

Evidence of Tethyan continental break-up and Alpine collision in the Argentera-Mercantour Massif, Western Alps

Marco Filippi, Davide Zanoni, Jean-Marc Lardeaux, Maria Iole Spalla, Guido

 Gosso

▶ To cite this version:

Marco Filippi, Davide Zanoni, Jean-Marc Lardeaux, Maria Iole Spalla, Guido Gosso. Evidence of Tethyan continental break-up and Alpine collision in the Argentera-Mercantour Massif, Western Alps. Lithos, 2020, 372-373, pp.105653. 10.1016/j.lithos.2020.105653. hal-02955783

HAL Id: hal-02955783 https://hal.science/hal-02955783

Submitted on 18 Jul 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Version of Record: https://www.sciencedirect.com/science/article/pii/S0024493720302905 Manuscript_97ec3f4499a63922a59a5aecfd9c3e1e

1 TITLE

2

Evidence of Tethyan continental break-up and Alpine collision in the Argentera-Mercantour
Massif, Western Alps

5

6 AUTHORS

7

8	Marco Filippi ^{a,b,*}	, Davide Zanoni	a, Jean-Marc	Lardeaux ^{b,c} , l	Maria Iole S	palla ^a , (Guido Gosso ^a
---	--------------------------------	-----------------	--------------	-----------------------------	--------------	-------------------------------	--------------------------

- 9 ^a Dipartimento di Scienze della Terra "A. Desio", Università degli Studi di Milano, Via Mangiagalli
- 10 34, 20133 Milan, Italy

^b UMR Géoazur, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, IRD, 250 Rue A.

12 Einstein, Sophia-Antipolis, 06560 Valbonne, France

^c Centre for Lithospheric Research, Czech Geological Survey, Klàrov 3, 118 21 Prague 1, Czech
Republic

15 * Corresponding author. E-mail addresses: marco.filippi@unimi.it (M. Filippi),
16 davide.zanoni@unimi.it (D. Zanoni), lardeaux@unice.fr (J.M. Lardeaux), iole.spalla@unimi.it
17 (M.I. Spalla), guido.gosso@unimi.it (G. Gosso)

Introduction

5

10

Morbid obesity has recently reached epidemic proportions worldwide¹ and bariatric surgery (BS) has been shown to be the only therapeutic means leading to long-term sustained weight loss². Furthermore, obesity is associated with non-alcoholic fatty liver disease (NAFLD) that may proceed to non-alcoholic steatohepatitis (NASH), cirrhosis with end-stage liver disease and/or hepatocellular carcinoma (HCC)³. In parallel to the exponential increase of BS, liver transplant surgeons may be confronted with patients with such background⁴. While biliopancreatic diversion with duodenal switch (BPD-DS) is an uncommon bariatric procedure, for its technical difficulties and increased risk of postoperative complications, it may still be possible to come across for transplant surgeons. In this paper, we report the case of a patient with a previous history of BPD-DS who became a candidate to liver transplantation (LT) because of HCC complicating hepatitis C related liver cirrhosis.

Case Report

A 51-year-old Caucasian man was referred to our department for a chronic entero-cutaneous fistula complicating a BPD-DS for morbid obesity done 6 months earlier in another center. His past medical

history included blood hypertension, dyslipidemia, type 2 diabetes, hypothyroidism, hepatitis C and a 15 NAFLD related liver cirrhosis. Hepatitis C (genotype 1b) was first detected in the '90s and treated by Interferon, while cirrhosis was diagnosed in 2000. In 2006, the patient underwent a transjugular intrahepatic portosystemic shunt (TIPS) for portal hypertension. In 2010 he underwent a laparoscopic sleeve gastrectomy (SG) for morbid obesity (weight: 160 kg; height: 183 cm; BMI: 47.7 kg/m²). A systematic second step DS was done at one year (weight: 120 kg; height: 183 cm; BMI: 35.8 kg/m²) 20 by the same surgeon. The postoperative course was complicated by a leak at the duodeno-ileostomy, which required surgical treatment with laparotomy. In 2012, the patient was admitted in our department for chronic leak with a BMI of 24.8 kg/m² and underwent surgical revision of the duodeno-ileostomy that was not effective as the chronic leak recurred (Fig.1). In 2013, two HCCs, in 25 segment III and VII were found on follow-up imaging (Fig.2). No extra-hepatic metastases were present. The patient met the Milan criteria and was enlisted for LT. Radio-frequency ablation (RFA) was performed while awaiting for LT. When added on the transplant list, the patient had no nutrient deficiencies and had an albumin level of 38.5 g/L (normal range 35.0-52.0), a vitamin B9 level of 8.3 ng/mL (normal range 3.0-18.0) and a vitamin B12 level of 323 pg/mL (normal range 200-1000). The

- measurement of psoas area at L3 showed slight sarcopenia with the right area of 1392 mm² and the left area of 1282 mm² (Fig.3)⁵. He finally underwent LT in September 2014 (MELD = 12) with a duct-to-duct biliary reconstruction. At the time of LT, the enterocutaneous fistula tract was resected and the anastomosis fashioned again on fresh tissues. The postoperative period was uneventful and the patient was discharged on day 21. Pathology of the native liver revealed liver cirrhosis, 50% microscopic steatosis, two entirely necrotic HCCs of both 15 mm and a third one of 16 mm. The patient was given calcium, iron, and vitamin supplementation along with immunosuppressive treatment (tacrolimus (8–12 ng/mL up to month 4, then 6–10 ng/mL during months 4–12, then 4–8 ng/mL after 12 months), mycophenolate mofetil and prednisone). To date, the patient is currently alive and disease-free at 9 years from his first BS and 5 years from LT (weight: 75.5 kg; height: 183
 cm: BMI: 22.5 kg/m²). His most recent nutritional state presents an albumin level of 32.6 g/L and a
- 40 cm; BMI: 22.5 kg/m²). His most recent nutritional state presents an albumin level of 32.6 g/L and a sarcopenic state with a right psoas area of 986.6 mm² and a left area of 829.1 mm² (Fig.3).

Discussion

In 2016, procedures performed for morbid obesity reached the 200.000 level in the US and this rate will probably continue to increase as obesity is on the rise^{6,7}. BS has been proven to be the most effective and sustainable treatment for obesity and its comorbidities such as hypertension, diabetes, obstructive sleep apnea and dyslipidaemia². On the same slope, NAFLD concerns more than 30 % of Americans. Indeed, NASH has become the second indication for LT in the US⁸. Although there is some evidence that BS may improve NASH lesions^{2,9}, end-stage liver disease and/or HCC may still occur. Given that, it should be considered that more and more LT will be done in patients with history

50 of BS because of the wide diffusion of the latter. Whether obesity is a relative contraindication for LT, due to the risk of postoperative morbidity and the reduction of long-term survival, is still a matter of debate^{10,11}. However, as NAFLD is becoming the main indication for LT, the management of obesity treatment and LT is critical and the impact of prior BS on LT needs more clarity.

Idriss et al studied the impact of prior BS on candidacy for LT and found an increased risk of death on

the waiting list and a higher rate of delisting in patients with Roux-en-Y Gastric Bypass (RYGB)¹². Malabsorptive mechanisms involved in RYGB might induce more important malnutrition and/or a sarcopenic state, which can contribute to worse outcomes while being on the waiting list and after LT patients. Indeed, the patient herein presented showed before LT psoas muscle area slightly below the range accepted to define the sarcopenic state⁵. Two years after LT sarcopenia worsened as the psoas
muscle area decreased of approximately 30% on CT scan. Indeed, it is well known that proteic malnutrition is a complication of biliopancreatic diversions techniques including the DS.

The unavoidable worsening of sarcopenia may be explained by the malabsorption due to BPD-DS in addition to the surgical stress linked to LT as well as the following immunosuppressive therapy¹³. Probably, the patient could have taken advantage of a rehabilitation programme before LT. As a matter of fact, evidence for the benefits of nutrition intervention associated with resistance exercise in improving skeletal muscle strength and mass is growing. Healthier dietary patterns, such as adequate

- intake of protein, vitamin D, antioxidants and long-chain polyunsaturated fatty acids seem to benefit
 on muscle mass and function¹⁴. Anyway, this shortcoming could serve as a future suggestion to
 consider the possible benefits of nutritional supplementation in patients with sarcopenia before a
 demanding surgical intervention such as LT.
 - However, most patients with a history of BS listed for LT have currently a SG². Indeed, SG is considered by most the procedure of choice in patients with liver cirrhosis that are or may become candidates to LT¹⁵. Restrictive procedures have less protein malnutrition and micronutrient deficiencies than malabsorptive procedures avoiding any limitations linked to the intestinal bypass, and that is why it might be a better choice before LT. Moreover, Safwan *et al* studied 11 patients that had previous BS and stressed that, in case of RYGB and BPD-DS, endoscopic access to the biliary tree in case of biliary complications, that were as high as 27% in his series, is often impossible¹⁶. In

After a bariatric procedure, a rare but authentic complication to BS remains the possibility of acute or chronic liver failure, even more after BPD-DS, mainly due to bacterial overgrowth and protein

our patient, a duct-to-duct reconstruction was done but no postoperative complication occurred.

65

80

deficiency^{17,18}. Nonetheless, this complication stays rare with much fewer liver-damages after BPD-DS than after jejunoileal bypass (JIB). In a recent review of the literature, we found that BPD with or without DS may lead to acute liver failure although only 17 cases were found over the last 18 years¹⁷. After a BPD-DS, Geertz *et al* recommend following these patients strictly with routine monitoring of

- 85 liver tests and adequate supplementation¹⁸. The possibility to lengthen the common channel should be considered at the time of LT or later if malabsorption impairs postoperative course. In the case herein reported, we chose not to alter the bariatric anatomy as the patient underwent LT for HCC and not because of BS related LF. Interestingly, the short common channel did not affect the immunosuppressive treatment. Indeed, Tacrolimus is also absorbed in the colon¹⁹.
- 90 This case report indicates that LT can be safely performed in the setting of a BPD-DS. Indeed, while the patient fulfilled the Milan criteria, known to be associated with optimal survival results after LT, one might have been tempted to decline LT favouring alternative therapeutic options because of the theoretical risk of complications linked to the BPD with DS. Excellent results were obtained in our patient because he was on a regular nutritional follow-up after LT, had compensated liver cirrhosis, and was managed by a team experienced in both LT and BS²⁰. Close monitoring of vitamins, minerals and nutritional status is mandatory in the setting of patients with a history of BS undergoing

Conclusion

BS is expanding its range of activity over the years and takes on more and more role in the scene of transplantology. To our knowledge, this is the first case of BPD-DS followed by LT for HCC. While the malabsorptive component of BS adds risk, it should not be a reason for liver surgeons to retreat, particularly if associated with a well-planned physical and nutritional rehabilitation.

Acknowledgements

No funding was provided by any source.

LT in parallel to the level of immunosuppressive drugs.

105 References

- 1. Angrisani L, Santonicola A, Iovino P, Formisano G, Buchwald H, Scopinaro N. Bariatric Surgery Worldwide 2013. *Obesity Surgery*. 2015;25(10):1822-1832. doi:10.1007/s11695-015-1657-z
- 2. Lazzati A, Iannelli A, Schneck A-S, et al. Bariatric Surgery and Liver Transplantation: a Systematic Review a New Frontier for Bariatric Surgery. *Obesity Surgery*. 2015;25(1):134-142. doi:10.1007/s11695-014-1430-8

110

115

120

130

135

- 3. Charlton MR, Burns JM, Pedersen RA, Watt KD, Heimbach JK, Dierkhising RA. Frequency and Outcomes of Liver Transplantation for Nonalcoholic Steatohepatitis in the United States. *Gastroenterology*. 2011;141(4):1249-1253. doi:10.1053/j.gastro.2011.06.061
- 4. Iannelli A. Bariatric surgery and liver transplant. *Liver Transplantation*. 2017;23(11):1369-1370. doi:10.1002/lt.24948
- 5. Golse N, Bucur PO, Ciacio O, et al. A new definition of sarcopenia in patients with cirrhosis undergoing liver transplantation: GOLSE ET AL. *Liver Transplantation*. 2017;23(2):143-154. doi:10.1002/lt.24671
- 6. Hales CM. Prevalence of Obesity Among Adults and Youth: United States, 2015–2016. 2017;(288):8.
 - 7. English WJ, DeMaria EJ, Brethauer SA, Mattar SG, Rosenthal RJ, Morton JM. American Society for Metabolic and Bariatric Surgery estimation of metabolic and bariatric procedures performed in the United States in 2016. *Surgery for Obesity and Related Diseases*. 2018;14(3):259-263. doi:10.1016/j.soard.2017.12.013
- Cholankeril G, Wong RJ, Hu M, et al. Liver Transplantation for Nonalcoholic Steatohepatitis in the US: Temporal Trends and Outcomes. *Digestive Diseases and Sciences*. 2017;62(10):2915-2922. doi:10.1007/s10620-017-4684-x
 - Hafeez S, Ahmed MH. Bariatric Surgery as Potential Treatment for Nonalcoholic Fatty Liver Disease: A Future Treatment by Choice or by Chance? *Journal of Obesity*. 2013;2013:1-11. doi:10.1155/2013/839275
 - Conzen KD, Vachharajani N, Collins KM, et al. Morbid obesity in liver transplant recipients adversely affects longterm graft and patient survival in a single-institution analysis. *HPB*. 2015;17(3):251-257. doi:10.1111/hpb.12340
 - Schiavo L, Busetto L, Cesaretti M, Zelber-Sagi S, Deutsch L, Iannelli A. Nutritional issues in patients with obesity and cirrhosis. *World Journal of Gastroenterology*. 2018;24(30):3330-3346. doi:10.3748/wjg.v24.i30.3330
 - Idriss R, Hasse J, Wu T, et al. Impact of Prior Bariatric Surgery on Perioperative Liver Transplant Outcomes: Liver Transplantation. *Liver Transplantation*. 2019;25(2):217-227. doi:10.1002/lt.25368
- 140 13. Cruz-Jentoft AJ, Sayer AA. Sarcopenia. *The Lancet*. 2019;393(10191):2636-2646. doi:10.1016/S0140-6736(19)31138-9
 - Dent E, Morley JE, Cruz-Jentoft AJ, et al. International Clinical Practice Guidelines for Sarcopenia (ICFSR): Screening, Diagnosis and Management. *The journal of nutrition, health & aging*. 2018;22(10):1148-1161. doi:10.1007/s12603-018-1139-9
 - 5

145 15. Zamora-Valdes D, Watt KD, Kellogg TA, et al. Long-term outcomes of patients undergoing simultaneous liver transplantation and sleeve gastrectomy. *Hepatology*. 2018;68(2):485-495. doi:10.1002/hep.29848

150

- 16. Safwan M, Collins KM, Abouljoud MS, Salgia R. Outcome of liver transplantation in patients with prior bariatric surgery: Safwan et al. *Liver Transplantation*. 2017;23(11):1415-1421. doi:10.1002/lt.24832
 - 17. Addeo P, Cesaretti M, Anty R, Iannelli A. Liver transplantation for bariatric surgery-related liver failure: a systematic review of a rare condition. *Surgery for Obesity and Related Diseases*. June 2019. doi:10.1016/j.soard.2019.06.002
- 18. Geerts A, Darius T, Chapelle T, et al. The Multicenter Belgian Survey on Liver Transplantation for Hepatocellular Failure after Bariatric Surgery. *Transplantation Proceedings*. 2010;42(10):4395-4398. doi:10.1016/j.transproceed.2010.07.010
 - 19. Tsunashima D, Kawamura A, Murakami M, et al. Assessment of Tacrolimus Absorption From the Human Intestinal Tract: Open-Label, Randomized, 4-Way Crossover Study. *Clinical Therapeutics*. 2014;36(5):748-759. doi:10.1016/j.clinthera.2014.02.021
- 160 20. Mosko JD, Nguyen GC. Increased Perioperative Mortality Following Bariatric Surgery Among Patients With Cirrhosis. *Clinical Gastroenterology and Hepatology*. 2011;9(10):897-901. doi:10.1016/j.cgh.2011.07.007

5 Ep Gln Act Chl Ttn Ab Kfs 6 Ep Phe GIn Chl Pmp Ttn Ab Kfs

10 Ep Gln Act Chl Pmp Ttn Kfs 11 Ep Gln Act Chl Ttn Kfs 12 Ep Bt Gln Act Chl Ttn Ab Kfs

16 PI Bt Hbl Act Chl Ttn Ab Kfs 17 PI Bt Hbl Act Ttn Ab Kfs 18 PI Bt Hbl Ttn Ab Kfs

22 PI Ep Bt Hbl Chl Ttn Ab Kfs 23 PI Ep Bt Hbl Ttn Ab Kfs 24 Ep Bt Hbl Ttn Ab

```
28 Ep Bt Hbl Act Chl Ttn Ab
29 PI Bt Hbl Act Chl Ttn Ab
30 PI Bt Hbl Act Ttn Ab
```


<u>STAGE</u>	<u>GENESIS</u>	MINERAL ASSEMBLAGE
10	igneous	Amp, Cpx
I1 (core, rim)	igneous	Amp, PI, Qz, Kfs, Mgt, Ilm, Ap, Bt
l2 (a,b)	late-igneous	Ab, Amp
M1	subsolidus, hydrothermal	Ab, Act, Bt, Chl, Ep, Hem, Kfs, Py, Qz, Ttn
M2 (a,b)	subsolidus, syn-D4	Act, Bt, Chl, Ep, Kfs, Pl, Qz, Ttn, Wm

<u>Site</u>	Rock type	Generation	<u>Si</u>	AI	<u>Ti</u>	AI ^{VI}	<u>Mg#</u>	<u>Ca</u>	<u>Na</u>	<u>K</u>
Valscura	Appinite	Ampl1	6.00 - 6.92	1.08 - 2.00	0.11 - 0.48	0.14 - 0.38	0.56 - 0.71	1.57 - 1.88	0.51 - 0.91	0.07 - 0.11
		(37 data)	6.36 ± 0.21	1.64 ± 0.21	0.23 ± 0.09	0.26 ± 0.05	0.64 ± 0.04	1.71 ± 0.08	0.79 ± 0.08	0.08 ± 0.01
		Ampl2a	7.13 - 7.73	0.28 - 0.87	0.01 - 0.14	0.06 - 0.17	0.42 - 0.64	1.37 - 1.86	0.15 - 0.48	0.02 - 0.07
		(10 data)	7.45 ± 0.20	0.55 ± 0.20	0.08 ± 0.04	0.11 ± 0.03	0.55 ± 0.07	1.58 ± 0.16	0.31 ± 0.10	0.05 ± 0.02
	Leuco-appinite	Ampl1	6.01 - 6.05	1.95 - 2.00	0.34 - 0.39	0.25 - 0.36	0.67 - 0.71	1.81 - 1.87	0.78 - 0.87	0.08
		(5 data)	6.03 ± 0.02	1.97 ± 0.02	0.36 ± 0.02	0.30 ± 0.04	0.69 ± 0.02	1.84 ± 0.02	0.82 ± 0.04	-
		Ampl2a	7.40	0.60	0.12	0.12	0.75	1.81	0.33	0.05
		(1 data)	-	-	-	-	-	-	-	-
	Spessartite	Ampl1	5.74 - 6.46	1.60 - 2.26	0.26 - 0.51	0.20 - 0.34	0.57 - 0.78	1.72 - 1.96	0.59 - 0.87	0.06 - 0.12
		(19 data)	6.04 ± 0.16	1.96 ± 0.16	0.36 ± 0.07	0.27 ± 0.04	0.70 ± 0.05	1.86 ± 0.06	0.79 ± 0.07	0.09 ± 0.02
		Ampl2a	6.65 - 7.60	0.40 - 1.36	0.04 - 0.21	0.05 - 0.31	0.53 - 0.70	1.23 - 1.94	0.16 - 0.58	0.02 - 0.05
		(9 data)	7.22 ± 0.37	0.78 ± 0.37	0.11 ± 0.06	0.15 ± 0.09	0.62 ± 0.07	1.73 ± 0.21	0.29 ± 0.13	0.04 ± 0.01
Haut Boréon	Appinite	Ampl1 core	5.92 - 6.12	1.88 - 2.08	0.31 - 0.45	0.10 - 0.33	0.54 - 0.64	1.69 - 1.91	0.81 - 0.94	0.09 - 0.13
		(34 data)	6.03 ± 0.05	1.97 ± 0.05	0.38 ± 0.03	0.26 ± 0.04	0.67 ± 0.05	1.87 ± 0.04	0.84 ± 0.03	0.11 ± 0.01
	Melanocratic	Ampl1 core	5.74 - 6.06	1.94 - 2.26	0.41 - 0.67	0.19 - 0.37	0.55 - 0.68	1.84 - 1.94	0.79 - 1.05	0.10 - 0.14
	spessartite	(17 data)	5.94 ± 0.09	2.06 ± 0.09	0.54 ± 0.07	0.25 ± 0.05	0.62 ± 0.03	1.89 ± 0.03	0.89 ± 0.06	0.12 ± 0.01
		Ampl1 rim	6.03 - 6.41	1.59 - 1.97	0.23 - 0.48	0.15 - 0.35	0.41 - 0.62	1.73 - 1.88	0.85 - 1.10	0.10 - 0.18
		(15 data)	6.16 ± 0.12	1.84 ± 0.12	0.37 ± 0.06	0.28 ± 0.05	0.50 ± 0.05	1.81 ± 0.04	0.98 ± 0.08	0.14 ± 0.02
		Ampl2b	6.19 - 6.32	1.68 - 1.81	0.26 - 0.36	0.11 - 0.15	0.25 - 0.34	1.71 - 1.79	0.86 - 1.01	0.28 - 0.31
		(4 data)	6.27 ± 0.05	1.73 ± 0.05	0.30 ± 0.05	0.13 ± 0.01	0.28 ± 0.04	1.75 ± 0.03	0.93 ± 0.05	0.29 ± 0.01
	Comb-layered	Ampl1 core	5.87 - 6.18	1.82 - 2.13	0.33 - 0.54	0.20 - 0.35	0.48 - 0.68	1.81 - 1.94	0.78 - 0.92	0.11 - 0.14
	appinite	(27 data)	6.00 ± 0.09	2.00 ± 0.09	0.45 ± 0.06	0.28 ± 0.04	0.60 ± 0.06	1.89 ± 0.04	0.86 ± 0.04	0.12 ± 0.01
		Ampl1 rim	6.26 - 6.28	1.72 - 1.74	0.29 - 0.30	0.21 - 0.33	0.44 - 0.47	1.76 - 1.81	0.85 - 0.91	0.12 - 0.14
		(3 data)	6.27 ± 0.01	1.73 ± 0.01	-	0.27 ± 0.05	0.45 ± 0.02	1.79 ± 0.02	0.89 ± 0.02	0.13 ± 0.01
	Spessartite	Ampl1 core	5.78 - 6.21	1.79 - 2.22	0.32 - 0.52	0.13 - 0.38	0.51 - 0.75	1.79 - 1.96	0.66 - 1.11	0.10 - 0.17
		(48 data)	6.00 ± 0.10	2.00 ± 0.10	0.41 ± 0.05	0.27 ± 0.05	0.68 ± 0.05	1.87 ± 0.04	0.80 ± 0.06	0.13 ± 0.01
		Ampl1 rim	6.10 - 6.96	1.04 - 1.90	0.21 - 0.35	0.21 - 0.32	0.37 - 0.71	1.70 - 1.90	0.31 - 1.16	0.06 - 0.18
		(7 data)	6.47 ± 0.31	1.53 ± 0.31	0.28 ± 0.05	0.28 ± 0.04	0.58 ± 0.10	1.82 ± 0.06	0.72 ± 0.27	0.12 ± 0.04

<u>Site</u>	Rock type	<u>Generation</u>	<u>Si</u>	<u>Al^{IV}</u>	<u>Ti</u>	<u>AI^{VI}</u>	<u>Mg#</u>	<u>Ca</u>	^B Na	^A Na	<u>K</u>
Valscura	Appinite	AmpM1	7.81 - 8.00	0.00 - 0.19	0.00 - 0.02	0.00 - 0.12	0.43 - 0.76	1.91 - 2.00	0.00 - 0.08	0.00 - 0.03	0.00 - 0.01
		(35 data)	7.92 ± 0.05	0.08 ± 0.05	-	0.06 ± 0.03	0.70 ± 0.06	1.97 ± 0.02	0.02 ± 0.01	0.01 ± 0.01	-
		AmpM2a	7.95	0.05	0.01	0.09	0.53	1.97	0.03	0.01	0.01
		(1 data)	-	-	-	-	-	-	-	-	-
		AmpM2b	7.69 - 7.94	0.06 - 0.31	0.00 - 0.02	0.07 - 0.24	0.44 - 0.77	1.90 - 1.96	0.02 - 0.09	0.00 - 0.07	0.01 - 0.03
		(14 data)	7.85 ± 0.06	0.15 ± 0.06	-	0.13 ± 0.04	0.67 ± 0.09	1.93 ± 0.02	0.05 ± 0.02	0.02 ± 0.02	-
	Leuco-appinite	AmpM1	7.93 - 7.96	0.04 - 0.07	0.00 - 0.01	0.01 - 0.07	0.71 - 0.72	1.96 - 1.98	0.00 - 0.04	0.00 - 0.00	0.00
		(2 data)	-	-	-	-	-	-	-	-	-
	Spessartite	AmpM1	7.81 - 7.99	0.01 - 0.19	0.00 - 0.01	0.02 - 0.08	0.61 - 0.74	1.91 - 1.98	0.01 - 0.05	0.00 - 0.05	0.00 - 0.01
		(17 data)	7.91 ± 0.05	0.09 ± 0.05	-	0.04 ± 0.02	0.70 ± 0.04	1.96 ± 0.02	0.02 ± 0.01	0.01 ± 0.01	
		AmpM2a	7.87 - 7.97	0.03 - 0.13	0.00 - 0.02	0.03 - 0.10	0.49 - 0.75	1.86 - 1.98	0.02 - 0.08	0.00 - 0.05	0.00 - 0.01
		(9 data)	7.91 ± 0.04	0.09 ± 0.04	-	0.08 ± 0.03	0.66 ± 0.09	1.95 ± 0.04	0.04 ± 0.02	0.01 ± 0.01	-
		AmpM2b	7.61 - 7.92	0.08 - 0.39	0.00 - 0.03	0.05 - 0.24	0.55 - 0.74	1.78 - 1.98	0.01 - 0.10	0.00 - 0.10	0.01 - 0.07
		(21 data)	7.79 ± 0.09	0.21 ± 0.09	-	0.13 ± 0.05	0.68 ± 0.04	1.93 ± 0.05	0.04 ± 0.02	0.03 ± 0.03	0.02 ± 0.01
	All	AmpM1	7.81 - 8.00	0.00 - 0.19	0.00 - 0.02	0.00 - 0.12	0.43 - 0.76	1.91 - 2.00	0.00 - 0.08	0.00 - 0.05	0.00 - 0.01
		(53 data)	7.91 ± 0.06	0.09 ± 0.05	-	0.05 ± 0.03	0.70 ± 0.05	1.97 ± 0.02	0.02 ± 0.01	0.01 ± 0.01	-
	All	AmpM2b	7.61 - 7.94	0.06 - 0.39	0.00 - 0.03	0.05 - 0.24	0.44 - 0.77	1.78 - 1.98	0.01 - 0.10	0.00 - 0.10	0.01 - 0.07
		(35 data)	7.81 ± 0.09	0.19 ± 0.09	-	0.13 ± 0.05	0.68 ± 0.07	1.93 ± 0.04	0.05 ± 0.02	0.03 ± 0.02	0.02 ± 0.01
Haut Boréon	Appinite	AmpM1	7.89	0.11	0.00	0.06	0.58	1.97	0.03	0.04	0.01
		(1 data)	-	-	-	-	-	-	-	-	-
		AmpM2	7.63 - 7.83	0.17 - 0.37	0.00 - 0.01	0.10 - 0.15	0.63 - 0.70	1.87 - 1.90	0.07 - 0.08	0.02 - 0.10	0.01 - 0.03
		(2 data)	-	-	-	-	-	-	-	-	-
	Melanocratic	AmpM1	7.92	0.08	0.01	0.05	0.63	1.95	0.03	0.01	0.01
	spessartite	(1 data)	-	-	-	-	-	-	-	-	-
	Comb-layered	AmpM1	7.94	0.06	0.00	0.08	0.65	1.87	0.10	0.02	0.01
	appinite	(1 data)	-	-	-	-	-	-	-	-	-
		AmpM2	7.63	0.35	0.01	0.00	0.63	1.90	0.07	0.04	0.03
		(1 data)	-	-	-	-	-	-	-	-	-
	Spessartite	AmpM1	7.89 - 7.99	0.01 - 0.11	0.00 - 0.02	0.04 - 0.11	0.46 - 0.68	1.87 - 1.95	0.03 - 0.07	0.00 - 0.04	0.00 - 0.02
		(6 data)	7.94 ± 0.04	0.06 ± 0.04	-	0.06 ± 0.03	0.56 ± 0.08	1.93 ± 0.03	0.04 ± 0.02	0.01 ± 0.01	-
		AmpM2	7.59 - 7.88	0.12 - 0.41	0.00 - 0.02	0.09 - 0.26	0.52 - 0.70	1.90 - 1.97	0.03 - 0.08	0.02 - 0.09	0.01 - 0.07
		(11 data)	7.75 ± 0.08	0.25 ± 0.08	-	0.16 ± 0.05	0.64 ± 0.05	1.93 ± 0.02	0.05 ± 0.02	0.05 ± 0.02	0.02 ± 0.02
	All	AmpM1	7.89 - 7.99	0.01 - 0.11	0.00 - 0.02	0.04 - 0.11	0.46 - 0.68	1.87 - 1.97	0.03 - 0.10	0.00 - 0.04	0.00 - 0.02
		(9 data)	7.94 ± 0.04	0.06 ± 0.04	-	0.06 ± 0.02	0.58 ± 0.07	1.93 ± 0.03	0.05 ± 0.02	0.01 ± 0.01	-
	All	AmpM2	7.59 - 7.88	0.12 - 0.41	0.00 - 0.02	0.00 - 0.26	0.52 - 0.70	1.87 - 1.97	0.03 - 0.08	0.02 - 0.10	0.01 - 0.07
		(14 data)	7.73 ± 0.08	0.26 ± 0.08	-	0.15 ± 0.06	0.64 ± 0.04	1.92 ± 0.02	0.06 ± 0.02	0.05 ± 0.03	0.02 ± 0.01

<u>Site</u>	Rock type	<u>Mineral</u>	<u>T (°C)</u>	<u>P (GPa)</u>	
			<u>R10</u>	<u>R10</u>	<u>M16</u>
Valscura	Appinite	Ampl1	785 - 1009	0.11 - 0.52	
			920 ± 52	0.30 ± 0.09	
		Ampl2a	666 - 759	0.03 - 0.08	0.07 - 0.18
			714 ± 34	0.06 ± 0.02	0.12 ± 0.03
	Leuco-appinite	Ampl1	1001 - 1021	0.44 - 0.54	
			1009 ± 8	0.49 ± 0.04	
		Ampl2a	738	0.05	0.13
	Spessartite	Ampl1	927 - 1066	0.30 - 0.68	
			1008 ± 38	0.48 ± 0.11	
		Ampl2a	665 - 875	0.04 - 0.21	0.08 - 0.12
			749 ± 84	0.09 ± 0.06	0.10 ± 0.01
Haut Boréon	Appinite	Ampl1 core	947 - 1021	0.33 - 0.57	
			1005 ± 14	0.48 ± 0.05	
	Melanocratic	Ampl1 core	998 - 1036	0.48 - 0.74	
	spessartite		1013 ± 12	0.56 ± 0.06	
		Ampl1 rim	958 - 1001	0.40 - 0.48	
			978 ± 11	0.47 ± 0.02	
	Comb layered	Ampl1 core	951 - 1034	0.40 - 0.64	
	appinite		1002 ± 23	0.53 ± 0.07	
		Ampl1 rim	929	0.31	
	Spessartite	Ampl1 core	971 - 1043	0.38 - 0.70	
			1011 ± 18	0.52 ± 0.08	
		Ampl1 rim	840 - 962	0.14 - 0.37	
			916 ± 45	0.27 ± 0.08	

<u>Site</u>	<u>Mineral</u>	<u>T (°C)</u>	<u>T (°C)</u>					
_		<u>C88</u>	<u>J91</u>	<u>B13</u>	<u>G98</u>	<u>G98</u>		
Valscura	ChIM1	260 - 371	261 - 372	251 - 367				
		297 ± 26	298 ± 27	309 ± 37				
	AmpM2b				370 - 435	0.09 - 0.21		
					394 ± 18	0.15 ± 0.03		
Haut Boréon	ChIM1	250 - 331	256 - 336	220 - 354				
		285 ± 23	290 ± 23	300 ± 43				
	AmpM2b				359 - 435	0.12 - 0.23		
					405 ± 20	0.17 ± 0.03		