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Abstract 

Dishevelled proteins are key players of Wnt signaling pathways. They transduce Wnt signals and 

perform cellular functions through distinct conserved domains. Due to the presence of multiple 

paralogs, the abundant accumulation of maternal transcripts, and the activation of distinct Wnt 

pathways, their regulatory roles during vertebrate early development and the mechanism by 

which they dictate the pathway specificity have been enigmatic and attracted much attention in 

the past decades. Extensive studies in different animal models have provided significant insights 

into the structure-function relationship of conserved Dishevelled domains in Wnt signaling and the 

implications of Dishevelled isoforms in early developmental processes. Notably, intra- and inter-

molecular interactions and Dishevelled dosage may be important in modulating the specificity of 

Wnt signaling. There are also distinct and redundant functions among Dishevelled isoforms in 

development and disease, which may result from differential spatiotemporal expression patterns 

and biochemical properties and post-translational modifications. This review presents the 

advances and perspectives in understanding Dishevelled-mediated Wnt signaling during 

gastrulation and neurulation in vertebrate early embryos. 
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Introduction 

Wnt signaling plays critical roles in a wide variety of biological process, including embryonic axis 

formation, cell proliferation, differentiation and migration, polarity establishment, and stem cell 

self-renewal (Steinhart and Angers, 2018; Wiese et al., 2018). Upon stimulation by Wnt ligands, 

membrane receptors (Frizzled) and co-receptors (LRP5/6, glypican-3/4, ROR, and RYK) 

assemble into complexes to activate divergent pathways (Niehrs, 2012; Green et al., 2014; 

Stricker et al., 2017). The activity of Frizzled receptors is further controlled by an auxiliary 

regulatory system involving RSPO1-4, LGR4/5/6 and ZNRF3/RNF43 (Jiang and Cong, 2016; 

Lehoczsky and Tabin, 2018). The canonical Wnt pathway (Wnt/ß-catenin) regulates target gene 

transcription through stabilization and nuclear accumulation of ß-catenin by inhibition of its 

destruction complex, consisting of Axin-GSK3ß-APC, whereas the non-canonical Wnt pathway 

(Wnt/planar cell polarity or Wnt/PCP) is implicated in polarized cellular orientation and 

asymmetric cell movements through activation of major regulators of the cytoskeleton. Aberrant 

signaling of both pathways leads to tumorigenesis and metastasis of multiple cancer types, as 

well as human birth defects (Clevers and Nusse 2012; Butler and Wallingford, 2017; Humphries 

and Mlodzik 2018), but how they are regulated in development and disease remains elusive.  

Dishevelled (Dvl or Dsh in Drosophila) is a family of proteins that function as common 

intracellular conductors of both Wnt/ß-catenin and Wnt/PCP pathways (Boutros and Mlodzik 

1999; Wallingford and Habas 2005; Gao and Chen 2010). Drosophila dsh alleles were first 

identified in genetic mutants with disruptions of hair and bristle polarity (Wallingford and Habas 

2005). Vertebrates possess three highly conserved Dvl genes. Extensive studies in mouse, 

Xenopus and zebrafish have revealed their critical roles in germ layer specification and 

morphogenetic movements, which require Wnt/ß-catenin and Wnt/PCP signaling, respectively. 

There is accumulating evidence that Dvl isoforms display both distinct and redundant functions 

(Gentzel and Schambony, 2017).	   However, a number of important questions regarding Dvl-

mediated Wnt signaling during development remain enigmatic (Mlodzik 2016), such as Dvl-

regulated switch of distinct Wnt pathways, the specific functions of Dvl isoforms in Wnt signaling 

and development, the post-translational modifications of Dvl functions, and the maternal 
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contributions of Dvl to early developmental events. Fortunately, structure-function and mutational 

analyses have significantly advanced our understanding of Dvl-regulated Wnt signaling in 

development and disease. This review focuses on progresses made in this fascinating research 

field by using complementary vertebrate animal models.  

Dvl functional domains in Wnt signaling 

Dvl proteins contain several highly conserved domains required for activating different Wnt 

pathways, including in particular the N-terminal DIX (DIshevelled and aXin) domain, the central 

PDZ (Post-synaptic density protein-95, Disc large tumor suppressor, Zonula occludens-1) 

domain, and the C-terminal DEP (Dishevelled, Egl-10 and Pleckstrin) domain (Fig. 1). The DIX 

domain is involved in Wnt-induced dynamic Dvl homo- and hetero-oligomerization that is 

important for Wnt/ß-catenin signaling (Kishida et al., 1999; Kan et al., 2020; Ma et al., 2020). The 

PDZ domain interacts with a conserved KTxxxW motif located immediately after the seventh 

transmembrane domain of Frizzled receptors (Umbhauer et al., 2000; Wong et al., 2003), and 

with a wide variety of binding partners that function either as agonists or antagonists of Wnt 

signaling (Wallingford and Habas 2005; Sharma et al., 2018). Biochemical and functional 

analyses suggest that it participates in both Wnt/ß-catenin and Wnt/PCP signaling (Habas et al., 

2001; Lee et al., 2015). The DEP domain plays a major role in Dvl membrane recruitment by 

Frizzled receptors (Axelrod et al., 1998; Rothbächer et al., 2000; Wong et al., 2000; Pan et al., 

2004; Park et al., 2005). It functions in the Wnt/PCP pathway either with the PDZ domain to 

activate Rho/ROCK or by direct interaction with Rac to trigger JNK activation. However, more 

recent evidence suggests that Dvl dimerization triggered by the N-terminal region of DEP domain 

is required for Wnt/ß-catenin signaling (Gammons et al., 2016a, b; Paclíková et al., 2017). 	  

The C-terminal region beyond the DEP domain also shows evolutionary conservation but 

displays unique features among Dvl isofroms. Specifically, Dvl3 contains histidine-single amino 

acid repeats required for Wnt5a-stimulated activation of nuclear factor of activated T cells (NF-

AT) and possesses proline-rich domains likely involved in the interaction with other Dvl isoforms 

(Ma et al., 2010; Wang and Malbon 2012). The extreme 13 amino acids that are conserved in all 
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Dvl isoforms binds to the third intracellular loop of Frizzled receptors and stabilizes Frizzled-Dvl 

interaction in Wnt/ß-catenin signaling (Tauriello et al., 2012). Moreover, the last 3 residues 

represent a type II PDZ-binding (PDZ-B) motif that can occupy the peptide-binding pocket of the 

PDZ domain, inducing Dvl to adopt a closed conformation and an auto-inhibited state (Lee et al., 

2015; Qi et al., 2017). Dvl variants with an opened conformation show efficient membrane 

recruitment and reduced activity in Wnt/ß-catenin signaling but display increased activity in 

Wnt/PCP signaling (Qi et al., 2017; Harnoš et al., 2019). The function of Dvl C-terminal region in 

Wnt signaling is further demonstrated in autosomal-dominant Robinow syndrome caused by de 

novo frameshift mutations in human DVL1 and DVL3 genes, which delete and replace the C-

terminal region after the DEP domain (Bunn et al., 2015; White et al., 2015, 2016; Danyel et al., 

2018). In vitro analysis suggests that DVL1 lacking the C-terminal region displays reduced activity 

in Wnt/ß-catenin signaling (Bunn et al., 2015). These findings suggest an importance of the C-

terminus in intra- or inter-molecular interaction, which may be subjected to regulation by other 

partners to switch pathway specificity. Indeed, recent studies show that casein kinase 1ɛ (CK1ɛ) 

and NIMA-related kinase 2 (NEK2) function as scaffold proteins and regulate the dynamics of Dvl 

conformational changes by phosphorylation of the PDZ domain and modulation of its interaction 

with the extreme C-terminal tail (Harnoš et al., 2019; Hanáková et al., 2019).  

Dvl dosage effect on morphogenetic movements and cell fate specification during 

development in mice 

The three Dvl genes (Dvl1, Dvl2 and Dvl3) in mice are broadly expressed throughout early 

development. Extensive analyses of mutant phenotypes have uncovered both unique and 

redundant functions for these genes. Mice deficient in Dvl1 show reduced social interaction and 

abnormal sensorimotor gating (Lijam et al., 1997). This abnormal behavior is caused by defective 

Wnt/ß-catenin signaling that may impair central nervous system functions (Belinson et al., 2016). 

Mice deficient in Dvl2 exhibit more severe phenotypes, with defective cardiac morphogenesis, 

somite segmentation, and neural tube closure (Hamblet et al., 2002). Dvl3 functions redundantly 

with Dvl1 and Dvl2 in several processes, including cardiac outflow tract, cochlea and neural tube 
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development (Etheridge et al., 2008). These works reveal a sensitivity of Wnt/PCP signaling to 

Dvl dosage because most defective phenotypes in Dvl mutants are related to impaired Wnt/PCP 

signaling, in particular the defective outflow tract morphogenesis (Sinha et al., 2012). Thus, Dvl 

isoforms are critically required for morphogenetic movements. Particularly, they mediate 

Wnt/PCP in CE movements during neurulation. Dvl2 plays a predominant role in neural tube 

closure, but Dvl1 and Dvl3 are also involved in this process (Wang et al., 2006). The functional 

importance of Dvl isoforms in neural tube formation has been confirmed by the identification of 

rare mutations in all three human DVL genes, which disturb normal functions of DVL isoforms in 

non-canonical Wnt signaling and cause neural tube defects (De Marco et al., 2013; Liu et al., 

2020). By comparison, low levels of Dvl expression from a single allele may be sufficient to 

normally support those developmental processes triggered by the Wnt/ß-catenin pathway 

(Soares et al., 2005; Wynshaw-Boris, 2012). However, deletion of all six Dvl alleles causes 

absence of mesoderm gene expression and mesoderm formation that are dependent on Wnt/ß-

catenin signaling (Ngo et al., 2020). 

Distinct and redundant Dvl functions during Xenopus development 

Dvl function in vertebrates was first studied during Xenopus development. Overexpression of 

Dvl2 (Xdsh) in the ventral region of early embryos induced the formation of a complete secondary 

axis reminiscent of activation of maternal Wnt/ß-catenin signaling (Sokol et al., 1995). However, 

dorsal overexpression of Xdd1, a truncated form of Dvl2 that lacks the PDZ domain and interferes 

with Wnt/ß-catenin signaling triggered by Wnt ligands, did not affect dorsoventral axis formation 

(Sokol, 1996). Because maternal Wnt/ß-catenin signaling is required for dorsal fate specification 

by activating the transcription of target genes in the Spemann organizer (Carron and Shi, 2016), 

the absence of an inhibitory effect by Xdd1 implies that Dvl function may be dispensable for the 

activation of maternal Wnt/ß-catenin signaling. Consistently, simultaneous depletion of maternally 

expressed Dvl2 and Dvl3 from oocytes did not affect the expression of maternal Wnt/ß-catenin 

target genes and the formation of dorsal axis (Tadjuidje et al., 2011). However, it is possible that 

low levels of Dvl proteins are still present in the oocytes due to incomplete depletion of maternal 
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Dvl mRNA. Thus, the requirement of maternal Dvl for dorsal axis formation in Xenopus requires a 

complete loss-of-function study. Nevertheless, a recent study suggests that activation of maternal 

Wnt/ß-catenin pathway and formation of dorsal axis may be achieved through a Dvl-independent 

mechanism (Yan et al., 2018). During organogenesis, it seems that Dvl isoforms display less 

functional redundancy in developmental processes that involve Wnt/ß-catenin signaling, which 

may be due to their differential expression patterns. For example, Dvl1 and Dvl2 are required for 

neural crest cell specification and somite segmentation, while Dvl3 maintains gene expression in 

the myotome (Gray et al., 2009).  

Maternal Dvl2 and Dvl3 likely display distinct and redundant functions during CE 

movements. In these coordinated processes, lateral cells converge toward the dorsal region to 

narrow the germ layers, while dorsal midline cells undergo mediolateral intercalation by polarized 

protrusive behaviors to lengthen the embryo along the anteroposterior axis (Keller and 

Sutherland, 2020). Previous studies show that Dvl regulates CE movements through Wnt/PCP 

signaling (Tada and Smith 2000; Djiane et al., 2000; Wallingford and Harland 2001; Habas et al., 

2001, 2003). Moreover, inhibition of maternal Dvl2 or Dvl3 function suggests that they exhibit a 

non-redundant but an additive effect on CE movements (Tadjuidje et al., 2011). More recent 

works reveal that Dvl1, but not Dvl2 or Dvl3, activates the Wnt/Ca2+ pathway (another branch of 

the non-canonical pathway) during CE movements (Gentzel et al., 2015), further supporting the 

distinct functions of Dvl isoforms in morphogenetic movements. As in mice, Dvl function is also 

required for neural tube closure by regulating CE movements of the midline and coordinating 

polarity among epithelial cells (Wallingford and Harland 2002; Seo et al., 2017). In addition, Dvl2-

mediated activation of Rac1 through the DEP domain also controls the protrusive activity of 

neural crest cells during migration (Kratzer et al., 2020). Because cellular polarization is tightly 

dependent on the asymmetric activation of Wnt/PCP signaling, both reduced and increased 

levels of Dvl disrupts asymmetric movements. However, the cellular behaviors are completely 

different. Increasing the activity of Dvl perturbs cell polarity by randomizing the formation of 

cellular protrusions, whereas reducing the activity of Dvl prevents cellular protrusions (Wallingford 

et al., 2000; Cheng et al., 2017).  
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Maternal contributions of Dvl proteins to axis patterning and morphogenetic processes 

during zebrafish development 

The zebrafish genome contains five Dvl paralogs: dvl1a, dvl1b, dvl2, dvl3a, and dvl3b. In the 

early embryos, dvl2 and dvl3a are maternally expressed and represent about 98% of the total 

pool, whereas the transcript levels of the other Dvl genes are negligible (Harvey et al., 2013). 

Knockout of Dvl genes reveal both distinct and redundant functions in embryonic axis 

specification and morphogenetic movements (Xing et al., 2018). Maternal-zygotic mutants for 

dvl1a, dvl1b, dvl3a, and dvl3b are phenotypically normal and fertile. In sharp contrast, maternal-

zygotic dvl2 mutants display strongly impaired CE movements during gastrulation and develop 

severe craniofacial defects with a “bulldog” facial phenotype, reminiscent of impaired Wnt/PCP 

signaling in midline structures (Kimmel et al., 2001). Zygotic dvl2 mutant embryos are essentially 

normal, but only about half of them can survive to adulthood, and all male individuals show 

absence of courtship behavior. This suggests that there may be defects in central nervous 

system functions as mice Dvl1 mutants (Lijam et al., 1997). The highest level of dvl2 expression 

during early development may explain at least partly the most severe phenotypes of dvl2 

mutants.	  

The specification of dorsal axis in zebrafish also requires maternal ß-catenin signaling to 

trigger the expression of organizer genes (Kelly et al., 2000; Bellipanni et al., 2006; Fuentes et 

al., 2020). However, the involvement of upstream regulators has not been conclusively 

established. Importantly, maternal-zygotic dvl2 and dvl3a double mutants, which were 

unresponsive to stimulation by Wnt ligands, show normal specification of dorsal cell fate, 

suggesting that components of Wnt signaling upstream of ß-catenin may be dispensable for its 

stabilization. The activation of maternal Wnt/ß-catenin signaling independent of Dvl activity is 

further confirmed in zebrafish huluwa mutants. Maternal depletion of huluwa impairs Wnt/ß-

catenin signaling and causes loss of dorso-anterior structures. Mechanistically, Huluwa protein 

accumulates in the cell membrane at the dorsal region and functions independently of Wnt 

ligands and Frizzled receptors to promote tankyrase-mediated degradation of Axin, thereby 

stabilizing ß-catenin (Yan et al., 2018).   
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Mutational analyses of Dvl functions also reveal a major contribution of maternal Dvl to 

zygotic events and confirm the importance of Dvl dosage in Wnt/PCP signaling (Fig. 2). This 

dosage effect is particularly reflected by the requirement of Dvl2 and Dvl3a for CE movements. 

Although Dvl2 plays a predominant role, Dvl3a exerts a strong synergistic effect on the loss of 

Dvl2 function, and progressive removal of Dvl2 and Dvl3a maternal or zygotic products 

increasingly aggravates CE defects and reduces the elongation of anteroposterior axis. 

Furthermore, zygotic dvl2 and dvl3a double mutants only display a shortened body length. 

However, maternal-zygotic dvl2 and dvl3a double mutants show most strongly impaired CE 

movements and completely lack axis extension. They also develop severe trunk and posterior 

deficiencies associated with down-regulation of zygotic Wnt/ß-catenin target genes (Xing et al., 

2018). Because zygotic Wnt/ß-catenin signaling has an opposite effect with respect to maternal 

Wnt/ß-catenin signaling and functions to specify the posterior region (Carron and Shi, 2016), 

these findings highlight the importance of maternal Dvl in setting up zygotic morphogenetic and 

patterning processes. They support the view that maternally expressed gene products perform 

essential functions after zygotic genome activation (Marlow, 2020; Solnica-Krezel 2020). Thus, 

both maternal and zygotic Dvl dosages are important for proper cell movements and embryonic 

axis patterning that occur during gastrulation. 	  

Perspectives	  

Dvl conserved domains in Wnt pathways have attracted much attention. Although the function of 

DIX, PDZ and DEP domains is relatively understood, how they cooperate to switch pathway 

specificity remains elusive. Detailed analysis of other conserved domains or isoform-specific 

regions, such as the basic region preceding the PDZ domain, the proline-rich region and 

histidine-single amino acid repeats in the C-terminal region beyond the DEP domain, and the 

extreme C-terminus, may provide insights into Dvl-mediated signal transduction. Because Dvl 

post-translational modifications, in particular phosphorylation and ubiquitination, and Dvl 

interaction partners are important for subcellular localizations and specific functions of Dvl 

proteins (Sharma et al., 2018; Harrison et al., 2020), it is of interest to understand how these 
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modulate Dvl activity and dictate signaling outcomes in key developmental processes. Indeed, 

dysregulation of Dvl phosphorylation impairs both Wnt/ß-catenin and Wnt/PCP signaling during 

zebrafish and Xenopus embryogenesis (Shimizu et al., 2014; Rauschenberger et al., 2017). The 

specificity of Dvl isoforms also merits investigations because tissue-specific expression patterns 

and differential biochemical properties may contribute to their particular functions. Another 

intriguing question is the sensibility of Wnt/PCP signaling, but not Wnt/ß-catenin signaling, to Dvl 

dosage, which is observed in all vertebrates. It suggests that Wnt/PCP-dependent developmental 

processes critically require Dvl function to activate downstream effectors. Consequently, 

moderate diminution of Dvl dosage could significantly affect polarized cellular behaviors and cell 

polarity. By comparison, ß-catenin may be stabilized independently of upstream Wnt signaling 

components, and target genes of Wnt/ß-catenin signaling may be regulated by other factors, at 

least during dorsal fate specification in zebrafish and Xenopus (Li et al., 2015; Yan et al., 2018). 

Thus, tissue morphogenesis regulated by Wnt/PCP signaling is more sensitive to Dvl dysfunction, 

as a result, many human congenital disorders, such as neural tube defects and Robinow 

syndrome, are associated with mutations in DVL genes.	  
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Fig. 1. Structure-function relationship of conserved Dvl domains in the activation of Wnt/ß-catenin 

and Wnt/PCP signaling (see text for details).    

  
 

 

Fig. 2. Maternal and zygotic Dvl dosage effect on embryonic axis elongation in zebrafish embryos 

at 5 days post-fertilization (Xing et al., 2018). (A) Wild-type sibling embryo. (B) Zygotic dvl2 

mutant. (C) The “bulldog” facial phenotype of maternal-zygotic dvl2 mutant with cyclopia. (D) 

Maternal-zygotic dvl3a mutant. (E) Triallelic dvl2 and dvl3a mutant. (F) Zygotic dvl2 and dvl3a 

double mutant. Scale bar (A-F): 400 µm. 
 


