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® A quick introduction to phylogenetic networks

® Advances in phylogenetic networks:

O

O

simplifying models
knowing the network space
finding new techniques
using powerful tools

putting everything together!



Phylogenetic networks: generalizing phylogenetic trees
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Phylogenetic networks: generalizing phylogenetic trees

Phylogenetic tree of a set of species:

Bacteria Archaea . Eucarya

e Describe their evolution
— modelization

Woese, Kandler, Wheelis: Towards a natural system of organisms:
proposal for the domains Archaea, Bacteria, and Eucarya,
Proceedings of the National Academy of Sciences 87(12),
4576-4579 (1990)



Abstract and explicit phylogenetic networks

Phylogenetic network: network representing evolution data

e abstract / data-display phylogenetic networks: to classify, visualize data

minimum spanning network
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Abstract and explicit phylogenetic networks

Phylogenetic network: network representing evolution data

e explicit phylogenetic networks: to model evolution
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Abstract and explicit phylogenetic networks

Phylogenetic network: network representing evolution data

e explicit phylogenetic networks: to model evolution
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reticulations: nodes with >1 parent, modeling hybridization, recombination,

lateral gene transfer, etc.



Explicit phylogenetic networks
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http://phylnet.univ-mlv.fr/recophync/networkDraw.php

How hard is it to reconstruct a network?
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How hard is it to reconstruct a network?

Quite hard. Harder than reconstructing trees. Often NP-hard.
In practice:
« 9.1 Limitations

The biggest limitation of methods to infer introgression and hybridization,
including species network methods, is scalability.

Methods which infer a species network directly from multilocus sequences have
only been used with a handful of taxa, and less than 200 loci. »



So, what should we do?



So, what should we do?
What has been done?



A
KEEP

CALM

AND

SIMPLIFY
YOUR
MODEL



Just put gene trees together

The “hybridization network” problem (ignore duplication, loss, ILS, etc.):

given 2 trees, find the smallest network containing both of them
with the minimum number of reticulations



Just put gene trees together

The “hybridization network” problem (ignore duplication, loss, ILS, etc.):

given 2 trees, find the smallest network containing both of them
with the minimum number of reticulations

Easy to find a network containing the two trees!

T1 T2 '

add a root above

a b c¢c d a b c d the two trees, glue
the leaves together a b c d



Just put gene trees together

The “hybridization network” problem (ignore duplication, loss, ILS, etc.):

given 2 trees, find the smallest network containing both of them
with the minimum number of reticulations

Easy to find a network containing the two trees!

But n hybrid vertices for trees with n leaves: not optimal!

T1 T2 '

add a root above

a b c¢c d a b c d the two trees, glue
the leaves together a b c d



Just put gene trees together

The “hybridization network” problem (ignore duplication, loss, ILS, etc.):

given 2 trees, find the smallest network containing both of them
with the minimum number of reticulations

NP-hard to minimize the number of reticulations



Just put gene trees together

The “hybridization network” problem (ignore duplication, loss, ILS, etc.):

given 2 trees, find the smallest network containing both of them
with the minimum number of reticulations

NP-hard to minimize the number of reticulations

Even checking a solution (Tree Containment Problem) is hard!



The Tree Containment Problem

Input: A binary phylogenetic network N and a tree T over the same set of taxa.

Question: Does N display T7?

— Can we remove one incoming arc, for each vertex with >1 parentin N, so that
the obtained tree is equivalent to T (each arcin Tis a path in N)?

T N

a b c d a b c d



The Tree Containment Problem

Input: A binary phylogenetic network N and a tree T over the same set of taxa.

Question: Does N display T7?

— Can we remove one incoming arc, for each vertex with >1 parent in N, so that
the obtained tree is equivalent to T (each arcin T is a path in N)?

T N

a b c d a b c d



The Tree Containment Problem

[ tree containment ']

Tushar Agarwal,
Philippe Gambette
& David Morrison
(2016),

Who is Who in
Phylogenetic
Networks: Articles,
Authors and
Programs, arXiv

2

1
g 0 90006 0 0.0 000000 ._x_l_o 0.0

1990 1995 2000 2005 2010 2015 2020

http://phvlnet.univ-mlv.fr/publications.php



http://phylnet.univ-mlv.fr/publications.php

Subclasses of phylogenetic networks

The class of binary
nearly stable
networks contains
the class of

binary spread-k
binary spread-3 binary level-k
binary spread-2

binary spread-1

binary k-reticulated

binary stable-child
binary nearly stable

binary tree-based
=N

binary compressed

binary FU-stable binary tree-sibling eve ry

binary distinct-cluster . .
is a binary nearly

stable network
binary tree-child
o

binary 3-reticulated

binary level-3 binary 2-reticulated

binary level-2

binary k-nested
binary 3-nested

binary 1-reticulated

binary reticulation-visible

binary leaf outerplanar

binary galled network


http://phylnet.univ-mlv.fr/isiphync/

Subclasses of phylogenetic networks
Ceinary

binary k-reticulated P rOble m
sl easy to solve on
binary 3-reticulated class A
binary level-3 binary 2-reticulated = easy to SOIVe

binary level-2 binary 1-reticulated

binary leaf outerplanar binary k-nested
binary 3-nested

binary compressed

binary FU-stable binary tree-sibling

\ = hard to solve
binary distinct-cluster

on superclass A

binary 2-nested binary tree-child
binary galled tree
w binary phylogenetic tree

binary spread-1

hard to solve on

binary reticulation-visible

(similar to ISGCI)

binary galled network


http://phylnet.univ-mlv.fr/isiphync/

Understanding tree containment
o

In 2011:

binary spread-1

binary k-reticulated

binary stable-child
binary level-k binary 3-reticulated binary nearly stable

binary tree-based

752N
inary compressed

binary FU-stable binary tree-sibling

binary distinct-cluster binary genetically stable

binary regular binary nearly tree-child
binary tree-child -

binary leaf outerplanar binary k-nested

Chnary gl ree 3
CZoiry eyt (Qeinary phyiogeneic s>

binary galled network

binary normal binary time-consistent

@ NP-hard

@ polynomial-
time solvable


http://phylnet.univ-mlv.fr/isiphync/

Understanding tree containment
o)

i . NP-hard
SI n Ce 20 1 5 . binary spread-k binary k-reticulated 5 : .
binary stable-child
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binary spread-1
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http://phylnet.univ-mlv.fr/isiphync/

Understanding tree containment

binary stable-child
binary nearly stable

binary tree-based
/=N

inary compressed
binary reticulation-visible binary FU-stable binary tree-sibling

Slnce 2015 blnaryspreadk
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binary level-3
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binary spread-2
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binary level-2

e " e .
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binary tree-child »
binary normal
' binary phylogenetic tree

binary k-nested
binary 3-nested

binary 2-nested
’ binary galled tree

binary leaf outerplanar

binary galled network

@ NP-hard

@ polynomial-
time solvable

Polynomial-
time algorithm
found for binary
reticulation-
visible networks

binary time-consistent


http://phylnet.univ-mlv.fr/isiphync/

Understanding tree containment
o)

Slnce 2015 blnaryspreadk
blnary level-k

binary spread-2

binary spread-1

binary k-reticulated
binary 3-reticulated

binary 2-reticulated

binary stable-child
binary nearly stable

binary tree-based
/=N

inary compressed
binary reticulation-visible binary FU-stable binary tree-sibling
O o
binary distinct-cluster ‘ binary genetically stable
binary regular . binary nearly tree-child
binary tree-child »
binary normal
' binary phylogenetic tree

binary level-3

binary level-2
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binary 1-reticulated

binary leaf outerplanar

binary galled network

@ NP-hard

@ polynomial-
time solvable

In 2020, first
results on the
Network
Containment
Problem for
tree-child
networks

binary time-consistent


http://phylnet.univ-mlv.fr/isiphync/
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Bounding the size of phylogenetic networks

How many nodes can a network on n leaves have?
— unbounded for general networks
— for nearly-stable networks:

® 26n-24

e 8n-7



Counting phylogenetic networks

How big is the search space?

— analytic combinatorics techniques to count the number of networks in some

subclasses
n gn—1 n Un-—1 ln
1 0 1 0 1
2 1 3 1 18
3 2 36 6 1 143
4 15 723 135 120 078
5 192 20 280 5 052 17 643 570
6 3 450 730 755 264 270 3 332 111 850
as n — oo c1 ~ 0.20748 c1 ~0.1339 c1 =~ 0.07695 c1 ~ 0.02931
Tn ~ crein™ ! with || cp &~ 1.89004 | co &~ 2.943 co = 5.4925 co ~ 15.4333
OEIS reference A328121 A328122 A333005 A 333006

Mathilde Bouvel, Philippe Gambette & Marefatollah Mansouri, Counting Phylogenetic Networks of Level 1 and 2,

accepted to JOMB



Counting phylogenetic networks

How big is the search space?

— analytic combinatorics techniques to count the number of networks in some
subclasses
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Counting phylogenetic networks

How big is the search space?

— analytic combinatorics techniques to count the number of networks in some
subclasses

counting
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http://phylnet.univ-mlv.fr/show.php?keyword=counting

Counting phylogenetic networks

How big is the search space?

— analytic combinatorics techniques to count the number of networks in some
subclasses

counting

The next step: random generation
of phylogenetic networks? 5 s
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http://phylnet.univ-mlv.fr/show.php?keyword=counting

\ NNI moves

Local moves

How to explore the search space?

— NNI moves

Katharina Huber, Vincent Moulton and Taoyang Wu.
Transforming phylogenetic networks: Moving
beyond tree space. JTB 404:30-39, 2016.

Philippe Gambette, Leo van lersel, Mark Jones,
Manuel Lafond, Fabio Pardi and Celine Scornavacca.
Rearrangement Moves on Rooted Phylogenetic
Networks. PLoS Computational Biology 13(8):
e1005611.1-21, 2017.

0.00.00.00000.000000002020.0.00_0_0 oo

7
i

20


http://phylnet.univ-mlv.fr/show.php?keyword=NNI%20moves

Local moves

How to explore the search space?

— NNI moves, SPR moves

Katharina Huber, Vincent Moulton and Taoyang Wu.

Transforming phylogenetic networks: Moving
beyond tree space. JTB 404:30-39, 2016.

Philippe Gambette, Leo van lersel, Mark Jones,

Manuel Lafond, Fabio Pardi and Celine Scornavacca.

Rearrangement Moves on Rooted Phylogenetic
Networks. PLoS Computational Biology 13(8):
e1005611.1-21, 2017.

Magnus Bordewich, Simone Linz and Charles
Semple. Lost in space? Generalising subtree prune
and regraft to spaces of phylogenetic networks.
JTB 423:1-12, 2017

1 NNI moves
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http://phylnet.univ-mlv.fr/show.php?keyword=NNI%20moves
http://phylnet.univ-mlv.fr/show.php?keyword=SPR%20distance
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New techniques developed for phylogenetic networks

agreement forest

e agreement forests: to compute the SPR
distance between trees and to solve the
hybridization problem between 2 trees

2000



New techniques developed for phylogenetic networks

greement forest

e agreement forests: to compute the SPR
distance between trees and to solve the

hybridization problem between 2 trees
e cherry picking: to solve the hybridization i B R
0.0_00.0.0.0.0.0.0.0.0.0.0.4 B ‘. ‘-\ ,o,‘ i.
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2 ‘.2
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http://phylnet.univ-mlv.fr/show.php?keyword=cherry-picking

New techniques developed for phylogenetic networks

agreement forest

e agreement forests: to compute the SPR
distance between trees and to solve the E
hybridization problem between 2 trees

4.4 44
T L 3

e cherry picking: to solve the hybridization i & M B |
0. 0.0 00000000 0.0.0.404¢ i. ‘-i ‘- ‘ LGy ‘
prObIem between > 2 trees 1990 1995 2000 2005 2010 2015 : 2020
e network decompositions: to solve the

tree containment problem on reticulation
visible networks
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http://phylnet.univ-mlv.fr/show.php?keyword=cherry-picking
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Fixed parameter tractability (FPT algorithms)

e find an appropriate parameter k which is small: number of reticulations,
level of the network, etc.

® |ook for an FPT algorithm in k: computation time in O(f(k)xpoly(n))

O computation time may be
huge depending on k

FPT

o the problem remains tractable 6
when n (the number of taxa) : il :
increases P |

|



http://phylnet.univ-mlv.fr/show.php?keyword=FPT

Visualization minimizing edge crossings

NP-hard
horizontal-style

=

FPT algorithm

snake-style
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http://phylnet.univ-mlv.fr/show.php?keyword=visualization

Use mathematical properties of abstract networks

explicit rooted network  unrooted network circular split network

7
G(Z(N)) : 0 6 5



http://phylnet.univ-mlv.fr/show.php?keyword=circular+split+system

Use solvers

® SAT, ILP (integer linear programming), CSP (constraint satisfaction problem),
maximum clique solvers are available

SAT v integer linear programming
4
2
2 12 2
1 1
& 1 1 1 1
- |- - -
i)
0 000000000000000000000000000Jd 0. 0000000000000 @GH 00040 ‘ 0.q 0000
1990 1995 2000 2005 2010 2015 2020 1990 1995 2000 2005 2010 2015 2020

® work in progress with Pierre Bourhis and Marion Tommasi:
o an ad hoc algorithm is faster most of the time
o the time taken by the solver does not vary much: more efficient when
the ad hoc algorithm takes too long


http://phylnet.univ-mlv.fr/show.php?keyword=integer+linear+programming
http://phylnet.univ-mlv.fr/show.php?keyword=SAT
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Put everything together

® requires some good engineering work: use multicore processors, parallel or
distributed computing, etc.

® requires easy-to-use software:

o cross-platform software: SplitsTree (1998), Dendroscope (2007),
PhyloSketch (2020)

o web applications: T-REX online (2012)

o packages or pipeline bricks: R package Phangorn (2011), Julia package
PhyloNetworks (2017)



http://splitstree.org/
http://dendroscope.org/
https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/algorithms-in-bioinformatics/software/phylosketch/
http://www.trex.uqam.ca/
https://cran.r-project.org/web/packages/phangorn/index.html
https://crsl4.github.io/PhyloNetworks.jl/latest/
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http://phylnet.info/

