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ABSTRACT

In this paper, we propose a new multilevel Levenberg—Marquardt
optimizer for the training of artificial neural networks with quadratic
loss function. This setting allows us to get further insight into the

- - AP KEYWORDS
potential of multilevel optimization methods. Indeed, when the least Algebraic multigrid method;
squares problem arises from the training of artificial neural networks, artificial neural network;
the variables subject to optimization are not related by any geo- Levenberg-Marquardt

metrical constraints and the standard interpolation and restriction method; multilevel
operators cannot be employed any longer. A heuristic, inspired by optimization method; partial
algebraic multigrid methods, is then proposed to construct the mul-  differential equation.
tilevel transfer operators. We test the new optimizer on an important

application: the approximate solution of partial differential equa-

tions by means of artificial neural networks. The learning problem

is formulated as a least squares problem, choosing the nonlinear

residual of the equation as a loss function, whereas the multilevel

method is employed as a training method. Numerical experiments

show encouraging results related to the efficiency of the new multi-

level optimization method compared to the corresponding one-level

procedure in this context.

1. Introduction

Artificial neural networks (ANNs) have been recently successfully employed in different
fields, such as classification and regression, image or pattern recognition, to name a few
[5,25,27,32]. Their promising performance encouraged also the spread of special neural
networks’ hardware implementations, to decrease the computational training times and to
provide a platform for efficient adaptive systems [41].

One of the main issues with the use of artificial neural networks is to be able to suc-
cessfully train them. The training is based on the solution of an optimization problem
that can be large-scale as, for highly nonlinear problems, a network with a large num-
ber of weights may be necessary to approximate the solution with a sufficient accuracy.
Gradient-based methods may exhibit a slow convergence rate, it may be difficult to properly
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tune the learning rate and they are generally more efficient in the solution of convex
problems. Recently, a new stream of research has emerged, on methods that make use
of second-order derivative approximations, contributing to build the next generation of
optimization methods for large-scale machine learning [1,7]. These methods are anyway
generally really expensive in their standard form, especially when the number of variables is
large.

For such problems multilevel techniques have shown to be really effective, both
in the context of pure multigrid methods for the solution of linear systems aris-
ing from the discretization of linear or nonlinear elliptic partial differential equations
in two or higher dimensions [9,23,57] and in the context of nonlinear optimization
[20,21,31,35,36,42,43,58]. The main idea on which multilevel methods are based is the
exploitation of a hierarchy of problems, approximating the original one. Usually this hier-
archy is built exploiting the fact that the underlying infinite-dimensional problem may be
described at several discretization levels. The use of more levels is beneficial, as the coarse
problems will generally be cheaper to solve than the original one, and it is possible to exploit
the fact that such problems exhibit multiple scales of behaviour [9].

Inspired by these developments, we propose a new multilevel Levenberg-Marquardt
training method, which is a member of the family of multilevel optimization methods
recently introduced by the authors in [10], aimed at reducing the cost of the standard
one-level procedure. Our aim is then twofold: on one side we can investigate the useful-
ness of multilevel methods as training methods, inquiring if the multilevel nature of the
proposed solver can help to speed up the training process with respect to the one-level
optimization strategy. On the other side, this context allows us to get more insight into
the potential of multilevel strategies for nonlinear optimization, investigating their appli-
cation on problems that do not possess an underlying geometrical structure. Multilevel
techniques require the construction of transfer operators. Usually standard interpolation
and restriction operators, commonly employed in the case of linear systems, are also used
in the case of nonlinear problems. However, to employ such operators a geometrical struc-
ture of the variables is needed. In the case of a training problem, the variables subject to
optimization are the weights and biases of the network, which do not possess any geomet-
rical structure. To derive a multilevel method for the training problem, it is then necessary
to design multilevel transfer operators differently.

It is clear that the network possesses an important structure, even if it is not geometric
in nature. It rather presents an algebraic structure, as the one that is usually exploited in
algebraic multigrid, see, e.g. [51] and [57, Appendix A]. We investigate then if we could
exploit this structure to define both the hierarchy of problems and the multilevel transfer
operators. We propose a technique inspired by classical algebraic multigrid methods to
do so.

We then test the proposed procedure on an important and up-to-date problem: the
approximate solution of partial differential equations (PDEs) by neural networks. ANNs
are well known for their excellent flexibility in approximating complex high-dimensional
nonlinear functions and are thus naturally suitable to approximate the solution of partial
differential equations. The use of artificial neural networks in problems involving PDEs
has attracted a lot of interest lately. ANNs have been used for many different purposes
in this field: for the numerical solution of either direct problems [15,40,45,47,49] or of
inverse problems [44,46], to reconstruct the equation from given data [38,50,53], or to



melt with standard solution techniques such as finite element or finite difference methods,
see [34,39,48,56].

These techniques have indeed been shown to have several advantages over conventional
numerical methods, see for example [17,34], including the following ones. The differential
operator does not need to be discretized, and the approximate solution obtained possesses
an analytical expression and is continuously differentiable. This is essential for example in
control problems, where derivatives of the solution are needed. The solution is also mesh-
less, which helps to solve problems in complex geometries, as these methods require only
a sampling of the domain, which is more easily produced than meshes when the geome-
try is irregular. Using neural networks provides a solution with very good generalization
properties, this allows not only to have an approximation to the solution at all the points
of the training interval (with an accuracy usually comparable to that obtained at the train-
ing points) but also to perform extrapolation outside the interval. This approach is useful
especially in case of high-dimensional equations, as it allows to alleviate the curse of dimen-
sionality as the computational cost of training is only weakly dependent on the problem
dimension, see, e.g. [24,28,29] among others, while for classical methods the problems size
grows exponentially with its dimension. Temporal and spatial derivatives can be treated
in the same way and the training is highly parallelizable on Graphics Processing Units
(GPU). These techniques are easy to implement, they are general and can be therefore
be applied to every kind of differential equation and can be easily modified to handle
different types of boundary conditions. More importantly, this approach provides a nat-
ural way to solve problems with nonlinear operators, with no need of linearisation. On
some problems, e.g. problems in high dimension and problems with intricate domains,
approaches based on neural networks have already been shown to outperform state-of-
the-art methods [2,28,29,37]. However, further work can be done to further improve their
performance.

We propose to use a feedforward neural network and to choose the residual of the
(possibly nonlinear) differential equation as the training loss function. This gives rise to
a nonlinear least squares problem that we solve by the multilevel Levenberg-Marquardt
method.

This manuscript represents a first step in the use of multilevel techniques in the training
of artificial neural networks. Indeed, here we focus on the simplest case, that of one-layer
networks. This case is interesting on its own, motivated by the Hecht-Nielsen theorem [26],
see Section 4.1. From this theorem, we know that a one-layer network is capable of approx-
imating a wide class of functions, up to any given accuracy level. The necessary number of
nodes may, however, be really large. We experimentally show that it is not really the case for
the class of problems we consider. Numerical results show indeed that with a reasonable
number of nodes we can reach the desired solution accuracy. Moreover, the strategy we
present to cope with the large dimension of the input space may further encourage the use
of such networks, the extension of this to a more complicated multilayer being deferred to
a forthcoming paper.

Our contributions We summarize here the main novelties and contributions of the
manuscript. Our aim is to study the applicability of multilevel optimization methods
for problems that do not possess an underlying geometrical structure, and in particu-
lar we focus on the training of artificial neural networks. Two practical questions are
addressed.



H. CALANDRA ET AL.

e How to make the approach practical and face the lack of a geometrical structure of the
underlying problem? We propose the use of a heuristic inspired by classical algebraic
multigrid methods to define the hierarchy of problems and the multilevel transfer
operators.

o What is the performance of the proposed method as compared to the standard one-level
version? We consider the approximation of the solution of a partial differential equation
by a neural network, problem lately widely addressed by the machine learning com-
munity. We show through numerical experiments the gains, in terms of floating point
operations, arising from the use of multilevel solvers as compared to standard one level
solvers.

The idea of exploiting multiple scales in learning is not new, we mention for exam-
ple [22,30,52]. Therein the multilevel structure is introduced in the model architecture,
while here the training strategy is a multilevel strategy, the network’s architecture being
unchanged.

Moreover, to our knowledge, multilevel optimization techniques have only been applied
to problems in which the hierarchy of function approximations could be built by exploiting
the underlying geometrical structure of the problem at hand. Thus this work represents an
improvement in the study of multilevel optimization methods.

Structure of the manuscript The manuscript is organized as follows. In Section 2
we briefly review the standard Levenberg-Marquardt method, whereas in Section 3 we
describe its multilevel extension detailed in [10]. Then, in Section 4, we describe the arti-
ficial neural network approximation of the solution of the partial differential equation we
employ and the related least squares problem. We then discuss its solution by the multilevel
solver. In particular, we introduce the heuristic we propose to build the multilevel transfer
operators. Finally, in Section 5, we present detailed numerical experiments related to the
solution of both linear and nonlinear partial differential equations. Conclusions are drawn
in Section 6.

2. The Levenberg-Marquardt method

The Levenberg-Marquardt (LM) method is an iterative procedure for the solution of least
squares problems.
Let us consider a least squares problem of the form:

1
minf(x) = ~[F()|I%, (1)

with F: D € R" — R™,m > n, a twice continuously differentiable function. At each iter-
ation k, given the current iterate xi, the objective function f is approximated by the norm of
an affine model of F, resulting in a quadratic Taylor model for f with approximated Hessian
matrix:

1 1
M (e s) = - IEG 1 + T o) TFGa)) Ts + 5sTBks,



where J is the Jacobian matrix of F and By = J(xx) TJ (xx) approximates the Hessian matrix
fo (xx). We later denote my (xx) = my(xx, 0). Its regularized counterpart:

Ak
mm@+7w% )

for Ay > 0 a positive value called regularization parameter, is minimized (possibly approx-
imately) to find a step si that is used to define the new iterate xx41 = xx + si.

At each iteration it has to be decided whether to accept the step or not. This decision
is based on the accordance between the decrease in the function (actual reduction, ared =
f(xk) — f(xx + sx)) and in the model (predicted reduction, pred = my.(xx) — my(xk, s)):

o = ared _ S ) — f (k1)
K7 pred T mi(xe) — mp(eosp)

(3)

If the model is a sufficiently accurate approximation to the objective function, o will be
close to one. Then, the step is accepted if p is larger than a chosen threshold 7; € (0,1)
and is rejected otherwise. In the first case the step is said to be successful, otherwise the step
is unsuccessful.

After the step acceptance, the regularization parameter is updated for the next itera-
tion. The update is still based on the ratio (3). If the step is successful the parameter X is
decreased, otherwise it is increased.

The whole process is stopped when a minimizer of f is reached. Usually, the stopping
criterion is based on the norm of the gradient, i.e. given a threshold € > 0 the iterations
are stopped as soon as || V,f (xp)| < €.

The main computational work per iteration in this kind of methods is represented by the
minimization of the model (2). This is the most expensive task, and the cost depends on
the dimension of the problem. However, from the convergence theory of such methods,
it is well known that it is not necessary to minimize the model exactly to obtain global
convergence.

A well-known possibility is indeed to minimize the model until the Cauchy decrease
is achieved, i.e. until a fraction of the decrease provided by the Cauchy step (the step that
minimizes the model in the direction of the negative gradient) is obtained. Here, we will
consider a different kind of stopping criterion for the inner iterations, initially proposed in
[4,12] and also used in [10]. In this case, the inner iterations (for the minimization of the
model) are stopped as soon as the norm of the gradient of the regularized model becomes
lower than a multiple of the norm of the step:

| Vs (i, si) + Agsill < O1lsll, (4)

for a chosen constant # > 0. In order to minimize the model approximately, it is possible
to use a Krylov subspace method on the system

(B + AkD)s = —J (xx) TF(xp),

(with I the identity matrix of order #) and stop it as soon as the inequality (4) is satisfied.
The Levenberg-Marquardt procedure is sketched in Algorithm 1.
In the next section, we will briefly review the multilevel extension of the Leven-
berg-Marquardt method. This method is part of the family of methods introduced in [10],
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and corresponds to the case g = 1, but with a different norm for the regularization term.
In [10], if ¢ = 1, the regularized model is defined as

A
FO) + Vaf ) s + 7"||s||2, (5)

where, in case of a least squares problem, V.f (xx) = J(xx) TE(x;).Fora symmetric positive
definite matrix M € R"*" and x € R”, we can define the following norm:

Il = (" Mx)'/2.

If we define My = (Bx/Ax) + I, then we have (Ak/2) [Isll3;, = 55" Bks + (hx/2)Is]1%, so that
the regularized model in (2) can be written as

Ak
F@0) + Vaf 05 + sl

corresponding to the model in (5), just with a different norm for the regularization term.

The theory presented in [10] for the case g = 1 applies for the multilevel method pre-
sented in Section 3, because the || - ||, norm and the Euclidean norm are equivalent, if
we assume that ||Bg|| is bounded at each iteration k, which is a common assumption in
optimization.

Algorithm 1 LM(xo, X9, €) (Standard Levenberg-Marquardt method)
1 Given0 < < <LO0<y, <y <1<y3Amin > 0,0 > 0.
2: Input: x9 € R”, A9 > Amin, € > 0.
3: k=0
4: while |V, f(xx)|| > € do
5. e Initialization: Define the model my as in (2).
6: o Model minimization: Find a step sj that sufficiently reduces the model, i.e. such
that (4) holds.
7. e Acceptance of the trial point and regularization parameter update: Compute
_ fGa) — f G+ sk)

 mg(o) — mg(e s
8. if px > n; then

9:
max{Amin, V2Ak}>  if ok > 12,
= 5 )\, = .

Xk+1 = Xk + Sk k+1 {maX{)»mimJ/Mk}, if o < 7.
10: else
11:

Xk+1 = Xp» Akl = V3Ak

122 endif
13 k=k+1

14: end while




3. Multilevel extension of the Levenberg-Marquardt method

We consider a least squares problem of the form (1). At each iteration of the standard
method, the objective function is approximated by the regularized Taylor model (2). The
minimization of (2) represents the major cost per iteration of the methods, which crucially
depends on the dimension # of the problem. We want to reduce this cost by exploiting the
knowledge of alternative simplified expressions of the objective function. More specifically,
we assume that we know a collection of functions {f’ }i-‘;ag such that each f' is a twice-
continuously differentiable function from R” — R and fmx(x) = f(x) for all x € R”. We
will also assume that, for each i = 1,. .., lnax, f* is more costly to minimize than f/~1,

The method is recursive, so it suffices to describe the setting with two levels only. Then,
for sake of simplicity, from now on we will assume that we have two approximations to our
objective function f.

For ease of notation, we will denote by f : R — R the approximation at the highest
level, then 1y, = n and f* = f'max in the notation previously used, while for ny < ny, ¥ :
D C R™ — R is the approximation that is cheaper to optimize. All the quantities on the
fine level will be denoted by a superscript /1 and all the quantities on the coarse level will be
denoted by a superscript H, respectively. The main idea is then to use f to construct, in
the neighbourhood of the current iterate xﬁ an alternative model mkH to the Taylor model

mZ for f' = f
1
mZ(xZ,s) :fh(x,i') + foh(xZ)Ts + ESTBks. (6)

The alternative model mf should be cheaper to optimize than the quadratic model
mZ, and will be used, whenever suitable, to define the step for the Levenberg-Marquardt

algorithm. Of course, for fI to be useful at all in minimizing f”, there should be some rela-
tion between the variables of these two functions. We henceforth assume that there exist
two full-rank linear operators R : R" — R™ and P : R™ — R" such that

orP = RT, max{|R||, |P|l} < «r

for some constants og > 0 and kg > 0.
Letx! := RxZ be the starting point at coarse level. We define the lower level model m}!

as a modification of the coarse function f. ff is modified adding a linear term to enforce
the relation:

Ve (<) = RVf" (x). (7)
Relation (7) crucially ensures that the first-order behaviour of f and mkH , are coherent in a
neighbourhood of xi’ and onk' Indeed, if s € R and s" = PsH, it holds:
1 1
Vi e Tsh = Vot () TPt = a(RV,th(xZ))TsH = a_RVSmkH (ot TS

To achieve this, we define mkH as:

mil (el sty = FGEL + 5™ + RV (o) — Vif H (i) T, (8)

where V,f" and V,fH are the gradients of the respective functions. At each generic iteration
k of our method, a step SQ has to be computed to decrease the objective function f. Then,
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two choices are possible: the Taylor model (6) or the lower level model (8). Obviously, it is
not always possible to use the lower level model. For example, it may happen that V,f" (xZ)
lies in the nullspace of R and thus that RV, f’ h (xZ) is zero while V,f h (xZ) is not. In this case,
the current iterate appears to be first-order critical for mkH while it is not for f. Using the
model mf is hence potentially useful only if ||V5mkH (xgk) | = [IRVyf (x,’j) || is large enough
compared to || Vyf (xZ) ||. We therefore restrict the use of the model mkH to iterations where

IRVl > k| Vef" D) and RV (x| > en (9)

for some constant kg € (0, min{1, ||R||}) and where €y € (0, 1) is a measure of the first-
order criticality for m;’ that is judged sufficient at level H. Note that, given Vy h(x]]:) and
R, this condition is easy to check, before even attempting to compute a step at level H.

If the Taylor model is chosen, then we just compute a standard Levenberg-Marquardt
step, minimizing (possibly approximately) the corresponding regularized model. If the
lower level model is chosen, then we minimize its regularized counterpart

Ak
M (s + s (10)

(possibly approximately) and get a point xfk such that (if the minimization is successful)
the model is reduced, and a step skH = x*H)k — xgk. This step has to be prolongated on the
fine level. Then, the step is defined as sZ = Psf .

In both cases, after the step is found, we have to decide whether to accept it or not. The
step acceptance is based on the ratio:

e — e+ s
k — .

pred (1)

where pred is defined as

o pred = (1/op)(mf (Rx}) — m! (x)) = (1/0R) (ml (Rx}) — mi (Rx}, st1)) if the lower
level model has been selected,
e pred = m’,l (xZ) — mZ (xZ, SZ) if the Taylor model has been selected.

As in the standard form of the methods, the step is accepted if it provides a sufficient
decrease in the function, i.e. if given n > 0, px > 7.

We sketch the whole procedure in Algorithm 2. As we anticipated, the procedure is
recursive. For sake of clarity, allowing the possibility of having more than two levels, we
denote the quantities on each level by a superscript /. We label our procedure MLM (Mul-
tilevel Levenberg-Marquardt). It is assumed to have at disposal a sequence of functions
{f’(-) = %||Fl(-)||2}§’:f with F' : R" — R™ for n; > n;_;, with corresponding Jacobian J!
and we define Bi =] (x;{)T] l(x,l{). We provide additional comments to explain Step 6 in
Algorithm 3. The generic framework sketched in Algorithm 3 comprises different possi-
ble methods. Specifically, one of the flexible features is that, to ensure convergence, the
minimization at lower levels can be stopped after the first successful iteration, as shown
in [10]. This therefore opens the possibility to consider both fixed form recursion patterns
and free form ones. A free form pattern is obtained when Algorithm 3 is run carrying



the minimization at each level out, until the norm of the gradient becomes small enough.
The actual recursion pattern is then uniquely determined by the progress of minimiza-
tion at each level and may be difficult to forecast. By contrast, the fixed form recursion
patterns are obtained by specifying a maximum number of successful iterations at each
level, a technique directly inspired from the definitions of V- and W-cycles in multigrid
algorithms [9].

Algorithm 2 MLM(/, objl, xf), Af), €!) (Multilevel Levenberg-Marquardt method)

1:
2:

10:
11:

12:
13:

14:
15:
16:

Given0 < < < 1,0<y <y1 <1< ¥3,Amin > 0,0 > 0.

Input: [ € N (index of the current level, 1 < < Inax, Imax being the highest level),

obj : R" — R objective function to be optimized (obj™> = f), xf) e R™, Af) > Amin»
I

€ > 0.

: R; denotes the restriction operator from level / to I — 1, P; the prolongation operator

fromlevel ] — 1 to L.

k=0
: while ||Vyf'(x})|| > €’ do

eModel choice: If [ > 1 compute Rlefl(xi) and check (9). If I = 1 or (9) fails, go
to Step (7). Otherwise, choose to go to Step (7) or to Step (8).

eTaylor step computation: Define mf( (xi, s) the Taylor series of order 2 of objl with
approximated Hessian B;{ =] (xL)T ] I(xfc) and find a step sf{ that sufficiently reduces
mi(xi,sl) + ()»5(/2) lIs!||%, i.e. such that (4) holds. Go to Step (9).

eRecursive step computation: Define

_ _ 1 _ _ _ _
my ' (Rixk, 1) = EnF’ YR + 872 4+ RV () — Vif T Rixg)) TsT

Choose €'~! and call MLM(I — 1, mf(_l,Rz xf{, Ai, €¢/1) yielding an approximate

solution xi:kl of the minimization of mi_l. Define 55{ =P (xi:kl — R x}() and

mi(x]l{,sl) = (I/UR)mi_l(Rlxi, s foralls! = P,sl_l.

eAcceptance of the trial point and regularization parameter update: Compute
P fO) —f1eo+ )

Pk = m;((xfc) — mi(xi, 55()'

if ,o,lC > n; then

I max{Amin, V2ALh  ifpl > 02,

ol 1 1 _
1 =%t Ay = {

X .
max{Amin, YiAh  ifpp < 2.
else
1 I i i
Xey1 =X M1 = V3hpe
end if
k=k+1
end while
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4. Artificial neural network based approach for the approximate solution of
partial differential equations

In this section, we describe the strategy we propose for the approximate solution of a PDE.
Let us consider a stationary PDE written as:

D(z,u(z)) = g1(z), z€ €, (12a)
BC(z,u(z)) = g2(2), ze€ 0%, (12b)

where © ¢ RN, N > 1, is a connected subset, 92 is the boundary of 2, D is a differential
operator, BC is an operator defining the boundary conditions, and g1,g, : RN — R are
given functions. We remark that we do not need to make strong assumptions on D, we do
not require it to be elliptic nor linear.

In the following, we describe the network’s architecture that we have chosen to employ,
how the training problem is formulated and how the multilevel Levenberg-Marquardt
procedure is adapted to the solution of the specific problem.

4.1. Artificial neural network approximation of the solution of the partial
differential equation

Our approach is based on the approximation of the solution u(z) of the partial differential
equation by an artificial neural network.

We assume the network to have just one hidden layer, as depicted in Figure 1. We have
selected this network because the weights and biases are related in a simple way. It is there-
fore possible to devise a rather simple strategy to define the multilevel transfer operators.

Input Hidden Output
layer layer

bo
(\}\\
v b3 d

v

S
w
ﬁ

z— (1

— U(p, z;7)

®

c}w AS

N

bs

Figure 1. Artificial neural network architecture with weights and biases (r = 5, N = 1).



As already discussed in the Introduction, such networks have interest on their own, moti-
vated by the Hecht-Nielsen theorem [26] 1 However the case of more hidden layers is at the
same time an interesting and a challenging problem, due to the increased nonlinearity. For
this case, it is not trivial to extend the developed strategy. We leave this as a perspective for
future research. The aim of this manuscript is rather to make a first step toward a deeper
understanding of the potential of multilevel techniques in speeding up the convergence
of the corresponding one level methods, when the geometry of the underlying problem
cannot be exploited.

The neural network takes the value of z as input and gives an approximation #(p, z) to
u(z) as output, for p € R", n = (N + 2)r 4+ 1 with r the number of nodes in the hidden
layer. For the sake of simplicity, we describe our approach in the simplest case N = 1,
i.e. z € R. The generalization to the case N> 1 is straightforward and is reported in
Appendix 1.

The network is composed of three layers in total: one input layer composed of just one
neuron as z € R, that receives the value of z as input; one hidden layer with r nodes, where
r is a constant to be fixed. A bias b;, i = 1,.. ., 1, is associated with each of these nodes.
All of them are connected to the input node by edges, whose weights are denoted by w;,
i=1,...,r, as depicted in Figure 1. The w; are called input weights. The last layer is the
output layer, composed of just one node, as u(z) € R, associated with a bias d € R. The
output node is connected to all the nodes in the hidden layer, the corresponding weights
are called output weights and they are denoted by v;, i =1,...,r.

The network is also characterized by an activation function o, which is a given nonlinear
function. Different choices are possible for o, e.g. the sigmoid, hyperbolic tangent, logistic
and softplus functions, respectively:

& —1 2z 1 &
_ _ _ _ v4
o(z) = 1 a(z)_m, o(z) = 1 o(z) = log(e” + 1).
We will denote by:
w= [wl,...,wr]T, Yy = [vl,...,vr]T, b= [bl,...,br]T, p= [v,w,b,d]T,

the vectors of input weights, output weights and biases of the hidden nodes and the stacked
vector of weights and biases, respectively. The output of the neural network is a function of
the weights and biases, but it also depends on the number of nodes r, which is a parameter
fixed before the training. We then denote the output as #(p, z; ), which can be expressed
as

u(p,z;r) = Z vio(wiz+ b;)) +d, forallz e Q. (13)
i=1

The training phase consists then in the minimization of a chosen loss function, which
depends on the network’s output and is a function of p, while z is constrained to the training

set 7
n}in L(p,z) = F(up,zr), zeT, (14)

for F : R¥*1 » R.
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We choose the nonlinear residual of the equation as a loss function, plus a penalty term
with parameter A, > 0, to impose the boundary conditions as in [16,33,55], so that for

zeT:
1 R N
L(p.2) = o (IDG P z1) — 2@ + 4| BCE #p. 7)) — £@I°),  (15)
with 7 a training set such that |7 | = t, in this case a set of points z; in 2,i = 1,...,t.

Remark 1: The proposed strategy does not require the discretization of the operator D,
D(z, u(p, z; r)) can be analytically computed using the known expression (13) of &i(p, z; r).

Remark 2: The proposed strategy, coupled with a discretization scheme in time, can be
generalized to nonstationary equations.

4.2. Solution of the training problem

Optimizing (15) may be really expensive for certain problems. If the solution u(z) is highly
nonlinear, a really large number of nodes r may be necessary to approximate it with a suf-
ficient accuracy. Problem (15) becomes then a large-scale problem. We solve it thanks to
the multilevel Levenberg-Marquardt strategy described in Section 3.

We remark that, from the analysis in [10], we do not need to make strong assumptions
on the operator D nor on the functions g;,¢> to have a convergent training method. It is
just sufficient that the resulting objective function (15) has Lipschitz continuous gradient,
as well as its coarse approximations. We do not need to require the operator to be elliptic
nor linear.

To be able to employ the multilevel Levenberg-Marquardt method in the solution of
problem of the form (14), we need to define a strategy to build the hierarchy of coarse
problems and the multilevel transfer operators.

Usually, when the optimization problem to be solved directly arises from the discretiza-
tion of an infinite-dimensional problem, the approximations to the objective function are
simply chosen to be the functions arising from the discretization on coarser levels, and P
and R are chosen to be the interpolation and the restriction operators, see [9]. However, we
remind that in our case the variables subject to optimization are the weights and biases of
the network, and not the components of the solution. Consequently, there is no geometric
structure that can be exploited to construct a hierarchy, and the grids will not be real geo-
metric grids as in classical geometric multigrid, but rather just sets of variables of different
sizes. We have then to decide how to construct a hierarchy of sets of variables.

Inspired by the fact that the network possesses an intrinsic algebraic structure, as the one
that is typically exploited in algebraic multigrid (AMG) [57], we propose here a coarsening
strategy based on AMG, to both explore and exploit the structure of the network, to build
the hierarchy of problems and the multilevel operators. First, we give a brief overview of
classical AMG techniques, and then we present the coarsening strategy we propose.

4.2.1. Algebraic multigrid Ruge and Stiiben coarsening strategy

AMG techniques are multilevel strategies used for the solution of linear systems of the
form Ax = b. The goal in AMG is to generalize the multilevel method used in geomet-
ric multigrid to target problems where the correct coarse problem is not apparent, since



a geometric structure is not present. While, in geometric multigrid, a multilevel hierar-
chy is directly determined from structured coarsening of the problem, in standard AMG
the coarse problems, together with the transfer operators, are automatically constructed
exploiting exclusively the information contained in the entries of the matrix. Specifically,
the variables on the fine level are split into two sets, C and F, of coarse and fine variables,
respectively. The variables in C are selected to be the variables of the coarse problem, those
in F are all the others. The coarse variables are chosen to be representative of the fine ones,
i.e. they are chosen to be the variables to which many of the remaining ones are connected.
The connection among variables is only based on the entries of the matrix. There are many
strategies to build this C/F splitting. We decided to use the Ruge and Stiiben strategy, one
of the most classical AMG coaesening strategies [8,13,57]. This is a first attempt and we
do not claim that this is the best strategy to use. Other options are possible, that could be
more effective.

The method relies on theoretical results if it is applied to a specific class of matrices [57],
but it is commonly also used for different problems, for which there are no theoretical guar-
antees. If applied to systems arising from the discretization of simple elliptic differential
operators, as the Laplace operator, this strategy is known to recover the structure exploited
by geometric variants.

The splitting is built based on the notion of coupling. Two variables indexed by i and j
are said to be coupled if the corresponding entry of the matrix is different from zero, i.e.
a;j # 0. The coupling is said to be negative if a;; < 0, positive otherwise. The splitting is
usually made considering first negative couplings, as typically in the applications AMG is
used for, the negative couplings are more than the positive ones. Then, the notion of strong
negative coupling is introduced, i.e. we say that a variable i is strongly negatively coupled to
another variable j, if

— ajj > €AMG max|a;| (16)
ailk<0

forafixed0 < e4pc < 1. This measure is used to construct the splitting in practice. Each F
variable is required to have a minimum number of its strong couplings be represented in C.
The C/F splitting is usually made choosing some first variable i to become a coarse variable.
Then, all variables strongly coupled to it become F variables. The process is repeated until
all variables have been split. In order to avoid randomly distributed C/F patches, more
sophisticated procedures can be designed, for example the process can be performed in a
certain order, based on a measure of importance of the variables, for more details see [57,
§A.7.1]. Then, also positive couplings are taken into account. After the coarsening process
has been applied, a pass checks if there are strong positive F/F couplings. If

aij > €AMG I}cl;?('ai’kl
1

for some j # i, the variable j is added to the set of variables strongly connected to i and the
variable corresponding to the largest positive coupling becomes a C variable [57].

Based on this splitting, the transfer operators are built to interpolate the components of
the error corresponding to the variables in F. The components of the error corresponding
to the variables in C are transferred to the higher level by the identity operator, while the
others are transformed by an interpolation formula, so that we define the i-th variable at
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fine level as:

H . .
" x! ifieC,
xf = PxMy = {7 it
ZkeP,— 8i,k k if 1€ F,
with
, _ - +
5 —aiaii/ai; ifkeP;, ZjeN; a;; 8 ZjeNi i
ik = . L == =S o
—PBiaix/ai;i if ke P, > kep, Bk > kep, Gk

where a:rj = max{a, 0}, a;; = min{a;, 0}, Nj is the set of variables connected to i (i.e. all

j such that a;; # 0), P; the set of coarse variables strongly connected to i, which is parti-
tioned in P;” (negative couplings) and P} (positive couplings). The interpolation operator,
assuming to have regrouped and ordered the variables to have all those corresponding to
indexes in C at the beginning, is then defined as P = [ ] | where I is the identity matrix of
size |C| and A is the matrix such that A;; = §;j, fori=1,...,|Flandj = 1,...,|C|.

4.2.2. Algebraic coarsening strategy when solving optimization problems related to
the training of artificial neural networks

In this section, we propose a possible strategy to define both R and P, required in the
solution of problem (14). As in classical AMG, we rely on a heuristic strategy. In our pro-
cedure, we have the nonlinear minimization problem (14) to solve. At each iteration at
fine level, the minimization process requires the solution of a linear system with matrix
By = J(xx) TT(xx), where J is the Jacobian matrix of F at x;. Then, a possibility to build the
C/F splitting is to apply the algebraic multigrid technique we just described to By. How-
ever, we cannot apply the procedure directly to this matrix. Indeed, while in the coarsening
process of standard AMG all the variables are treated in the same way, in our application
the variables are coupled [13]. We are actually optimizing with respect to triples {v;, w;, b;}
of input weights, output weights and biases. The bias d being a scalar is treated separately.
If no distinction is made, a weight/bias could be removed, without the other components
of the triple being removed, leading to a network that would not be well defined. Conse-
quently, instead of considering the strength of connections among the variables, we will
consider the strength of connections among the triples. We propose therefore to apply the
AMG splitting to the matrix A € R™ resulting from a weighted sum of the submatri-
ces of By containing the derivatives of F taken with respect to the same kind of variables,
so that the contributions of the three different variables are not melted. More precisely,
By = J" (k)] (xx) reads:

[FI'F, F'FE, FIF, FIF, () R
B F'r, FTE, FEIF, FIF, E 91 96
k= | pT T T T > = >

|EYE, FIF, FIF, FIF, g 0

r 9F1 (x)

ad

Fd= s

0 (xk)

L""0d

for each variable & € R" and for d € R.



We then apply the Ruge and Stiiben splitting strategy [57] to the following matrix:

F'F,  FIF,  FIF,
[Fylloc ~ IFwlloo  [IFplloo

In this way, we first obtain a C/F slitting of the triples and then deduce the corresponding
interpolation operator P € R™ ¢ with r. < r and the restriction operator R € R™*" to use
in the multilevel Levenberg-Marquardt method. These operators are used to project the
vector SZ € R3" of fine weights and biases on the coarse level and to prolongate the coarse
level step st € R to the fine level (in both cases omitting the contribution of the bias d
that is a scalar variable and is therefore left unchanged when changing levels). In both cases,
the operators P and R are applied to each of the three components of SZ, sf , correspond-
ing to the three different kinds of variables. In case of more than two levels, the operators
R; and Py, on each level, can be built with the same technique, applied to the matrix that
approximates the Hessian matrix of the coarse function approximating f on level L.

Remark 3: We remark that the strategy we propose is not specifically tailored for (15), it
can be used for all problems of the form (14).

5. Numerical experiments

In this section, we report on the practical performance of our multilevel approach.

5.1. Setting

The whole procedure has been implemented in Julia [3]. We set the following values for
the parameters in Algorithms 1 and 2, respectively: 1 = 0.1, n2 = 0.75, y; = 0.85, y» =
0.5,73 = 1.5,0 = 1072, 19 = 0.05and Amin = 107°. We compare the standard (one level)
Levenberg-Marquardt method with a two-level Levenberg-Marquardt variant. We have
decided to rely on just two levels, as in the experiments the cardinality of the coarse set
of variables is much lower than that of the fine set (just a few dozens of parameters rather
than more than 500 or 1000, depending on the problem).

The construction of the coarse set of variables is performed through the Julia’s algebraic
multigrid package (AMG), that implements the classical Ruge and Stilben method?. The
operators R and P are built just once at the beginning of the optimization procedure, using
matrix By. In (9), we choose kg = 0.1 and €p is equal to the tolerance chosen at the fine
level. In (16), we set €4pg = 0.9, but numerical experiments highlighted that the cardi-
nality of the coarse set does not strongly depend on this choice. For the procedure to be
effective, we noticed that it is also beneficial to scale the operators R and P, yielded by the
AMG package, by their infinity norm. We choose to perform a fixed form of recursion
pattern, inspired by the V-cycle of multigrid methods [9]. Hence we alternate a fine and a
coarse step, and we impose a maximum number of 10 iterations at the coarse level.

The linear systems arising from the minimization of the models on the fine level are
solved by a truncated CGLS method [6, § 7.4], while those on the coarse level, due to the
really low number of parameters, are solved with a direct method. However, it is worth
mentioning that such systems have a peculiar structure. This is similar to that of normal
equations, but is fundamentally different due to the presence of the linear correction term
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(RV, h(xZ) - foH (xOHk))TsH on the right-hand side, which prevents the use of methods
based on normal equations. We refer the reader to [11] for a discussion on how to exploit
this structure in case of higher dimensional coarse level problems.

5.2. Definition of the test problems

We consider both partial differential equations in one- and two-dimensions. In (12a), we
obtain g; as the result of the choice of the true solution ur, and we choose ur = ur(z, v),
depending on a parameter v, that controls the oscillatory behaviour of the solution. As v
increases, the true solution becomes more oscillatory and thus harder to approximate. A
network with a larger number of nodes (r) is thus necessary, and consequently the size of
the fine problem increases. We set Q = (0, 1)N for the problems corresponding to the first
six lines in Table 1 and for the rest of the problems we choose domains with more intri-
cate geometries, which are specified in Table 1. In all the experiments we impose Dirichlet
boundary conditions. We choose 7" as a Cartesian uniform grid with h = %, according to
the Nyquist-Shannon sampling criterion [54], so that the cardinality of the training set is
t = 2v + 1. Finally, in (15), we have set the penalty parameter to A, = 0.1t.

In many practical applications, as in seismology for example, a really accurate solu-
tion is not required. We stress that this setting is typical when solving partial differential
equations by artificial neural networks: a high accuracy is never sought, but rather an
approximate solution is looked for, see, e.g. [40,45,46]. Therefore, we look for an approxi-
mate solution and stop the procedure as soon as || VE(pZ, 2)|| < 10~ for one-dimensional

Table 1. Problems considered in Tables 2-9.

Equation ur(z,v) v Q
Table 2 —Au = g; (1D) cos(vz) 20,25 0, HN
Table 3 —Au = g; (2D) cos(v(z1 + 23)) 56 0, HN
Table 4 —Au— vzuzz 0(1D) sin(vz) + cos(vz) 5 ©o,HV
Table 5 —Au— (%) u=gi (D) - 1,2 ©,HV
Table 6 (left) Au+sinu = g; (1D) 0.1 cos(vz) 20 o, DV
Table 6 (right) Au+ €' = g; (2D) log ( 712770 1 ©, 1N
Table 7 —Au+v2u = g; (2D) sin(v(x + y)) 3,7 Dm
Table 8 —Au+v2u = g; (2D) (X% +y?) +sin((x* + y?)) 3,5 Ds
Table 9 —Au+ vu? = g1 (2D) 0 4+ y2) +sin(wx2 + y2)) 0.5 D,

Notes: We report: the equation considered, the true solution ur, the frequency considered v and the domain chosen 2. D,
is the domain depicted in Figure 2 and D; is the domain depicted in Figure 3. For the two-dimensional Helmholtz equation
(Table 5) the reference solution is computed by finite differences.

Table 2. One-dimensional Poisson problem.

v =20 r=2° v=25 r=210
Method iter RMSE save iter RMSE save
LM 869 10~* 1439 103
MLM 507 10~* 1.1—2.6—43 1325 103 1.2—1.7-28

Notes: Solution of the minimization problem (15) with the one level Levenberg-Marquardt method (LM) and the two-level
Levenberg-Marquardt method (MLM), respectively. i ter denotes the averaged number of iterations over ten simula-
tions, RMSE the root-mean square error with respect to the true solution ur and save the ratio between the total number
of floating point operations required for the matrix-vector products in LM and MLM, r is the number of nodes in the hidden
layer.



Table 3. Two-dimensional Poisson problem.

v=>5 r=210 v==6 r=2"
Method iter RMSE save iter RMSE save
LM 633 1073 1213 1073
MLM 643 103 1.1—-1.5-2.1 1016 103 1.2—1.9-24

Notes: Solution of the minimization problem (15) with the one level Levenberg-Marquardt method (LM) and the two-level
Levenberg-Marquardt method (MLM), respectively. i ter denotes the averaged number of iterations over ten simula-
tions, RMSE the root-mean square error with respect to the true solution ur and save the ratio between the total number
of floating point operations required for the matrix-vector products in LM and MLM, r is the number of nodes in the hidden
layer.

Table 4. One-dimensional Helmholtz problem.

V= r = 210
Method iter RMSE save
LM 1159 10-3
MLM 1250 10-3 1.2—1.9-3.1

Notes: Solution of the minimization problem (15) with the one level Levenberg—Marquardt method (LM) and two-level Lev-
enberg-Marquardt method (MLM), respectively. i ter denotes the averaged number of iterations over ten simulations,
RMSE the root-mean square error with respect to the true solution ur and save the ratio between total number of float-
ing point operations required for the matrix-vector products in LM and MLM, r is the number of nodes in the hidden
layer.

Table 5. Two-dimensional Helmholtz problem.

v=1 r= 29 v =2 r= 29
Method iter RMSE save iter RMSE save
LM 200 1073 200 1072
MLM 200 103 1.7-1.8-19 200 1072 1.7—1.8—19
v=2 r=2° v=2 r=2°
Method iter RMSE save iter RMSE save
LM 200 1072 200 51073
MLM 200 1072 17—-18—-18 200 51073 1.7-1.8-19

Notes: Solution of the minimization problem (15) with the one level Levenberg-Marquardt method (LM) and two-level
Levenberg—Marquardt method (MLM), respectively. i ter denotes the averaged number of iterations over ten simu-
lations, RMSE the root-mean square error with respect to the solution computed by finite differences and save the
ratio between total number of floating point operations required for the matrix-vector products in LM and MLM. With
respect to the notation in Table 1, in all the tests g1([z1,22]) = (0.25 < z1 < 0.75)(0.25 < z; < 0.75), and ¢(2) has
been chosen as: ¢y ([z1, 22]) = 40 (up, left); ¢1 ([z1,22]) = 20 (0 < 27 < 0.5) +40 (0.5 <z < 1) (upright); ¢ ([z1,22]) =
20(0 <23 <0.25) +40(0.25 <z <0.5) +60(0.5 < z3 < 0.75) + 80(0.75 < z4 < 1) (bottom, left); ¢2([z1,22]) =
0.1sin(z1 + zz) (bottom, right).

problems, ||V£(p2, 2)|| < 1073 for two-dimensional problems, respectively. Indeed in the
one-dimensional case, the convergence is quite fast at the beginning, allowing to quickly
reach an approximate solution, while it requires far more iterations to obtain a more accu-
rate solution for two-dimensional problems. We remark that the selected test problems
are quite difficult, due to the high nonlinearity of the solutions. We outline that additional
tests performed on problems with smaller value of v (not reported here) allowed to reach
a tighter accuracy level with a smaller amount of iterations.

All selected problems are listed in Table 1, where we report in which table the corre-
sponding results are reported, which equation is considered, the imposed true solution
and its frequency v, respectively. We consider both linear and nonlinear partial differential
equations (such as Liouville equation). For the two-dimensional Helmholtz equation, we
have chosen different choices for c(z): a constant function, a piecewise constant function
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Table 6. Nonlinear partial differential equations (see Table 1).

v =20 f=29 v=1 I'=29
Method iter RMSE save iter RMSE save
LM 950 1073 270 10~3
MLM 1444 10> 0.8—29-53 320 10-3 1.2—1.7-18

Notes: Solution of the minimization problem (15) with the one level Levenberg—Marquardt method (LM) and two-level Lev-
enberg-Marquardt method (MLM), respectively. i ter denotes the averaged number of iterations over ten simulations,
RMSE the root-mean square error with respect to the true solution ur and save the ratio between total number of float-
ing point operations required for the matrix-vector products in LM and MLM, r is the number of nodes in the hidden
layer.

Table 7. Two-dimensional Screened Poisson problem on domain Dpy,.

v=3 r=2° v=7 r =210
Solver iter RMSE save iter RMSE save
LM 395 3e—4 1500 24e-3
MLM 110 2.e-4 1.3-5.6—10.0 1039 1.6e-3 1.6—2.1-25

Notes: Solution of the minimization problem (15) with the one level Levenberg-Marquardt method (LM) and the two-level
Levenberg—-Marquardt method (MLM), respectively. i ter denotes the averaged number of iterations over ten simula-
tions, RMSE the root-mean square error with respect to the true solution ur and save the ratio between the total number
of floating point operations required for the matrix-vector products in LM and MLM, r is the number of nodes in the hidden
layer.

Table 8. Two-dimensional Screened Poisson problem on domain D;.

v=3 r=2° v=5 r =210
Solver iter RMSE save iter RMSE save
LM 1482 5.0e—3 2143 1.2e—2
MLM 952 3.7e-3 1.4—-24-35 2076 1.0e-2 14—-1.6—1.8

Notes: Solution of the minimization problem (15) with the one level Levenberg-Marquardt method (LM) and the two-level
Levenberg—Marquardt method (MLM), respectively. i ter denotes the averaged number of iterations over ten simula-
tions, RMSE the root-mean square error with respect to the true solution ur and save the ratio between the total number
of floating point operations required for the matrix-vector products in LM and MLM, r is the number of nodes in the hidden
layer.

Table 9. Nonlinear problem on domain D; (see Table 1).

v =05 r=2° V=1 r=2°
Solver iter RMSE save iter RMSE save
LM 1408 3.2e-3 1450 1.5e—2
MLM 1301 3.6e—3 0.9-1.7-24 1295 1.9e—2 1.1-1.7-2.1

Notes: Solution of the minimization problem (15) with the one level Levenberg-Marquardt method (LM) and the two-level
Levenberg-Marquardt method (MLM), respectively. i ter denotes the averaged number of iterations over ten simula-
tions, RMSE the root-mean square error with respect to the true solution ur and save the ratio between the total number
of floating point operations required for the matrix-vector products in LM and MLM, r is the number of nodes in the hid-
den layer. Over the 10 runs, LM is successful in only 4 for v = 0.5 and 3 for v = 1, while RLM is successful in 8 and 9 runs
respectively. The results refer just to the successful runs.

and a sinusoidal function, see Table 5. For this test case, we do not choose the true solution,
but rather impose the right-hand side. The reference solution (needed for the computation
of the root-mean squared error) is then computed by finite differences.

5.3. Analysis of the numerical results

In what follows, the numerical results refer to ten simulations for different random initial
guesses. For each simulation, however, the starting guess is the same for the two solvers.



The first line refers to the standard (one level) Levenberg—Marquardt method (LM), while
the second one to the two-level Levenberg—Marquardt method (MLM), respectively. We
report the average number of iterations (iter) over the ten simulations, the root-mean
squared error (RMSE) of the computed solution evaluated on a grid of 100 testing points,
inside the training interval and other than the training points, with respect to the true
solution evaluated at the same points and (save), the ratio between the total number of
floating point operations required for the matrix-vector products in the two methods (min-
mean-max values are given), respectively.

As expected, we can notice that the problems become more difficult to solve as v
increases, and that the number of nodes r in the neural network has to be increased to
obtain an approximate solution as accurate as for lower values of v.

Most often, the number of iterations required by the two-level procedure is lower than
that required by the one-level procedure, which is a behaviour typically observed when
using classical multilevel methods. This effect is particularly evident in the problem corre-
sponding to Table 7, where the ratios are found to be really large, as the one-level procedure
seldom manages to satisfy the stopping criterion within the maximum number of itera-
tions. Contrarily to the standard Levenberg-Marquardt method, the new method is able to
reach lower values of the stopping tolerance than those chosen in the test, thus being able
to find more accurate solution approximations.

Moreover, due also to the lower dimension of the linear systems at the coarse level, the
number of floating point operations required for the matrix-vector products is always con-
siderably lower, even when MLM performs more iterations. The computational gain in
terms of floating point operations is on average a factor around 2 on all the experiments,
and the maximum values of the ratio is much larger for certain problems (see Tables 6 and
7). More importantly, the quality of the approximate solution is not affected. This is a rather
satisfactory result.

Finally, the method manages to solve problems defined on domains with non-standard
geometries, such as the ones in Figures 2 and 3, both for linear (cf. Tables 7 and 8) and
nonlinear (cf. Table 9) equations. For such domains ANN-based approaches are easier to
use than standard mesh-based methods, as the domain just needs to be sampled, which
is much easier than building a mesh. The advantage of the multilevel procedure over the
standard method is particularly evident for the problem in Table 9, for which the new
method shows to be more robust. The problem is particularly difficult and the standard
method fails to reach the stopping criterion and to correctly approximate the true solution
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Figure 2. Contour plot corresponding to the problemin Table 7 for v = 7, of true solution (left), solution
approximation computed by LM (center) and MLM (right).
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Figure 3. Contour plot corresponding to the problemin Table 8 for v = 5, of true solution (top), solution
approximation computed by LM (bottom left) and MLM (bottom right).

in 6 runs for v = 0.5 and in 7 runs for v = 1, while the new method only fails in 2 and 1
run(s), respectively. The results in Table 9 are then referred just to the successful runs.

We remark also that the two-dimensional problems are more difficult than one-
dimensional ones, especially those corresponding to the Helmholtz equation, which is
a particularly difficult problem with Dirichlet boundary conditions, for which standard
multigrid methods are known not to be effective, see for example [14,18,19]. In this case, a
rough approximation is obtained in really few iterations, a maximum number of 200 iter-
ations is imposed, as iterating further is not useful to improve the approximation. This
is already a satisfactory result. To improve the solution accuracy, a network with a more
complex topology shall be more efficient, as the problem itself possesses a more complex
structure.

6. Conclusions

We have investigated the potential of the multilevel Levenberg-Marquardt method in the
solution of training problems. This is chosen as representative of a class of problems in
which the variables subject to optimization are not related by any explicit geometrical
structure. To the best of our knowledge, this is also the first attempt at using multilevel
optimization for the training of artificial neural networks.

We have chosen the approximation of the solution of partial differential equations by a
neural network as an applicative context to test our procedure. We remark, however, that



the approach introduced here is not specific to the solution of partial differential equations.
It can generally be used to solve least squares problems of the form (14), in which the
solution can be expressed by an artificial neural network.

We have proposed a possible heuristic strategy based on standard algebraic multi-
grid methods, to both explore and exploit the structure of the neural network to build
a hierarchy of problems and the multilevel transfer operators.

The performance of the multilevel optimization method has been tested and com-
pared to that of the standard one-level version. The numerical results are quite satisfactory,
showing the potential of the multilevel strategy. The new method is shown to provide con-
siderable savings in terms of number of floating point operations, and on specific problems
to be more robust and to be capable of driving the stopping tolerance to lower values, thus
providing better solution approximations.

These preliminary numerical results and the perspective for improvements encourage
us to investigate further on multilevel training methods. This strategy has been designed
for networks with one hidden layer. Considering a multilayer network is a natural and chal-
lenging extension due to the increased nonlinearity. We currently consider the extension
of the procedure to multilayer networks as a significant perspective, as we believe that this
could lead to a competitive learning method, especially if coupled with a strategy to make
the approach purely matrix-free.

Notes

1. For any function in L»[(0,1)"] (i.e. square integrable on the n-dimensional unit cube) it exists
a neural network with just one hidden layer that can approximate it, within any given accuracy.
2. Available at: https://github.com/JuliaLinearAlgebra/AlgebraicMultigrid.jl
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Appendix

In Section 4.1, we have considered the simplest case of network’s architecture, corresponding to
N = 1. However, our method is also applicable when N > 1, as shown in Section 5. Here, we describe
this extension (still considering the case of just one hidden layer). The network is still composed of
three layers in total, but the input layer is composed of N nodes, one for each component of the
input. The input nodes are connected to all the nodes in the hidden layer. Instead of having just r
input weights, we have N groups of r input weights, {w;1,...,w;,},i = 1,..., N, where the weights
in group i are located on the edges departing from the i-th input node. The right part of the network
remains the same, with one output node and r output weights. The input space of the objective
function F in (14) will be RN*+27+1 rather than R¥+1, As an example, we depict the case N = 2

in Figure Al.
The training procedure is exactly the same, with the only difference that p = [v, wy, ..., wn, b, d]
€ RWNADr+1 with w; = (Wils...» w,-,r]T, i=1,...,N. In the construction of the matrix required

for the application of the AMG coarsening strategy, the contribution of the input weights is now
represented by N submatrices, corresponding to the derivatives with respect to couples (w;, w;),
i=1,...,N:
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Figure A1. Artificial neural network architecture with weights and biases (Case of r = 3and N = 2).
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