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Boundary Control Design for Traffic
with Nonlinear Dynamics

Liudmila Tumash, Carlos Canudas-de-Wit, Fellow, IEEE and Maria Laura Delle Monache, Member, IEEE

Abstract— We address a problem of boundary control
for a nonlinear scalar conservation law. Namely, this paper
is devoted to the boundary control of an LWR PDE with
triangular flux function evolving along a single road. The
target state is a time- and space-dependent trajectory. The
boundary control law is constructed using the analytical so-
lution of the Hamilton-Jacobi equation, which is an integral
form of the LWR PDE. We design a feedback controller and
illustrate its performance on a numerical example using the
Godunov scheme.

Index Terms— boundary control problem, Hamilton-
Jacobi formulation, LWR model, partial differential equa-
tions, traffic control.

I. INTRODUCTION

A. Motivation and Literature Review

CONSERVATION laws are a very important topic to
study nowadays, since a significant part of physical

systems is based on the principle of the conservation of some
quantity, for example, mass or energy. Urban and highway
traffic behaviour is modeled via conservation laws with the
principle of preserving the number of cars. The first work
describing the behaviour of traffic on a macroscopic scale
was proposed by Lighthill, Whitham [2], and, independently,
Richards [3] in the fifties (LWR model). The LWR model
is a first-order model based on the conservation of mass
equation. Despite the appearance of more sophisticated first
order [14], [16], [17] or even higher order models capable of
covering more realistic traffic behaviour [13], [18], the LWR
model remains the most used one to study traffic behaviour
due to its simplicity. Mathematically, the LWR model is a
hyperbolic scalar conservation law with a nonlinear concave
flux function, which represents an empirical relation between
flow and density, see [25] for a detailed review.

Traffic congestion represents a considerable issue worldwide
that negatively impacts traffic mobility, especially in large
urban areas, which makes traffic management an important
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subject. Some examples of control with application to traffic
can be found in [20], [30]. Traffic flow control does not require
changes in the topology of urban traffic network and can be
applied directly provided that there is some knowledge about
current traffic situation. Being modeled by conservation laws,
traffic systems are usually controlled by variable speed limit
[40], or from the boundary, i.e. either from entry or exit of
the road, e.g. ramp metering [37]. Classical techniques widely
used for control of conservation laws (without model reduction
from PDE to ODE) are backstepping [33], Lyapunov-based
[26] and optimal control methods [15], [20], [22] that are
used to achieve minimization of total travel time and of fuel
consumption or maximization of the vehicle outflow.

It is quite challenging to control hyperbolic conservation
laws, since discontinuities (shocks) emerge in finite time even
for smooth initial data [12]. The classical control methods
mentioned above are not always well suited to handle shocks,
since they require the knowledge on the internal shock dy-
namics. However, shock dynamics inside the domain were
tracked, e.g., in [39], where the weak formulation and the
Rankine-Hugoniot relation were used to stabilize the solution
of the Burgers equation to a constant equilibrium. In a recent
work [42] the problem of boundary control of solutions with
jump discontinuities has been considered. In both [39], [42],
the desired state was stationary and the Lyapunov methods
were applied. In [44] the exact controllability of solutions to
conservation laws to space- and time-dependent trajectories
has been studied. Nevertheless, the problem of stabilizing a
state with shocks to space- and time-dependent trajectories that
may also contain shocks has never been considered before.

In situations where control design becomes too tedious
due to shocks, one can alternatively use the Hamilton-Jacobi
formulation that is an integral form of the LWR PDE. The
solution of a H-J PDE does not contain any shocks, only
discontinuities in its derivatives. The state represents a cumu-
lated vehicle count, which is a Lipschitz continuous function
that can be evaluated directly from the boundary or initial
conditions [10]. The existence of such a function guarantees
the conservation of the number of vehicles even if shocks
arise. The solution of a H-J PDE can be obtained by solving
a simple minimization problem, therefore it does not require
a model discretization providing exact results. Thus, several
computational algorithms based on H-J formulation of LWR
model have been developed. A variational formulation of
kinematic waves was first proposed in [19], [21], who showed
that every well-posed traffic problem with a concave flow-
density relation can be solved as a set of shortest paths.
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The solution of Hamilton-Jacobi PDE can be equivalently
obtained using the viability framework [8], [9]. This frame-
work is based on using Lax-Hopf formula that exploits the
structure of a dynamic programming problem and the solution
is obtained as the minimum of all valid paths [28]. In [29]
they develop a computational method of H-J PDE for any
piecewise affine initial condition. The Lax-Hopf algorithm for
computation of a solution on a single link for any concave
fundamental diagram has been addressed in [32]. Its improved
version with a lower computational time has been proposed in
[41]. Optimal control methods for a traffic network based on
viability framework are proposed in [34], [35], where they
demonstrate how the new method has reduced the compu-
tational complexity. The framework has also been used to
develop a convex optimization approach to reduce the fuel
consumption in [38]. Also a recent work [43] considered a
H-J PDE with viscous term that allowed them to perform a
feedback linearisation, which enabled tracking a desired time-
dependent state on some fixed space point.

In this paper, we derive an explicit solution of a Hamilton-
Jacobi PDE with Hamiltonian corresponding to the triangular
flux function. Its solution corresponds to the cumulated vehicle
count function in time on a single traffic road. The main
contributions of this paper are the following:

• Tracking space- and time-dependent trajectory: we extend
the results presented in [39], [42] and present a controller
able to drive a state with shocks to any time- and
space- dependent vehicle density that also may contain
shocks. This is the first boundary controller in the traffic
community able to solve such general tasks. Moreover,
comparing to [43], our analysis is done for the original
LWR system without linearisation and viscosity term.

• The solution of H-J PDE is used to provide conditions
on when and which control can be applied: we have
considered a general case, when it is not guaranteed that
supply at the entrance and demand at the exit are large
enough, i.e., it might not always be possible to impose
any control. We prove in this work that even in that case
the goal will be achieved. For this, we have formulated
weak boundary conditions in terms of control restriction
functions, see more details in Section III.

This paper is organized as follows. First, we state the
problem of finding a boundary control law for a traffic system.
In Section II we introduce a relation between LWR and H-J
formulations and explicitly calculate the solution of H-J PDE
asymptotic in time for the triangular flux function. Then, the
problem is stated in H-J formulation. Section III contains the
main result (the control laws) and the proof. In Section IV we
consider a numerical example verifying our controller. Finally,
the concluding remarks are given in Section V.

B. Problem Statement

The LWR model is based on the conservation of the number
of vehicles and can be expressed as

∂ρ(x, t)

∂t
+
∂Φ(ρ(x, t))

∂x
= 0, ∀(x, t) ∈ [0, L]× R+ (1)

where ρ(x, t) : [0, L]×R+ → R+ indicates the traffic density,
and the flux function Φ(ρ(x, t)) : [0, ρmax] → R+ is a Lip-
schitz continuous and concave function that admits a unique
maximum φmax (capacity) attained at ρc (critical density),
while Φ(0) = Φ(ρmax) = 0 (ρmax is the ”jam density”). The
LWR model is based on an empirically established law [1] that
relates density ρ(x, t) and flow φ(x, t) as Φ(ρ(x, t)) = φ(x, t),
known as a fundamental diagram (FD). We distinguish two
density regimes: the traffic has a positive kinematic wave speed
if ρ ∈ [0, ρc] (free-flow regime), and the wave speed is negative
if ρ ∈ (ρc, ρmax] (congested regime). Here we use a triangular
(bilinear) FD, see Figure 1, proposed by Daganzo [11]:

Φ(ρ) =

{
vfρ, ρ ∈ [0, ρc]
−w(ρ− ρmax), ρ ∈ (ρc, ρmax]

(2)

where vf is the free-flow speed (wave moving forwards), and
−w is the congestion speed (wave moving backwards).

ρ

Φ

ρc

φmax

0 ρmax

vf −w

Fig. 1. Triangular Fundamental Diagram: free-flow regime (in green)
and congested regime (in red).

Let us fix an initial condition ρ0(x) ∀x ∈ [0, L], boundary
flows uin(t) and uout(t) ∀t ∈ R+ (which we treat as control
variables), and introduce an initial boundary value problem:

Σ =


∂tρ(x, t) + ∂xΦ (ρ(x, t)) = 0,

Φ (ρ(0, t)) = φin(t), Φ (ρ(L, t)) = φout(t),

ρ(x, 0) = ρ0(x).

(3)

Inflows φin(t) and outflows φout(t) are defined ∀t ∈ R+ as{
φin(t) = φin (u, S) = min {uin(t), S(ρ(0, t))} ,
φout(t) = φout (D,u) = min {D(ρ(L, t)), uout(t)} ,

(4)

with S(ρ(0, t)) the supply and D(ρ(L, t)) the demand func-
tions at the right and left boundary, respectively, given by

S(ρ) = min {w(ρmax − ρ), vfρc} ,
D(ρ) = min {vfρ, vfρc} .

(5)

Note that the boundary conditions (4) are given in terms of
flows. This is equivalent to the weak boundary conditions
formulation [31] in terms of densities given in [23]. Thus,
the problem given by (3) and (4) is well-posed.

Now we define the desired space- and time-varying density
ρd(x, t) that should be achieved with the help of boundary
control. In order to be admissible ρd(x, t) ∈ R+ must be a
weak entropy solution of the following system:



SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR IEEE JOURNALS 3

Σd =


∂ρd(x, t)

∂t
+
∂Φ (ρd(x, t))

∂x
= 0,

Φ (ρd(0, t)) = φind(t), Φ (ρd(L, t)) = φoutd(t),

ρd(x, 0) = ρ0d(x),
(6)

where inflows and outflows in the desired system must satisfy
φind(t) ≤ S(ρd(0, t)) and φoutd(t) ≤ D(ρd(L, t)).

Thus, in scope of this paper, our objective is to find ∀t ∈ R+

boundary control laws uin(t) and uout(t) such that the density
follows a desired trajectory ρd(x, t) as t→∞.

Finally, throughout this paper we assume the following:
Assumption 1. The initial conditions have left the system,

thus, the solution of Σ is determined by the boundaries only.
Assumption 2. There exists ε > 0 such that φin and φout

from Σ satisfy the following inequalities in its time average:
t+T∫
t

φin(τ)dτ ≤Tφmax − ε and

t+T∫
t

φout(τ)dτ ≤ Tφmax − ε,

where t > 0 and T = min

{
L

vf
,
L

ω

}
.

Thus, flows can not hold their maximal values during the
time interval given by T . This assumption is needed to prove
exponential convergence to a desired profile, see details in the
proof of Theorem 1.

Remark 1. Note that if Assumption 2 is satisfied, then by
taking t ≥ tmin, where tmin is defined as

tmin = min

{
L

vf
,
L

w

}1 +

1

ε

L∫
0

(ρmax + ρc)


 , (7)

Assumption 1 holds trivially, as it is shown in Appendix II.

II. PRELIMINARIES

As mentioned above, discontinuities may emerge in solu-
tions to conservation laws in finite time even for smooth initial
conditions. Note that control enters the system through the
minimum function (4). If density would be in one regime only,
then it would be possible to reduce (4) to φin(t) = uin(t) and
φout(t) = uout(t). However, to solve control problems for a
traffic state in a mixed regime, we must handle (4). This might
be problematic for an LWR PDE system due to the necessity
to track shock positions.

Thus, we will equivalently use the Hamilton-Jacobi for-
mulation, which gives a closed-form solution corresponding
to a minimum function, and which allows to analyse weak
boundary conditions explicitly. In particular, we will be able
to analyse when and for how long prescribed control values
are accepted by the system. Being an integral form of LWR,
the solution of Hamilton–Jacobi PDE has no shocks.

A. Link Between H-J and LWR Formulation
We introduce the cumulative vehicle count also called the

Moskowitz function M(x, t) [5], [10]. It should be interpreted
as a cumulated (counted) number of vehicles at location x and

at time t. The density ρ(x, t) and the flow Φ (ρ(x, t)) can be
computed from M(x, t) as

ρ(x, t) = −∂M(x, t)

∂x
, Φ(ρ(x, t)) =

∂M(x, t)

∂t
. (8)

Intuitively, one can see a relation between HJ and LWR
by performing a formal computation, namely by taking the
derivative of the density w.r.t. time and the derivative of the
flow w.r.t. space (assuming both of them being continuous)
and by using (8), and thus obtaining the LWR PDE:

∂ρ(x, t)

∂t
+
∂Φ (ρ(x, t))

∂x
= 0 ⇔ ∂2M(x, t)

∂x∂t
−∂

2M(x, t)

∂t∂x
= 0.

The rigorous relation was shown in [8]. Further, we can rewrite
Φ (ρ(x, t)) = φ(x, t) using (8) as

∂M(x, t)

∂t
− Φ

(
−∂M(x, t)

∂x

)
= 0, (9)

which is a Hamilton-Jacobi PDE, and Φ plays the role of a
Hamiltonian. Its solution corresponds to the cumulative vehicle
count M(x, t). Note that the LWR PDE can be obtained if (9)
is differentiated w.r.t. space and expressed in terms of density.

Note that (9) depends only on derivatives of M(x, t).
Therefore, for any solution M(x, t) adding any constant M0

gives also a solution M(x, t) +M0. This is obvious, since we
can start numeration of cars from any particular number.

The existence of M(x, t) itself guarantees the conservation
of vehicle numbers. A shock corresponds to a discontinuity in
the first derivative of M(x, t), then the conservation equations
are still valid if M(x, t) is continuous across the shock path.

B. General Solution of H-J
The H-J PDE (9) can be solved analytically using initial

condition function MIni(x), upstream MUp(t) and downstream
MDown(t) boundary condition functions. Note that the bound-
ary conditions should be consistent with the weak boundary
conditions formulation (3)-(4).

Thus, let us introduce the following Cauchy problem for the
HJ PDE ∀(x, t) ∈ [0, L]× R+:

∂M(x, t)

∂t
− Φ

(
−∂M(x, t)

∂x

)
= 0,

M(x, 0) = MIni(x),

M(0, t) = MUp(t),

M(L, t) = MDown(t).

(10)

The relation of MUp(t) and MDown(t) with φin(t) and φout(t)
are studied in detail in Appendix A.

For convenience, let us introduce the value condition
function c(x, t) : Dom(c) → R+, where Dom(c) =
({0, L} × R+) ∪ ((0, L)× {0}), which aggregates the initial
and boundary conditions of (10) (see [28]):

c(x, t) =


MIni(x) ts = 0,

MUp(t) xs = 0,

MDown(t) xs = L,

(11)

where xs and ts are space and time points in space and time,
respectively, related to the start of travelling.
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To obtain a closed-form solution of (10), one should treat
(10) as a constrained optimization problem [19]. Let us
introduce a Legendre-Fenchel transform of the flow Φ(ρ) as
L(v):

∀v ∈ [−w, vf ], L(v) = sup
ρ∈[0,ρmax]

(Φ(ρ)− vρ). (12)

Let us also introduce T = t− ts. The closed-form solution to
(10) is known as Lax-Hopf formula, which reads

M(x, t) = inf{c(x− Tv, t− T ) + TL(v)}
s.t. (v, T ) ∈ [−w, vf ]× R+

and (x− Tv, ts) ∈ Dom(c).

(13)

Thus, M(x, t) is determined by the infimum of the infinite
number of functions of the value condition (see also [24]).

C. Explicit Solution for t→∞
Our aim here is to obtain an explicit solution of (10) for a

triangular FD (2) using (13). The calculations are presented in
Appendix A. The final solution M(x, t) is obtained for large
enough time, which equivalently means that the effect of initial
conditions should have left the system. If Assumptions 1 and
2 hold, then the time can be estimated as in Appendix B:

∀(x, t) ∈ [0, L]× [tmin,+∞) :

M(x, t) = min

{ t− x
vf∫

0

φin(τ)dτ +

L∫
0

ρ0(s)ds,

t−L−xw∫
0

φout(τ)dτ + ρmax(L− x)

}
.

(14)

D. Problem Statement in H-J Formulation
We define the desired Moskowitz function (MF) similar to

(14):

∀(x, t) ∈ [0, L]× [tmin,+∞) :

Md(x, t) = min

{ t− x
vf∫

0

φind(τ)dτ +

L∫
0

ρd0(s)ds,

t−L−xw∫
0

φoutd(τ)dτ + ρmax(L− x)

}
.

(15)

Note that both M(x, t) and Md(x, t) are defined up to a
constant since the starting point for the numeration of cars can
be arbitrary. Therefore, we will state our problem in Hamilton-
Jacobi formulation as a pointwise convergence of Moskowitz
functions M(x, t) to Md(x, t) as t→∞.

Problem 1. Given a desired state ρd(x, t) solving Σd, find
control laws uin(t) and uout(t) for system Σ such that

∃M0 ∈ R : ∀x ∈ [0, L] lim
t→∞

(M(x, t)−Md(x, t)) = M0.

Remark 2. Physically, we need to control inflow and outflow
such that all the ”excess” cars (given by the integral difference

in ρ0(x) and ρd0(x)) leave the domain, and then inflows and
outflows match the desired ones. When the goal is achieved,
the following conditions hold for ∀t ≥ tmin:

(i) φin(t)=φind(t), (ii) φout(t)=φoutd(t),

(iii)

t− x
vf∫

0

(φin(τ)− φind(τ)) dτ+ (16)

L∫
0

(ρ0(s)− ρd0(s))ds =

t−L−xw∫
0

(φout(τ)− φoutd(τ)) dτ.

The derivation of these conditions is given in Appendix III.

III. CONTROL LAW DESIGN

Theorem 1. Assume system Σ for which Assumptions 1 and
2 hold with the MF solution given by (14), and system Σd for
which Assumption 1 holds with the MF solution (15). Then a
control law that achieves the goal stated in Problem 1 is given
by

(1) uin(t) = φind(t)− ke(t),
(2) uout(t) = φoutd(t) + ke(t),

t ∈ R+

where e(t) =

L∫
0

(ρ(s, t)− ρd(s, t)) ds and k > 0.

(17)

Proof. This proof consists of five subsections: it is shown that
e(t) goes to zero as t → ∞ in subsections 1) - 3), and then
we show that this is enough for the convergence of Moskowitz
functions in subsections 4) and 5).

Error e(t) is defined as the difference in the overall number
of cars in the real and the desired systems. Using (51) for
M(0, t) we can rewrite the definition of error as

e(t) = M (0, t)−Md (0, t) +

t∫
0

(φoutd(τ)− φout(τ)) dτ.

Now we can rewrite it using (52) for M(0, t) as

e(t) =

t∫
0

(φin(τ)− φout(τ) + φoutd(τ)− φind(τ)) dτ

+

L∫
0

(ρ0 (s)− ρ0d (s)) ds.

(18)

Error dynamics are the time derivative of (18)

ė(t) = φin(t)− φout(t)− φind(t) + φoutd(t). (19)

The main difficulty with the control of Σ is that φin is not
always equal to uin (and similarly φout), i.e., in some cases
we lose the ability to impose any control uin(t) or uout(t) on
the boundaries. Let us investigate this problem in more details.



SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR IEEE JOURNALS 5

1) Analysis of Flow Restrictions: By definition (8) inflows
and outflows are time derivatives of M(0, t) and M(L, t),
respectively. First, we focus on the inflow at the upstream
boundary defined as φin(t) = ∂M(0, t)/∂t. Let us express
M(0, t) by taking the time integral of φin(t) and get

M(0, t) =

t∫
0

φin(τ)dτ +M(0, 0), (20)

where M(0, 0) =
L∫
0

ρ0(s)ds by (51) for (x, t) = (0, 0).

At the same time, by (14) for x = 0 we obtain

M(0, t) = min

{ t∫
0

φin(τ)dτ +

L∫
0

ρ0(s)ds,

t−Lω∫
0

φout(τ)dτ + Lρmax

}
.

(21)

Combining (20) with (21), we obtain a minimum problem:

t∫
0

φin(τ)dτ +

L∫
0

ρ0(s)ds = min

{ t∫
0

φin(τ)dτ

+

L∫
0

ρ0(s)ds,

t−Lω∫
0

φout(τ)dτ + Lφmax

}
.

(22)

From (22) one can see that the following must hold

t∫
0

φin(τ)dτ +

L∫
0

ρ0(s)ds ≤

t−Lω∫
0

φout(τ)dτ + Lφmax. (23)

In case of equality in (23), we must provide that the right-
hand term grows more quickly than the left-hand term. Thus,
by taking time derivative we obtain φin(t) ≤ φout(t− L

w ).
All this can be combined in the following property. We de-

fine a control restriction function for the downstream boundary

gin(t) =

t−Lω∫
0

φout(τ)dτ+Lρmax−
t∫

0

φin(τ)dτ−
L∫

0

ρ0(s)ds,

which represents the difference between two arguments of
the minimum. By (23) we obtain that gin(t) ≥ 0 always.
Moreover, using the definition of φin(t) given by (4), the
condition on inflow restriction can be formulated as:

gin(t) > 0 : φin(t) = uin(t),

gin(t) = 0 : φin(t) = min

[
uin(t), φout

(
t− L

w

)]
.

(24)

Note that the notation of control restriction should be un-
derstood as saturation control, with φout

(
t− L

w

)
being the

saturation time-varying threshold.
Similarly, we proceed with M(L, t) to analyse φout(t)

for the downstream boundary, and get its control restriction

function:

gout(t) =

t− L
vf∫

0

φin(τ)dτ +

L∫
0

ρ0(s)ds−
t∫

0

φout(τ)dτ,

and the following condition on outflow restriction

gout(t) > 0 : φout(t) = uout(t),

gout(t) = 0 : φout(t) = min

[
uout(t), φin

(
t− L

vf

)]
.

(25)

Any boundary control can be imposed if gin > 0 and gout > 0.

Defining R(t) =
L∫
0

ρ(s, t)ds and R0 = R(0), and using the

equality of (51) and (52) for x = 0 we obtain ∀t′ ∈ R+

R(t′) = R0 +

t′∫
0

φin(τ)dτ −
t′∫

0

φout(τ)dτ. (26)

Thus, the control restriction functions can be rewritten as

gin(t) = Lρmax −R(t′)−
t′∫

t−L
w

φout(τ)dτ −
t∫

t′

φin(τ)dτ,

gout(t) = R(t′)−
t′∫

t− L
vf

φin(τ)dτ −
t∫

t′

φout(τ)dτ.

(27)

Note also that inflows and outflows are bounded, i.e. φin ≤
φmax and φout ≤ φmax, where φmax = vfρc. To find the
time interval, when no control law can be imposed, we set
gin(t) = 0 and then express R(t′) from (27):

R(t′) = Lρmax −
t′∫

t−L
w

φout(τ)dτ −
t∫

t′

φin(τ)dτ ≥ Lρmax

−
t′∫

t−L
w

φmaxdτ −
t∫

t′

φmaxdτ = Lρmax −
L

w
φmax = Lρc.

The same steps are performed for gout(t) = 0, and we get

gin(t) = 0 ⇒ R(t′) ≥ Lρc ∀t′ ∈
[
t− L

w
, t

]
,

gout(t) = 0 ⇒ R(t′) ≤ Lρc ∀t′ ∈
[
t− L

vf
, t

]
.

(28)

This means that not any control law can be imposed at the
inflow boundary only if during the preceding time interval[
t− L

w , t
]

the mean density was bigger than the critical density
(and inversely for the outflow boundary).

By Assumption 2, setting gin(t) = 0 in (27) implies R(t) ≥
Lρc + ε and R(t − L/w) ≥ Lρc + ε, as well as gout(t) = 0
implies R(t) ≤ Lρc − ε and R(t− L/vf ) ≤ Lρc − ε.

Let us consider (28) to investigate whether it is possible that
control can not be imposed at both boundaries simultaneously.
We pick up some time point t such that gin(t) = 0 and some
time point t′ ∈ [t, t + L/vf ] with gout(t

′) = 0. As written
above, gin(t) = 0 implies R(t) ≥ Lρc + ε. However, t ∈
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[t′−L/vf , t′], thus R(t) ≤ Lρc for gout(t′) = 0 by (28). This
is a contradiction, since satisfying both R(t) ≥ Lρc + ε and
R(t) ≤ Lρc at the same t is impossible. Thus, the time point
t′ when gout(t′) = 0 can occur at least after the interval L/vf
after gin(t) = 0.

Moreover, if t′ ≥ t + L/vf and gout(t
′) = 0, then R(t′ −

L/vf ) ≤ Lρc− ε. The maximal inflow is φmax, therefore the
difference in the integral densities R(t′−L/vf )−R(t) can be
passed at least in time t′ −L/vf − t ≥ 2ε/φmax. Performing
the same analysis for the inverse case, we conclude that

gin(t) = 0 ⇒ gout(t
′) > 0∀t′ ∈

[
t, t+

L

vf
+

2ε

φmax

]
,

gout(t) = 0 ⇒ gin(t
′) > 0∀t′ ∈

[
t, t+

L

w
+

2ε

φmax

]
.

(29)

Thus, it is impossible for two boundaries to be unable to accept
the control simultaneously, and the periods of ”uncontrollabil-
ity” are separated in time by at least L

vf
+ 2ε
φmax

or L
w + 2ε

φmax
.

2) Dynamics of e(t): At each moment either one of control
restriction functions or none of them is zero (29). Hence, we
separate the dynamics of e(t) into three possible cases.

1. Assume both gin(t) > 0 and gout(t) > 0. Then φin(t) =
φind(t)− ke(t) and φout(t) = φoutd(t) + ke(t). According to
(19), the error dynamics are given by

ė(t) = −2ke(t), (30)

and, thus, e(t) converges exponentially to zero.
2. Assume gin(t) = 0. Then φin(t) ≤ φind(t)− ke(t) and

φout(t) = φoutd(t) + ke(t), which means

ė(t) ≤ −2ke(t). (31)

Thus, e(t) > 0 implies even faster convergence to zero. If
e(t) < 0, such dynamics can diverge from zero. However, it
is possible to show that after a period of not being able to
impose any control, the error will not be further away from
zero than at the beginning of the period. Consider the desired
control restriction function for the upstream boundary gind(t):

gind(t) = Lρmax −Rd(t′)−
t′∫

t−Lw

φoutd(τ)dτ

−
t∫

t′

φind(τ)dτ ≥ 0, for t′ ∈
[
t− L

w
, t

]
.

Using e(t′) = R(t′)−Rd(t′), we obtain

gind(t)− gin(t) =

t′∫
t−Lw

(φout(τ)− φoutd(τ))dτ

+

t∫
t′

(φin(τ)− φind(τ))dτ + e(t′) ≥ 0.

(32)

Using the properties φin(t) ≤ φind(t)− ke(t) and φout(t) =
φoutd(t) + ke(t), we obtain

e(t′) + k

t′∫
t−Lw

e(τ)dτ − k
t∫

t′

e(τ)dτ ≥ 0.

We substitute t′ = t to get the first inequality, and then t′ =
t − L

w to get the second one. The sum of these inequalities
yields

e(t) + e

(
t− L

w

)
≥ 0. (33)

3. Assume gout(t) = 0. Then φout(t) ≤ φoutd(t) + ke(t)
and φin(t) = φind(t)− ke(t), which yields

ė(t) ≥ −2ke(t). (34)

Using the same analysis as above for e(t) > 0, we obtain

e(t) + e

(
t− L

vf

)
≤ 0. (35)

3) Proof that e(t) converges to zero: In the table below we
have summarized three regimes of error dynamics:

Summary of error regimes
Regime 1 gin(t) > 0, ė(t) = −2ke(t)

gout(t) > 0
Regime 2 gin(t) = 0, ė(t) ≤ −2ke(t)

gout(t
′) > 0

∀t′ ∈
[
t, t+ L

vf
+ 2ε

φmax

]
Regime 3 gin(t) > 0, ė(t) ≥ −2ke(t)

gout(t
′) = 0

∀t′ ∈
[
t, t+ L

w + 2ε
φmax

]
The regimes can alternate as depicted in Figure 2. In this

part of the proof we will show that only positive error can
enter regime 2 at some time, while it can enter regime 3
only being negative. Thus, if the error is positive in regime
1 (green circle), it either remains in regime 1 forever, where
the exponential convergence to zero is guaranteed by (30),
or it enters regime 2 (blue circle). Then, being positive, by
(31) the error converges to zero even faster than in regime 1.
However, it can also become negative, and in this case the
error might diverge from zero. Nevertheless, the divergence
from zero can last only for a bounded time interval, and the
absolute value of the error term can not exceed its value some
time ago (see (33)). As this happens, the error enters again
regime 1 as a negative term. It either stays there forever, or
switches to regime 3, where it goes to zero even more quickly
by (34). The rest can be described in a symmetric manner.
Recall also that regimes 2 and 3 are always separated by at
least L

vf
+ 2ε
φmax

or L
w+ 2ε

φmax
. Further, we provide a strict proof

of the exponential convergence of the error term to zero.
Imagine a time axis split into three types of intervals

corresponding to three different regimes as shown in Figure
3. Recalling that regimes 2 and 3 cannot occur in a row, we
can observe, e.g., a sequence like this: 12121313121.... Thus,
it is possible that after regime 2 and then regime 1, the regime
2 comes again, since nothing prohibits gin(t) to become zero
again almost immediately. We denote this sequence of regimes
as ”gin(t) = 0 sometimes” which is defined as the largest row
of regimes 1 and 2 that starts and ends with regime 2 and
does not contain any interval of regime 3. The same we can
do with the regime sequence containing regimes 1 and 3 and
call it ”gout(t) = 0 sometimes”. These sequences ”gin(t) = 0



SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR IEEE JOURNALS 7

1

e > 0

e < 0

guaranteed
by (33)

FC

2

CC
e > 0

e < 0

e < 0
FF

guaranteed
by (35)

e > 0

3

Fig. 2. Diagram of regimes illustrating how they can alternate. Arrows
denote possible regime switches. FC, CC and FF are used to denote
regimes on the boundaries, where F stays for free-flow and C for
congested regime.

313... 1 212...

t̄i−1 t̄i − L
w

ti t̄iti

1

t

e(t)

Fig. 3. A possible error behaviour e(t) (thick black line). From left to
right: divergence for ”gout(t) = 0 sometimes” (in orange); exponential
convergence in regime 1 (in green); fast convergence for ”gin(t) = 0
sometimes” (in blue); then divergence for e(t′) < 0 ∀t′ ∈ [ti, t̄i];
exponential convergence in regime 1. Blue empty circles are related to
(37).

sometimes” and ”gout(t) = 0 sometimes” alternate strictly,
always having regime 1 between them. Finally, for a time
interval corresponding to the regime (or regime sequence) with
index i we can define entrance time ti and exit time t̄i. By
(29) we see that ti − t̄i−1 ≥ L

ω + 2ε
φmax

if the regime i is
”gin(t) = 0 sometimes”, and ti − t̄i−1 ≥ L

vf
+ 2ε

φmax
if the

regime i is ”gout(t) = 0 sometimes”.
Let us fix i corresponding to ”gin(t) = 0 sometimes” (the

other case is symmetric). First of all, by (33) we obtain

gin(ti) = 0 and gin(t̄i) = 0.

Therefore

e(ti) + e

(
ti −

L

w

)
≥ 0 (36)

and

e(t̄i) + e

(
t̄i −

L

w

)
≥ 0. (37)

It is clear that ti− L
w ≥ t̄i−1, which means that the dynamics

of e in the interval [ti − L
w , ti] are exponential. Thus, both

e(ti) and e
(
ti − L

w

)
have the same sign, and by (36) they are

both positive. A similar analysis can be done for the regime

sequence ”gout(t) = 0 sometimes”, which means that from
gout(t) = 0 to gin(t) = 0 the error term is positive and from
gin(t) = 0 to gout(t) = 0 the error term is negative (and thus
e(t̄i) < 0). Consequently, inside each regime sequence i there
should be a time point ti, when e(ti) = 0.

Now, by (37) and using that e(t̄i) is negative, we see that
e
(
t̄i − L

w

)
≥ 0, which means that t̄i − L

w ≤ ti (see Figure 3).
On the time interval [t̄i−1, ti] it is clear that the convergence

is exponential (regime 1). On the time interval [ti, ti] the
dynamics are ė ≤ −2ke, and e(t) ≥ 0. Time point t̄i − L

w ∈
[t̄i−1, ti], therefore

e

(
t̄i −

L

w

)
≤ e(t̄i−1) exp−2k(t̄i−Lw−t̄i−1) .

We can write the same for the absolute values,∣∣∣∣e(t̄i − L

w

)∣∣∣∣ ≤ |e(t̄i−1)| exp−2k(t̄i−Lw−t̄i−1) .

Now from (37) and the fact that e(t̄i) < 0 we see that |e(t̄i)| ≤∣∣e (t̄i − L
w

)∣∣, thus

|e(t̄i)| 6 |e(t̄i−1)| exp−2k(t̄i−Lw−t̄i−1) .

We can write t̄i− t̄i−1 ≥ ti− t̄i−1 ≥ L
ω + 2ε

φmax
, which yields

t̄i − L
w − t̄i−1

t̄i − t̄i−1
= 1−

L
w

t̄i − t̄i−1
≥ 1−

L
w

L
ω + 2ε

φmax

=

2ε
φmax

L
ω + 2ε

φmax

=
2εω

Lφmax + 2εω
.

The time interval in the exponential function can be bounded

t̄i −
L

w
− t̄i−1 ≥

(
2εω

Lφmax + 2εω

)
(t̄i − t̄i−1) ,

which finally leads to

|e(t̄i)| ≤ |e(t̄i−1)| exp−2k( 2εω
Lφmax+2εω )(t̄i−t̄i−1), (38)

which proves the exponential convergence to zero of e(t).
4) Proof of Integral Inflow Convergence: To proceed we need

to show that the integral of difference of inflows in the real
and in the desired system has a limit, as it is required for the
convergence of the Moskowitz functions as stated in Problem
1 (see next subsection, where the existence of this limit is used
for the introduction of constant M0):

∃ lim
t→∞

t∫
0

(φin(τ)− φind(τ))dτ. (39)

By the Cauchy criterion for the convergence of functions, it
suffices to show that

lim
t1,t2→∞

t2∫
t1

(φin(τ)− φind(τ))dτ = 0 (40)

for any t1 and t2, where t2 > t1. First, we find an upper
bound for this limit. By combining (24) with (17) we obtain
φin ≤ φind − ke(t), thus, we can write ∀t1, t2→∞

t2∫
t1

(φin(τ)− φind(τ))dτ ≤ −k
t2∫
t1

e(τ)dτ → 0,
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which implies

lim
t1,t2→∞

t2∫
t1

(φin(τ)− φind(τ))dτ ≤ 0. (41)

Now let us estimate the lower bound for the limit (40).
Thereby, we distinguish two possible cases:

1) Assume gin(t) > 0. In this case:

t∫
t−Lw

(φin(τ)− φind(τ))dτ ≥ −k
t∫

t−Lw

|e(τ)| dτ.

2) Assume gin(t) = 0. Using (32) for t′ = t− L
w , we get

t∫
t−L

w

(φin(τ)− φind(τ))dτ ≥ −e(t−
L

w
) ≥ −

∣∣∣∣e(t− L

w
)

∣∣∣∣ .
The combination of two latter expression yields
t∫

t−L
w

(φin(τ)− φind(τ))dτ ≥ −k
t∫

t−L
w

|e(τ)| dτ −
∣∣∣∣e(t− L

w
)

∣∣∣∣
(42)

Now let us divide the time interval [t1, t2] into subintervals
of length L/w. Thus, (42) can be rewritten for a larger time
interval as

t2∫
t1

(φin(τ)− φind(τ)) dτ ≥ −k
t2∫
t1

|e(τ)| dτ

−
b t2−t1L/w c∑
n=0

∣∣∣∣e(t1 + n
L

w

)∣∣∣∣ .
where the sum goes over intervals of size L/w, i.e., t1, t1 +
L/w, . . . , t2. If we take the time limit of the latter expression
for t1, t2 →∞, both right-hand terms converge to zero, as for
the sum term we can apply the integral test for convergence:

lim
t1,t2→∞

t2∫
t1

(φin(τ)− φind(τ)) dτ ≥ 0. (43)

The combination of (43) and (41) provides that the limit is
zero, which proves the existence of the limit of the difference
integral between inflows in the real and desired systems.

5) Proof of Convergence of Moskowitz Functions: Finally, let
us define two auxiliary Moskowitz functions

M1(x, t) = R0 −R0d +

t− x
vf∫

0

(φin(τ)− φind(τ))dτ, (44)

M2(x, t) =

t−L−xw∫
0

(φout(τ)− φoutd(τ))dτ. (45)

Notice that M1(x, t) and M2(x, t) correspond to the left and
to the right side of (16) (iii), which must hold for large t. First

of all, using e0 = R0 − R0d and the dynamics of e(t) given
by (19), we obtain that ∀x ∈ [0, L]

lim
t→∞

(M1(x, t)−M2(x, t)) =

∞∫
0

(φin(τ)− φind(τ)− φout(τ) + φoutd(τ))dτ + e0

= lim
t→∞

e(t) = 0.

(46)

Moreover, as it was proven in the previous subsection (39),
M1(x, t) has a limit. Therefore, we can define

M0 := lim
t→∞

M1(x, t),

and by (46) we get

lim
t→∞

M2(x, t) = M0.

We can also define the error terms as M̃1(x, t) = M1(x, t)−
M0 and M̃2(x, t) = M2(x, t)−M0.

Finally, recall that the desired Moskowitz function given by
(15) can be expressed as

Md(x, t) = min
{
MUpd(x, t),MDownd(x, t)

}
,

and using (14), (44) and (45) we obtain

M(x, t) = min{MUpd(x, t)+M1(x, t),MDownd(x, t)+M2(x, t)},

or
M(x, t) = min{MUpd(x, t) + M̄1(x, t),

MDownd(x, t) + M̄2(x, t)}+M0.

Minimum is a continuous function on both arguments, thus
we obtain for t→∞ that:

M(x, t)→Md(x, t) +M0 ∀x ∈ [0, L], (47)

as stated in Problem 1.

After we have solved the problem stated in Hamilton-Jacobi
formulation, let us establish the link to LWR formulation.

Lemma 1. Problem 1 is equivalent to the integral convergence
of densities over arbitrarily small intervals, i.e., ∀a, b: 0 ≤ a <
b ≤ L we obtain

lim
t→∞

b∫
a

(ρ(s, t)− ρd(s, t)) ds = 0,

where a and b can be arbitrarily close points in space.

Proof. By (51) we can write

M(a, t)−M(b, t)=

L∫
a

ρ (s, t) ds−
L∫
b

ρ (s, t) ds =

b∫
a

ρ(s, t)ds,

(48)
and

Md(a, t)−Md(b, t) =

b∫
a

ρd (s, t) ds. (49)

For x = a and x = b in Problem 1 we get M(a, t) →
Md(a, t) +M0, M(b, t)→Md(b, t) +M0. This is equivalent
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to M(a, t) −M(b, t) → Md(a, t) −Md(b, t), which by (48)
and (49) we rewrite as

b∫
a

ρ (s, t) ds→
b∫
a

ρd (s, t) ds.

Remark 3. Notice that pointwise convergence of two func-
tions does not imply the convergence for their derivatives in
any of Lp norms. However, we reach the equality of densities
over arbitrarily small intervals, which means that the state
approximates the desired trajectory as time goes to infinity.

Remark 4. Note that Assumption 2 is non-limiting. Indeed,
it requires that the flow integral over time T is less than
its maximum value by at least ε, which is always possible,
except when vehicles enter and leave the system at maximum
rate during T. Obviously, in this case, it is also possible to
reach the goal. The need to use Assumption 2 comes from
the fact that at maximum flow by (28) both gin(t) = 0 and
gout(t) = 0 for the same t, which means that with the slightest
fluctuation a boundary becomes ”uncontrollable”. Thus, the
state with maximum flows at both boundaries during time
T is ”unstable”, and therefore it is impossible to prove the
exponential convergence of the error term e(t).

A. Numerical Scheme
We illustrate the efficiency of feedback control terms (17)

by driving a state being inially almost completely in a traffic
jam to a desired space- and time-dependent vehicle density
being in a mixed regime. The numerical scheme we use is
a standard Godunov scheme [4] with a space interval [0, L]
divided into n = 500 cells, i.e. ∆x = L/n, and a time
discretization step ∆t chosen such that the Courant-Friedrich-
Lewy condition is satisfied [6]. This condition is necessary to
prevent the violation of information flow.

The integral corresponding to the feedback term is com-
puted using the Riemann summation over cells i ∈ {2..n−1}.
Recall that in general the minimum is not always resolved
to the benefit of the control variable. In this section we
demonstrate the efficiency of using a state feedback for a
road that is initially empty at the entry and in the traffic
jam at the exit. Thus, both boundaries accept controls, i.e.
ϕin(t) = uin(t) and ϕout(t) = uout(t).

For the simulation we set the following parameters (which
are taken from the real traffic data [36]):

vf = 16.67 m/s, w = 7.14 m/s, ρmax = 0.181, veh/m,
ρc = 0.054 veh/m, L = 1000 m,

and for initial time the system is given as

ρ0(0 ≤ x < 1/4L) = 0, and ρ0(1/4L ≤ x ≤ L) = ρmax.

Thus, we will consider the system being almost completely in
the traffic jam as initial condition.

As a target state we consider a vehicle density in a mixed
case regime, whose evolution is given by ”ghost” cells (which
are set by copying the value from the neighbour cell) with

ρd0(t) = 0.04+0.04 sin (t/8) and ρdL(t) = 0.1+0.06 sin (t/4) ,

The boundary values are prescribed in terms of densities,
which are transformed into flows by using the supply-demand
formulation (5). We will demonstrate, how the feedback
term given by −ke(t) for the upstream and +ke(t) for the
downstream boundary improves the result and provides the
asymptotic convergence targeting the desired profile. Two
control strategies are compared:

1) No feedback is performed, i.e. only uin(t) = φind(t)
and uout(t) = φoutd(t).

2) Feedback terms uin(t) = φind(t) − ke(t), uout(t) =
φoutd(t)+ke(t) are applied.

B. Results
In Figure 4a) the evolution of desired vehicle density being

in a mixed regime is illustrated. The results of achieving this
state with and without feedback are shown on the plots below
4 (c) - (f). Thereby, the left column shows the evolution of
state, whereas on the right column one can see the evolution of
the absolute difference between the real and the desired states.
Plots (c) and (d) illustrate the result if no feedback is applied
on the boundaries, while plots (e) and (f) depict the situation
if feedback with gains k = 0.1 is applied. The corresponding
error behaviour for different gains is shown on plot (b).

Comparing the plots we can see that the control includ-
ing the feedback term performs considerably better. Without
feedback the congested regime almost completely occupies
the domain as time runs, while the feedback term makes the
system approach the desired state after the time inferior to the
minimal controllability time, which is Tc = L

vf
+ L
|w| = 200.5s.

Note that an open-loop control (such as applying absorbing
boundary conditions until the road becomes empty, and then
applying desired inflows and outflows) will not achieve the
goal at all due to the difference in initial densities (18).

IV. CONCLUSIONS

We have designed boundary control laws in order to track
a target space- and time-dependent trajectory. Physically, the
real and the desired states correspond to the vehicle density.
Both states are the solutions of LWR PDE with triangular
fundamental diagram and are allowed to be in the mixed
regime. This means that our controller allows us to drive any
state, being in a partly congested partly free-flow regime or
even being completely congested, to some desired state being
in any regime we want. Achieving such a goal is possible
using a feedback term, which physically corresponds to the
difference between the number of vehicles in our system and
in the desired one multiplied by some controller gain. This
result was obtained by using the explicit solution formula to
H-J, which enabled us to formulate and analyse the control
restriction functions. The explicit solution was obtained using
the properties of triangular FD due to the convenient shape
of its Legendre transform. The numerical example verified the
results and illustrated that feedback is absolutely necessary to
achieve the goal.

For the future studies it might be challenging to extend
this result to a large-scale, i.e., controlling the vehicle density
being in any regime in the whole city. Moreover, it could be
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(a) ρd(x, t) (b) ||ρ− ρd||L1

(c) ρ(x, t), no feedback (d) |ρ− ρd|, no feedback

(e) ρ(x, t), k = 0.1 (f) |ρ− ρd|, k = 0.1

Fig. 4. (a) Desired profile in space-time, (b) L1 error as a function of
time for different control gains. Spatio-temporal evolution of the density
(left) and of the absolute difference between the real and the target state
(right) for: (c),(d) k = 0; (e),(f) k = 0.1.

interesting to derive an explicit solution for a H-J PDE for
other shapes of fundamental diagram.

APPENDIX I
SOLUTION OF HAMILTON-JACOBI EQUATION

For a triangular FD the convex transform of FD (12) yields

L(v) = φmax − ρcv ∀v ∈ [−w, vf ]. (50)

Being an integral function, M(x, t) is defined up to a constant.
Let us choose it such that M(L, 0) = 0. From the geometrical
interpretation and by integrating (8), we can equivalently write
∀(x, t) ∈ [0, L]× R+

M(x, t) =

t∫
0

φout(τ)dτ +

L∫
x

ρ(s, t)ds, (51)

or

M(x, t) =

L∫
0

ρ0(s)ds+

t∫
0

φin(τ)dτ−
x∫

0

ρ(s, t)ds. (52)

Now we can determine the value condition function which
implies the calculation of MUp(t), MDown(t) and MIni(x):

MUp(t) = c(0, t) =

t∫
0

φin(τ)dτ +

L∫
0

ρ0(s)ds. (53)

MDown(t) = c(L, t) =

t∫
0

φout(τ)dτ. (54)

MIni(x) = c(x, 0) =

L∫
x

ρ0(s)ds. (55)

Using these functions and the Lax-Hopf formula (13), we
can restate the solution to (10) as a minimum of three new
functions MUp(x, t), MDown(x, t) and MIni(x, t) depending on
both space and time, which are solutions to the Lax-Hopf
formula associated only to one boundary or initial condition.
For example, MUp(x, t) is obtained by

MUp(x, t) = inf{c(x− Tv, t− T ) + TL(v)}
s.t. (v, T ) ∈ [−w, vf ]× R+

and (x− Tv, t− T ) ∈ {0} × R+,

(56)

and the same formula yields MDown(x, t) for (x−Tv, t−T ) ∈
{L} × R+ and MIni(x, t) for (x− Tv, t− T ) ∈ [0, L]× {0}.

By properties of infimum the original Lax-Hopf formula can
thus be rewritten as

M(x, t) = min (MIni(x, t),MUp(x, t),MDown(x, t)) . (57)

Now we calculate all these functions explicitly. Note that
we consider the solutions only for large time. Thus, in the
following we will write the solutions only for

t ≥ max

(
x

vf
,
L− x
w

)
. (58)

A. Upstream Boundary Condition
The solution MUp(x, t) is related to the number of vehicles

that originate from the boundary xs = 0 and start travelling
at ts := t − T . By looking at (11), we establish that c(x −
Tv, t− T ) = MUp(t− T ) in (56). The equality to zero of the
first argument of c is provided by T = x

v , where v ∈ [−w, vf ].
Since T is positive by definition, the minimal value of the time
interval should be Tmin = x

vf
, which is consistent with (58).

Using (50), this yields the following problem:

MUp(x, t) = inf
T∈[ xvf

,+∞]
[MUp(t− T ) + Tφmax]− xρc.

Using (53), the infimum problem reads

MUp(x, t) = inf
T∈[ xvf

,+∞]

 t−T∫
0

φin(τ)dτ + Tφmax


+

L∫
0

ρ0(s)ds− xρc,
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which by using Tφmax =
T∫

t−T
φmaxdτ can be rewritten as

MUp(x, t) = inf
T∈[ xvf

,+∞]

 t∫
t−T

(φmax − φin(τ)) dτ


+

L∫
0

ρ0(s)ds+

t∫
0

φin(τ)dτ − xρc,

The infimum is provided by T ∗ = Tmin = x
vf

, i.e. the correct
solution is related to the path along which the vehicle has the
maximal velocity. Substituting T = Tmin, we get

MUp(x, t) =

t− x
vf∫

0

φin(τ)dτ +

L∫
0

ρ0(s)ds. (59)

B. Downstream Boundary Condition
Further, we need to calculate MDown(x, t), which is related

to the downstream boundary xs = L. The calculation is done
performing the same steps as for MUp(x, t), and we obtain

MDown(x, t) =

t−L−xw∫
0

φout(τ)dτ + ρmax(L− x). (60)

C. Initial Condition
Finally, we calculate the function MIni(x, t) determined by

the vehicle with known label at ts = 0 (55). The equality to
zero of the time argument in the value condition function is
provided by t = T . This yields

MIni(x, t) = inf
v∈[−w,vf ]

[MIni(x− tv)− tρcv] + tφmax.

Using the definition of MIni(x) from (55), we obtain

MIni(x, t) = inf
v∈[−w,vf ]

 L∫
x−tv

ρ0(s)ds− tρcv

+ tφmax.

We decompose the integral as
L∫

x−tv
ρ0(s)ds =

L∫
x

ρ0(s)ds +

x∫
x−tv

ρ0(s)ds, and the second term as −tρcv =
x∫

x−tv
−ρcds:

MIni(x, t) =

L∫
x

ρ0(s)ds+ tφmax+ inf
v∈[−w,vf ]

x∫
x−tv

(ρ0(s)− ρc)ds.

We define y = x− tv and take the infimum over y:

MIni(x, t) =

L∫
x

ρ0(s)ds+ tφmax + inf
y∈[x−tvf ,x+tw]

x∫
y

(ρ0(s)− ρc)ds.

Note that the coordinates can not lie outside the interval [0, L]:

MIni(x, t) =

L∫
x

ρ0(s)ds+tφmax+ inf
y∈[0,L]

x∫
y

(ρ0(s)−ρc)ds. (61)

D. Unique Solution M(x, t)

To obtain a unique solution, we insert the results from (59),
(60) and (61) in (57), and we get the minimum function.
However, we still need to solve one infinum problem due to
(61), which requires information on crossings of the critical
value by the density at initial condition. In (61) the only time
depending term is tφmax, thus dMIni/dt = φmax. Taking the
time derivative for other terms yields dMUp/dt = φin(t −
x/vf ) and dMDown/dt = φout(t−(L−x)/w). By φ(ρ(·, ·)) ≤
φmax we see that except for some special cases MIni grows
faster than the others. In Appendix II we have estimated the
minimal time tmin (67) needed for initial conditions to leave
the system Thus, MIni can be excluded from the minimum
operator ∀t ∈ [tmin,+∞):

M(x, t) = min

{ t− x
vf∫

0

φin(τ)dτ +

L∫
0

ρ0(s)ds,

t−L−xw∫
0

φout(τ)dτ + ρmax(L− x)

}
.

APPENDIX II
TIME FOR NEGLECTING THE INITIAL CONDITIONS

We want to find the minimal time tmin, after which
the initial conditions have definitely left the system, i.e.,
∀(x, t) ∈ [0, L] × [tmin,+∞): MIni(x, t) ≥ MUp(x, t) or
MIni(x, t) ≥ MDown(x, t). Let us first establish the time for
which MIni(x, t) ≥ MUp(x, t), then we will do the same for
MDown(x, t), and then the final value will be the minimum
from of cases.

Thus, using MUp(x, t) from (59) and MIni(x, t) from (61)

with tφmax =

t− x
vf∫

0

φmaxdτ+ x
vf
φmax, we can write ∀(x, t) ∈

[0, L]×
[
max

(
x
vf
, L−xw

)
,+∞

)
that

MIni(x, t)−MUp(x, t) =

t− x
vf∫

0

(φmax − φin(τ)) dτ+

x

vf
φmax −

x∫
0

ρ0(s)ds+ inf
y∈[0,L]

x∫
y

(ρ0(s)− ρc) ds.

(62)

We can estimate an upper bound of (62) by using:

x

vf
φmax ≥ 0, −

x∫
0

ρ0(s)ds ≥ −
L∫

0

ρmaxds,

and inf
y∈[0,L]

x∫
y

(ρ0(s)− ρc) ds ≥ −
L∫

0

ρcds,
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and, thus, we get

MIni(x, t)−MUp(x, t) ≥

t− x
vf∫

0

(φmax − φin(τ)) dτ

−
L∫

0

(ρmax + ρc) ds

(63)

Further, we use Assumption 2 to make the following bound:

t− x
vf∫

0

(φmax − φin(τ)) dτ ≥

⌊
t− x

vf

T

⌋
ε,

where ε > 0 and T = min
{
L
vf
, Lw

}
. Thus, we can further

bound (63) by:

MIni(x, t)−MUp(x, t) ≥

 t− L
vf

T

ε− L∫
0

(ρmax + ρc) ds

(64)
Finally, we can determine for which t the expression (64) is
non-negative:

t ≥ L

vf
+

1

ε

L∫
0

(ρmax + ρc)

min

{
L

vf
,
L

w

}
(65)

Following the same steps, we obtain a similar result for t such
that MIni(x, t)−MDown(x, t) ≥ 0:

t ≥ L

w
+

1

ε

L∫
0

(ρmax + ρc)

min

{
L

vf
,
L

w

}
(66)

The combination of (65) and (66) yields the lowest time bound
for the initial conditions to leave the system:

tmin = min

{
L

vf
,
L

w

}1 +

1

ε

L∫
0

(ρmax + ρc)


 . (67)

APPENDIX III
NECESSARY CONDITIONS FOR TRACKING DESIRED STATE

In accordance with Problem 1, we should find uin(t) and
uout(t) such that the asymptotic equality of M(x, t) and
Md(x, t) up to some constant M0 is guaranteed. For the
equality of two min functions (14) and (15), it is suffices
to provide the equality of their arguments, thus ∀ (x, t) ∈

[0, L]× [tmin,+∞) we get
t− x

vf∫
0

φind(τ)dτ +

L∫
0

ρd0(s)ds+M0

=

t− x
vf∫

0

φin(τ)dτ +

L∫
0

ρ0(s)ds,

t−L−xw∫
0

φoutd(τ)dτ + ρmax(L− x) +M0

=

t−L−xw∫
0

φout(τ)dτ + ρmax(L− x).

(68)

Firstly, by taking the time derivative of (68), we see that in
the steady-state φin(t) ≡ φind(t) and φout(t) ≡ φoutd(t).

Secondly, by expressing M0 from both parts of (68), we
obtain the necessary condition (16) to track ρd.
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