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3D-CNN for Facial Emotion Recognition in
Videos

Jad Haddad!?, Olivier Lezoray', and Philippe Hamel?

! Université de Caen, GREYC, CNRS UMR 6072, Caen, France
2 Zero To One Technology, Campus Effiscience, Colombelles, France

Abstract. In this paper, we present a video-based emotion recognition
neural network operating on three dimensions. We show that 3D convo-
lutional neural networks (3D-CNN) can be very good for predicting facial
emotions that are expressed over a sequence of frames. We optimize the
3D-CNN architecture through hyper-parameters search, and prove that
this has a very strong influence on the results, even if architecture tun-
ing of 3D CNNs has not been much addressed in the literature. Our
proposed resulting architecture improves over the results of the state-of-
the-art techniques when tested on the CK+ and Oulu-CASIA datasets.
We compare the results with cross-validation methods. The designed
3D-CNN yields a 97.56% using Leave-One-Subject-Out cross-validation,
and 100% using 10-fold cross-validation on the CK+ dataset, and 84.17%
using 10-fold cross-validation on the Oulu-CASIA dataset.

Keywords: Facial Emotion Recognition - Video - 3D-CNN - CK+ -
Oulu-CASTA

1 Introduction

Facial emotion recognition has been gaining a lot of attention over the past
decades with applications in cognitive sciences and affective computing. Ekman
et al. have identified six basic facial expressions (anger, disgust, fear, happiness,
sadness, and surprise) as basic emotional expressions that are universal and
common among human beings [1]. Human emotions are complex to interpret, and
building recognition systems is essential in human-computer interaction since
affective information is a major component of human communication. Many
approaches have been proposed for automatic facial expression recognition [2].
Most of the traditional non-deep approaches have focused on analyzing static
images independently, thus ignoring the temporal relations of sequence frames in
videos. However this temporal information is essential for tracking small changes
in the face throughout the expression of an emotion. Recently, with the surge of
deep learning, more promising results have been reported [BEIGI57] tackling the
automatic facial emotion recognition task using both geometric and photometric
features.
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2 Emotion recognition in videos

Predicting dynamic facial emotion expressions in videos has received a lot of
attention. Many previous works have explored tracking geometric features of
the face relying on the evolution of facial landmarks across frames [§], or have
used e.g., the LBP-TOP approach [9]. Recently, deep learning techniques have
emerged as they can provide enormous performance gains [7]. Several deep tech-
niques can be considered for analyzing sequential data, the most prominents
being Recurrent Neural Networks (RNN) [10], and Long Short-Term Memories
(LSTM) [1I]. Many works have been led on the combination of classical 2D
Convolutional Neural Networks with RNNs or LTSMs to cope with the tempo-
ral aspect in emotion recognition in videos [I2IT3]. In these approaches, a RNN
(or LSTM) takes the features extracted by a CNN over individual frames as
inputs and encodes the temporal dynamics. Few works have been led on the
use of 3D-CNN [I415] as compared to the combination CNN-LSTM in the fa-
cial emotion recognition domain. However convolutional neural networks with
3D kernels (3D-CNNs) can have a superior ability to extract spatio-temporal
features within video frames, as compared to 2D CNNs, even if combined with
temporal networks. This is the line of the work we propose and we aim at de-
signing an efficient 3D-CNN for emotion recognition in videos [T6/3].

3 Owur Approach

We consider 3D-CNNs to perform facial emotion recognition in videos. We base
our study on [I4], and regularize the feature extraction part of the network
with batch normalization because of its success in reducing internal covariate
shift [I7]. We explore how we can optimize the structure and parameters of
the network to obtain better performances. Unlike 2D convolution, when a 3D
convolution is applied on a video sequence, the output is a 3D tensor. Therefore,
3D convolutions preserve the temporal aspect of a video sequence. In video
contexts, facial expressions do not manifest themselves instantly, but instead,
they are built up gradually across time until they reach their peak. Thus, a
static approach would result in predictions that can vary a lot across the frames
and lead to uninterpretable results. A 3D-CNN solves this issue since by nature
it takes as input a group of sequential frames and analyzes them together to
predict an emotion.

3.1 Deep 3D CNN

The full architecture of our proposed model to be optimized is presented in
Figure[I] such that the white components are fixed, and the red components are
to be explored. We suppose that an expression can be detected in 10 consecutive
frames as in the state of the art. Our model takes as input a window of 10 RGB
frames of size 112 x 112. We use the Adam optimizer and we set the learning
rate to 0.0001, and set the maximum number of epochs to 16. We process batches
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Fig. 1. Full architecture to optimize. Number of filters is denoted in each Conv box.

of size 30, and we report the results of the best epoch. The momentum of batch
normalization layers is set to 0.1. We denote the kernel dimensions as (f,w,h)
where f represents the temporal dimension, w represents the width dimension,
and h represents the height dimension. All convolutional layers have a kernel of
size (3, 3, 3), and a padding of (1, 1, 1). However, we will search in the following
sections for the best temporal dimension size of the convolutional kernel. All
pooling layers have a kernel size of (2, 2, 2) and a stride of (2, 2, 2), except for
the first pooling layer, which has a kernel size of (1, 2, 2) and a stride of (1, 2,
2), and for the last pooling layer which has a kernel size of (1, 2, 2), a stride of
(2, 2, 2), and a padding of (0, 1, 1).

3.2 Data Augmentation

Data augmentations have proved to increase the task performance of neural
networks [I8]. When a deep network has many parameteres, it can easily overfit
when the size of the training dataset is small. Data augmentation overcomes
this issue by artificially creating new samples by applying transformations to
the training set. We explore two geometric and one photometric augmentation
techniques:

1. Flip: flip horizontally.

2. Rotation: rotate by a random angle a € [—30, 30].

3. Linear contrast: adjust contrast by scaling each pixel to 127+ a:* (v —127)
where v is the pixel value and « is a random multiplier € [0.22,2.2].

3.3 Architecture Optimization

To find the best combination of all the options that we want to explore, we can do
a grid search to explore every possible combination. Even though this technique
yields the most accurate results, we would be facing a combinatorial explosion,
which is computationally expensive. To tackle this problem, we used the Op-
tuna [?| framework [I9] to search for the best hyper-parameters combination.
Optuna uses by default Tree-structured Parzen Estimator (TPE) [20], which is
more efficient and much less computationally expensive than a grid search. TPE
is a sequential model-based optimization (SMBO) approach. SMBO methods se-
quentially construct models to approximate the performance of hyperparameters

3 http://optuna.org/
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based on previous measurements, and then choose new hyperparameters to test,
based on this model. On each trial, TPE fits for each parameter one Gaussian
Mixture Model (GMM) I(z) to the set of parameter values associated with the
best objective values, and another GMM g(z) to the remaining parameter val-
ues. Then it chooses the parameter value x that maximizes the ratio I(z)/g(z).
We're interested in exploring the following parameters:

— Type of pooling layer.

— Type of activation function.

— Optimizing using Lookahead (k=5, alpha=0.5) [21].

— Applying CLAHE [22] on input images with
clipLimit = 2 and tileGridSize = (8, 8), as illumination can vary a lot which
can result in large intra-class variances, which we want to minimize [7].

— Normalizing images so that each pixel value € [—1,1]. Normalization in-
creases the robustness of the the training efficacy of a neural network [23]

— Size of the temporal dimension in convolutional kernels and modifying the
padding of the kernel so that we preserve the same shape of the temporal
dimension.

— Weights initialization [24].

— Regularization using dropout between fully connected layers.

— Adding a second convolutional block in first two layer groups.

— Assigning weight to each class and pass it to cross-entropy loss.

The details of the hyper-parameters search are shown in Table [I} Optuna offers

Parameter Options

Optimization Lookahead+Adam/Adam

CLAHE true/false
Normalization true/false
Activation ReLU/ELU/pReLU/
leaky ReLU/Mish [25]
Loss weights true/false
Temporal size 1/3/5/7/9
Initializer Xavier uniform/Xavier normal
Pooling layer AvgPooling/MaxPooling
Second ConvLayer true/false
Dropout [0,1]

Table 1. Hyper-parameters to explore.

pruning functionality for early stopping trials that are not promising. In this
experiment, we prune trials that will yield a LOSO cross-validation accuracy less
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than 96.5%, allowing us to iterate faster on the different combinations generated
by the estimator.

4 Experiments

In this section we consider two state-of-the-art databases and show that a 3D-
CNN with an efficient hyper-paprameter search can lead to very good results.

4.1 Evaluation on CK+

CK+ [26] contains 593 video sequences from 123 subjects. Among these videos,
327 sequences from 118 subjects are labeled with seven basic expression la-
bels, i.e., anger, contempt, disgust, fear, happiness, sadness, and surprise. 266
of these video sequences are not annotated, and are discarded for the rest of
the experiment. CK+ does not provide training/testing splits, therefore to com-
pare our model’s performance, we adopt the cross-validation technique. We use
Leave-One-Subject-Out (LOSO) cross-validation technique as a metric to con-
struct and optimize our network’s architecture. However, to compare our results
with previous works done on this dataset, we use 10-fold subject-independent
cross-validation experiments as most of the state-of-the-art algorithms were eval-
uated in such a way. We constructed 10 subsets as described in several previous
works [27/3], and compute the overall accuracy over 10 folds.

Preprocessing. We process the last 10 frames of each sequence by extracting
the face using OpenCV’s deep learning model for face detection. We then resize
the cropped faces to the scale of 112 x 112, and rescale the pixels values so that
each pixel € [0, 1]. The majority of the video sequences are grayscale, therefore,
we convert the few colored video sequences to grayscale RGB to preserve the
consistency of the dataset.

Data Augmentation We perform different image augmentations empirically
according to the representability of each class, knowing that geometric aug-
mentations outperform photometric methods [I8], we obtain a quasi-balanced
dataset:

— Contempt: 1xFlip, 7xRotation, 4xLinear contrast.

— Fear: 1xFlip, 4xRotation, 4xLinear contrast.
— Sadness: 1xFlip, 4xRotation, 3x Linear contrast.
— Anger: 1xFlip, 2xRotation, 1xLinear contrast.
— Happy: 1xFlip, 1xRotation, 1xLinear contrast.
— Disgust: 1xFlip, 1xRotation, 1xLinear contrast.
— Surprise:  1xFlip, 1xRotation, 0xLinear contrast.

Furthermore, we duplicate the last frame for video sequences having less than
10 frames.
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Hyper-parameters Optimization More than 800 different configuration have
been tested, we show the ones that have their LOSO above the pruning thresh-
old and the best results are in the top right corner. After 600 trials, the TPE
starts converging as shown in Figure [2] we observe that certain parameters con-
tribute much in increasing the model’s performance (e.g., CLAHE, Xavier uni-
form, temporal_size = 3) and other parameters lower the model’s performance
(e.g. normalization, temporal_size € {1;7;9}, dropout € [0.5, 1], adding a second
convolutional layer to the first two layer groups).
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Fig. 2. Hyper-parameters search on CK+. Each red cross represents a different config-
uration.

Results The best trial of LOSO cross-validation on CK+ yielded 97.56%. The
hyper-parameters combination proposed by the TPE for this accuray is illus-
trated in Table [2| along with its confusion matrix in Figure |5, and the resulting
architecture is illustrated in Figure
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Fig. 3. Resulting architecture for CK+, number of filters is denoted in each Conv box.

BatchNorm

BatchNorm

BatchNorm

BatchNorm

We use the resulting architecture to evaluate the 10-fold subject-independent
cross-validation, we achieve 100%. This is so far the best result obtained on this
dataset.
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Hyper-parameter Value
Optimization Adam
CLAHE true
anger 0.95 0 10 Normalization false
disgust -0.8  Activation function ReLU
fear -0.6 Loss weights false
saz:: _04 Temporal size 3
surprise o2 Initializer Xavier uniform
contempt 00 Pooling layer AvgPooling
%’, % E g g % é‘ . Second ConvLayer false
© 5 3 3 Dropout 0.2511

Fig. 5. Confusion matrix of LOSO for Table 2. Hyper-parameters of the
CK+. best CK+ LOSO trial.

4.2 Evaluation on Oulu-CASIA

We perform hyper-parameter tuning of the full architecture to obtain the opti-
mized 3D-CNN architecture for the Oulu-CASIA dataset.

Oulu-CASTA [28] counsists of six expressions (surprise, happiness, sadness,
anger, fear and disgust) from 80 people between 23 to 58 years old. 73.8% of the
subjects are males. Subjects were filmed by an NIR camera and a VIS camera
which capture the same facial expression. All expressions are captured in three
different illumination conditions: normal, weak and dark. Normal illumination
means that good normal lighting is used. Weak illumination means that only
computer display is on and subject sits on the chair in front of the computer.
Dark illumination means near darkness. For this experiment, we only use video
sequences captured in normal illumination condition.

Preprocessing. We process the last 10 frames of each sequence by extracting
the face using OpenCV’s deep learning model for face detection. We then resize
the cropped faces to the scale of 112 x 112, and rescale the pixels values so that
each pixel € [0, 1].

Data Augmentation We augment all the video sequences using 1 x Flip, 5
x Rotation, 2 x Linear contrast. Furthermore, we duplicate the last frame for
video sequences having less than 10 frames.
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Results The best trial of 10-fold cross-validation on Oulu CASIA yielded
84.17%. The hyper-parameters combination proposed by the TPE for this ac-
curay is illustrated in Table [3] along with its confusion matrix in Figure [6] and
the resulting architecture is illustrated in Figure

Hyper-parameter Value

Optimization Lookahead + Adam

CLAHE false
anger 075 KRR 3 o Normalization true
disqust [T oo13| o Ebed o Activation function Leaky ReLU
0.6 :
[ o 0039 0.039 0.013 0.026 Loss weights false
STVl 0012 0 0012 0.036 0.012 0.4 Temporal size 3
EELLEC) 0.12 0053 0 ! 02 Initializer none
surprise Y 0 0l o0 0 L Pooling layer MaxPooling
0.0
e,
g 5 5 § ] Second ConvLayer false
® ] o
5 = 3 3 Dropout 0.4233

Fig. 6. Confusion matrix of 10-fold for Table 3. Hyper-parameters of the best
Oulu-CASTA. Oulu-CASTA 10-fold trial.

4.3 Importance of meta optimization

We evaluate the optimized architecture of CK+4+ on Oulu-CASIA and vice-versa
to see the importance of having an architecture that is optimized to the dataset
in question as opposed to having one architecture for both datasets. The p-
value is used to determine the significance between the two architectures and
therefore, the importance of having a different architecture optimized to each
dataset. Tables [4] and [5] show that the p-value is significant. Thus, having an
optimized architecture for each dataset is necessary to have a better accuracy.

4.4 Comparison with the state-of-the-art

We evaluate the accuracy of our proposed network architecture. Our approach
improves the results of the state-of-the-art on CK+ according to [7] using Leave-
One-Subject-Out cross-validation as shown in Table [6} The results of the state-
of-the-art according to [2] using 10-fold cross-validation as shown in Table [7]
Our approach yields to the best state-of-the-art results so far obtained on this
dataset. Our model yields results in the range of the state-of-the-art on Oulu-
CASIA using 10-fold cross-validation are shown in Table |8} Our model surpasses
the results of [3], and yields similar results as the Spatio-temporal convolutional
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Fold
1 2 3 4 5 6 7 8 9 10 Average P-value Significance

cl 100 100 100 100 100 100 100 100 100 100 100
c2 93.9 100 84.8 78.7 87.8 93.9 93.9 96.8 87.5 90  90.76  0.00057  significant
c3 96.8 96.8 84.8 93.9 87.8 93.9 78.7 96.8 87.593.9 91.14 0.00067 significant

Table 4. P-value comparisons between architecture for the CK+ dataset. With c1
being the optimized architecture for CK+ 3] c2 the optimized architecture for Oulu-
CASIA 4 and ¢3 the optimized architecture for Oulu-CASIA [4] pre-trained on the
Oulu-CASIA dataset

Fold
1 2 3 4 5 6 7 8 9 10 Average P-value Significance

c297.597.5 80 82.582.5 80 72.597.5 75 T7.5 84.25
c181.281.270.8 75 72.972.983.372.9729875 77.08 0.03650 significant
c4 85 97.5 75 825775 70 65 97.5 75 725 79.75 0.00597 significant

Table 5. P-value comparisons between architecture for the Oulu-CASTA dataset. With
c1 being the optimized architecture for CK+ [3] ¢2 the optimized architecture for Oulu-
CASIA[ and c4 the optimized architecture for CK+-[3] pre-trained on the CK+ dataset

(STC) used in [29]. We believe that better results could be obtained on this
dataset with our approach by focusing more on the temporal aspect by using an
additional LSTM, as done in [29]. Finally, our results show the benefits of: (i)
using 3D-CNNs over traditionnal CNN or CNN-LSTM approaches, (ii) an effi-
cient hyper-parameter search for a considered 3D-CNN architecture. Regarding
this last point, if one looks at the final architectures shown in Figure [3] and []
one can see that they look very similar. However the best hyper-paremeters are
very different (see Tables [2| and . This is favor of our proposal that considers
an efficient hyper-parameter space exploration.

Approach Accuracy (%)
LBP/Gabor + SRC[32] 98.09
Approach Accuracy (%) DBN + MLP|33] 98.57
CNN (AlexNet)[30] 94.4 CNN[34] 98.62
DAE (DSAE)[31] 95.79 FAN[27] 99.69
Our approach 97.56 Our approach 100

Table 6. LOSO results for CK+. Table 7. 10-fold results for CK+.
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Approach Accuracy (%)
FLT[3] 74.17
C3D[] 74.38

FLT+C3D[3] 81.49
Our approach 84.17
STC[29] 84.72

LSTM (STC-NLSTM)[29]  93.45

Table 8. 10-fold results for Oulu-CASIA.

5 Conclusion

We have proposed 3D-CNNs for video-based facial expression recognition. 3D-
CNNs can extract very subtle temporal features that enables to go beyond 2D-
CNNs. However their design can be delicate and we have proposed to use an
efficient hyper-parameter search to address this issue. The experiments have con-
firmed the benefit of our approach. The results on CK+ show that our network
surpasses the actual state-of-the-art results on CK+ with 97.56% for Leave-One-
Subject-Out cross-validation and 100% for 10-fold subject-independent cross-
validation. Similarly, a rate of 84.17% on Oulu-CASIA for 10-fold subject-independent
cross-validation. In future works we plan to combine the video modality with au-

dio recording.
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