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Hamilton-Jacobi Inequalities on a Metric Space∗

Zeinab Badreddine† and Hélène Frankowska‡

Abstract: In some applied models (of flocking or of the crowd control) it is more natural to deal
with elements of a metric space (as for instance a family of subsets of a vector space endowed with the
Hausdorff metric) rather than with vectors in a normed vector space. We consider an optimal control
problem on the so called morphological control system whose trajectories are time dependent tubes of
subsets of RN and show that the theory of Hamilton-Jacobi-Bellman inequalities can be extended to
this framework.

Keywords: Optimal control; dynamic programming; morphological control system; contingent
Hamilton-Jacobi inequalities.
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1 Introduction
Consider the Hamilton-Jacobi partial differential equation −

∂W

∂t
+H(x,−∂W

∂x
) = 0 on [0, 1]× RN (HJB)

W (1, ·) = g(·) on RN ,

where the Hamiltonian H : RN × RN → R and the final time condition g : RN → R are given. The
classical results of the viscosity solutions theory provide sufficient conditions for the existence and
uniqueness of solutions to this first order PDE. In this theory, started in [9] and [10], solutions are
understood in a weak sense. Namely, notions of generalized gradients (super and subdifferentials) are
introduced to define super/subsolutions of (HJB). Then a continuous function W : [0, 1]× RN → RN
is called a viscosity supersolution of (HJB) equation if for every (t, x) ∈]0, 1[×RN ,

−pt +H(x,−px) ≥ 0, ∀ (pt, px) ∈ ∂−W (t, x), (1)

where ∂−W (t, x) denotes the subdifferential ofW at (t, x). Further, W is called a viscosity subsolution
of (HJB) equation if for every (t, x) ∈]0, 1[×RN ,

−pt +H(x,−px) ≤ 0, ∀ (pt, px) ∈ ∂+W (t, x), (2)

where ∂+W (t, x) denotes the superdifferential of W at (t, x). If W is simultaneously a viscosity super
and subsolution, then it is called a viscosity solution of (HJB).

The above Hamilton-Jacobi equation arises in optimal control theory in connection with the Mayer
problem:

V (t0, x0) := inf g(x(1))
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over all trajectories of the control system

ẋ(t) = f(x(t), u(t)), x(t0) = x0, u(t) ∈ U,

where U is a metric space and x0 ∈ RN , t0 ∈ [0, 1], g : RN → R, f : RN × U → RN are given. Then
the associated Hamiltonian is defined by

H(x, p) = sup
u∈U
〈p, f(x, u)〉

for all x, p ∈ RN and it is convex in the second variable. Under some technical assumptions, the value
function V : [0, 1]×RN → R defined above is continuous and is the unique viscosity solution of (HJB)
satisfying the final time condition V (1, ·) = g(·). The Hamiltonian being convex in the last variable,
viscosity solutions of (HJB) can be equivalently defined using (contingent) directional derivatives of
solutions instead of sub/superdifferentials, see [12, 13, 14]. The two inequalities (1) and (2) then
become: for all (t, x) ∈ [0, 1[×RN ,

(C −HJB)


inf
u∈U

D↑W (t, x)(1, f(x, u)) ≤ 0,

sup
u∈U

D↑(−W )(t, x)(1, f(x, u)) ≤ 0,

where D↑W (t, x)(1, f(x, u)) denotes the contingent directional derivative of W at (t, x) in the direc-
tion (1, f(x, u)) and similarly for D↑(−W )(t, x)(1, f(x, u)). Let us underline that the first inequality
involving directional derivatives does allow to build an optimal synthesis, while this is not the case of
the inequalities (1), (2) involving subdifferentials/superdifferentials, cf. [12]. Functions W satisfying
inequalities like (C-HJB) are called contingent solutions to (HJB) equation.

In the recent years, motivated by some potential applications in the study of complex systems,
or multi-agent systems, whose models are described in the space of probability measures, there is a
growing interest in Hamilton-Jacobi equations stated on metric spaces instead of RN . For instance,
in [16] the Hopf-Oleinik formula is extended to complete separable metric spaces in which closed balls
are compact to show the existence of solutions to a Hamilton-Jacobi equation. The Hamiltonian
considered in [16] is less general than in (HJB) and the notion of gradient is replaced by local slops
of functions. More general results, including the uniqueness of solutions to a class of Hamilton-Jacobi
equations in geodesic metric spaces have been obtained in [1] by means of extension of the viscosity
solutions theory and were applied to investigate a Hamilton-Jacobi equation in the Wasserstein space of
probability measures. See also [19] for the characterisation of the value function of the Mayer problem
as the unique bounded Lipschitz viscosity solution of an associated Hamilton-Jacobi equation in the
Wasserstein space and [7] for necessary conditions in the form of an (HJB) equation solved by the
value function in a suitable viscosity sense and for a further discussion of the relevant literature on
control problems in Wasserstein spaces.

Let K (RN ) denote the space of compact subsets of RN . Given a probability measure µ on RN ,
it is always possible to “scalarize” K (RN ) by attributing to each compact K ⊂ RN its probability
measure µ(K). However this makes two sets having the same probabilities indistinguishable. When
the evolution of probability measures is governed by the so-called continuity equation with Lipschitz
continuous velocity field, then solutions of the continuity equation are given via the pushforward
map that involves evolution of flows under an ODE. The natural question arises then whether the
Hamilton-Jacobi theory can be extended also to the space K (RN ) without involving "scalarization"
of sets. In this way one can deal with subsets evolving in the space K (RN ) under the action of a
mutational control system. The right-hand sides of such systems are described using the so-called
transitions on metric spaces, see for instance [2], [17], where many classical results of ODEs on vector
spaces were extended to metric spaces. Historically, morphological analysis in [2] was motivated by
mathematical economics to describe the evolution of sets of commodities vectors and next, by the
piloting of the evolution of a camera to focus on a fuzzy image to make it sharp, cf. [11]. It was also
used to design a descent algorithm in shape optimization to find global minima in [15] and applied to
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sweeping processes [5]. Some applications dealt with the cell morphogenesis and the modelisation of
zebra fishes, see the bibliography of [21], for instance.

This general framework allows to consider problems involving evolution of tubes (typical for prob-
lems with uncertainties and disturbances), instead of (single-valued) trajectories, see for instance [8]
for examples of models of moving populations based on morphological control systems are described
and its bibliographical comments and also [6] for further references. Recently, in [6], a characterization
of the value function of a Mayer problem stated on K (RN ) as the unique bounded Lipschitz solution
of contingent Hamilton-Jacobi-Bellmann inequalities was given. The specific future of the multi-agent
system investigated in [6] consists in the fact that the dynamic of each agent is described by a differ-
ential inclusion depending on the crowd of agents.

The present work is devoted to an extension of the Hamilton-Jacobi theory of optimal control
problems to the framework of the metric space (K (RN ), dH) of nonempty compact subsets of RN
supplied with the Hausdorff distance dH . Since this space does not have a vector structure, control
systems on (K (RN ), dH) are described by the so-called mutational equations whose solutions are time
dependent tubes. For the set-dependent cost function we introduce the corresponding value function
and show that it satisfies two generalized contingent Hamilton-Jacobi inequalities, similar to (C-HJB),
with directional derivatives defined using transitions on (K (RN ), dH). Then we prove that continuous
solutions to these contingent inequalities are unique once the final time condition is imposed. The
space (K (RN ), dH) not having a dual, the expression of solutions to the Hamilton-Jacobi equation in-
volving sub/superdifferentials is not extended yet to this framework and is an interesting open question.

More precisely, we consider a complete separable metric space U and the Lebesgue measurable
controls u(·) : [0, 1] → U . Denote by Lip(RN ,RN ) the set of bounded Lipschitz maps from RN into
itself. Let f : K (RN )× U → Lip(RN ,RN ), K0 ⊂ RN and consider the system

x′(τ) = f
(
K(τ), u(τ)

)(
x(τ)

)
for a.e. τ ∈ [0, 1], x(0) ∈ K0, (3)

associated to a control u(·). Under the classical assumptions, given a tube t  K(t) ⊂ RN , to
every (fixed) control u(·) and initial condition x0 ∈ K0 corresponds the unique solution x(·) of the
differential equation in (3) with x(0) = x0. We are interested here by a particular instance of tubes
that are reachable sets. In fact, by [17, Section 5.3.1], there exists a tube K(·) so that K(t) coincides
with the reachable set of (3) at time t. In other words K(·) solves the “morphological equation”

◦
K(·) 3 f

(
K(·), u(·)

)
, K(0) = K0 (4)

introduced in [2]. The above inclusion seems to be well adapted to describe the movement of the
crowd of agents t  K(t) ⊂ RN and to control it by using either open-loop controls, or closed loop
controls.

In this context, if the set K0 = {x1
0, ..., x

m
0 } is finite, then for every t ∈ [0, 1], the set K(t) =

{x1(t), ..., xm(t)} is also finite and each xi(·) can be seen as an agent whose velocity at time τ , ac-
cording to (3), is equal to f

(
K(τ), u(τ)

)
(xi(τ)). That is (xi)′(τ) depends on u(τ), the position K(τ)

of all the agents as well as on agent’s own position xi(τ). More generally, even when K0 is not finite,
system (3) can be interpreted in the following way : given a control u(·), every agent (indexed by its
initial condition x(0) = x0 ∈ K0) has its dynamic depending on the evolution of the whole crowd of
agents K(·) and its own evolution x(·).

Let g : K (RN ) → R ∪ {+∞} and consider the Mayer type problem, where the controller has to
find an optimal control ū(·) in the sense that the corresponding solution K̄(·) of (4) with u(·) replaced
by ū(·) satisfies

g(K̄(1)) = inf g
(
K(1)

)
over all the solution-control pairs (K(·), u(·)) of (3). In this paper we show that the value function
associated to this Mayer problem satisfies two generalized contingent Hamilton-Jacobi inequalities in
the same spirit as (C-HJB). We also prove the uniqueness of continuous solutions to these contingent
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inequalities. At this point we would like to underline that the model we investigate here is substantially
different from the one in [6], where there is no controller and agents use the dynamics described by the
differential inclusion x′(t) ∈ F (x(t), E(t)), involving the set-valued map F : RN ×K (RN )→ K (RN )
and the crowd of agents E(t). Even when for some f : RN ×K (RN )× U → RN we have F (x,E) =
f(x,E, U), the contingent inequalities we derive to characterise the value function are different from
those of [6, Theorem 6.1].

This is due to the fact that the notion of solutions to crowd dependent systems considered in [6] is
to a large extent different from the one to classical control systems on vector spaces. Indeed, when F
and f do not depend on the second variable and F (x) = f(x, U), it is well known that solutions of the
differential inclusion x′ ∈ F (x) and the open-loop control system x′ = f(x, u(t)), u(t) ∈ U do coincide
under very mild assumptions. This is not the case however when F depends on both variables and
E(t) represents an admissible subflow at time t. Indeed, in [6] the authors consider a much larger
family of “solutions” (subflows) E(·) associated to F than the one given by solution-control pairs of
(4). For instance, if f : RN ×K (RN ) × U → RN is Lipschitz and F (x,E) = f(x,E, U) for every
(x,E) ∈ RN ×K (RN ), then Lipschitz closed-loop controls x 7→ u(x) ∈ U are admissible as well, see
[6, Model 3.2]. Then, in the Mayer problem, the minimization is performed over all solutions E(·).
This implies, on one hand, that the resulting value function is smaller than ours and, on the other
hand, that there is no common control that governs every agent. In fact, in the setting of [6], at
time s each agent x(·) may pick its own velocities in the set F (x(s), E(s)) (and the corresponding
controls in the set U) with an implicit restriction that this selection of controls induces trajectories
in a closed subset A ⊂ C([0, 1],RN ) and for each time t the resulting subflow E(t) is equal to the
reachable set at time t of the “constrained” differential inclusion x′ ∈ F (x,E(·)), x(0) ∈ K0, x(·) ∈ A.
Hence “subflows” of agents are indexed by closed subsets A ⊂ C([0, 1],RN ). In [6] several examples
of admissible indices A are provided, the set of all such indices associated to F being not known. In
other words, some controls available to agents are eliminated by the macroscopic requirement about
E(t), while at the microscopic level various controls may be admissible. In the difference with this
approach, our model extends the classical open-loop control systems to systems whose right-hand side
depends on both open-loop controls and the evolution of the whole crowd of agents K(·). Let us
underline again that the crowds (subflows of differential inclusions) introduced in [6] via compatibility
indices A do increase the number of admissible solutions of the control system after replacing it by a
differential inclusion and de facto do abolish the role of the “controller” in steering the control system
(3). Another important difference is due to the fact that [6] addressed the question of uniqueness in
the class of bounded Lipschitz continuous functions only, while in the present paper we investigate
uniqueness in the class of all continuous functions, that is more in the spirit of the classical viscosity
solutions theory.

The outline of this paper is as follows. In Section 2 we present some basic definitions and pre-
liminaries about mutational and morphological control systems. In Section 3 we show that the value
function of a general mutational optimal control problem satisfies the mutational contingent Hamilton-
Jacobi inequalities. The main results are stated in Section 4, while Section 5 is devoted to optimal
feedback set-valued map. Finally, in the last section, we provide proofs of all the results from Section
4.

2 Notations and preliminaries

2.1 Basic definitions

For a metric space E we denote by B(x, r) the closed ball centered at x with radius r > 0.
Let (E, d) be a metric space (with the metric d). We first recall some notions from [2], see also

[17].

Definition 2.1. (Transition) A map V : [0, 1]×E → E is called a transition on (E, d) if it satisfies
the following conditions:

(i) ∀x ∈ E, V (0, x) = x ;
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(ii) ∀x ∈ E, ∀ t ∈ [0, 1[, lim
h→0+

1
h
· d
(
V
(
t+ h, x

)
,V
(
h,V (t, x)

))
= 0 ;

(iii) α(V ) := sup
x,y∈E

x 6=y

lim sup
h→0+

max
{

0 ,
d
(
V (h, x),V (h, y)

)
− d(x, y)

h · d(x, y)

}
< +∞ ;

(iv) β(V ) := sup
x∈E

lim sup
h→0+

d(x,V (h, x))
h

< +∞ .

Given x ∈ E and a transition V , define z(s) = V (s, x) for s ∈ [0, 1]. Then for every t ∈ [0, 1[ the
curve V (·, z(t)) : [t, 1] → E can be regarded as an approximation of the “differential from the right”
of z(·) at time t because

lim
h→0+

1
h
· d (V (h, z(t)), z(t+ h)) = 0.

Note that the map V : [0, 1] × E → E defined by V (h, x) = x is a (neutral) transition. Below we
denote it by 0. If E is a normed vector space, then for any y ∈ E, the map V : [0, 1] × E → E
defined by V (h, x) = x+ hy is an example of transition. The operation “ + ” being absent in general
metric spaces, the introduced transitions allow to bypass it and still to study solutions of “differential
equations.”

By [17, p.33] every transition is Lipschitz on [0, 1]×E with the Lipschitz constant depending only
on α, β. There are many ways to describe the transitions. Below, we use the notation Θ(E) for some
fixed subsets of transitions on (E, d).

Definition 2.2. (Pseudo-distance on transitions) Let Θ(E) be a given nonempty subset of tran-
sitions on (E, d). For any transitions V ,T ∈ Θ(E), define

dΛ(V ,T ) := sup
x∈E

lim sup
h→0+

1
h
· d
(
V (h, x),T (h, x)

)
.

The basic idea of the pseudo-distance dΛ(V ,T ) is to compare for each x ∈ E the two curves V (·, x)
and T (·, x) : [0, 1]→ E with the same initial point x when h→ 0+. Observe that dΛ(V ,T ) is always
finite. Indeed,

dΛ(V ,T ) ≤ sup
x∈E

lim sup
h→0+

1
h
·
(
d(V (h, x), x) + d(x,T (h, x))

)
≤ β(V ) + β(T ) < +∞.

In general, dΛ is only a pseudo-distance. For some choices of the sets Θ(E) it may become a distance.
Example. For f ∈ Lip(RN ,RN ) define Vf (h, x) = z(h), where z(·) is the solution of the ODE

z′ = f(z), z(0) = x. Then Vf is a transition on (RN , | · |) and it is not difficult to realise that dΛ is a
distance on Θ(RN ) := {Vf | f ∈ Lip(RN ,RN )}.

Definition 2.3. (Mutation) Let Θ(E) be a given nonempty subset of transitions on (E, d) and
x(·) : [0, 1]→ E. For t ∈ [0, 1[, the set

o
x(t) :=

{
V ∈ Θ(E)

∣∣∣∣ lim
h→0+

1
h
· d (V (h, x(t)), x(t+ h)) = 0

}
is called the mutation of x(·) at time t (relative to Θ(E)).

In general, mutations may be empty for some times t and may also be multivalued. When it is clear
from the context, we shall avoid writing “relative to Θ(E)”.

Definition 2.4. (Primitive) Let Θ(E) be a given nonempty subset of transitions on (E, d) and
V (·) : [0, 1]→ Θ(E). A Lipschitz continuous function x(·) : [0, 1]→ E is called a primitive of V (·) if:

o
x(t) 3 V (t) for a.e. t ∈ [0, 1]

i.e. lim
h→0+

1
h
· d
(
V (t)(h, x(t)), x(t+ h)

)
= 0 for a.e. t ∈ [0, 1].
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We next recall the extension of the notion of (contingent) directional derivative with respect to
both time and state to metric spaces, cf. [2]. Below, 1 : [0, 1]× R→ R denotes the transition defined
by 1(h, t) = t+ h.

Definition 2.5. (Contingent directional derivative) Let W : [0, 1] × E → R ∪ {±∞} and (t, x)
be in the domain of W with t < 1. For any transition V : [0, 1] × E → E, the contingent directional
derivative of W at (t, x) in the direction (1,V ) is defined by

◦
D↑W (t, x)(1,V ) = lim

ε→0+
inf

h∈]0,ε]
|t+h−t′|≤εh

y∈B(V (h,x),εh)

W (t′, y)−W (t, x)
h

.

Recall that (t, x) is said to be in the domain of W if and only if W (t, x) 6= ±∞. The above limit
does exist, because the infimum appearing on the right defines a nonincreasing with respect to ε > 0
function. In particular, there exist sequences εn > 0, hn > 0 converging to 0, a sequence xn ∈ E
converging to x and a sequence tn converging to t such that

◦
D↑W (t, x)(1,V ) = lim

n→+∞

W (tn, xn)−W (t, x)
hn

, |tn − (t+ hn)| ≤ εnhn, d (xn,V (hn, x)) ≤ εnhn.

That is
◦
D↑W (t, x)(1,V ) is the infimum of lower limits W (tn,xn)−W (t,x)

hn
over all sequences (hn, tn, xn)

converging to (0+, t, x) and satisfying |tn − (t+ hn)| = o(hn), d (xn,V (hn, x)) = o(hn).
Observe that if W is locally Lipschitz, then the contingent directional derivative is finite and is a

Dini like directional derivative:

◦
D↑W (t, x)(1,V ) = lim inf

h→0+

W
(
t+ h,V (h, x)

)
−W (t, x)

h
. (5)

Definition 2.6. (Contingent transition set) Let K be a subset of a metric space E, x ∈ K

and Θ(E) be a given nonempty subset of transitions on (E, d). The contingent transition set
◦
TK(x)

(relative to Θ(E)) is defined by

◦
TK(x) :=

{
V ∈ Θ(E)

∣∣∣∣ lim inf
h→0+

1
h
· dist

(
K,V (h, x)

)
= 0

}
.

Notice that if 0 ∈ Θ(E), then 0 ∈
◦
TK(x).

We would like to underline that
◦
TK(x) ⊂ Θ(E) and it inherits some properties of Θ(E). For

instance, if Θ(E) is closed, then so is
◦
TK(x). In the difference with the notion of contingent cone in

normed vector spaces, in general,
◦
TK(x) is not a cone.

Given a function W : [0, 1] × E → R ∪ {+∞} denote by E p(W ) its epigraph, i.e. the set
{(t, x, r) | (t, x) ∈ [0, 1]× E, r ≥ W (t, x)}. From the properties of mutations, we deduce the following
result similar to [2, Proposition 1.8.5]:

Proposition 2.7. Let Θ(E) be a given nonempty subset of transitions on (E, d) and 0,1 : [0, 1]×R→
R be transitions defined by 1(h, s) = s+ h and 0(h, z) = z. Define the set of transitions

Θ̃(R× E × R) := {
(
1,V ,0

)
|V ∈ Θ(E)}.

Consider W : [0, 1]×E → R∪{+∞} and (t, x) in the domain of W with t < 1. Then for any transition
V ∈ Θ(E), we have

(
1,V ,0

)
∈
◦
T E p(W )(t, x,W (t, x)) ⇐⇒

◦
D↑W (t, x)(1,V ) ≤ 0,

where
◦
T E p(W )(t, x,W (t, x)) is defined relatively to Θ̃(R× E × R).
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Proof. Fix (t, x) in the domain of W with t < 1. Let
(
1,V ,0

)
∈
◦
T E p(W )(t, x,W (t, x)) and εn → 0+.

Then it is not difficult to show that there exist sequences hn > 0, xn ∈ E, tn ∈ [0, 1] converging
respectively to 0, x and t such that(

tn, xn, W (t, x) + hnεn
)
∈ E p(W ), |tn − (t+ hn)| ≤ εnhn, d

(
xn,V (hn, x)

)
≤ εnhn.

This implies that W (tn, xn) ≤W (t, x) + hnεn and therefore

lim inf
n→+∞

W (tn, xn)−W (t, x)
hn

≤ 0

implying that
◦
D↑W (t, x)(1,V ) ≤ 0.

Conversely, assume that
◦
D↑W (t, x)(1,V ) ≤ 0. We infer that, for some εn → 0+, there exist

sequences xn ∈ E, tn ∈ [0, 1] and hn > 0 converging respectively to x, t and 0 such that

lim
n→+∞

W (tn, xn)−W (t, x)
hn

≤ 0, |tn − (t+ hn)| ≤ εnhn, d
(
xn,V (hn, x)

)
≤ εnhn.

Then W (tn, xn) is finite for all large n. Set

rn = −W (tn, xn) +W (t, x)
hn

, λn := W (tn, xn)−W (t, x)
hn

+ |rn| = −rn + |rn|

and observe that lim
n→+∞

rn ≥ 0, limn→∞ λn = 0 and
(
tn, xn,W (tn, xn) + hn|rn|

)
∈ E p(W ), implying

that
(
tn, xn,W (t, x) + hnλn

)
∈ E p(W ). Therefore

(
1,V ,0

)
∈
◦
T E p(W )(t, x,W (t, x)).

2.2 Reachable sets and morphological transitions

Consider the metric space K (RN ) of nonempty compact subsets of RN supplied with the Pompeiu-
Hausdorff distance:

dH(K1,K2) := max
{

max
x∈K1

dist(x,K2), max
x∈K2

dist(x,K1)
}
, ∀K1,K2 ∈ K (RN ).

Recall that for every r > 0 and K ∈ K (RN ), the closed ball B(K, r) is compact, see for instance [17,
Proposition 47, p.57].

We endow the space Lip(RN ,RN ) of all bounded Lipschitz continuous functions F : RN → RN
with the topology of local uniform convergence. For any F ∈ Lip(RN ,RN ), we denote by LipF the
smallest Lipschitz constant of F . For λ ≥ 0, we write F is λ-Lipschitz if F is Lipschitz with constant
λ on RN . Furthermore, for any F ∈ Lip(RN ,RN ), define ||F ||∞ := sup

x∈RN

|F (x)|.

Denote by W 1,1([0, t],RN) the space of absolutely continuous functions x : [0, t]→ RN .

Definition 2.8. (Reachable set) For any map F : [0, 1] → Lip(RN ,RN ) and 0 ≤ t0 ≤ t < 1, K0 ∈
K (RN ), the set

VF (·)(t,K0) :=
{
x(t)

∣∣∣ x(·) ∈W 1,1([t0, t],RN); x′(s) = F (s)(x(s)) for a.e. s ∈ [t0, t], x(t0) ∈ K0
}

is called the reachable set at time t of the system governed by F (·) from the initial condition (t0,K0).

By [17, p.34], when F does not depend on time, then VF is a transition on K (RN ) called the
morphological transition associated with F .

Proposition 2.9. Let F, G ∈ Lip(RN ,RN ). Then VF : [0, 1] × K (RN ) → K (RN ) introduced in
Definition 2.8 for t0 = 0 is a transition on (K (RN ), dH) with

α
(
VF
)
≤ Lip F, dΛ

(
VF ,VG

)
≤ ||F −G||∞ .
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Definition 2.10. (Solution of the morphological equation) Let F : K (RN )×[0, 1]→ Lip(RN ,RN ).
A compact–valued tube K(·) : [0, 1] RN is called a solution of the morphological equation

◦
K(·) 3 F

(
K(·), ·

)
if K(·) is Lipschitz continuous and limh→0+

1
h dH

(
VF (K(t),t)(h,K(t)),K(t + h)

)
= 0 for almost every

t ∈ [0, 1], i.e. K(·) is a primitive of VF (K(·),·).

This formulation of morphological equation and its solution is discussed in [2], [18] and [17] and
may be misleading at the first glance. Indeed, by Definition 2.4, if K(·) is as above, then it solves the
mutational equation

◦
K(t) 3 VF (K(t),t) for a.e. t ∈ [0, 1]. Since the Lipschitz mapping F (K(t), t)(·)

generates a transition defined by the reachable sets, for the sake of simplification, the morphological
equation is written with F on the right-hand side rather than using the associated transition VF (K(·),·).

For F ∈ Lip(RN ,RN ) define the mapping Id+ F : K (RN )→ K (RN ) by

(Id+ F )(K) := {x+ F (x) |x ∈ K}.

In some results and proofs below it is convenient to use the following expression for the contingent
directional derivative.

Definition 2.11. Consider F ∈ Lip(RN ,RN ), W : [0, 1]×K (RN )→ R ∪ {+∞} and let (t,K) be in
the domain of W , with t < 1. Define

D↑W (t,K)(1, F ) = lim inf
h→0+,K′∈K (RN )

dH(K′,(Id+hF )(K))=o(h)

W (t+ h,K ′)−W (t,K)
h

:=

inf
{

lim inf
n→∞

W (t+ hn,Kn)−W (t,K)
hn

|hn → 0+, Kn ∈ K (RN ), dH(Kn, (Id+ hnF )(K)) = o(hn)
}
.

Proposition 2.12. Consider F ∈ Lip(RN ,RN ), W : [0, 1]×K (RN ) → R ∪ {+∞} and let (t,K) be
in the domain of W with t < 1. Then

◦
D↑W (t,K)(1,VF ) = D↑W (t,K)(1, F ) = lim

ε→0+
inf

h∈]0,ε],K′∈K (RN )
dH(K′,(Id+hF )(K))≤εh

W (t+ h,K ′)−W (t,K)
h

. (6)

In particular, if W is locally Lipschitz, then

◦
D↑W (t,K)(1,VF ) = lim inf

h→0+

W (t+ h, (Id+ hF )(K))−W (t,K)
h

.

Proof. Fix (t,K) in the domain ofW with t < 1. We first observe that for every x0 ∈ K, the solution
x(·) of the differential equation x′ = F (x), x(0) = x0 satisfies

x(h) = x0 + hF (x0) + ε(h), ∀h > 0,

where
|ε(h)| =

∣∣∣∣∣
∫ h

0
(F (x(s))− F (x0))ds

∣∣∣∣∣ ≤ LipF · ‖F‖∞ h2.

Consequently, dH(VF (h,K), (Id+hF )(K)) = o(h). This implies that for any ε > 0, and any sequences
hn → 0+, Kn ∈ K (RN ) such that dH(Kn, (Id+ hnF )(K)) = o(hn) we have

inf
h∈]0,ε]

K′∈B(VF (h,K),εh)

W (t+ h,K ′)−W (t,K)
h

≤ lim inf
n→∞

W (t+ hn,Kn)−W (t,K)
hn

.
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Thus
◦
D↑W (t,K)(1,VF ) ≤ D↑W (t,K)(1, F ). Consider sequences εn > 0, hn > 0 converging to 0,

a sequence tn converging to t and a sequence Kn ∈ K (RN ) such that |tn − (t + hn)| ≤ εnhn,
d (Kn,VF (hn,K)) ≤ εnhn and

◦
D↑W (t,K)(1,VF ) = lim

n→+∞

W (tn,Kn)−W (t,K)
hn

.

Then tn = t + γnhn and dH(Kn, (Id + hF )(K)) ≤ hnε
′
n for some γn converging to 1 and ε′n > 0

converging to zero. Set h′n = γnhn and observe that

dH(Kn, (Id+ h′nF )(K)) ≤ dH(Kn, (Id+ hnF )(K)) + dH((Id+ h′nF )(K), (Id+ hnF )(K)).

Therefore,

dH(Kn, (Id+ h′nF )(K)) ≤ hnε′n + |hn − h′n| ‖F‖∞ =
(
ε′n
γn

+
∣∣∣∣1− 1

γn

∣∣∣∣ ‖F‖∞)h′n = o(h′n).

Hence
lim

n→+∞

W (tn,Kn)−W (t,K)
hn

= lim
n→+∞

W (t+ h′n,Kn)−W (t,K)
h′n

.

Consequently,
lim

n→+∞

W (tn,Kn)−W (t,K)
hn

≥ D↑W (t,K)(1, F ).

This implies the first equality in (6). The second one follows by similar arguments.

Example 1. We provide next an example of computation of a directional derivative, assuming, for
the sake of simplicity, that the function is time independent. Let g : K (RN )→ R be given by

g(K) = max
x∈K

φ(x),

where φ : RN → R is continuously differentiable. Then g is locally Lipschitz continuous and for any
K ∈ K (RN ), F ∈ Lip(RN ,RN )

D↑g(K)(F ) = lim inf
h→0+

g((Id+ hF )(K))− g(K)
h

.

Fix K ∈ K (RN ) and consider any x̄ ∈ K such that g(K) = φ(x̄). Then for every h > 0,
g((Id+ hF )(K)) ≥ φ(x̄+ hF (x̄)) implying that D↑g(K)(F ) ≥ 〈∇φ(x̄), F (x̄)〉. Since x̄ is an arbitrary
maximizer, we deduce that

g(K)(F ) ≥ max
x∈K, g(K)=φ(x)

〈∇φ(x), F (x)〉.

Consider next a sequence hi > 0 converging to 0 such that

D↑g(K)(F ) = lim
i→+∞

g((Id+ hiF )(K))− g(K)
hi

,

and let xi ∈ K be such that
g((Id+ hiF )(K)) = φ(xi + hiF (xi)).

Taking a subsequence and keeping the same notation we may assume that xi converge to some y ∈ K.
Since φ(xi + hiF (xi)) ≥ φ(x̄ + hiF (x̄)), taking the limit we obtain φ(y) ≥ φ(x̄). Hence φ(y) = φ(x̄).
The inequality g(K) ≥ φ(xi) yields

lim
i→+∞

g((Id+ hiF )(K))− g(K)
hi

≤ lim sup
i→+∞

φ(xi + hiF (xi))− φ(xi)
hi

.

Using that φ ∈ C1 and taking the limit we obtain D↑g(K)(F ) ≤ 〈∇φ(y), F (y)〉 and therefore

max
x∈K, g(K)=φ(x)

〈∇φ(x), F (x)〉 ≤ D↑g(K)(F ) ≤ 〈∇φ(y), F (y)〉.

Consequently,
D↑g(K)(F ) = max

x∈K, g(K)=φ(x)
〈∇φ(x), F (x)〉.
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3 Value function of a mutational optimal control problem
Let (E, d) be a metric space such that for every x ∈ E and r > 0, the ball B(x, r) is compact in E,
and let (U, dU ) be a metric space of control parameters. Define

U := {u(·) : [0, 1]→ U | u(·) is Lebesgue measurable} . (7)

Let Θ(E) be a given nonempty subset of transitions on (E, d) endowed with the pseudo-distance
dΛ and f : E × U → Θ(E) be continuous. It is said to be Lipschitz continuous in the first argument
uniformly in u, if for a constant λ > 0 we have dΛ(f(x, u), f(y, u)) ≤ λ d(x, y) for all x, y ∈ E, u ∈ U .

Given the cost function g : E → R ∪ {+∞} we associate to it the optimal control problem

minimize g(z(1))

over all the solutions of the mutational control system

(S0)


◦
z(·) 3 f

(
z(·), u(·)

)
, u(·) ∈ U

z(t) = x,

where t ∈ [0, 1] and x ∈ E are given.
Recall, cf. [2, 17], that a function z(·) : [t, 1]→ E is called a solution of (S0) corresponding to a control
u(·) ∈ U if z(·) is Lipschitz continuous, z(t) = x and

lim
h→0+

1
h
· d
(
f
(
z(s), u(s)

)(
h, z(s)

)
, z
(
s+ h

))
= 0 for a.e. s ∈ [t, 1].

The value function V : [0, 1]×E → R∪ {±∞} associated with the above optimal control problem
is defined by: for all t ∈ [0, 1] and x ∈ E,

V (t, x) = inf {g(z(1)) | z(·) is a solution of (S0) on [t, 1]} ∈ R ∪ {±∞},

where we have set V (t, x) = +∞ if there is no solution to (S0) defined on [t, 1].
A solution-control pair (z̄(·), ū(·)) of (S0) is called optimal at (t, x) if V (t, x) = g(z̄(1)).
In this section we show under what circumstances the value function is a solution of the contingent

Hamilton-Jacobi inequalities. In the next section, in the case of morphological control systems, we
study uniqueness of such solutions.

Theorem 3.1. Let f : E × U → Θ(E) be Lipschitz continuous in the first argument uniformly in u
and

sup
x∈E, u∈U

(
α
(
f(x, u)

)
+ β

(
f(x, u)

))
< +∞.

Then, the value function V verifies the final time condition V (1, ·) = g(·) and the following contingent
inequalities :

(i) For all (t, x) in the domain of V with t < 1, sup
u∈U

◦
D↑(−V )(t, x)(1, f(x, u)) ≤ 0;

(ii) If (t, x) in the domain of V with t < 1, is so that there exists an optimal control ū(·) ∈ U at
(t, x) which is continuous from the right at t, then inf

u∈U

◦
D↑V (t, x)(1, f(x, u)) ≤ 0.

Proof. Fix (t, x) in the domain of V with t < 1. To prove (i), pick any ū ∈ U and consider the
control u(·) ≡ ū. By [17, Theorem 15, p.38] applied with y(·) ≡ x and ◦y(·) 3 0, there exists a unique
Lipschitz solution z(·) : [0, 1] → E to the mutational equation ◦z(s) 3 f

(
z(s), ū

)
for a.e. s ∈ [0, 1],

z(t) = x. Hence,
V
(
t, z(t)

)
≤ V

(
t+ h, z(t+ h)

)
, ∀h ∈ [0, 1− t].
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Since z(·) is a primitive of f(z(·), ū), we deduce from [17, Theorem 15, p.38] applied with y(s) =
f(x, ū)(s, x) and from the Lipschitz continuity of f with respect to the first argument, that for any
ε > 0,

d
(
z(t+ h), f(x, ū)(h, x)

)
≤ εh whenever h > 0 is sufficiently small.

Consequently, for every h > 0 small enough, there exists zh ∈ B
(
f(x, ū

)
(h, x), εh) such that V

(
t, z(t)

)
≤

V
(
t+ h, zh

)
. Then,

0 ≥ lim inf
h→0+

−V (t+ h, zh) + V (t, x)
h

≥
◦
D↑(−V )(t, x)(1, f(x, ū)).

Since ū ∈ U is arbitrary, we proved that sup
u∈U

◦
D↑(−V )(t, x)(1, f(x, u)) ≤ 0.

To prove (ii) consider an optimal solution-control pair (x̄(·), ū(·)) at (t, x) such that ū(·) is contin-
uous from the right at t. Then

V
(
t, x̄(t)

)
= V

(
t+ h, x̄(t+ h)

)
, ∀h ∈ [0, 1− t].

Furthermore, ϕ(s) := dΛ(f(x̄(s), ū(s), f(x̄(t), ū(t)) is continuous from the right at t and ϕ(t) = 0.
Define y(t + s) := f(x̄(t), ū(t))(s, x̄(t)) for s ∈ [0, 1 − t]. Then ◦y(·) 3 f

(
x̄(t), ū(t)

)
on [0, h] for every

small h > 0. Thus, by [17, Proposition 21, p.41], d
(
x̄(t+ h), f

(
x, ū(t)

)
(h, x)

)
= o(h) for small h > 0.

Consequently, for every ε > 0 and any h > 0 small enough, there exists x̄h ∈ B
(
f(x, ū(t)

)
(h, x), εh)

such that V
(
t, x
)

= V
(
t+ h, x̄h

)
. Hence,

0 = lim
h→0+

V (t+ h, x̄h)− V (t, x)
h

≥
◦
D↑V (t, x)(1, f(x, ū(t)))

and therefore inf
u∈U

◦
D↑V (t, x)(1, f(x, u)) ≤ 0.

4 Main results
In this section we state our main results. To facilitate reading their proofs are postponed to Section
6.

Let (U, dU ) be a metric space of control parameters and define the set of controls U by (7).
Consider a continuous map f : K (RN )×U → Lip(RN ,RN ), a map g : K (RN )→ R∪ {+∞} and

the optimal control problem

minimize g
(
K(1)

)
[P ]

over all the solutions K(·) : [t0, 1]→ K (RN ) to the morphological control system

◦
K(·) 3 f

(
K(·), u(·)

)
, u(·) ∈ U and K(t0) = K0, [S]

where t0 ∈ [0, 1] and K0 ∈ K (RN ) are given. That is the right hand side of the control system in [S]
corresponds to F (K, t) := f(K,u(t)) of Definition 2.10.

Under some technical assumptions, for every u(·) ∈ U there exists a solution K(·) to the above
morphological control system, cf. [17, Theorem 4, p. 388 and Remark 16, p. 113].

If for some λ > 0, the mapping f(·, u) is λ-Lipschitz for every u ∈ U , then [17, Proposition 21,
p.41] and the Gronwall lemma imply that for every u(·) ∈ U such a solution K(·) is unique.

The following result (see [17, Proposition 24, p.415 and its proof, and Proposition 57 p.64]) char-
acterizes primitives as reachable sets.
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Proposition 4.1. Assume that the metric space (U, dU ) is complete and separable and that the con-
tinuous map f : K (RN )× U → Lip(RN ,RN ) satisfies

sup
u∈U,K∈K (RN )

(
Lip f(K,u) + ||f(K,u)||∞

)
< +∞ .

Then for any t0 ∈ [0, 1], K0 ∈ K (RN ) and any control u(·) ∈ U , there exists a unique solution
K(·) : [t0, 1] → K (RN ) of the morphological control system in [S]. Furthermore, for every time
t ∈ [t0, 1], K(t) coincides with the reachable set Vf(K(·),u(·))(t,K0) of the differential equation

x′(τ) = f
(
K(τ), u(τ)

)(
x(τ)

)
for a.e. τ ∈ [t0, 1], x(t0) ∈ K0.

Throughout this paper we say that f : K (RN )×U → Lip(RN ,RN ) satisfies (H1) if the following
two assumptions hold true:

(i) f is continuous, bounded with uniformly bounded Lipschitz constant:

A := sup
u∈U,K∈K (RN )

Lip f(K,u) < +∞, ρ := sup
u∈U,K∈K (RN )

||f(K,u)||∞ < +∞;

(ii) for any K ∈ K (RN ), the set f(K,U) := {f(K,u)| u ∈ U} is convex.

Observe that if U is compact and (H1) (i) is satisfied, then the graph of f(·, U) is closed with respect
to the local uniform convergence in Lip (RN ,RN ).

We have the following existence result whose proof is given in Section 6.1.

Theorem 4.2. Let g : K (RN )→ R∪{+∞} be lower semicontinuous and (U, dU ) be compact. Assume
that f : K (RN )× U → Lip(RN ,RN ) satisfies (H1) and is Lipschitz in the first argument uniformly
in u, i.e. for some λ1 > 0,

||f(K,u)− f(K ′, u)||∞ ≤ λ1 dH
(
K,K ′

)
for all K,K ′ ∈ K (RN ) and any u ∈ U.

Then, for every initial condition (t0,K0) ∈ [0, 1] × K (RN ), there exists an optimal solution to the
morphological control problem [P ], [S].

The value function V : [0, 1]×K (RN )→ R∪{±∞} associated with the problem [P ], [S] is defined
by: for any t0 ∈ [0, 1] and K0 ∈ K (RN ),

V (t0,K0) = inf g
(
K(1)

)
over all the solutions K(·) to the morphological control system [S].

Clearly V is nondecreasing along any trajectory of [S] and is constant along optimal trajectories.
Also V satisfies the dynamic programming like properties.

Theorem 4.3. Assume (H1) (i) and that f is Lipschitz in the first argument uniformly in u. If g
is continuous, then V is continuous. Furthermore, if g is locally Lipschitz, then V is locally Lipschitz
on [0, 1]×K (RN ).

Theorem 4.4. Under all the assumptions of Theorem 4.2, V is lower semicontinuous on [0, 1] ×
K (RN ).

Proofs of the above two theorems are postponed to Sections 6.5 and 6.6.

Definition 4.5. A continuous map W : [0, 1] ×K (RN ) → R is called a contingent solution to the
morphological Hamilton-Jacobi equation (associated with [P], [S]) if it satisfies the boundary condition
W (1, ·) = g(·) and the following contingent inequalities : for all (t,K) ∈ [0, 1[×K (RN ),

(i) inf
u∈U

D↑W (t,K)(1, f(K,u)) ≤ 0,

(ii) sup
u∈U

D↑(−W )(t,K)(1, f(K,u)) ≤ 0.
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If (U, dU ) is compact and f is continuous in the second variable, then it is not difficult to realize
that for any (t,K) ∈ [0, 1[×K (RN ), the infimum of D↑W (t,K)(1, f(K,u)) over all u ∈ U (possibly
equal to −∞) is attained at some ū ∈ U , i.e. we have the following result.

Proposition 4.6. Let (U, dU ) be compact, f : K (RN ) × U → Lip(RN ,RN ) be continuous and W :
[0, 1] × K (RN ) → R ∪ {+∞}. Then for every (t,K) in the domain of W with t < 1, there exists
ū ∈ U satisfying

D↑W (t,K)(1, f(K, ū)) = inf
u∈U

D↑W (t,K)(1, f(K,u)).

We next state our main result.

Theorem 4.7. Assume that (U, dU ) is compact, g is continuous, f is Lipschitz continuous in the first
argument uniformly in u and satisfies (H1). Then V is the unique continuous contingent solution to
the morphological Hamilton-Jacobi equation.

We also have the following two comparison results.

Proposition 4.8. Assume (H1) and that (U, dU ) is compact. Let W : [0, 1]×K (RN )→ R ∪ {+∞}
be lower semicontinuous, with W (1, ·) = g(·) and

inf
u∈U

D↑W (t,K)(1, f(K,u)) ≤ 0,

for all (t,K) in the domain of W with t < 1. Then V ≤W .

Proposition 4.9. Assume that (U, dU ) is compact and the map f is Lipschitz continuous in the first
argument uniformly in u and satisfies (H1) (i).
Let W : [0, 1]×K (RN )→ R ∪ {−∞} be upper semicontinuous with W (1, ·) = g(·) and

sup
u∈U

D↑(−W )(t,K)(1, f(K,u)) ≤ 0,

for all (t,K) in the domain of W with t < 1. Then W ≤ V .

The above two Propositions are deduced in Sections 6.3 and 6.4 from the viability theorem for
morphological differential inclusions.

We provide next two examples of dynamics f satisfying assumptions of our main results.

Example 2. Let U, Ũ be compact metric spaces, R > 0 be given and f : K (RN ) × U × Ũ →
Lip(RN ,RN ) be as follows

f(K,u1, u2)(x) = f1(x, u1) + min(R,max
z∈K
‖z‖) · ϕ(x, u2), ∀ x ∈ RN ,

where

• f1 : RN × U → RN and ϕ : RN × Ũ → RN are continuous and bounded;

• f1, ϕ are Lipschitz continuous in the first argument uniformly with respect to the second one;

• the sets
⋃
u∈U f1(·, u) and

⋃
u′∈Ũ ϕ(·, u′) are convex.

The last assumption is verified for instance when U, Ũ are convex subsets of Euclidean spaces and
f1 and ϕ are affine with respect to controls. The above f can be used to model a dynamic of agents
influenced by the leaders (maximizers) up to some threshold.

We first verify that f is Lipschitz continuous with respect to the first argument. Since the minimum
of two Lipschitz continuous maps is also Lipschitz continuous, there is a constant L > 0 such that for
any K1,K2 ∈ K (RN ), u1, u2 ∈ U , x ∈ RN , we have∣∣∣f(K1, u1, u2)(x)− f(K2, u1, u2)(x)

∣∣∣
=
∣∣∣f1(x, u1) + min(R,max

z∈K1
‖z‖) · ϕ(x, u2)− f1(x, u1)−min(R,max

z∈K2
‖z‖) · ϕ(x, u2)

∣∣∣
=
∣∣∣min(R,max

z∈K1
‖z‖)−min(R,max

z∈K2
‖z‖)

∣∣∣ · ∣∣∣ϕ(x, u2)
∣∣∣ ≤ L ∣∣∣ϕ(x, u2)

∣∣∣ · dH(K1,K2).
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Since ϕ is bounded we conclude that f is Lipschitz continuous with respect to the first argument
uniformly in (u1, u2). Our assumptions immediately imply that (H1) (i) is satisfied. To check (H1)
(ii), let K ∈ K (RN ), x ∈ RN , λ ∈ [0, 1], u1, u2 ∈ U, u′1, u′2 ∈ Ũ . Then

λf(K,u1, u2)(·) + (1− λ)f(K,u′1, u′2)(·)

= λf1(·, u1) + λmin(R,max
z∈K
‖z‖) · ϕ(·, u2) + (1− λ)f1(·, u′1) + (1− λ) min(R,max

z∈K
‖z‖) · ϕ(·, u′2)

=
[
λf1(·, u1) + (1− λ)f1(·, u′1)

]
+ min(R,max

z∈K
‖z‖) ·

[
λϕ(·, u2) + (1− λ)ϕ(·, u′2)

]
.

By the convexity assumption, there are u3 ∈ U, u′3 ∈ Ũ such that(
λf1(·, u1) + (1− λ)f1(·, u′1), λϕ(·, u2) + (1− λ)ϕ(·, u′2)

)
=
(
f1(·, u3), ϕ(·, u′3)

)
.

Thus λf(K,u1, u2)(·) + (1− λ)f(K,u′1, u′2)(·) = f(K,u3, u
′
3)(·) ∈ f(K,U, Ũ) implying (H1) (ii).

Example 3. For a nonempty convex compact subset C of RN denote by σ(C, ·) the support function of
C defined by σ(C, p) = maxc∈C〈p, c〉 for any p ∈ RN . Let ∂σ(C, ·) denote the subdifferential of convex
analysis of the support function. Recall that σ(C, ·) is locally Lipschitz and therefore for a.e. p ∈ RN
the set ∂σ(C, p) is a singleton equal to argmaxc∈C〈p, c〉. The Steiner point s(C) of C is defined by

s(C) = 1
V ol(BN )

∫
BN

∂σ(C, p)dp = 1
V ol(BN )

∫
BN

argmaxc∈C〈p, c〉dp,

where V ol(BN ) is the Lebesgue measure of N -dimensional unit ball BN in RN . Steiner point of C
can be seen as an expectation of the maximizer of 〈p, c〉 over C, kind of “center” of the convex set
C. By [4, Theorem 9.4.1]), s(C) ∈ C and s(·) is Lipschitz in the Hausdorff metric with the Lipschitz
constant depending only on N .

Let U be a compact metric space, Ũ ⊂ Rm be a convex compact set, R > 0 be given and f :
K (RN )× U × Ũ → Lip(RN ,RN ) be as follows

f(K,u1, u2)(x) = f1(x, u1) + max(0, R−max
z∈K
‖z‖) ·Ψ(s(coK))u2, ∀ x ∈ RN ,

where coK stands for the convex hull of K, f1 satisfies the assumptions of Example 2, Ψ : RN →
L(Rm,RN ) is a Lipschitz function and L(Rm,RN ) denotes the space of linear operators from Rm into
RN . The above f can be used to model a dynamic of agents influenced by the crowd as long as the
crowd remains in the restricted area B(0, R). Steiner point of the set coK can be seen as the relaxed
mean of the crowd K of agents and Ψ(s(coK))u2 as the controlled direction imposed on the “center” of
coK. In the same way as in Example 2 we check that f(·, u) is Lipschitz uniformly in u and satisfies
(H1).

5 Optimal feedback
Let (U, dU ) be compact and f : K (RN )× U → Lip(RN ,RN ) satisfies (H1) (i). Assumptions of The-
orem 4.2 guarantee the existence of optimal solutions to the morphological optimal control problem
[P ], [S] for any (t0,K0) ∈ [0, 1]×K (RN ). Let V be the associated value function.

For any t ∈ [0, 1[ and any K ∈ K (RN ), define the compact valued map

G(t,K) :=
{
f(K,u)

∣∣ u ∈ U, D↑V (t,K)
(
1, f(K,u)

)
≤ 0

}
and the optimal feedback set-valued map

UG(t,K) := {u ∈ U | f(K,u) ∈ G(t,K)}

also having compact values.
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Consider the morphological differential inclusion
◦
K(·) ∩G(·,K(·)) 6= ∅. [Q]

Recall that K(·) : [0, 1] → K (RN ) is a solution to [Q] if for almost every t ∈ [0, 1], there exists
F ∈ G(t,K(t)) such that VF belongs to the mutation

◦
K(t).

Theorem 5.1. Assume that (U, dU ) is compact, f : K (RN ) × U → Lip(RN ,RN ) satisfies (H1) (i)
and is Lipschitz continuous in the first argument uniformly in u. If V is locally Lipschitz, then for
every t0 ∈ [0, 1[ and K0 ∈ K (RN ), the tube K(·) is optimal for [P], [S] if and only if K(t0) = K0 and
K(·) is a solution of [Q] defined on the time interval [t0, 1].

The proof of Theorem 5.1 provided below yields the following Corollary.

Corollary 5.2. Under the assumptions of Theorem 5.1, if V is locally Lipschitz, then for every
t0 ∈ [0, 1[ and K0 ∈ K (RN ) a solution-control pair (K(·), ū(·)) is optimal for [P], [S] if and only if
K(t0) = K0 and

◦
K(t) 3 f(K(t), ū(t)), ū(t) ∈ UG(t,K(t)) a.e. in [t0, 1].

Proof of Theorem 5.1. Let K(·) : [0, 1]→ K (RN ) be a solution to the morphological inclusion [Q]
with K(t0) = K0. Since G(t,K(t)) ⊆ f(K(t), U), by [17, Proposition 25, p.416]), K(·) is a solution of
◦
K(·) 3 f(K(·), u(·)) for some measurable control u(·) ∈ U . Thus for a.e. t ∈ [0, 1],

D↑V
(
t,K(t)

)(
1, f

(
K(t), u(t)

))
≤ 0 . (8)

Set ϕ(s) = V (s,K(s)). Since V is locally Lipschitz and K(·) is Lipschitz, we know that ϕ is Lipschitz
continuous on [t0, 1]. By Rademacher’s Theorem, ϕ is differentiable almost everywhere in [t0, 1]. Let
t ∈ [0, 1[ be so that ϕ′(t) exists,

◦
K(t) 3 V

f
(
K(t),u(t)

) and (8) holds true. Then,

ϕ′(t) = lim
h→0+

V
(
t+ h,K(t+ h)

)
− V

(
t,K(t)

)
h

.

By the Lipschitz continuity of V , (5) and Proposition 2.12,

ϕ′(t) = D↑V
(
t,K(t)

)(
1, f

(
K(t), u(t)

))
.

From inequality (8), we deduce that ϕ′(t) ≤ 0. This implies that V is non-increasing along the trajec-
tory K(·). Since V is also non-decreasing along this trajectory, it follows that V (·,K(·)) is constant
and therefore K(·) is an optimal solution to [P ], [S].

Conversely, let (K̄(·), ū(·) be an optimal solution-control pair of [P], [S]. Thus it satisfies for every
t ∈ [t0, 1[,

V (t+ h, K̄(t+ h)) = V (t, K̄(t)), ∀h ∈ [t, 1− t]. (9)

Set ϕ(s) = V (s, K̄(s)). Let t ∈ [0, 1[ be so that
◦
K(t) 3 V

f
(
K(t),u(t)

). Since V is locally Lipschitz, (9),
(5) and Proposition 2.12 yield

0 = ϕ′(t) = D↑V
(
t, K̄(t)

)(
1, f

(
K̄(t), ū(t)

))
.

Consequently, D↑V
(
t, K̄(t)

)(
1, f

(
K̄(t), ū(t)

))
= 0, which means that K̄(.) is a solution of [Q] .
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6 Proofs of results of Section 4.

6.1 Proof of Theorem 4.2

Fix (t0,K0) ∈ [0, 1] ×K (RN ). If t0 = 1 there is nothing to prove. Assume next t0 < 1 and consider
a minimizing sequence of controls un(·) ∈ U and for each n ∈ N, let Kn(·) : [t0, 1] → K (RN ) be the
solution to the morphological equation

◦
Kn(t) 3 f

(
Kn(t), un(t)

)
a.e. t ∈ [t0, 1] Kn(t0) = K0.

Then limn→∞ g(Kn(1)) = V (t0,K0).

. From (H1) and Proposition 4.1, it follows that for each n ∈ N, Kn(·) is ρ-Lipschitz continuous
with respect to dH . This implies that:

(i) the family {Kn(·)}n is equicontinuous;

(ii)
⋃
n∈N

t∈[t0,1]

Kn(t) is contained in the ball B(K0, ρ) ⊂ K (RN ).

In fact, for any n ∈ N and for all t ∈ [t0, 1], dH
(
Kn(t),K0

)
= dH

(
Kn(t),Kn(t0)

)
≤ ρ|t − t0| ≤

ρ. The Ascoli-Arzéla Theorem, see for instance, [17, Theorem 82, p.491]) implies that there exists
a subsequence, again denoted by Kn, converging uniformly to a continuous set-valued map K(·) :
[t0, 1]→ K (RN ). Moreover, K(·) is ρ-Lipschitz continuous because for all t, t′ ∈ [t0, 1],

dH(K(t),K(t′)) ≤ dH(K(t),Kn(t)) + dH(Kn(t),Kn(t′)) + dH(Kn(t′),K(t′))

≤ dH(K(t),Kn(t)) + ρ|t− t′| + dH(Kn(t′),K(t′)).

Letting n to tend to ∞, we obtain that dH(K(t),K(t′)) ≤ ρ|t− t′|. Furthermore, since Kn(t0) = K0,
we know that K(t0) = K0.

The lower semicontinuity of g implies that V (t0,K0) ≥ g(K(1)) and therefore it remains to show
that K(·) is a solution of [S].

. Define gn(·) : [t0, 1]→ Lip(RN ,RN ) by gn(t) := f
(
Kn(t), un(t)

)
. Then

sup
t∈[t0,1]

Lip gn(t) ≤ sup
u∈U,K∈K (RN )

Lip f(K,u) < +∞,

sup
t∈[t0,1]

||gn(t)||∞ ≤ sup
u∈U,K∈K (RN )

||f(K,u)||∞ < +∞.

For any compact subset Q ⊂ RN denote by C0(Q,RN ) the Banach space of all continuous functions
from Q into RN with the metric of uniform convergence. For r > 0, let Br denote the closed ball in
RN of radius r centered at zero, and define

Wr :=
{
gn(t)|Br

∣∣∣ n ∈ N, t ∈ [t0, 1]
}
⊂ C0(Br,RN ).

For every integer r > 0, the family Wr is uniformly bounded and equicontinuous. According to [17,
Proposition 83, p.491], for every integer r > 0, Wr is weakly compact with respect to the topology
|| · ||∞. Due to [17, Proposition 85, p.492], the set

{
gn(·)|Br

∣∣∣ n ∈ N
}
is relatively weakly compact in

L1([t0, 1], C0(Br,RN )
)
. Then, for every integer r > 0, we can extract a subsequence weakly converging

to some gr(·) ∈ L1([t0, 1], C0(Br,RN )
)
. Let us construct a function g(·) ∈ L1([t0, 1], C0(RN ,RN )

)
by

induction using the above arguments.
Since for r = 1, the set

{
gn(·)|B1

∣∣∣ n ∈ N
}

is relatively weakly compact in L1([t0, 1], C0(B1,RN )
)
,
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there exists a subsequence (gni(·)|B1
)i weakly converging to some g1(·) ∈ L1([t0, 1], C0(B1,RN )

)
, i.e.

for every q ∈ L1([t0, 1], C0(B1,RN )
)∗
,

lim
i→∞

〈
q, gni(·)|B1

〉
=
〈
q, g1(·)

〉
.

Observe that there exists a subsequence of (gni(·))i, denoted by (gnij
(·))j , such that gnij

(·)|B2
converges

weakly to g2(·) in L1([t0, 1], C0(B2,RN )
)
, i.e. for every p ∈ L1([t0, 1], C0(B2,RN )

)∗
,

lim
j→∞

〈
p, gnij

(·)|B2

〉
=
〈
p, g2(·)

〉
. (10)

Or, (gnij
(·))j being a subsequence of (gni(·))i, we know that (gnij

(·)|B1
)j converges weakly to g1(·) and

for any q ∈ L1([t0, 1], C0(B1,RN )
)∗,

lim
j→∞

〈
q, gnij

(·)|B1

〉
=
〈
q, g1(·)

〉
. (11)

Fix any q ∈ L1([t0, 1], C0(B1,RN )
)∗, and define q̂ ∈ L1([t0, 1], C0(B2,RN )

)∗ by taking

〈q̂, w〉 = 〈q, w|B1
〉, ∀ w ∈ L1([t0, 1], C0(B2,RN )

)
. (12)

Due to (10), we infer that
lim
j→∞

〈
q̂, gnij

(·)|B2

〉
=
〈
q̂, g2(·)

〉
.

By equality (12), 〈
q̂, gnij

(·)|B2

〉
=
〈
q, gnij

(·)
|B1

〉
and

〈
q̂, g2(·)

〉
=
〈
q, g2(·)|B1

〉
.

Thus,
lim
j→∞

〈
q, gnij

(·)
|B1

〉
=
〈
q, g2(·)|B1

〉
.

From (11) we deduce that for any q ∈ L1([t0, 1], C0(B1,RN )
)∗, 〈q, g1(·)

〉
=
〈
q, g2(·)|B1

〉
. Since q ∈

L1([t0, 1], C0(B1,RN )
)∗ is arbitrary, it follows that g1(·) = g2(·)|B1

. Using the induction argument, we
construct a function g(·) : [t0, 1]→ C0(RN ,RN ) such that g|Br

= gr where, for any integer r > 0, gr(·)
is the weak limit in L1([t0, 1], C0(Br,RN )

)
of a subsequence of (gn(·)|Br

).

. Recall that the sequence Kn(·) converges uniformly to K(·) when n tends to +∞. Fix ε > 0. Since
f(·, u) is λ1-Lipschitz continuous for each u ∈ U and for all large n we have

||f
(
Kn(t), un(t)

)
− f

(
K(t), un(t)

)
||∞ ≤ λ1 dH

(
Kn(t),K(t)

)
< ε ∀ t ∈ [t0, 1].

Let A denote the set of functions in Lip(RN ,RN ) with Lipschitz constant not greater than 2λ1 and
B∞ = {ϕ ∈ C0(RN ,RN ) | supx∈RN |ϕ(x)| ≤ 1}. Then for all large n,

gn(t) ∈ f
(
K(t), un(t)

)
+ εB∞ ∩A

for all t ∈ [t0, 1]. Therefore for all large n,

gn(t)|Br
∈ f

(
K(t), un(t)

)
|Br

+ (εB∞ ∩A )|Br
⊂
⋃
u∈U

f
(
K(t), u

)
|Br

+ (εB∞ ∩A )|Br
for every [t0, 1]

for any integer r > 0. Note that the sets
⋃
u∈U

f
(
K(t), u

)
|Br

and (εB∞∩A )|Br
are convex and compact

in Lip(Br,RN ). Define for every integer r > 0 and for every t ∈ [t0, 1] the convex compact set

Qrε(t) :=
⋃
u∈U

f
(
K(t), u

)
|Br

+ (εB∞ ∩A )|Br
⊆ Lip(Br,RN ).
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We already know that for all large n, gn(t)|Br
∈ Qrε(t) for every t ∈ [t0, 1]. Let

Γrε :=
{
ϕ ∈ L1([t0, 1], C0(Br,RN )

) ∣∣∣ ϕ(t) ∈ Qrε(t) a.e. in [t0, 1]
}

Clearly Γrε is convex. Furthermore, since any convergent sequence in L1([t0, 1], C0(Br,RN )) has a
subsequence converging almost everywhere a.e. in [0, 1], the set Γrε is closed in L1([t0, 1], C0(Br,RN )).
By our construction, for some n0 > 0 the sequence

(
gn(·)|Br

)
n≥n0

is in Γrε and has a subsequence
converging weakly in L1([t0, 1], C0(Br,RN )) to g(·)|Br

. By Mazur’s theorem, g(·)|Br
∈ Γrε. Thus, for

a.e. t ∈ [t0, 1],
g(t)|Br

∈ Qrε(t) :=
⋃
u∈U

f
(
K(t), u

)
|Br

+ (εB∞ ∩A )|Br
.

Since ε > 0 is arbitrary, this yields g(t)|Br
∈
⋃
u∈U

f
(
K(t), u

)
|Br

a.e. in [t0, 1].

Fix t ∈ [t0, 1] such that the above inclusion holds for every integer r > 0 and let ur ∈ U be such that
g(t)|Br

= f
(
K(t), ur

)
|Br

. The set U being compact, there exists a subsequence uri converging to some
ū ∈ U . Furthermore, for every x ∈ Bri and any n ≥ i we have f

(
K(t), uri

)
(x) = f

(
K(t), urn

)
(x). Tak-

ing the limit when n→∞ we get f
(
K(t), uri

)
(x) = f

(
K(t), ū

)
(x) for every x ∈ Bri . Hence g(t)(x) =

f
(
K(t), ū

)
(x) for every x ∈ Bri . Finally, i being arbitrary, we deduce that g(t) ∈

⋃
u∈U

f
(
K(t), u

)
. By

[17, Lemma 26, p.416], there exists u(·) ∈ U such that

g(t) = f
(
K(t), u(t)

)
for a.e. t ∈ [t0, 1].

. We claim that K(·) solves the morphological equation
◦
K(t) 3 g(t) for a.e. t ∈ [t0, 1], that is K(t) is

the reachable set at time t of the system x′(s) = g(s)(x(s)) for a.e. s ∈ [t0, 1] with x(t0) ∈ K0.
Since Kn(·) is the solution to

◦
Kn(·) 3 gn(·) with Kn(t0) = K0, by Proposition 4.1, the compact set

Kn(t) ⊂ RN coincides with the reachable set

Vgn(·)(t,K0) =
{
x(t)

∣∣∣ x ∈W 1,1([t0, 1],RN ), x′(s) = gn(s)
(
x(s)

)
for a.e. s ∈ [t0, 1], x(t0) ∈ K0

}
.

We first show that K(t) ⊂ Vg(·)(t,K0) for every t ∈ [t0, 1]. Indeed, we know that for any t ∈ [t0, 1],

K(t) = lim
n→+∞

Kn(t) = lim
n→+∞

Vgn(·)(t,K0).

Let x ∈ K(t). Then there exists a sequence zn(·) ∈W 1,1([t0, 1],RN ) such that
z′n(s) = gn(s)

(
zn(s)

)
a.e. s ∈ [t0, 1]

zn(t0) ∈ K0, limn→∞ zn(t) = x

Consider an integer r > 0 such that |zn(s)| ≤ r for all s ∈ [t0, 1] and every n. We recall that
there exists a subsequence of (gn(·)|Br

)n, denoted by (gnk
(·)|Br

)k weakly converging to g(·)|Br
in

L1([t0, 1], C0(Br,RN )
)
. By the Ascoli-Arzéla theorem, taking a subsequence and keeping the same no-

tation we may assume that (znk
(·))k converges uniformly to a continuous function z(·) : [t0, 1]→ RN .

Moreover, z(·) is Lipschitz continuous and

z(t0) = lim
k→+∞

znk
(t0) ∈ K0, z(t) = lim

k→+∞
znk

(t) = x.

It remains to show that
z′(s) = g(s)|Br

(z(s)) for a.e. s ∈ [t0, 1].

By Mazur’s Lemma, see for instance [20, Lemma 10.19], we can find a function N : N→ N and a set
of real numbers {σ(l)k| k = l, . . . , N(l)} such that

σ(l)k ≥ 0,
N(l)∑
k=l

σ(l)k = 1, (13)
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and the sequence (vr,l(·))l defined by the convex combinations

vr,l(·) =
N(l)∑
k=l

σ(l)k gnk
(·)|Br

(14)

converges strongly to g(·)|Br
∈ L1([t0, 1], C0(Br,RN )

)
, i.e.

lim
l→∞

∫ 1

t0
sup
y∈Br

|vr,l(s)(y)− g(s)|Br
(y)| ds = 0.

In particular,

lim
l→∞

∫ 1

t0
|vr,l(s)(z(s))− g(s)|Br

(z(s))| ds = 0. (15)

On the other hand, gnk
(s)(·) : RN → RN are Lipschitz continuous with the same Lipschitz constant.

Hence, for some µ > 0 and any s ∈ [t0, 1]

|gnk
(s)|Br

(znk
(s))− gnk

(s)|Br
(z(s))| ≤ µ|znk

(s)− z(s)|,

implying that
gnk

(s)|Br
(znk

(s)) ∈ gnk
(s)|Br

(z(s)) + µ|znk
(s)− z(s)|B1.

Since z′nk
(s) = gnk

(s)|Br
(znk

(s)) a.e. in [t0, 1],

z′nk
(s) ∈ gnk

(s)|Br
(z(s)) + µ|znk

(s)− z(s)|B1 for a.e. s ∈ [t0, 1].

Consequently, for any τ ∈ [t0, 1]

lim
l→+∞

∫ τ

t0

N(l)∑
k=l

σ(l)kz′nk
(s) ds ∈ lim

l→+∞

∫ τ

t0

N(l)∑
k=l

σ(l)kgnk
(s)|Br

(z(s)) ds

+ lim
l→+∞

µ

∫ τ

t0

N(l)∑
k=l

σ(l)k|znk
(s)− z(s)| dsB1

⇒ lim
l→+∞

N(l)∑
k=l

σ(l)k
(
znk

(τ)− znk
(t0)

)
= lim

l→+∞

∫ τ

t0

N(l)∑
k=l

σ(l)kgnk
(s)|Br

(z(s)) ds.

.

But

lim
l→+∞

N(l)∑
k=l

σ(l)k
(
znk

(τ)− znk
(t0)

)

= lim
l→+∞

N(l)∑
k=l

σ(l)k
(
znk

(τ)− z(τ)
)

+ lim
l→+∞

N(l)∑
k=l

σ(l)k
(
z(τ)− z(t0)

)

+ lim
l→+∞

N(l)∑
k=l

σ(l)k
(
z(t0)− znk

(t0)
)

= z(τ)− z(t0).

This and (15) yield
z(τ)− z(t0) =

∫ τ

t0
g(s)|Br

(z(s)) ds.

Hence, z′(τ) = g(τ)|Br
(z(τ)) for a.e. τ ∈ [t0, 1], which implies that x = z(t) ∈ Vg(·)(t,K0).

We show next that Vg(·)(t,K0) ⊂ K(t) for all t ∈ [t0, 1]. Let x ∈ Vg(·)(t,K0). Then there exists
z(·) ∈W 1,1([t0, 1],RN

)
such that
z′(s) = g(s)

(
z(s)

)
a.e. s ∈ [t0, 1]

z(t0) ∈ K0, z(t) = x.
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We have to check that z(t) ∈ K(t). Consider yn(·) ∈W 1,1([t0, 1],RN
)
such that for every n ∈ N,

y′n(s) = gn(s)
(
yn(s)

)
a.e. s ∈ [t0, 1]

yn(t0) = z(t0)

Then for every s ∈ [t0, 1] we have

yn(s) = z(t0) +
∫ s

t0
gn(τ)(yn(τ))dτ.

Consider an integer r > 0 such that |yn(s)| ≤ r for all s ∈ [t0, 1] and every n and a subsequence
of (gn(·)|Br

)n, denoted by (gnk
(·)|Br

)k weakly converging to g(·)|Br
in L1([t0, 1], C0(Br,RN )

)
. For the

same reasons as before, we may assume that (ynk
(·))k converges uniformly to some y(·) : [t0, 1]→ RN .

Since gn(τ)(·) are A−Lipschitz, we deduce that for every s ∈ [t0, 1],

y(s) = z(t0) +
∫ s

t0
gn(τ)(y(τ))dτ + δn(s),

where limn→∞ sups∈[t0,1] |δn(s)| = 0. Let N : N→ N and a set of real numbers {σ(l)k| k = l, . . . , N(l)}
be such that (13) holds true and the sequence (vr,l(·))l defined by (14) converges to g(·)|Br

strongly in
L1([t0, 1], C0(Br,RN )

)
. Then for every s ∈ [t0, 1],

y(s) = z(t0) +
∫ s

t0

N(l)∑
k=l

σ(l)kgnk
(y(τ))dτ +

N(l)∑
k=l

σ(l)kδnk
(s).

As before, taking the limit when l→∞ we get

y(s) = z(t0) +
∫ s

t0
g(τ)(y(τ))dτ

and, from the uniqueness of solution to the ODE y′(s) = g(s)(y(s)), y(t0) = z(t0), we deduce that
y(·) = z(·). In particular,

z(t) = lim
k→∞

ynk
(t) ∈ lim

k→+∞
Knk

(t) = K(t).

6.2 Proof of Theorem 4.7

The proofs of Theorem 4.3, Proposition 4.8 and Proposition 4.9 are given in subsections 6.3, 6.4 and
6.5. Here we aply these results to prove Theorem 4.7.

By Propositions 4.8 and 4.9 if W : [0, 1]×K (RN )→ R is a continuous contingent solution to the
morphological Hamilton-Jacobi equation, then W = V . By Theorem 4.3, V is continuous. Clearly
V (1, ·) = g(·). It remains to prove that V satisfies inequalities (i), (ii) of Definition 4.5.

By Theorem 3.1 and Proposition 2.12 the inequality (ii) is satisfied for any (t,K) ∈ [0, 1[×K (RN ).
Fix (t0,K0) ∈ [0, 1[×K (RN ). We claim that D↑V (t0,K0)(1, f(K0, ū)) ≤ 0 for some ū ∈ U . Indeed,
by Theorem 4.2 there exists a solution-control pair (K(·), u(·)) of the morphological control system
[S] satisfying V (t0,K0) = g(K(1)). Then,

V
(
t0 + h,K(t0 + h)

)
= V

(
t0,K0

)
, ∀h ∈ [0, 1− t0]. (16)

Consider any sequence of scalars hn > 0 converging to 0. By Proposition 4.1, for any n sufficiently
large, K(t0 +hn) coincides with the reachable set Vf(K(·),u(·))

(
t0 +hn,K0

)
at time t0 +hn of the system

x′(s) = f
(
K(s), u(s)

)(
x(s)

)
, x(t0) ∈ K0.

Since u(·) is measurable and U is complete and separable, there exist simple measurable maps vi :
[t0, 1]→ U converging pointwise to u(·). Define

φ(s) := f(K0, u(t0 + s))|K0 ∈ C
0(K0,RN ) ∀ s ∈ [0, 1− t0].
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From continuity of f we deduce that φ is limit of simple functions f(K0, vi(t0 + ·))|K0 . Since f is also
bounded, φ is Bochner integrable. The set f(K0, U)|K0 := {f(K0, u)|K0 |u ∈ U} being convex and
compact in C0(K0,RN ), from the separation theorem we deduce that,∫ hn

0
φ(s) ds ∈ hnf

(
K0, U

)
|K0
.

Let un ∈ U be such that ∫ hn

0
φ(s) ds = hnf

(
K0, un

)
|K0
.

Consider a subsequence (unj )j converging to some ū ∈ U . Then∫ hnj

0
φ(s) ds = hnjf

(
K0, ū

)
|K0

+ õ(hnj ), (17)

where limj→∞ ‖õ(hnj )‖/hnj = 0 and ‖ · ‖ denotes the norm of C0(K0,RN ). From the very definition
of the Bochner integral we deduce that∫ hn

0
f
(
K0, u(t0 + s)

)(
x(t0)

)
ds = lim

i→∞

∫ hn

0
f
(
K0, vi(t0 + s)

)(
x(t0)

)
ds =

∫ hn

0
φ(s)ds

(
x(t0)).

Fix y ∈ K(t0 + hn) and let x(·) ∈W 1,1([t0, t0 + hn],RN
)
be such that{

x′(s) = f
(
K(s), u(s)

)(
x(s)

)
for a.e. s ∈ [t0, t0 + hn]

x(t0) ∈ K0, x(t0 + hn) = y.
(18)

We know that for some constants c1 > 0, c2 > 0, K(·) is c1-Lipschitz continuous and x(·) is c2-Lipschitz
continuous, i.e. that for any t ∈ [t0, 1[,

dH(K(t+ s),K(t)) ≤ c1|s| and |x(t+ s)− x(t)| ≤ c2|s| whenever s ∈ [0, 1− t].

Hence

y = x(t0 + hn) = x(t0) +
∫ hn

0
x′(t0 + s) ds

= x(t0) +
∫ hn

0
f
(
K(t0 + s), u(t0 + s)

)(
x(t0 + s)

)
ds

= x(t0) +
∫ hn

0
f
(
K0, u(t0 + s)

)(
x(t0)

)
ds + o(hn)

= x(t0) +
∫ hn

0
φ(s) ds

(
x(t0)) + o(hn)

with |o(hn)| ≤ ch2
n and c independent from y.

This and (17) imply that for any y ∈ K(t0 + hnj ) we can find x0 ∈ K0 such that∣∣∣y − x0 − hnjf
(
K0, ū

)
(x0)

∣∣∣ ≤ ‖õ(hnj )‖+ ch2
nj
.

Observe next that for any x0 ∈ K0, the solution of the ODE z′ = f
(
K(s), u(s)

)
(z), z(t0) = x0 satisfies

z(t0 + hnj ) ∈ K(t0 + hnj ). Therefore, the above estimates yield

dH(K(t0 + hnj ), (Id+ hnjf(K0, ū))
(
K0
)
) = o(hnj ).

Thus, Definition 2.11 and (16) imply that

0 = lim
j→∞

V (t0 + hnj ,K(t0 + hnj ))− V (t0,K0)
hnj

≥ D↑V (t0,K0)(1, f(K0, ū))

completing the proof.
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6.3 Proof of Proposition 4.8

Define the set-valued map FU : K (RN )  Lip(RN ,RN by FU (K) := {f(K,u) | u ∈ U} . By (H1),
FU has nonempty convex compact values. Moreover, the graph of FU is a closed subset of K (RN )×
Lip(RN ,RN ) (with respect to the local uniform convergence in Lip(RN ,RN )), because f is continuous
and U is compact.

We define the set-valued map F̃U : R×K (RN )× R Lip(RN+2,RN+2) by

F̃U (t,K, r) := {(1, f(K,u), 0) | u ∈ U} ,

where (1, f(K,u), 0)(t, x, z) = (1, f(K,u)(x), 0) for every u ∈ U and (t, x, z) ∈ R× RN × R.
Thus (1, f(K,u), 0) induces a transition

V(1,f(K,u),0) : [0, 1]×
(
R×K (RN )× R)→ R×K (RN )× R

by means of the reachable sets to the system
t′ = 1
x′ = f(K,u)(x)
z′ = 0 .

Obviously, values of F̃U are nonempty, compact and convex and the graph of F̃U is closed with respect
to the local uniform convergence in Lip(RN+2,RN+2). Since W satisfies a contingent inequality of
Proposition 4.8, by Proposition 2.12 and Proposition 4.6 for any (t,K) in the domain ofW with t < 1,
we have

◦
D↑W (t,K)(1,Vf(K,u)) ≤ 0 for some u ∈ U . This and Proposition 2.7 imply that any t ∈ [0, 1[

and any K ∈ K (RN ) with (t,K) in the domain of W , there exists u ∈ U such that

V(1,f(K,u),0) ∈
◦
T E p(W )(t,K,W (t,K)).

Hence for any (t,K, r) ∈ E p(W ) with t < 1 there is u ∈ U satisfying V(1,f(K,u),0) ∈
◦
T E p(W )(t,K, r).

Fix any t0 ∈ [0, 1[ and K0 ∈ K (RN ). If W (t0,K0) = +∞, then W (t0,K0) ≥ V (t0,K0). Assume
next that W (t0,K0) is finite.

From the Viability theorem [18, Theorem 3.11] applied on the closed set E p(W )∪
(
[1,∞[×K (RN )×

R
)
, we deduce that there exists K̃(·) : [t0, 1] → R × K (RN ) × R solution to the morphological

inclusion
◦
K̃(·) ∩ F̃U (K̃(·)) 6= ∅ with K̃(t0) = (t0,K0,W (t0,K0)) which verifies for every t ∈ [t0, 1[,

K̃(t) ∈ E p(W ). Continuity of K̃ and closedness of E p(W ) yield K̃(1) ∈ E p(W ). The definition
of F̃U ensures the existence of a map K(·) : [t0, 1] → K (RN ) solving the morphological inclusion
◦
K(·) ∩FU (K(·)) 6= ∅ with K0 = K0 satisfying

W (t,K(t)) ≤W (t0,K0), ∀ t ∈ [t0, 1]. (19)

Then [17, Proposition 25, p.416] implies the existence of a control u(·) ∈ U such that K(·) is the
solution to the morphological equation

◦
K(·) 3 f(K(·), u(·)), K(t0) = K0. Hence we get from (19),

W (t0,K0) ≥W (1,K(1)) = g(K(1)) ≥ V (t0,K0).

Since t0 ∈ [0, 1[ and K0 ∈ K (RN ) are arbitrary, we deduce that V ≤W .

6.4 Proof of Proposition 4.9

By the contingent inequality of Proposition 4.9, Proposition 2.12 and Proposition 2.7, for every (t,K)
in the domain of W with t < 1 and every r ≥ −W (t,K) we have

(1,Vf(K,u),0) ∈
◦
T E p(−W )(t, x, r) ∀u ∈ U. (20)
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Let (t0,K0) ∈ [0, 1[×K (RN ). IfW (t0,K0) = −∞, thenW (t0,K0) ≤ V (t0,K0). Also if V (t0,K0) =
+∞, then W (t0,K0) ≤ V (t0,K0). Assume next that W (t0,K0) is finite and V (t0,K0) < +∞.

Fix ε > 0, R > 0 and let K(·) : [t0, 1] → K (Rn) be a solution to the morphological equation
◦
K(·) 3 f(K(·), u(·)) for some u(·) ∈ U satisfying K(t0) = K0 and such that

g(K(1)) ≤
{
V (t0,K0) + ε

2 if V (t0,K0) > −∞

−R− ε
2 otherwise.

Since u(·) is measurable, there is a sequence of continuous functions ui(·) : [t0, 1]→ U such that

lim
i→∞

dU (ui(t), u(t)) = 0 a.e. in [t0, 1].

Furthermore, we can approximate continuous functions ui(·) by piecewise constant functions νki (·) :
[t0, 1] → U that are continuous from the left and converge to ui(·) uniformly on [t0, 1] when k → ∞.
This implies that for a sequence

(
νki
i

)
i
we have

lim
i→∞

dU (νki
i (t), u(t)) = 0 a.e. in [t0, 1].

To simplify the notation set νi := νki
i . For i ∈ N fixed, the function νi(·) can be written as

νi(·) = γ0χ[a0,a1](·) +
p∑
j=1

γjχ]aj ,aj+1](·),

where γj ∈ U for j = 0, ..., p, t0 = a0 < a1 < · · · < ap+1 = 1 and χI denotes the indicator
function of an interval I ⊆ R. By (20) and the Viability theorem [18, Theorem 3.11] applied on
the closed set E p(−W ) ∪

(
[1,∞[×K (RN ) × R

)
to the map (t,K, r) → (1, f(K, γ0)), 0), there exists

Ki(·) : [a0, a1] → K (RN ) solution to the morphological equation
◦
Ki(·) 3 f(Ki(·), γ0), Ki(a0) = K0

satisfying
−W (s,Ki(s)) ≤ −W (a0,Ki(a0)), for every s ∈ [a0, a1],

or equivalently,
W (s,Ki(s)) ≥W (t0,K0), for every s ∈ [a0, a1].

Using the induction argument, we extend Ki(·) on the interval [t0, 1] as the solution of the control
system in [S] corresponding to the control νi(·) satisfying

W (s,Ki(s)) ≥W (t0,K0), for every s ∈ [t0, 1]. (21)

We claim that limi→∞ dH
(
Ki(s),K(s)

)
= 0 on [t0, 1]. Indeed, since, for some λ > 0, f is λ-Lipschitz

continuous in the first variable uniformly in u, by Proposition 2.9 for a.e. t ∈ [t0, 1] we have
α
(
Vf(Ki(t), νi(t))

)
≤ Lip f

(
Ki(t), νi(t)

)
≤ A,

dΛ
(
Vf(Ki(t),νi(t)),Vf(K(t),u(t))

)
≤ ||f(Ki(t), νi(t))− f(K(t), u(t))||∞
≤ λdH(Ki(t),K(t)) + ‖f(K(t), u(t))− f(K(t), νi(t))‖∞.

By [17, Proposition 21, p.41], we obtain that for every t ∈ [t0, 1],

dH
(
K(t),Ki(t)

)
≤ eAt

∫ t

t0

[
λdH(Ki(s),K(s)) + ‖f(K(s), u(s))− f(K(s), νi(s))‖∞

]
e−Asds.

Gronwall’s Lemma implies that for a constant M > 0 and every i ≥ 1 we have

dH
(
K(t),Ki(t)

)
≤M

∫ t

t0
‖f(K(s), u(s))− f(K(s), νi(s))‖∞ds ∀ t ∈ [t0, 1].
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Since dU (νi(·), u(·)) converge to 0 almost everywhere in [t0, 1], and f is bounded and continuous, by
the Lebesgue dominated convergence theorem, limi→∞ dH

(
K(t),Ki(t)

)
= 0 for all t ∈ [t0, 1]. By the

upper semicontinuity of W , also g is upper continuous. We deduce from (21) that for all large i,

W (t0,K0) ≤W (1,Ki(1)) = g(Ki(1)) ≤ g(K(1)) + ε

2 ≤
{
V (t0,K0) + ε if V (t0,K0) > −∞
−R otherwise.

Since ε > 0, R > 0 are arbitrary, W (t0,K0) ≤ V (t0,K0). Finally, using that t0 ∈ [0, 1[ and K0 ∈
K (RN ) are arbitrary, we get W ≤ V .

6.5 Proof of Theorem 4.3

We need the following Lemma:

Lemma 6.1. Assume that f : K (RN ) × U → Lip (RN ,RN ) is λ1-Lipschitz continuous in the first
argument for every u ∈ U and that A := sup

u∈U,K∈K (RN )
Lip f(K,u) < +∞. Then for every control

u(·) ∈ U , t0 ∈ [0, 1[, any solutions K(·), K ′(·) : [t0, 1]→ K (RN ) to the morphological equations

◦
K(·) 3 f

(
K(·), u(·)

)
,

◦
K ′(·) 3 f

(
K ′(·), u(·)

)
,

satisfy the following inequality

dH(K(t),K ′(t)) ≤ e(A+λ1)t dH(K0,K
′(t0)), ∀ t ∈ [t0, 1].

Proof. Fix t ∈ [t0, 1]. By Proposition 2.9, supu∈U,K∈K (RN ) α
(
Vf(K,u)

)
≤ A and

dΛ
(
Vf(K(t),u(t)),Vf(K′(t),u(t))

)
≤ ||f

(
K(t), u(t)

)
− f

(
K ′(t), u(t)

)
||∞ ≤ λ1 dH

(
K(t),K ′(t)

)
.

Thus, [17, Proposition 21, p.41] implies that for every t ∈ [0, 1],

dH
(
K(t),K ′(t)

)
≤
(
dH
(
K(t0),K ′(t0)

)
+ λ1

∫ t

t0
dH
(
K(s),K ′(s)

)
e−Asds

)
eAt.

The Gronwall lemma completes the proof.

Proof of Theorem 4.3

By (H1) (i), for every u ∈ U and K0 ∈ K (RN ), the solution K(·) : [t0, 1] → K (RN ) to the
morphological equation

◦
K(·) 3 f

(
K(·), u(·)

)
, K(t0) = K0 satisfies K(1) ⊂ B(K0, ρ). Hence V has

finite values.
Assume first that g is locally Lipschitz. Fix t0, t

′
0 ∈ [0, 1] with t′0 < t0 and K0,K

′
0 ∈ K (RN ).

Let ε > 0 and u(·) ∈ U be such that the corresponding solution K(·) : [t0, 1] → K (RN ) to the
morphological system

◦
K(·) 3 f

(
K(·), u(·)

)
, K(t0) = K0, satisfies g(K(1)) ≤ V (t0,K0) + ε. Let K ′(·) :

[t′0, 1]→ K (RN ) be the solution to
◦
K ′(·) 3 f

(
K ′(·), u(·)

)
, K ′(t′0) = K ′0.

Since g is locally Lipschitz continuous and (H1) (i) is satisfied, by Lemma 6.1, there exists a constant
c > 0 depending only on λ1, A and a constant L depending only on ρ and the magnitude of K0, K

′
0

such that
V (t′0,K ′0)− V (t0,K0) ≤ g(K ′(1))− g(K(1)) + ε

≤ L dH
(
K(1),K ′(1)

)
+ ε

≤ c L dH
(
K(t0),K ′(t0)

)
+ ε

Note that

dH(K ′(t0),K(t0)) ≤ dH(K ′(t0),K ′(t′0)) + dH(K ′(t′0),K(t0)) = dH(K ′(t0),K ′(t′0)) + dH(K ′0,K0).

24



Since K ′(·) is ρ−Lipschitz continuous, from the last two inequalities we obtain

V (t′0,K ′0)− V (t0,K0) ≤ cL
[
ρ|t0 − t′0|+ dH(K ′0,K0)

]
+ ε.

Consider u′(·) ∈ U andK ′(·) : [0, 1]→ K (RN ) solving the morphological system
◦
K ′(·) 3 f

(
K ′(·), u′(·)

)
,

K ′(t′0) = K ′0 and satisfying g(K ′(1)) ≤ V (t′0,K ′0) + ε. Let K(·) : [t0, 1] → K (RN ) be the solution to
◦
K(·) 3 f

(
K(·), u′(·)

)
, K(t0) = K0. Using the same arguments as before, we show that

V (t0,K0)− V (t′0,K ′0) ≤ cL
[
ρ|t0 − t′0|+ dH(K ′0,K0)

]
+ ε .

Since ε > 0 is arbitrary, we conclude that

|V (t0,K0)− V (t′0,K ′0)| ≤ cρL|t0 − t′0|+ cLdH(K ′0,K0),

implying the local Lipschitz continuity of V . The fact that the continuity of g implies the continuity
of V follows by similar arguments.

6.6 Proof of Theorem 4.4

Fix (t0,K0) ∈ [0, 1]×K (RN ). Consider a sequence (tn,Kn) in [0, 1]×K (RN ) converging to (t0,K0).
Theorem 4.2 implies the existence of controls un(·) ∈ U such that the solutions K̄n : [tn, 1]→ K (RN )

of
◦
K̄n(s) 3 f

(
K̄n(s), un(s)

)
, K̄n(tn) = Kn satisfy V (tn,Kn) = g(K̄n(1)). We extend K̄n(·) on the

interval [0, 1] by setting K̄n(s) = Kn for every 0 ≤ s < tn. Using the same arguments as those in
the proof of Theorem 4.2, we show that K̄n(·) has a subsequence, again denoted by K̄n(·), converging
uniformly to a solution K(·) : [0, 1]→ K (RN ) of the morphological control system [S] on [t0, 1].

Since g is lower semicontinuous and the sequence K̄n(·) converges uniformly to K(·) in K (RN ),

V (t0,K0) ≤ g(K(1)) ≤ lim inf
n→∞

g(K̄n(1)) = lim inf
n→∞

V (tn,Kn).

By the arbitrariness of (tn,Kn), V is lower semicontinuous at (t0,K0). The arbitrariness of (t0,K0)
ends the proof.
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