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Abstract  

Background: Hyperspectral imaging for in vivo human skin study has shown great potential by providing non-invasive 

measurement from which information usually invisible to the human eye can be revealed. In particular, maps of skin parameters 

including oxygen rate, blood volume fraction, and melanin concentration can be estimated from a hyperspectral image by using 

an optical model and an optimization algorithm. These applications, relying on hyperspectral images acquired with a high-

resolution camera especially dedicated to skin measurement, have yielded promising results. However, the data analysis process 

is relatively expensive in terms of computation cost, with calculation of full-face skin property maps requiring up to 5 hours for 

3-megapixels hyperspectral images. Such a computation time prevents punctual previewing and quality assessment of the maps 

immediately after acquisition. 

Methods: To address this issue, we have implemented a neural network that models the optimization-based analysis algorithm. 

This neural network has been trained on a set of hyperspectral images, acquired from 204 patients and their corresponding skin 

parameter maps, which were calculated by optimization.  

Results: The neural network is able to generate skin parameter maps that are visually very faithful to the reference maps much 

more quickly than the optimization-based algorithm, with computation times as short as 2 seconds for a 3-megapixel image 

representing a full face and 0.5 seconds for a 1-megapixel image representing a smaller area of skin. The average deviation 

calculated on selected areas shows the network’s promising generalization ability, even on wide-field full-face images. 

Conclusion: Currently, the network is adequate for preview purposes, providing relatively accurate results in a few seconds. 

Keywords: hyperspectral, imaging, in vivo, non-invasive, machine learning.

1. Introduction 

Skin, which acts as a barrier to the body’s surrounding 

environment, is an organ whose study has significant social 

stakes. The study and diagnosis of skin pathologies is crucial 

in the fields of medicine and dermatology, such as for 

pathologies like skin cancer, associated to high rates of 

mortality, for which early detection increases the chances of 

healing. The study of skin is also of considerable interest to 

cosmetologists, as the appearance of someone’s skin plays an 

important part in the perception of beauty, age and health [1]. 

In recent years, the use of optical methods for skin analysis has 

grown markedly, as they allow for non-invasive in vivo 

measurement with no discomfort for the patient. Among the 

emerging optical methods, imaging methods, which can offer 

spatial information measurements on large areas and with high 

resolution, are especially promising for the study of skin 

heterogeneous properties. 

Hyperspectral imaging, which collects spectral 

information at many narrow wavebands for each pixel of an 

image, has shown high potential as a tool for skin analysis [2]. 

It allows high-resolution measurement of skin spectral 

reflectance, whose shape, or “spectral signature”, can be 

related to skin structure and composition using an optical 

model. In particular, maps showing skin absorption properties 

such as oxygen rate, blood volume fraction or melanin 



concentration can be generated from hyperspectral images 

using an optical-based model [3,4]. This analysis method 

yields quantitative information, which can be helpful for 

assessing skin properties objectively. 

In our previous works [3–5], we have used two 

hyperspectral systems to acquire skin spectral reflectance, 

SpectraCam® and SpectraFace® (Newtone Technologies, 

France). These systems have been specially designed for skin 

measurement, and can capture hyperspectral images at 31 

wavelengths in the visible spectrum in around 2 seconds. The 

acquired images have then been analyzed using an optical 

model. We have selected a two-flux light transport model and 

a model of skin as a two-layer material, applying an inverse 

approach to retrieve skin properties from the hyperspectral 

measurement. Given the complexity of the inverse problem, it 

has been solved by optimization, an iterative process which 

requires significant computation time: typically, around 5 

hours for a 3-megapixel image of a full face. In the context of 

a cosmetology study, this is a significant limitation as it 

prevents the user from evaluating the quality of the analysis 

results immediately after the hyperspectral image has been 

captured. 

Machine learning applied to regression problems present 

an interesting alternative to time-consuming optimization-

based algorithms, which have hitherto been used in many 

works in the field of tissue optics [6–10]. Nowadays, many 

machine learning tools are open source and supported by large 

communities of users, easing their use in many domains, 

though creating an adequate dataset to train a neural network 

can be challenging. Over the course of our studies, we have 

managed to collect a sufficient amount of data comprising 

hyperspectral images and their corresponding property maps, 

to train a neural network in order to replace the classical 

optimization-based algorithm used for skin analysis, allowing 

results to be obtained in a few seconds rather than several 

hours. 

 Many researchers in the field have used neural networks 

to model skin spectral reflectance as a function of skin 

properties (see Figure 1.a). Using a detailed skin model and a 

Monte Carlo method to model light transport in skin, a 

“synthetic” dataset can be directly simulated. This synthetic 

dataset comprises skin parameters and their associated spectral 

reflectances, and is used to train a neural network that is able 

to estimate skin parameters from spectral reflectance [7–10]. 

By contrast, in this work, the light-skin interaction model is 

already defined and the neural network is trained to replace the 

optimization algorithm (see Figure 1.b). This allows us to use 

real world noisy data in the training set rather than synthetic 

data. In this way, we aimed to obtain better results on real input 

data which contain similar noise as the training set.  

We selected a relatively simple type of artificial neural 

network, the multi-layer perceptron (MLP), and applied it to 

our specific problem of skin analysis from hyperspectral 

images. Our aim was to understand to what extent the classical 

optimization algorithm can be replaced by a faster method with 

accurate results. Working on skin presents a challenge, as it is 

a complex material whose spectral reflectance varies 

significantly according to several parameters, such as location 

on the body, age, skin color, genetic traits, living conditions, 

and skin pathologies. Consequently, the data selected to train 

the neural network must be as diverse as possible to faithfully 

represent the wide range of skin spectral reflectance that can 

be measured. As such a dataset cannot be exhaustive, the 

capacity of the network to perform well on data that are not 

part of the training set depends on the network generalization 

ability. A second challenge lies in implementing a method that 

accounts for the irradiance drifts occurring on the curved parts 

of the body. If irradiance drifts are not accounted for, the 

neural network model cannot correctly predict chromophore 

concentrations from full face images. We proposed to address 

this issue by data augmentation, adding data artificially altered 

by irradiance drifts to the training dataset. 

The rest of the paper is organized as follows: Section 2 

details the hyperspectral acquisition setups; Section 3 

describes the optical model and optimization used in the 

classical skin analysis method; the artificial neural network 

implemented to replace the classical analysis method is 

described in Section 4; results are presented in Section 5; and 

finally, conclusions are drawn in Section 6. 

 

2. Skin hyperspectral imaging 

Hyperspectral imaging is the acquisition of a two-dimensional 

image with spectral information in each pixel, resulting in 

three-dimensional data often called “hypercube” [11]. A 

hyperspectral camera measures spectral radiance over many 

narrow and non-overlapping bandwidths that contiguously 

cover a part of the radiative spectrum, providing high spectral 

resolution data. 

The devices used in this work, shown in Figure 2, are 

specifically dedicated to in vivo skin measurement. They have 

been developed by Newtone Technologies (France) for small-

area imaging (SpectraCam®) [3,5] and for full-face imaging 

(SpectraFace®) [4]. 

 
Figure 1. Flowchart of two possible approaches for skin parameters 

estimation using neural network. Approach (a) relies on a synthetic 

training dataset generally simulated using a Monte Carlo method. 
Approach (b), presented in this paper, relies on the analysis of real world 

measurements by the optimization-based algorithm detailed in Section 3. 

 

 



 These cameras comprise a liquid crystal tunable filter 

(LCTF) serving as a wavelength selection filter, placed in front 

of a monochrome CMOS camera, and LEDs that 

homogeneously illuminate the scene. The LED lighting units 

are designed using blue and white LEDs in order to provide 

sufficient irradiance on the skin over the whole visible 

spectrum. Linear polarizing filters are added to each light 

source and oriented in a cross-polarization configuration with 

the LCTF polarization direction. This cross-polarization 

configuration prevents the capture of light specularly reflected 

at the skin-air interface. In this way, only the diffusely 

reflected light, corresponding to the light that has travelled 

within skin and that contains information about skin structure 

and composition, is measured. In the rest of the paper, only the 

diffuse component will be addressed. The hyperspectral image 

is acquired via a temporal scan of the spectral information: 

images of 2048 × 2048 pixels are sequentially acquired for 31 

wavelengths covering the visible spectrum (400 to 700 nm) 

with 10 nm steps. The total acquisition time is around 2 

seconds. 

The signal captured by the hyperspectral camera depends 

on a multitude of parameters beside skin surface reflectance, 

including incident irradiance, sensor spectral response and 

optics transmittance. Skin spectral reflectance is obtained 

independently from the acquisition parameters after applying 

a calibration step that relies on the acquisition of black and 

white diffusing tiles. This calibration does not account for the 

variations in illumination occurring on non-flat samples (such 

as the face). In those cases, the measurement is affected by 

what we call irradiance drifts: the calibration step yields 

reflectance multiplied by a constant that depends on the local 

shape of the surface.  

The pictures in Figure 3 are examples of images at three 

different wavelengths from a hypercube acquired using 

SpectraFace®. They show how skin properties vary with 

wavelength, with melanin spots easily identifiable at blue 

wavelengths (420 nm), blood vessels highly visible at 490 nm 

and the skin appearing very uniform in red wavelengths (700 

nm), the part of the visible spectrum for which skin is the most 

translucent. 

 

3. Skin analysis using optical modeling and 

optimization 

By combining hyperspectral imaging with an optical model, 

we obtain skin property maps showing oxygen rate, blood 

volume fraction, melanin concentration, bilirubin 

concentration, and epidermis thickness. In this section, we 

summarize the skin model, the light-skin interaction model and 

the optimization method used for skin analysis and refer to 

Refs. [3,4] for the detailed equations. 

In our model, skin is described as a two-layer semi-infinite 

material that is homogeneous over the area of interest, i.e., the 

area imaged into one pixel of the sensor. The top layer, of 

thickness h, roughly corresponds to the epidermis and contains 

melanin and a baseline. The bottom layer, corresponding to the 

Figure 2. SpectraCam® and SpectraFace® systems developed by 

Newtone Technologies (France), hyperspectral cameras dedicated to skin 
imaging, respectively for small area and full face acquisition. 

 

 
Figure 3. Hyperspectral image at several wavelengths and corresponding color image. Full face image (top), detail of right eye (bottom). 

 

 



dermis, is assumed to be infinitely thick and contains 

oxyhemoglobin (HbO2), deoxyhemoglobin (Hb), bilirubin, 

and a baseline. Each skin chromophore is characterized by its 

volume fraction, i.e., concentration: the quantities {cmel, cHbO2, 

cHb, cbi} respectively denote the concentrations in melanin, 

HbO2, Hb and bilirubin, and can vary between 0 and 100%. 

Light propagation in each layer is described using the 

Kubelka-Munk theory [12], by which light interactions are 

characterized in terms of absorption and scattering, defined 

respectively by the optical coefficients K and S. The overall 

optical model can be described in three steps illustrated in 

Figure 4. 

Firstly, epidermis and dermis absorption properties Ke(λ) 

and Kd(λ) are related to skin chromophore concentrations {cmel, 

cHbO2, cHb, cbi} and the spectral absorption properties of each 

chromophore taken from literature [13–15] using the Beer-

Lambert-Bouguer law. 

Secondly, applying the Kubelka Munk theory [12], the 

reflectance ρe and transmittance τe of the epidermis, and the 

reflectance ρd of the dermis are obtained as functions of the 

layers' absorption and scattering coefficients (Ke and Se, 

respectively, for the epidermis, and Kd, and Sd, respectively, 

for the dermis). The spectral scattering coefficients of 

epidermis Se(λ) and dermis Sd(λ) are taken from literature [13]. 

Finally, the Kubelka formula [16] is used to take into 

account the two-layer configuration of skin, and the 

Saunderson correction [17] is applied to account for the light 

transfers (reflections and transmissions) at the interface 

between air and skin. These models yield skin spectral 

reflectance Rskin as a function of ρe, ρd, and τe. 

The combination of these three steps gives the direct 

relationship between skin spectral reflectance Rskin, skin 

chromophore concentrations {cmel, cHbO2, cHb, cbi} and 

epidermis thickness h.  

The inverse problem, in which skin chromophore 

concentration and epidermis thickness are estimated from the 

measured spectral reflectance, is solved by optimization. For 

each pixel, the parameters {cmel, cHbO2, cHb, cbi, h} that 

minimize the distance d(Rskin, Rm) between the measured 

spectrum Rm and the predicted spectrum Rskin are determined 

using an iterative method: 
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2
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, , , , arg min ,  
mel Hb HbO bi

skin mmel Hb HbO bi
c c c c h

c Rc dc h Rc .  (1) 

The optimization results are strongly dependent on how the 

distance between two spectra is defined. For this application, 

the Spectral Angle Mapper (SAM) [18], defined in Eq.(2), was 

chosen for its properties of rendering only two spectra shape 

differences while being independent from the spectra 

amplitude difference, which makes it insensitive to irradiance 

variations.  

 
Figure 4. Skin model and light-skin interaction models used in the 

analysis method: (1) Beer-Lambert-Bouguer laws, (2) Kubelka Munk 
theory, (3) Kubelka formula and Saunderson correction. 

 

 

Figure 5. Estimated parameter maps using the analysis method on a full-face image (top) and a small area (4 × 5 cm) image (bottom). The grayscales of the 

displayed images have been optimized for better display and may vary between images. 
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Owing to these properties, the SAM metric yields good 

results on flat areas as well as on a full face, despite the 

presence of irradiance drifts.  

To make interpretation of results simpler, the 

concentrations in Hb and HbO2, respectively cHb and cHbO2, 

have been replaced with the blood volume fraction cblood and 

the oxygen rate α. The blood volume fraction is the sum of the 

concentrations in Hb and HbO2. The oxygen rate is the ratio 

of the concentration in HbO2 to the blood volume fraction. 

Examples of skin parameter maps obtained on a full face and 

on a small area are presented in Figure 5. In the rest of the 

article, this skin analysis algorithm will be referred to as the 

optimization-based algorithm. 

 

4. Skin analysis using a neural network method 

The skin acquisition and analysis method presented in the 

previous section yields satisfactory results for a number of 

applications in cosmetology [3,5]. However, this method relies 

on iterative optimization for each pixel of the hyperspectral 

image, which results in a high computational cost that limits 

its viability for applications requiring immediate results. To 

tackle this limitation and reduce computation time, we trained 

an artificial neural network to replace the optimization 

algorithm. In this section, we describe the training dataset, the 

neural network architecture, and the training process used in 

this study. 

4.1 Training dataset 

The dataset used to train and test the neural network comprises 

hyperspectral images acquired during a clinical study 

conducted by Clarins (France) on 204 Asian patients of skin 

phototypes I to III. Using a SpectraCam®, hyperspectral 

images were acquired from the inner forearm, the cheek and 

the dark circles under the eyes for each patient. These images 

represent the spectral reflectance of healthy skin at 31 

wavelengths between 400 and 700 nm for 1148 × 948 pixels. 

From these images, maps of skin parameters have been 

estimated using the skin analysis method described in Section 

3. The measured skin spectral reflectance on one pixel 

corresponds to the input data of the neural network, and the 

output values that we are seeking correspond to the calculated 

skin parameters for the pixel, i.e. oxygen rate, blood volume 

fraction, melanin concentration and epidermis thickness. In 

Section 3, we mentioned that the skin analysis model yields 

maps of bilirubin concentrations as well. For the neural 

network model, however, bilirubin has been excluded. 

Bilirubin is a breakdown product of melanin and is present 

only at very low concentrations in healthy skin, typically 

around 0.1%. Higher concentrations generally occur in the 

incidence of pathologies such as jaundice, or on healing 

bruises. As our dataset comprises only healthy skin (with low 

bilirubin concentration), the data about bilirubin concentration 

are extremely noisy due to a low signal-to-noise ratio. As such, 

including these values in the training dataset would reduce the 

overall accuracy of the neural network. 

The training dataset is a collection of spectral reflectances 

and the associated skin parameters corresponding to selected 

pixels on each available image. To train the neural network to 

accurately reproduce the skin analysis algorithm, the dataset 

must contain varied spectral reflectances that represent as 

widely as possible the range of possible skin spectral 

reflectance, and must not contain any pixels corresponding to 

features that are not skin, such as the eyelashes. Hence, areas 

of interest corresponding to the most diverse and vascularized 

areas have been manually created on each image. A total of 

812 000 pixels were then randomly selected from these areas 

to form the dataset. For these pixels, it has been verified that 

they correspond to spectral reflectances between 0 and 1, and 

to skin parameters within the possible ranges of [0, 100%] for 

oxygen rate, blood and melanin concentrations. The dataset 

sampling process is illustrated by Figure 6. 

 The measured skin spectral reflectances were then 

modified to linearly extend the dynamic of the input spectrum 

within the interval [0, 1], to improve neural network 

performance. With rmax and rmin the maximum and minimum 

reflectance values over the entire dataset and for all 

wavelengths, the new input data are defined as: 
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  (3) 

Finally, we applied a data augmentation method to increase 

the robustness of the neural network to irradiance drifts. The 

spectral reflectance of the original training dataset was 

multiplied by random constants uniformly distributed between 

0.3 and 1.3, thus simulating the effect of varying lighting and 

viewing conditions that occur on some parts of the face when 

measured in full using the SpectraFace® camera. This new 

“irradiance drifts” dataset was added to the original data, 

doubling the size of the dataset. 

The 1 624 000 selected training patterns (i.e., skin spectral 

reflectance measured on one pixel and the corresponding skin 

parameters) were randomly distributed between the learning 

 
Figure 6. Illustration of the dataset sampling process. (a) Hyperspectral 

image (displayed here as a RGB color image) with pixels randomly selected 
within an area of interest and (b) examples of spectral reflectances 

associated with the pixels labelled as A, B and C in the image on the left. 



dataset (containing 1 032 000 patterns), the validation dataset 

(containing 272 000 patterns) and the test dataset (containing 

320 000 patterns). The training dataset was used to optimize 

the trainable parameters of the network, and the validation 

dataset was used at each iteration of the training process to 

verify that the MLP is not over-trained, and therefore unable 

to perform well on any data outside the training set. The test 

training set was used to assess the accuracy of the neural 

network prediction. 

4.2 Neural network architecture 

The type of neural network used in this work is a multi-layer 

perceptron (MLP), a prevalent class of feed-forward 

network [19] that can be applied to a wide variety of tasks 

including prediction, function approximation, and pattern 

classification. This kind of network is a set of several 

perceptrons, or artificial neurons, organized into layers. 

In this work, the MLP, whose architecture is shown in 

Figure 7, contains 5 fully connected hidden layers that are each 

constituted of 31 perceptrons. The entry layer connects the 31 

perceptrons of the first hidden layer with the spectral 

reflectance R at each wavelength λi. The output layer 

comprises 4 signals corresponding to the oxygen rate, the 

blood volume fraction, the melanin concentration and the 

epidermis thickness. 

Each perceptron is characterized by the rectified linear unit 

(ReLU) activation function, which is recognized to yield good 

results for modeling regression problems. Each hidden layer is 

preceded by a batch normalization function according to the 

method developed by Ioffe and Szegedy [20]. Batch 

normalization increases the performance of the training 

process by constraining the distribution of each layer’s input. 

In total, the MLP comprises 5460 trainable parameters, which 

are randomly initialized according to a normal distribution of 

mean value 0 and standard deviation 0.01. 

 The choice of the number of layers and perceptrons 

depends on the complexity of the function that has to be 

modeled [21]. Too few trainable parameters yield a poor fit of 

the function, and too many yield a model that overfits the 

training data and has poor generalization performance, i.e., 

performs well on the training set, but poorly on novel data. In 

this work, several configurations were considered, with 1, 3 

and 5 hidden layers. The last configuration, with 5 hidden 

layers, yielded the best performance while remaining within an 

acceptable ratio of trainable parameters to training data 

(around 1% of the dataset size). The optimum values for the 

MLP parameters are searched using the iterative training 

process described in Section 4.3. 

Finally, we observed that using a training dataset whose 

size has been doubled by data augmentation improved 

generalization ability, but to the detriment of fitting 

performance. To mitigate the fall off in fitting performance, 

post-processing was applied: each output signal undergoes a 

linear correction whose parameters are determined by training 

on the original dataset without the irradiance drift dataset. 

4.3 Training process 

The MLP has been trained using a back-propagation learning 

algorithm [22], an optimization algorithm that uses a gradient-

descent method. The loss function that is minimized during the 

MLP parameters optimization is defined as follows. Each pixel 

i of the training set corresponds to a training pattern or input-

target pair: 

   , ,( ); , , , i i blood i mel i iR c c h ,  (4) 

where Ri(λ) denotes the spectral reflectance at 31 wavelengths, 

αi the estimated oxygen rate, cblood,i the estimation blood 

volume fraction, cmel,i the melanin concentration and hi the 

epidermis thickness. The target values {αi, cblood,i, cmel,i, hi} are 

also referred as ground truth. We denote as {Ai, Cblood,i, Cmel,i, 

Hi} the neural network output values.  

The loss function is defined as a weighted sum of absolute 

differences between the target values and the output values: 

, ,
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where {a, b, m, h} are the weights associated to each 

parameter, k is the sum of these weights, and N is the number 

of pixels. A mean square error loss function was also 

implemented, but it performed less well than the mean 

absolute error loss function given in Eq. (5). 

The definition of weights associated to each parameter 

helps to balance each parameter importance in the loss 

function for them to be estimated with similar accuracy. 

Indeed, the parameters considered do not vary within the same 

intervals: in the training dataset, oxygen rate typically varies 

between 18% and 96%, blood volume fraction between 2% 

and 12%, melanin concentration between 21% and 51%, and 

epidermis thickness between 21 µm and 41 µm. Without 

weights in the loss function, the prediction of blood volume 

fraction, for example, would be much less accurate than the 

other parameters. An alternative to introducing these weights 

would be to rely on relative difference rather than absolute 

 
Figure 7. Architecture of the MLP used to model the function that relates 
skin spectral reflectance to skin properties. 



difference in the loss function. After several tests, the weights 

chosen in our model are a = 1 for the oxygen rate, b = 4 for the 

blood volume fraction, m = 2 for the melanin concentration 

and h = 2 for the epidermis thickness. By applying these 

settings, we obtain k = 9. 

During the optimization process, the loss function 

decreases for both training and validation datasets when the 

model is converging. However, when the network starts to be 

over-trained, the loss function on the validation dataset 

increases while it keeps decreasing on the training dataset. 

This change of trend provides a clear indication of when 

training should be stopped and was used for automatic early-

stopping.  

The model was implemented in TensorFlow 1.10 

framework using Python 3.5. The training process was 

performed on a single GPU NVidia 1080 Ti GTX 10Gb RAM. 

The model trained for around 5 days, requiring roughly 5 500 

steps. 

The average deviation between the MLP prediction and the 

optimization-based algorithm results (referred to as ground 

truth) obtained at the end of the training process on the 

validation and test sets for each output are given in Table 1. 

 The average deviation between the MLP prediction and 

the optimization-based algorithm results that serve as ground 

truth is rather equally distributed between each output signal 

on the test and validation datasets. This shows that the loss 

function weights have been adequately chosen. Surprisingly, 

the relative deviation is not particularly low compared to the 

variations that can be observed in clinical studies (for example, 

Nkengne et al. observed a 5.5% significant decrease (p-value 

= 0.026) in melanin concentration on the area under the eyes 

after applying an anti-dark circle cosmetic during 56 days on 

patients of skin phototypes II and III [5]). This is perhaps 

because doubling the training dataset with data altered by 

irradiance drifts made the regression problem harder to solve 

for the neural network. We will however see in Section 5.3 that 

this processing of the training dataset is necessary when 

applying the MLP on full face image.  

These levels of relative deviation on the validation and test 

datasets give us a hint at the minimal deviation that can be 

expected when applying the MLP on images. 

5. Experimental results  

The MLP was implemented to perform skin analysis from 

hyperspectral images faster than the conventional 

optimization-based algorithm. Our results show that 

computation time is much faster using this method: while 

computation was about 1 hour for a 1148 × 948 pixels image 

with the optimization-based algorithm, the computation time 

using the MLP is only 0.5 seconds using a GPU and 2 seconds 

using a CPU on the same computer (Intel®Core™ i7-6700 

CPU 3.40 Ghz). This is respectively around 7 000 times and 1 

800 times faster than the optimization-based algorithm. The 

implemented MLP is hence validated in term of computation 

speed. 

Besides computation speed, we have to verify that the MLP 

yields accurate results that can be used for skin analysis and 

explore how it can be used in various applicative contexts. 

Through the training process, the MLP parameters have been 

optimized so that the loss function on the test dataset is as low 

as possible. However, this does not guarantee reliable results 

on real-world images, which potentially involve skin spectral 

measurements that were not represented in the training dataset. 

We therefore prefer to discuss the efficiency of the method by 

comparing its output with the expected results on images. In 

this section, various images of healthy skin are used to study 

the accuracy of the method. 

5.1 Predicted skin parameter maps on images 

similar to the training dataset 

Skin parameter maps estimated using the neural network 

(referred to as MLP) on images of the dark circles under the 

eyes and the inner forearm are compared with the 

optimization-based algorithm results (referred to as ground 

truth) in Figures 8 and 9. The images selected here as examples 

are part of the cosmetology study from which the training 

dataset has been built and are therefore very similar to the data 

used for the MLP training. The deviations, i.e., absolute 

differences, between the MLP prediction and the ground truth 

obtained on areas of interest selected under the eye and on the 

forearm (see Figure 10) are detailed in Tables 2 and 3, 

respectively. 

Table 1. MLP results on the validation and test sets after training: average deviation value (i.e., absolute difference between the 

MLP prediction and the ground truth), average ground truth value and relative average deviation (i.e., average deviation expressed 

as a percentage of the average ground truth). 

 
Average deviation value 

Average ground truth 

value 

Relative average 

deviation 

Output Validation Test Validation Test Validation Test 

Α 0.0149 0.0159 0.552 0.566 2.7% 2.8% 

Cblood 0.0020 0.0019 0.083 0.074 2.4% 2.6% 

Cmel 0.0141 0.0154 0.373 0.373 3.8% 4.1% 

H (µm) 0.87 0.90 31.9 31.3 2.9% 3.2% 

 

 



 

 

 Figure 8. Comparison of skin parameter maps obtained using the optimization-based algorithm (ground truth) and the trained neural network (MLP) on an 
image acquired of the eye. The deviation between the two results, which corresponds to the absolute difference, is displayed in false colors. 

 

Figure 9. Comparison between skin parameter maps obtained using the optimization-based algorithm (ground truth) and the MLP on an image acquired of 
the inner forearm, deviation between the two results displayed in false colors. 

 



 To the naked eye, the skin parameter maps predicted by 

the MLP are very similar to the ground truth maps obtained 

using the optimization-based algorithm. The MLP maps show 

slightly less contrast than the ground truth maps, however, the 

difference is barely perceptible except on areas that do not 

represent “normal” skin, such as on the eyelid (see Figure 8). 

This is likely due to the fact that the training dataset did not 

contain any pixels representing it. Deviation is also high on the 

inside corner of the eye (on the right), a result which was 

expected since concave areas on the face are affected by 

interreflections [23], i.e., the fact that light undergoes several 

successive reflections on different skin areas before forming 

the radiance captured by the sensor. Spectral radiances issued 

from concave areas concerned by interreflections present 

spectral shapes different from the ones issued from flat or 

convex areas, and the relationship between the two kinds of 

spectral shapes is strongly non-linear. In absence of model 

taking explicitly this phenomenon into account, the areas 

concerned by interreflections cannot be adequately 

addressed [4]. 

 The average deviation calculated on the selected areas (see 

Tables 2 and 3) allows us to quantify the method’s accuracy. 

In Tables 2 and 3, deviation is also expressed as a percentage: 

the relative average deviation corresponds to the average 

deviation divided by the average value of ground truth on the 

same area. We will focus on this relative deviation to assess 

the accuracy of the MLP prediction, as it is primarily relative 

variations on the skin parameter maps, such as between areas 

of the image or between acquisitions taken at different times, 

rather than absolute values that are of interest to cosmetology 

studies. The MLP predictions are satisfactory for oxygen rate, 

blood volume fraction and melanin concentration, with a 

relative deviation of no higher than 3.2% across the results. 

Predictions are also rather satisfactory for epidermis thickness, 

with less than 5% of relative deviation. The deviation rates 

calculated on these images are of similar magnitude to those 

calculated on the test and validation datasets (see Table 1 in 

Section 4.3). It confirms that the MLP has been correctly 

trained, as it is able to predict as accurately as possible images 

that resemble the training dataset. A visual comparison 

between the predicted maps and the ground truth maps 

corroborates the low deviation percentages obtained on these 

results. 

5.2 Predicted skin parameter maps on healthy skin 

The results presented in Section 5.1 allow an evaluation of the 

accuracy of the MLP on images that are similar to the training 

dataset. To evaluate the ability of the MLP to generalize, we 

applied it on an image representing healthy skin, but differing 

more markedly from the images in the training dataset. The 

image selected is of the area under the eye, as for the images 

in Figure 8, but has been acquired by a different operator, using 

a different SpectraCam® device, on a person of different skin 

color. The skin parameter maps corresponding to the ground 

truth, the MLP predictions as well as the absolute difference 

between the two are shown in Figure 11. The average deviation 

between the ground truth images and the MLP images on an 

area of interest selected underneath the eye (see Figure 12) is 

given in Table 4. 

Table 4 shows the relative deviation obtained for each map 

on this image, which is roughly twice that of the deviation 

percentage calculated from the images that are similar to the 

training dataset. Nevertheless, relative deviation remains 

below 10%, and below 5% for all quantities but epidermis 

thickness, which is not too aberrant. 

 
Figure 10. Areas selected under the eye (left) and on the arm (right). 

 

Table 2. MLP results on the area selected underneath the eye 

(see Figure 10 left): average deviation value (i.e., absolute 

difference between the MLP prediction and the ground truth), 

average ground truth value and relative average deviation (i.e., 

average deviation expressed as a percentage of the average 

ground truth). 

Output 

Average 

deviation 

value 

Average 

ground truth 

value 

Relative 

average 

deviation 

Α 0.0186 0.647 2.9% 

Cblood 0.0019 0.092 2.0% 

Cmel 0.0056 0.309 1.8% 

H (µm) 1.42 33.5 4.3% 

   

Table 3. MLP results on the area selected on the inner forearm 

(see Figure 10 right): average deviation value, average ground 

truth value and relative average deviation. 

Output 

Average 

deviation 

value 

Average 

ground truth 

value 

Relative 

average 

deviation 

Α 0.0145 0.453 3.2% 

Cblood 0.0017 0.062 2.8% 

Cmel 0.0054 0.236 2.3% 

H (µm) 1.45 29.9 4.9% 

 



 Regarding the visual observation of the skin parameter 

maps (see Figure 11), there is little perceptible difference 

between the ground truth maps and the MLP maps. The level 

of deviation appears higher on pixels corresponding to 

parameter values that are either drastically higher or lower than 

the typical values: for example, deviation is high on the blood 

vessels located directly underneath the eye, where the blood 

volume fraction is high and the oxygen rate is low. On the map 

showing deviation for melanin concentration, we recognize 

underneath the eye a shape that can be identified as blood 

vessels. This suggests that on these pixels, the MLP interpreted 

a signal corresponding to blood as being linked to melanin. 

This kind of artefact can be problematic for certain 

applications and represents a limitation to using the MLP 

method when a very high degree of accuracy is required.  

 

5.3 Full face reconstruction and robustness to 

irradiance drifts 

The MLP training dataset was assembled and processed with 

the aim of training the MLP to be as robust as possible to 

irradiance drifts. The hyperspectral cameras used in this work 

relies on black and white reference tiles to calibrate the 

acquired signal and obtain skin spectral reflectance. When the 

skin surface is not flat however, this calibration step does not 

yield spectral reflectance but spectral reflectance multiplied by 

a factor that is determined by the orientation of the surface [4]. 

This factor is constant over the spectrum but can vary from one 

pixel to another, according to the surface shape, a phenomenon 

that we call irradiance drift. If the skin analysis method were 

not robust to irradiance drifts, variations in the shape of the 

surface could be erroneously interpreted as variations in 

chromophore concentration. Areas that are darker on the 

acquired image because they receive less light or reflect less 

light toward the camera, such as the side of the nose for 

example, could be erroneously interpreted as containing more 

Table 4. MLP results on the area selected under the eye under 

the eye (see Figure 12): average deviation value, average 

ground truth value and relative average deviation. 

Output 

Average 

deviation 

value 

Average 

ground truth 

value 

Relative 

average 

deviation 

α 0.0436 0.842 5.2% 

Cblood 0.0073 0.129 5.6% 

Cmel 0.0141 0.260 5.4% 

H (µm) 3.26 39.3 8.3% 

 

 

Figure 11. Comparison between the maps of skin parameter obtained using the optimization-based algorithm (Ground truth) and the MLP on an image 

acquired of the eye, deviation between the two results displayed in false colors. 

 

 
Figure 12. Area selected under the eye. 

 



melanin. The robustness of the MLP to irradiance drifts is 

especially critical for the analysis of full-face hyperspectral 

images, as the complex shape of the face makes irradiance 

drifts unavoidable. For these full-face images, which can 

comprise up to 4 megapixels, computation time using the 

optimization-based algorithm is especially high (around five 

hours). An MLP method able to perform a skin analysis within 

a short time therefore represents a huge benefit. 

The MLP implemented in this work, however, has been 

trained only on data representing flat areas of skin, with very 

little irradiance variation in comparison to those which can be 

observed on a full-face. The training dataset has been 

supplemented by data on which irradiance drifts have been 

artificially added, but this provides no guarantee that the MLP 

can correctly predict skin parameter maps from full face 

images. The results presented below provide some clarity as to 

whether the MLP predictions are satisfactory on a full-face 

image and in which contexts the method can be applied. 

The full-face image used in this section, acquired using the 

SpectraFace®, comprises 1548 × 1948 pixels. Analysis of the 

image using the MLP took 2 seconds using a GPU and 8 

seconds using a CPU (Intel®Core™ i7-6700 CPU 3.40 Ghz), 

which represents a considerable time gain compared to the 

optimization-based algorithm analysis.   

Figure 13 shows a comparison of the skin parameter maps 

obtained using the MLP and the ground truth. Visually, the 

skin parameter maps predicted by the MLP are rather similar 

to the ground truth maps, with the exception of the map 

illustrating epidermis thickness. Significantly, there are no 

 

Figure 13. Comparison between skin parameter maps obtained using the optimization-based algorithm (Ground truth) and the MLP on a full-face image, 
deviation between the two results displayed in false colors. 

 

 
Figure 14. Estimated maps of skin parameter from a full-face hyperspectral 

image, for a MLP trained on a dataset that has not been augmented by data 

affected by irradiance drifts (top), compared to the current MLP (bottom), 
for which irradiance drift data augmentation has been performed. 

 



abrupt variations in the middle of the face, indicating that 

incidence of irradiance drift has not been mishandled by the 

MLP. As a comparison, Figure 14 (top) shows skin parameter 

maps obtained using another MLP network trained on the 

initial database that was not supplemented with data artificially 

altered by irradiance drifts: a sudden variation correlated with 

the shape of the face is clearly visible on the blood volume 

fraction and melanin concentration maps. The absence of such 

artefacts from the maps shown in Figure 13 (or Figure 14 

bottom) encourages us to think that training the MLP on an 

augmented dataset data did improve the robustness of the MLP 

to irradiance drifts. 

 We can also observe on the melanin concentration and 

epidermis thickness deviation maps that deviation is higher on 

the sides of the face. A close look at the ground truth maps 

shows a diminution of these two quantities on the sides of the 

face that is not present on the MLP results. As these variations 

do not correspond to any potential variation in skin properties, 

they are likely to be artefacts. This indicates that the 

optimization-based algorithm considered to be the ground 

truth is, surprisingly, less faithful to reality than the MLP 

method on the sides of the face. A potential explanation for 

this phenomenon is that the signal-to-noise ratio is low on 

those pixels affected by strong irradiance drifts, and the 

optimization-based algorithm is less robust to noise than the 

MLP. If it is the case, the MLP method would have an 

additional advantage over the optimization-based method.. 

We chose three areas to evaluate relative deviation, 

illustrated on Figure 15: the middle of the forehead (Area A), 

the lower part of the cheek (area B), and the middle of the chin 

(Area C). The average deviation calculated on these areas, 

shown in Table 5, are not drastically higher than the deviation 

on a small area shown in Table 4, as their maximal values are 

around 10%, which is encouraging given the presence of 

irradiance drifts on full face images. The MLP predictions are 

even close to the ground truth values for blood volume 

fraction, with relative deviation below 2%, which is the same 

as on the test dataset. 

The results presented in Section 5 allow us to validate the 

use of the MLP method for pre-visualization purposes. The 

percentages of relative deviation calculated on the images 

outside the training dataset are rather promising given the 

simplicity of this dataset, which is certainly not representative 

of the diversity of skin spectral reflectance that can be found 

on different people. However, the percentage of deviation is 

not negligible compared to the percentage of variation 

sometimes observed on the skin parameters in cosmetology 

studies [5]. For this reason, the current MLP cannot replace the 

optimization-based algorithm when accuracy is needed. 

 

6. Conclusion 

The implementation of a neural network method for the 

estimation of skin parameter maps can drastically reduce 

calculation time, allowing for the visualization of results 

immediately after acquisition. The skin parameter maps 

obtained using this method closely approximate those 

computed using a model-based skin analysis method, and they 

could conceivably be used for the purposes of previewing 

results for skin phototypes I to III. However, the accuracy of 

the implemented MLP does not yet meet the needs of image 

analysis for cosmetology studies. The selection of the dataset 

seems crucial to ensuring the accuracy of the neural network’s 

predictions. A potential improvement of the method would be 

to train the network on data acquired on a larger number of 

patients of different ages, skin color, and living conditions. 

In this work, we have demonstrated the importance of 

accounting for irradiance drifts when working on full-face 

images, and provided a solution by augmenting the training 

dataset with data artificially altered by irradiance drifts. The 

extended training dataset is likely more representative of the 

spectral reflectance measured by the hyperspectral camera on 

a full-face. An alternative solution could be to normalize 

spectral reflectance as a pre-processing, which would cancel 

the effects of irradiance drifts. 

Table 5. MLP results the three selected areas corresponding to 

the forehead (A), the cheek (B) and the chin (C) (see Figure 

15): average deviation value, average ground truth value and 

relative average deviation. 

 

Output 

Average 

deviation 

value 

Average 

ground 

truth value 

Relative 

average 

deviation 

A
re

a 
A

 α 0.0610 0.619 9.9% 

Cblood 0.0015 0.063 2.0% 

Cmel 0.0147 0.355 4.2% 

H (µm) 2.32 30.4 7.6% 

A
re

a 
B

 α 0.0840 0.824 10.2% 

Cblood 0.0019 0.067 2.1% 

Cmel 0.0209 0.298 7.0% 

H (µm) 3.46 29.3 10.6% 

A
re

a 
C

 α 0.0700 0.707 9.9% 

Cblood 0.0018 0.0976 1.9% 

Cmel 0.0137 0.343 4.0% 

H (µm) 1.63 27.3 6.0% 

 

 

Figure 15. Areas selected on the forehead (A), the cheek (B) and the 
chin (C). 

 



In our approach, the neural network was not trained to 

model light-skin interactions, but only to solve an inversion 

problem more quickly than by using optimization-based 

algorithm. The approach illustrated in Figure 1.a, using a 

training dataset based on a Monte Carlo method [7–10,24] and 

a much more detailed model of skin than our two-layer model, 

could be investigated. In this case, the neural network would 

provide a model for skin spectral reflectance and solve the 

inverse problem as well. However, we cannot be guaranteed 

that this alternative approach would yield satisfactory results 

on noisy spectral reflectance corresponding to real skin. 

Conversely, our current approach has the advantage of 

accounting for real data, acquired with a real optical system 

that also introduces some noise on the data. 

The work presented in this article paves the way to future 

developments of hyperspectral imaging for skin analysis. A 

possibility for further developing the acquisition system is to 

reduce the complexity of the measured data, using a neural 

network to replace the optimization-based analysis. Currently, 

the skin analysis method requires high-resolution skin spectral 

reflectance measurements as an input, as skin parameters are 

estimated using the shape of the spectrum. High spectral 

resolutions are thus required to distinguish small variations in 

the shape of the spectrum, corresponding to small variations in 

skin optical properties. However, it is possible that not all 

acquired wavelengths contain useful information, just as it is 

possible that two different wavelengths could be correlated, 

making it redundant to measure both. If such is the case, the 

quantity of acquired data could be reduced by ignoring certain 

wavelengths, and the analysis method could be replaced by a 

neural network. This would allow us to reduce acquisition time 

or even to consider using a multispectral camera rather than a 

hyperspectral camera. The latter would have many advantages, 

as a multispectral camera is generally lighter, less fragile, and 

cheaper than a hyperspectral camera. Such a simplification 

would require a careful selection of the acquired wavelengths, 

retaining those that carry the most relevant information to 

ensure good performances for the neural network method. 
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