1 q θ [z|x, y l ] (6) 
This corresponds to generating samples from the prior distribution q θ [y|x], and reweighing with Bayes rules. Note, that this formula includes the former by using z = true.

Adversarial Attacks on Probabilistic Forecasting Models

In this section, we present our approach for generating adversarial attacks on deep probabilistic forecasting models. We start by formally defining the problem statement suitable for this setting and then we describe two practical adversarial attacks that address it.

Adversarial Examples Recall that in the canonical classification setting, adversarial examples are typically found by solving the following optimization problem [START_REF] Szegedy | Intriguing properties of neural networks[END_REF][START_REF] Papernot | The limitations of deep learning in adversarial settings[END_REF][START_REF] Carlini | Towards evaluating the robustness of neural networks[END_REF]:

arg min δ ||δ|| s.t f (x + δ) = t (7)
where f is a classifier, x is an input (i.e., an image), t is the desired adversarial output (the target), and δ is the minimal perturbation (according to a given norm) applied to the input image such that the classifier f predicts the desired output t.

To make the above formulation applicable to probabilistic forecasting models we perform two standard modifications -(i) we replace the hard equality constraint with an easier to optimize soft constraint that captures the distance between real values, and (ii) we replace the single value output with the expected value of a given statistic of the output joint probability distribution. Applying the first modification leads to the following formulation:

arg min δ φ(f (x + δ), t) s.t ||δ|| ≤ (8)
That is, we use a soft constraint that minimizes the distance between the target and the predicted value, subject to a given tolerance on the perturbation norm. Applying the second modification corresponds to replacing f (x + δ) with the expected value

E q[y|x+δ,z] [χ(y)],
where z is an observation over outputs as defined in Section 2.2, and χ : R m → R is a statistic of the output sequence. Overall, this leads to the following problem statement.

Problem Statement Let f : R n → D(R m ) be a function (i.e., a probabilistic neural network) that takes as input a sequence of values x ∈ R n and outputs a probability distribution f (x) with density q[y|x] that can be sampled from to obtain a concrete output sequence y ∈ R m . Given an observation variable z, a statistic χ : R m → R of the network output distribution and a target t, the goal of the adversarial attack is to find a perturbation δ that solves the following optimization problem:

arg min δ φ(E q[y|x+δ,z] [χ(y)], t) s.t ||δ|| ≤ (9)

Practical Attack on Probabilistic Networks

The constrained minimization problem defined in Equations 8 and 9 has repeatedly been identified as very difficult to solve in the adversarial attacks literature [START_REF] Szegedy | Intriguing properties of neural networks[END_REF][START_REF] Carlini | Towards evaluating the robustness of neural networks[END_REF]. As a result, we instead follow the approach of [START_REF] Szegedy | Intriguing properties of neural networks[END_REF] and solve an adjusted optimization problem. Given a real hyper-parameter c ∈ R + , we aim at minimizing:

obj(δ) := ||δ|| + c • φ(E q[y|x+δ,z] [χ(y)], t) (10) 
via gradient-descent. The attack is run with different values of c, and the final value is chosen to ensure that the hard constraint ||δ|| ≤ is satisfied.

While optimizing the objective function in Equation 9 is standard [START_REF] Szegedy | Intriguing properties of neural networks[END_REF][START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF]Kurakin et al., 2017b;a), the crucial aspect in ensuring efficient gradient descent is to obtain a good estimation of the objective function's gradient. In particular, this involves computing:

∇ δ E q[y|x+δ,z] [χ(y)]
The difficulty of computing this gradient comes from the fact that the expectation can not be analytically computed, but only approximated via Monte-Carlo methods. Informally, it raises the question of how to efficiently differentiate through the Monte-Carlo estimation. We compare two different ways of performing this differentiation, described next.

SCORE-FUNCTION ESTIMATOR

The first approach is to express the gradient of the expectation as an expectation over the distribution q[y|x + δ, z] by inverting the gradient and integral, and estimate the resulting expectation via Monte-Carlo methods. This technique is known under different names in the literature: scorefunction method [START_REF] Glynn | Likelihood ratio gradient estimation for stochastic systems[END_REF], REINFORCE [START_REF] Williams | Simple statistical gradient-following algorithms for connectionist reinforcement learning[END_REF], or log-derivative trick. Below we show how this applies to our setting.

Score-function Estimator 3.1. In the general Bayesian setting where y ∼ q[•|x + δ, z], the score-function gradient estimator of the expected value of χ(y) is:

∇ δ E q[y|x+δ,z] [χ(y)] L l=1 χ(y l )q[z|x + δ, y l ]∇ δ log(q[y l |x + δ, z]) L l=1 q[z|x + δ, y l ]
where y l is sampled from the prior distribution q[y|x + δ],

and q[z|x + δ, y] denotes the probability that z is true knowing that y l is generated.

The proof of 3.1 is given in the supplementary material.

Note that in the non-Bayesian setting where the observation z is always true, we have q[z|x + δ, y l ] = 1 and we obtain a simpler form:

∇ δ E q[y|x+δ] [χ(y)] 1 L L l=1 χ(y l )∇ δ log(q[y l |x + δ])
While this estimator allows for generating adversarial perturbations, we observe that it has two drawbacks -highvariance and high sampling complexity.

High Variance Score-function estimators typically lead to slow convergence because they suffer from high variance [START_REF] Ranganath | Black box variational inference[END_REF]. It is due to the fact that they operate in a black-box way with respect to the gradients of the network f and the statistic χ.

Complexity of the Bayesian Setting

The score-function requires computing the gradient of q[y l |x + δ, z] with respect to δ. This is always possible in the special case when the observation z is constantly true, however in the general setting this might require another step of sampling, which makes the estimator overly complex.

REPARAMETRIZATION ESTIMATOR

The second estimator is based on the reparametrization trick.

It reparametrizes the output distribution y in terms of auxiliary random variables whose distribution does not depend on x, in order to make individual samples y l differentiable with respect to δ. The differential ∂y l /∂δ has a priori no specific meaning when the distribution from which y l is sampled depends on δ. However, if y l ∼ q[•|x + δ] can be reparametrized as y l = g x (δ, η), where η is a random variable whose distribution is independent from δ, then it makes sense to define the differential of y l with respect to δ as ∂y l /∂δ = ∂g x /∂δ.

Reparametrization estimators were first proposed as a way of mitigating the variance problems of score-function estimators [START_REF] Salimans | Fixed-form variational posterior approximation through stochastic linear regression[END_REF][START_REF] Kingma | Auto-encoding variational bayes[END_REF][START_REF] Rezende | Stochastic backpropagation and approximate inference in deep generative models[END_REF]. However, to the best of our knowledge, they have not been used in a Bayesian setting where the estimator to differentiate uses importance sampling. Reparametrization Estimator 3.2. Assume there exists a differentiable transformation g x (δ, η) such that the random variable y ∼ q[•|x + δ] can be reparametrized as y = g x (δ, η), where η is an independent random variable whose marginal distribution p(η) is independent from δ. Then the importance sampling reparametrization estimator of the expectation's gradient is:

∇ δ E q[y|x+δ,z] [χ(y)] ∇ δ L l=1 χ(g x (δ, η l ))q[z|x + δ, g x (δ, η l )] L l=1 q[z|x + δ, g x (δ, η l )]
where for 1 ≤ l ≤ L, η l is sampled from the distribution p(η), and y l = g x (δ, η l ).

A proof of 3.2 is given in the supplementary material.

Reparametrization of Probabilistic Networks

Here, we discuss the question of reparametrizing probabilistic autoregressive models. The stochasticity of such architectures comes from the iterated sampling of y i ∼ ψ(hi) (•). Assuming a Gaussian likelihood, the value

y i follows a normal distribution N (µ(h i )|σ(h i ) 2 ). Let η = (η 1 , . . . , η T -t0
) be a standard normal random vector, i.e., all of its components are independent and each is a zero-mean unit-variance normally distributed random variable. Iteratively writing:

y i ∼ µ(h i ) + η i • σ(h i )
for all i such that 1 ≤ i ≤ T -t 0 yields a valid reparametrization. This simple reasoning applies to the particular implementation described in [START_REF] Salinas | Probabilistic forecasting with autoregressive recurrent networks[END_REF] and adapts readily to any kind of likelihood parameterized by location and scale, such as the Laplace or logistic distribution.

The case of mixture density likelihoods is more complex as they do not enter this category of "location-scale" distributions, and their inverse cumulative density function does not admit a simple closed form. The problem of how to adapt reparametrization to mixture densities is outside the scope of this paper, and we refer to the relevant literature [START_REF] Graves | Stochastic backpropagation through mixture density distributions[END_REF][START_REF] Figurnov | Implicit reparameterization gradients[END_REF][START_REF] Jankowiak | Pathwise derivatives beyond the reparameterization trick[END_REF] for more information about this question.

Case Study: Stock Market Trading

In this section, we apply the probabilistic autoregressive models and discuss the types of adversarial attacks in the domain of financial decision making.

Output Sequence Statistics While a given machine learning model is typically trained to predict the future stock prices given its past, various statistics of the output sequence are used in downstream algorithmic trading and option pricing tasks. This is the reason why the approach presented so far already assumed presence of such statistics. The different statistics used in our evaluation include predicting cumulated stock return, pricing derivatives such as European call and put options [START_REF] Black | The pricing of options and corporate liabilities[END_REF], as well as an example of a binary statistic that predicts the success probability of limit orders [START_REF] Handa | Limit order trading[END_REF]. All statistics are defined with respect to the last known price, denoted as x -1 .

Probabilistic Autoregressive Models Performance

Before we show the effectiveness of generative adversarial attacks, we first demonstrate that using probabilistic autoregressive models leads to state-of-the-art results. We use two baselines as the current state-of-the-art for financial predictions: LSTM networks [START_REF] Fischer | Deep learning with long shortterm memory networks for financial market predictions[END_REF], and Temporal Convolutional Networks (TCN) [START_REF] Borovykh | Conditional time series forecasting with convolutional neural networks[END_REF]. We provide detailed description of all the training hyperparameters, the dataset used (S&P 500) and extended versions of all the experiments in the supplementary material.

Long-Short Trading Strategies Given a prediction horizon h ∈ 1, 10 , we analyze the characteristics of the following portfolio: at time-step t, buy (long) the k stocks for which the model predicts the highest gain, and sell (short) the k stocks with the highest predicted loss. This task is a generalization of the one presented in [START_REF] Fischer | Deep learning with long shortterm memory networks for financial market predictions[END_REF], where only direct prediction (h = 1) is considered.

Formally, we consider the cumulative return statistic χ x (y) = y h /x -1 -1 of the output sequence, which corresponds to the gain of investing one dollar in the stock at time t, and then selling at time t + h. In a non-Bayesian setting, we estimate the expectation E q(y|x) [χ x (y)] via Monte- Carlo sampling for each stock, and buy (or sell) the stocks for which the estimate is the highest (or the lowest). Note that this setting also applies to the deterministic baselines, it suffices to consider that q(y|x) is a Dirac distribution centered on the deterministic prediction.

The performance of all models are summarized in Table 1. We can see that the TCN is consistently outperformed by both probabilistic and non-probabilistic LSTM models. For the probabilistic model, we observe that it is generally outperformed by the LSTM for direct prediction (h = 1), but it has better performance on iterated prediction (h > 1), provided that enough samples are used for Monte-Carlo estimation. We observe that a large number of samples (at least 1000) is required to match the LSTM performance. We provide extended evaluation results in the supplementary material, including the effect of the number of samples.

Quality of the Probabilistic Forecast Table 2 shows an evaluation of the forecast quality for each of the statistics described earlier. To compare deterministic and probabilistic forecasts, we use the Ranked Probability Skill (RPS) metric [START_REF] Weigel | The discrete Brier and ranked probability skill scores[END_REF]. However, because it applies only to predictions with finite output space, we first discretize the output before we apply RPS2 . Here, a lower score means better prediction. We provide extended evaluation results in the supplementary material, including multiple different values for the horizon h, price π and the number of samples for Monte-Carlo estimation.

Market Manipulations

The possibility of artificially influencing stock prices to make profit has always been a major problem of financial markets [START_REF] Allen | Stock-price manipulation[END_REF][START_REF] Diaz | Analysis of stock market manipulations using knowledge discovery techniques applied to intraday trade prices[END_REF][START_REF] Ögüt | Detecting stockprice manipulation in an emerging market: The case of turkey[END_REF]. In our work, we focus on trade-based manipulation, in which a trader attempts to manipulate the price of a stock only by buying and then selling, without taking any other publicly observable action. The core of such an attack is to anticipate the reactions of other agents to a provoked market event, in order to drive the price up or down. In order to decrease the cost and visibility of the attack, an additional constraint for the manipulating trader is to minimize the amplitude of the perturbation. This creates a natural connection with finding adversarial perturbations over the inputs x.

Adversarial Attacks Scenario To measure the perturbation size, we choose a variant of the Euclidean norm specifically tailored to stock price data, defined in Equation 11, where each component is normalized by the corresponding price x i . This normalization aims at capturing the fact that stock prices are fixed for an arbitrary unit quantity of the underlying asset, and thus should be invariant with respect to multiplication by a scalar. Additionally, we use a box constraint for the perturbed prices such that they remain positive. This constraint is enforced using projected gradient descent.

||δ|| x = |x| i=1 δi xi 2 1/2 (11)

Experimental Results

In this section, we evaluate the effectiveness of our approach for generating adversarial attack on probabilistic autoregressive models. The two key results of our evaluation are:

• The reparametrization estimator leads to significantly better adversarial examples (i.e., with smaller perturbation norm ) than the score-function estimator.

• The reparametrization estimator successfully generates adversarial attacks for a number of different tasks. For example, using a small perturbation norm = 0.0163 the attack is powerful enough to cause financial loss when applied to stock market trading.

Datasets We evaluate on the following two datasets:

S&P 500 dataset, which contains historical prices of S&P 500 constituents from 1990/01 to 2000/12. We consider study periods of four consecutive years. The first three years serve as training data, while the last year is used for out-ofsample testing. The different periods have non-overlapping test years, resulting in eight different periods (for each we train four different models) with test year going from 1993 to 2000. We generate input-output samples by considering sequences of 251 consecutive daily prices for a fixed constituent. The first 241 prices serve as input x, while the last 10 are the ground truth output y. We ensure that output sequences from the training and test sets do not overlap and reserve ≈ 15% of training samples as a validation set.

We use the same preprocessing as in prior work (described in supplementary material) and train our own probabilistic autoregressive model (described in Section 2). The order of magnitude of the cumulated test set size is 10 6 . UCI electricity dataset4 , which contains the electricity consumption of 370 households from 2011 to 2014, downsampled to hourly frequency for the measurements. For this dataset we reuse an existing implementation and already c) Under-estimation of electricity consumption for reparametrization (continuous) and score-function (dashed) estimators. For example, the graph shows that with = 1.0, the attack using reparametrization estimator leads to under-estimation of at least 20% (y-axis) for 70% of samples (x-axis). d) Under-estimation adversarial samples for the electricity dataset, with = 0.9. Red curve is the original sample, blue curve is the generated adversarial sample. The vertical dashed line separates the input sequence from the network's prediction. trained models provided by Zhang and Jiang 5 . The model is trained on data from 2011/01 to 2014/08 (included) and we perform the attack on test samples from 2014/09. The input sequence consists of 168 consecutive measurements, and the network predicts the next 24 values (corresponding to the next day). The total number of test samples is 2590.

Experimental Setup

We performed all experiments on a machine running Ubuntu 18.04, with 2.00GHz Intel Xeon E5-2650 CPU and using a single GeForce RTX 2080 Ti GPU. For the S&P500 dataset, each model's training time is under one hour, and running the attack on one model for all test-set elements of a period takes approximately 24 hours. For the electricity dataset, running the attack on a batch of 256 test sequences takes approximately three hours.

Attacks on Buy/Sell Classification

We start by considering a classification task on the S&P dataset where each sample is classified as buy, sell or uncertain. For each stock, we predict the cumulated return using the statistic χ(y) = y h /x -1 -1. Then, let τ be a threshold used to decide whether to buy or sell the stock. Concretely, if the 95% confidence interval (assuming Student's t-distribution) of the estimation χ(y) is entirely above τ , the stock is classified as buy. If it is entirely below τ , it is classified as sell. Finally, if τ is inside the confidence interval, the classification is uncertain. We set τ to be the average over all stocks of the ground truth cumulated return, which leads to roughly balanced decisions to buy and sell.

We attack the statistic χ twice. First, we perturb all samples initially classified as buy or uncertain, in order to make it classify as sell. Similarly, we perturb all samples initially 5 https://github.com/zhykoties/TimeSeries classified as sell or uncertain, in order to make it classify as buy. The target of the attack is set as τ + λ for the buy attack and τ -λ for the sell attack. We fix λ = 0.03 in our experiments. This is aimed at making the 95% confidence interval fit entirely in the buy (resp. sell) zone. Indeed, with 10 4 samples, the interval width order of magnitude is 0.01.

The results without a Bayesian observation z are summarized in Figure 1 a) and show that the reparametrization estimator is significantly better at generating adversarial examples that the score-function estimator. For example, using = 0.1 the reparametrization estimator attack succeeds in 16% more cases. The reparametrization estimator can also successfully attack the model when considering a Bayesian setting with similar results. We include such experiment that uses a smaller horizon h = 5 and an observation y 10 /x -1 = γ in the supplementary material.

Attacks on Long-Short Trading Strategies

Next, we evaluate the impact of attacking the cumulated return statistic χ(y) = y h /x -1 -1 on the financial gain of the long-short trading strategy described in Section 4.1. We suppose that the attacker is allowed to perturb all inputs at test time without changing the corresponding ground truth outputs, with a maximum tolerance on the perturbation norm. We consider a horizon of h = 10 and different portfolio sizes k. Given a ground truth output ỹ, the target is set to be t = τ -α • (χ( ỹ) -τ ), where τ is the buy/sell threshold defined previously, and α > 0 is a scaling factor that rescales the ground truth output to the prediction range of the network. Intuitively, this attack target corresponds to reversing the prediction of the network around its average, in order to swap the top and flop k stocks.

We report the return of the perturbed portfolios in Figure 1 b).

We observe that the reparametrization estimation is again significantly better compared to the score-function estimator. Additionally, in both experiments the thresholds for appearance of adversarial perturbation to some of the samples is approximately 10 -2 .

Attacks on Electricity Consumption Prediction

We perturb each input sequence twice in order to make the consumption forecast abnormally high (resp. low). We designate this as an over-estimation (resp. under-estimation) attack. The attacked statistic is χ(y) = y h , with h = 18.

Given an input x, we first approximate the expected value y * = E q[y|x] [χ(y)], and set the target to t = (1 ± 0.5) • y * to cause over or under-estimation.

We show attack success for different perturbation tolerances in Figure 1 c). We observe that the reparametrization estimator (continuous line) yields stronger under-estimation of the prediction than the score-function estimator (dashed-line)

In Figure 1 d), we give examples of generated adversarial samples for the under-estimation attack. We observe a recurrent pattern in the under-estimation attack, where the perturbed prediction matches closely the original prediction for the first time-steps, but eventually becomes significantly inferior. In the supplementary material, we provide similar figures for the over-estimation attack.

Related Work

Probabilistic Autoregressive Forecasting Models Probabilistic autoregressive forecasting models have been used in diverse applications. [START_REF] Schittenkopf | Forecasting time-dependent conditional densities: a semi nonparametric neural network approach[END_REF] developed the Recurrent Mixture Density Network (RMDN) to predict stock prices volatility iteratively, and were the first to propose using Monte-Carlo methods for iterative prediction.

RMDN is based on a vanilla recurrent neural network coupled with Gaussian mixture likelihood. The recent DeepAR architecture [START_REF] Salinas | Probabilistic forecasting with autoregressive recurrent networks[END_REF] uses several LSTM layers with Gaussian likelihood, and has been applied to forecasting electricity consumption, car traffic and business sales. Follow-up work [START_REF] Chen | Probabilistic forecasting with temporal convolutional neural network[END_REF] considers an alternative TCN-based architecture. Our characterization of probabilistic forecasting models encompasses these different architectures, and presents the following novelties (i) it generalizes inference to any statistic of the output sequence, and (ii) it extends the prior work to a Bayesian inference setting.

Stock-Market Prediction Various methods have been applied for predicting future stock prices including random forests, gradient-boosted trees, or logistic regression. Two notable deterministic neural models applied to this task are TCN [START_REF] Borovykh | Conditional time series forecasting with convolutional neural networks[END_REF] and LSTM [START_REF] Fischer | Deep learning with long shortterm memory networks for financial market predictions[END_REF], which achieved state-of-the-art results. In our work, we trained a probabilistic autoregressive model for the same task and achieved comparable or even better results. Further, there exists a parallel line of work that performs density estimation, but apart from the RMDN [START_REF] Schittenkopf | Forecasting time-dependent conditional densities: a semi nonparametric neural network approach[END_REF], most papers restrict to prediction one-step ahead [START_REF] Ormoneit | Experiments in predicting the German stock index DAX with density estimating neural networks[END_REF], or to less-expressive and solvable dynamics such as the GARCH [START_REF] Duan | The GARCH option pricing model[END_REF].

Adversarial Attacks A growing body of recent work on adversarial attacks deals with generating small input perturbations causing mis-predictions (see [START_REF] Wiyatno | Adversarial examples in modern machine learning: A review[END_REF] for a survey). The objective function defined in Equation 9 is standard in generating adversarial examples [START_REF] Szegedy | Intriguing properties of neural networks[END_REF][START_REF] Carlini | Towards evaluating the robustness of neural networks[END_REF]. However, to the best of our knowledge this is the first time that adversarial attacks are applied to probabilistic autoregressive models. The most related work is the adversarial training of smoothed classifiers [START_REF] Salman | Provably robust deep learning via adversarially trained smoothed classifiers[END_REF], where the noise applied to the input leads to a stochastic behavior.

Robust Algorithms for Financial Decision Making

The adoption of machine learning in financial decision making makes it crucial to develop algorithms robust against small environment variations. Recent work here include robust assessment of loan applications [START_REF] Ballet | Imperceptible adversarial attacks on tabular data[END_REF], deepfakes on accouting journal entries [START_REF] Schreyer | Adversarial learning of deepfakes in accounting[END_REF], robust inverse reinforcement learning on market data [START_REF] Roa-Vicens | Adversarial recovery of agent rewards from latent spaces of the limit order book[END_REF]. Adversarial attacks against stock-market prediction algorithms was studied by [START_REF] Feng | Enhancing stock movement prediction with adversarial training[END_REF]. Compared to the latter, our work is the first to operate on a probabilistic network for iterative prediction.

Reparametrization The reparametrization trick has been applied in several fields under different names: perturbation analysis/pathwise derivatives [START_REF] Glasserman | Gradient estimation via perturbation analysis[END_REF] in stochastic optimization, stochastic backpropagation [START_REF] Rezende | Stochastic backpropagation and approximate inference in deep generative models[END_REF], affine independent variational inference [START_REF] Challis | Affine independent variational inference[END_REF] or correlated sampling in evaluating differential privacy [START_REF] Bichsel | Dp-finder: Finding differential privacy violations by sampling and optimization[END_REF]. The actual reparametrization of our model resembles that of the deep generative model of [START_REF] Rezende | Stochastic backpropagation and approximate inference in deep generative models[END_REF], but there it is used to perform variational inference.

Conclusion

In this work, we explore applying adversarial attacks to recently proposed probabilistic autoregressive forecasting models. Our work is motivated by the fact that: (i) this model has been included in the Amazon SageMaker toolkit and achieved state-of-the-art results on a number of different tasks, and (ii) adversarial attacks and robustness are pressing and important issues that affect it.

Concretely, we implement and evaluate two techniques, reparametrization and score-function estimators, that are used to differentiate trough Monte-Carlo estimation inherent to this model and instantiate existing gradient based adversarial attacks. While we show that both of these techniques can be used to generate adversarial attacks, we evidence that using the reparametrization estimator is crucial for producing adversarial attacks with a small perturbation norm. Further, we extend the prior work to the Bayesian setting which enables using these models with new types of queries.

Figure 1

 1 Figure1. a) Success rate of the classification attack for different perturbation norms. b) Impact of the adversarial attack against trading strategies on financial gain, with portfolio size of k = 10. For both a) and b), standard deviation (shaded) is computed across test years c) Under-estimation of electricity consumption for reparametrization (continuous) and score-function (dashed) estimators. For example, the graph shows that with = 1.0, the attack using reparametrization estimator leads to under-estimation of at least 20% (y-axis) for 70% of samples (x-axis). d) Under-estimation adversarial samples for the electricity dataset, with = 0.9. Red curve is the original sample, blue curve is the generated adversarial sample. The vertical dashed line separates the input sequence from the network's prediction.

Table 1 .

 1 Financial gain on algorithmic trading tasks for different horizons h and portfolio sizes k (expressed per mille o /oo). An extended version is included in the supplementary material.

	Params	Non-probabilistic	Probabilistic
	h k	TCN	LSTM	LSTM
		(Borovykh et al., 2017) (Fischer & Krauss, 2018)	This Work
	1 10 3.53 (± 0.49)	4.89 (± 0.39) 4.37 (± 0.51)
	1 30 1.74 (± 0.30)	2.41 (± 0.24) 2.35 (± 0.23)
	1 100 0.70 (± 0.19)	0.93 (± 0.1) 0.99 (± 0.12)
	5 10 5.57 (± 1.93)	8.86 (± 1.03) 9.02 (± 1.52)
	5 30 3.40 (± 1.36)	5.34 (± 0.61) 5.66 (± 0.87)
	5 100 1.64 (± 0.78)	2.47 (± 0.28) 2.70 (± 0.48)
	10 10 6.21 (± 3.52)	9.68 (± 1.58) 9.55 (± 2.30)
	10 30 4.28 (± 2.69)	6.39 (± 0.76) 6.63 (± 1.70)
	10 100 2.09 (± 1.58)	3.12 (± 0.52) 3.48 (± 1.03)

Table 2 .

 2 Definition of various output sequence statistics used in our work (left) and performance of various models used to predict them (right). h is the prediction horizon and π the price of the option. The comparison metric is Ranked Probability Skill[START_REF] Weigel | The discrete Brier and ranked probability skill scores[END_REF] of the prediction (lower scores correspond to better predictions). An extended version is provided in the supplementary material.

		Statistics	Params	Non-probabilistic	Probabilistic
	Name	χ(y)	h	π	TCN	LSTM	LSTM
					(Borovykh et al., 2017)	(Fischer & Krauss, 2018)	This Work
	Cum. Return	y h /x -1 -1	10	-	1.548 (± 0.029)	1.541 (± 0.019)	1.002 (± 0.008)
	European Call	max(0, y h /x -1 -π)	10	1	1.122 (± 0.002)	1.121 (± 0.002)	0.982 (± 0.005)
	European Put	max(0, p -y h /x -1 )	10	1	1.302 (± 0.003)	1.300 (± 0.002)	0.974 (± 0.005)
	Limit Sell	1 max(y 1:h )/x -1 ≥ π	10 1.05	1.516 (± 0.001)	1.514 (± 0.002)	0.940 (± 0.006)
	Limit Buy	1 min(y 1:h )/x -1 ≤ π	10 0.95	1.412 (± 0.000)	1.410 (± 0.001)	0.958 (± 0.008)

https://github.com/eth-sri/ probabilistic-forecasts-attacks

There exists a continuous version[START_REF] Gneiting | Strictly proper scoring rules, prediction, and estimation[END_REF], but it is impractical for our setting because of the memory consumption of computing the score: we favor metrics computable in an on-line fashion with respect to the sampling process.

Here, = 0.016 corresponds to perturbing one price in the sequence by 1.6%, or 10 prices by 0.51%, or 100 prices by 0.16%.

https://archive.ics.uci.edu/ml/datasets/ ElectricityLoadDiagrams20112014