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In this paper, we present a video-based emotion recognition neural network operating on three dimensions. We show that 3D convolutional neural networks (3D-CNN) can be very good for predicting facial emotions that are expressed over a sequence of frames. We optimize the 3D-CNN architecture through hyper-parameters search, and prove that this has a very strong influence on the results, even if architecture tuning of 3D CNNs has not been much addressed in the literature. Our proposed resulting architecture improves over the results of the state-ofthe-art techniques when tested on the CK+ and Oulu-CASIA datasets. We compare the results with cross-validation methods. The designed 3D-CNN yields a 97.56% using Leave-One-Subject-Out cross-validation, and 100% using 10-fold cross-validation on the CK+ dataset, and 84.17% using 10-fold cross-validation on the Oulu-CASIA dataset.

Introduction

Facial emotion recognition has been gaining a lot of attention over the past decades with applications in cognitive sciences and affective computing. Ekman et al. have identified six basic facial expressions (anger, disgust, fear, happiness, sadness, and surprise) as basic emotional expressions that are universal and common among human beings [START_REF] Ekman | Constants across cultures in the face and emotion[END_REF]. Human emotions are complex to interpret, and building recognition systems is essential in human-computer interaction since affective information is a major component of human communication. Many approaches have been proposed for automatic facial expression recognition [START_REF] Huang | Facial expression recognition: A survey[END_REF]. Most of the traditional non-deep approaches have focused on analyzing static images independently, thus ignoring the temporal relations of sequence frames in videos. However this temporal information is essential for tracking small changes in the face throughout the expression of an emotion. Recently, with the surge of deep learning, more promising results have been reported [START_REF] Jung | Joint fine-tuning in deep neural networks for facial expression recognition[END_REF][START_REF] Hasani | Facial Expression Recognition Using Enhanced Deep 3D Convolutional Neural Networks[END_REF][START_REF] Mollahosseini | Going deeper in facial expression recognition using deep neural networks[END_REF][START_REF] Sharma | Automatic Facial Expression Recognition Using Combined Geometric Features[END_REF][START_REF] Li | Deep Facial Expression Recognition: A Survey[END_REF] tackling the automatic facial emotion recognition task using both geometric and photometric features.

Emotion recognition in videos

Predicting dynamic facial emotion expressions in videos has received a lot of attention. Many previous works have explored tracking geometric features of the face relying on the evolution of facial landmarks across frames [START_REF] Ghimire | Recognition of facial expressions based on salient geometric features and support vector machines[END_REF], or have used e.g., the LBP-TOP approach [START_REF] Nigam | Local Binary Patterns Based Facial Expression Recognition for Efficient Smart Applications[END_REF]. Recently, deep learning techniques have emerged as they can provide enormous performance gains [START_REF] Li | Deep Facial Expression Recognition: A Survey[END_REF]. Several deep techniques can be considered for analyzing sequential data, the most prominents being Recurrent Neural Networks (RNN) [START_REF] Graves | A novel connectionist system for unconstrained handwriting recognition[END_REF], and Long Short-Term Memories (LSTM) [START_REF] Hochreiter | Long Short-Term Memory[END_REF]. Many works have been led on the combination of classical 2D Convolutional Neural Networks with RNNs or LTSMs to cope with the temporal aspect in emotion recognition in videos [START_REF] Li | CNN and LSTM Based Facial Expression Analysis Model for a Humanoid Robot[END_REF][START_REF] Jain | Hybrid deep neural networks for face emotion recognition[END_REF]. In these approaches, a RNN (or LSTM) takes the features extracted by a CNN over individual frames as inputs and encodes the temporal dynamics. Few works have been led on the use of 3D-CNN [START_REF] Tran | Learning spatiotemporal features with 3D convolutional networks[END_REF][START_REF] Zhao | Learning deep facial expression features from image and optical flow sequences using 3D CNN[END_REF] as compared to the combination CNN-LSTM in the facial emotion recognition domain. However convolutional neural networks with 3D kernels (3D-CNNs) can have a superior ability to extract spatio-temporal features within video frames, as compared to 2D CNNs, even if combined with temporal networks. This is the line of the work we propose and we aim at designing an efficient 3D-CNN for emotion recognition in videos [START_REF] Reddy | Spontaneous Facial Micro-Expression Recognition using 3D Spatiotemporal Convolutional Neural Networks[END_REF][START_REF] Jung | Joint fine-tuning in deep neural networks for facial expression recognition[END_REF].

Our Approach

We consider 3D-CNNs to perform facial emotion recognition in videos. We base our study on [START_REF] Tran | Learning spatiotemporal features with 3D convolutional networks[END_REF], and regularize the feature extraction part of the network with batch normalization because of its success in reducing internal covariate shift [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF]. We explore how we can optimize the structure and parameters of the network to obtain better performances. Unlike 2D convolution, when a 3D convolution is applied on a video sequence, the output is a 3D tensor. Therefore, 3D convolutions preserve the temporal aspect of a video sequence. In video contexts, facial expressions do not manifest themselves instantly, but instead, they are built up gradually across time until they reach their peak. Thus, a static approach would result in predictions that can vary a lot across the frames and lead to uninterpretable results. A 3D-CNN solves this issue since by nature it takes as input a group of sequential frames and analyzes them together to predict an emotion.

Deep 3D CNN

The full architecture of our proposed model to be optimized is presented in Figure 1, such that the white components are fixed, and the red components are to be explored. We suppose that an expression can be detected in 10 consecutive frames as in the state of the art. Our model takes as input a window of 10 RGB frames of size 112 × 112. We use the Adam optimizer and we set the learning rate to 0.0001, and set the maximum number of epochs to 16. We process batches of size 30, and we report the results of the best epoch. The momentum of batch normalization layers is set to 0.1. We denote the kernel dimensions as (f, w, h) where f represents the temporal dimension, w represents the width dimension, and h represents the height dimension. All convolutional layers have a kernel of size [START_REF] Jung | Joint fine-tuning in deep neural networks for facial expression recognition[END_REF][START_REF] Jung | Joint fine-tuning in deep neural networks for facial expression recognition[END_REF][START_REF] Jung | Joint fine-tuning in deep neural networks for facial expression recognition[END_REF], and a padding of (1, 1, 1). However, we will search in the following sections for the best temporal dimension size of the convolutional kernel. All pooling layers have a kernel size of (2, 2, 2) and a stride of (2, 2, 2), except for the first pooling layer, which has a kernel size of (1, 2, 2) and a stride of (1, 2, 2), and for the last pooling layer which has a kernel size of (1, 2, 2), a stride of (2, 2, 2), and a padding of (0, 1, 1).

Data Augmentation

Data augmentations have proved to increase the task performance of neural networks [START_REF] Taylor | Improving Deep Learning using Generic Data Augmentation[END_REF]. When a deep network has many parameteres, it can easily overfit when the size of the training dataset is small. Data augmentation overcomes this issue by artificially creating new samples by applying transformations to the training set. We explore two geometric and one photometric augmentation techniques:

1. Flip: flip horizontally. where v is the pixel value and α is a random multiplier ∈ [0.22, 2.2].

Architecture Optimization

To find the best combination of all the options that we want to explore, we can do a grid search to explore every possible combination. Even though this technique yields the most accurate results, we would be facing a combinatorial explosion, which is computationally expensive. To tackle this problem, we used the Optuna3 framework [START_REF] Akiba | Optuna: A Next-generation Hyperparameter Optimization Framework[END_REF] to search for the best hyper-parameters combination. Optuna uses by default Tree-structured Parzen Estimator (TPE) [START_REF] Bergstra | Algorithms for hyper-parameter optimization[END_REF], which is more efficient and much less computationally expensive than a grid search. TPE is a sequential model-based optimization (SMBO) approach. SMBO methods sequentially construct models to approximate the performance of hyperparameters based on previous measurements, and then choose new hyperparameters to test, based on this model. On each trial, TPE fits for each parameter one Gaussian Mixture Model (GMM) l(x) to the set of parameter values associated with the best objective values, and another GMM g(x) to the remaining parameter values. Then it chooses the parameter value x that maximizes the ratio l(x)/g(x).

We're interested in exploring the following parameters:

-Type of pooling layer.

-Type of activation function.

-Optimizing using Lookahead (k=5, alpha=0.5) [START_REF] Zhang | Lookahead Optimizer: k steps forward[END_REF].

-Applying CLAHE [START_REF] Reza | Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement[END_REF] on input images with clipLimit = 2 and tileGridSize = (8, 8), as illumination can vary a lot which can result in large intra-class variances, which we want to minimize [START_REF] Li | Deep Facial Expression Recognition: A Survey[END_REF]. -Normalizing images so that each pixel value ∈ [-1, 1]. Normalization increases the robustness of the the training efficacy of a neural network [23] -Size of the temporal dimension in convolutional kernels and modifying the padding of the kernel so that we preserve the same shape of the temporal dimension. -Weights initialization [START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF].

-Regularization using dropout between fully connected layers.

-Adding a second convolutional block in first two layer groups.

-Assigning weight to each class and pass it to cross-entropy loss.

The details of the hyper-parameters search are shown in Table 1 pruning functionality for early stopping trials that are not promising. In this experiment, we prune trials that will yield a LOSO cross-validation accuracy less than 96.5%, allowing us to iterate faster on the different combinations generated by the estimator.

Experiments

In this section we consider two state-of-the-art databases and show that a 3D-CNN with an efficient hyper-paprameter search can lead to very good results.

Evaluation on CK+

CK+ [START_REF] Lucey | The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression[END_REF] contains 593 video sequences from 123 subjects. Among these videos, 327 sequences from 118 subjects are labeled with seven basic expression labels, i.e., anger, contempt, disgust, fear, happiness, sadness, and surprise. 266 of these video sequences are not annotated, and are discarded for the rest of the experiment. CK+ does not provide training/testing splits, therefore to compare our model's performance, we adopt the cross-validation technique. We use Leave-One-Subject-Out (LOSO) cross-validation technique as a metric to construct and optimize our network's architecture. However, to compare our results with previous works done on this dataset, we use 10-fold subject-independent cross-validation experiments as most of the state-of-the-art algorithms were evaluated in such a way. We constructed 10 subsets as described in several previous works [START_REF] Meng | Frame Attention Networks for Facial Expression Recognition in Videos[END_REF][START_REF] Jung | Joint fine-tuning in deep neural networks for facial expression recognition[END_REF], and compute the overall accuracy over 10 folds.

Preprocessing. We process the last 10 frames of each sequence by extracting the face using OpenCV's deep learning model for face detection. We then resize the cropped faces to the scale of 112 × 112, and rescale the pixels values so that each pixel ∈ [0, 1]. The majority of the video sequences are grayscale, therefore, we convert the few colored video sequences to grayscale RGB to preserve the consistency of the dataset.

Data Augmentation

We perform different image augmentations empirically according to the representability of each class, knowing that geometric augmentations outperform photometric methods [START_REF] Taylor | Improving Deep Learning using Generic Data Augmentation[END_REF], we obtain a quasi-balanced dataset: Furthermore, we duplicate the last frame for video sequences having less than 10 frames.

-Contempt: 1×Flip,
Hyper-parameters Optimization More than 800 different configuration have been tested, we show the ones that have their LOSO above the pruning threshold and the best results are in the top right corner. After 600 trials, the TPE starts converging as shown in Figure 2, we observe that certain parameters contribute much in increasing the model's performance (e.g., CLAHE, Xavier uniform, temporal size = 3) and other parameters lower the model's performance (e.g. normalization, temporal size ∈ {1; 7; 9}, dropout ∈ [0.5, 1], adding a second convolutional layer to the first two layer groups). 

Results

The best trial of LOSO cross-validation on CK+ yielded 97.56%. The hyper-parameters combination proposed by the TPE for this accuray is illustrated in Table 2 along with its confusion matrix in Figure 5, and the resulting architecture is illustrated in Figure 3. We use the resulting architecture to evaluate the 10-fold subject-independent cross-validation, we achieve 100%. This is so far the best result obtained on this dataset. 

Evaluation on Oulu-CASIA

We perform hyper-parameter tuning of the full architecture to obtain the optimized 3D-CNN architecture for the Oulu-CASIA dataset.

Oulu-CASIA [START_REF] Zhao | Facial expression recognition from near-infrared videos[END_REF] consists of six expressions (surprise, happiness, sadness, anger, fear and disgust) from 80 people between 23 to 58 years old. 73.8% of the subjects are males. Subjects were filmed by an NIR camera and a VIS camera which capture the same facial expression. All expressions are captured in three different illumination conditions: normal, weak and dark. Normal illumination means that good normal lighting is used. Weak illumination means that only computer display is on and subject sits on the chair in front of the computer. Dark illumination means near darkness. For this experiment, we only use video sequences captured in normal illumination condition.

Preprocessing. We process the last 10 frames of each sequence by extracting the face using OpenCV's deep learning model for face detection. We then resize the cropped faces to the scale of 112 × 112, and rescale the pixels values so that each pixel ∈ [0, 1].

Data Augmentation

We augment all the video sequences using 1 × Flip, 5 × Rotation, 2 × Linear contrast. Furthermore, we duplicate the last frame for video sequences having less than 10 frames.

Results

The best trial of 10-fold cross-validation on Oulu CASIA yielded 84.17%. The hyper-parameters combination proposed by the TPE for this accuray is illustrated in Table 3 along with its confusion matrix in Figure 6, and the resulting architecture is illustrated in Figure 3. 

Importance of meta optimization

We evaluate the optimized architecture of CK+ on Oulu-CASIA and vice-versa to see the importance of having an architecture that is optimized to the dataset in question as opposed to having one architecture for both datasets. The pvalue is used to determine the significance between the two architectures and therefore, the importance of having a different architecture optimized to each dataset. Tables 4 and5 show that the p-value is significant. Thus, having an optimized architecture for each dataset is necessary to have a better accuracy.

Comparison with the state-of-the-art

We evaluate the accuracy of our proposed network architecture. Our approach improves the results of the state-of-the-art on CK+ according to [START_REF] Li | Deep Facial Expression Recognition: A Survey[END_REF] using Leave-One-Subject-Out cross-validation as shown in Table 6. The results of the stateof-the-art according to [START_REF] Huang | Facial expression recognition: A survey[END_REF] using 10-fold cross-validation as shown in Table 7.

Our approach yields to the best state-of-the-art results so far obtained on this dataset. Our model yields results in the range of the state-of-the-art on Oulu-CASIA using 10-fold cross-validation are shown in Table 8. Our model surpasses the results of [START_REF] Jung | Joint fine-tuning in deep neural networks for facial expression recognition[END_REF], and yields similar results as the Spatio-temporal convolutional (STC) used in [START_REF] Yu | Spatio-temporal convolutional features with nested LSTM for facial expression recognition[END_REF]. We believe that better results could be obtained on this dataset with our approach by focusing more on the temporal aspect by using an additional LSTM, as done in [START_REF] Yu | Spatio-temporal convolutional features with nested LSTM for facial expression recognition[END_REF]. Finally, our results show the benefits of: (i) using 3D-CNNs over traditionnal CNN or CNN-LSTM approaches, (ii) an efficient hyper-parameter search for a considered 3D-CNN architecture. Regarding this last point, if one looks at the final architectures shown in Figure 3 and4, one can see that they look very similar. However the best hyper-paremeters are very different (see Tables 2 and3). This is favor of our proposal that considers an efficient hyper-parameter space exploration. 

Conclusion

We have proposed 3D-CNNs for video-based facial expression recognition. 3D-CNNs can extract very subtle temporal features that enables to go beyond 2D-CNNs. However their design can be delicate and we have proposed to use an efficient hyper-parameter search to address this issue. The experiments have confirmed the benefit of our approach. The results on CK+ show that our network surpasses the actual state-of-the-art results on CK+ with 97.56% for Leave-One-Subject-Out cross-validation and 100% for 10-fold subject-independent crossvalidation. Similarly, a rate of 84.17% on Oulu-CASIA for 10-fold subject-independent cross-validation. In future works we plan to combine the video modality with audio recording.
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 1 Fig. 1. Full architecture to optimize. Number of filters is denoted in each Conv box.
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 2 Rotation: rotate by a random angle α ∈ [-30, 30]. 3. Linear contrast: adjust contrast by scaling each pixel to 127 + α * (v -127)
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 2 Fig. 2. Hyper-parameters search on CK+. Each red cross represents a different configuration.
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 3 Fig. 3. Resulting architecture for CK+, number of filters is denoted in each Conv box.
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 4 Fig. 4. Resulting architecture for Oulu CASIA, number of filters is denoted in each Conv box.
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 5 Fig. 5. Confusion matrix of LOSO for CK+.
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 63 Fig. 6. Confusion matrix of 10-fold for Oulu-CASIA.
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 1 . Optuna offers Hyper-parameters to explore.

	Parameter	Options
	Optimization	Lookahead+Adam/Adam
	CLAHE	true/false
	Normalization	true/false
	Activation	ReLU/ELU/pReLU/
		leaky ReLU/Mish [25]
	Loss weights	true/false
	Temporal size	1/3/5/7/9
	Initializer	Xavier uniform/Xavier normal
	Pooling layer	AvgPooling/MaxPooling
	Second ConvLayer	true/false
	Dropout	[0, 1]

Table 2 .

 2 Hyper-parameters of the best CK+ LOSO trial.

Table 4 .

 4 P-value comparisons between architecture for the CK+ dataset. With c1 being the optimized architecture for CK+ 3, c2 the optimized architecture for Oulu-CASIA 4, and c3 the optimized architecture for Oulu-CASIA 4 pre-trained on the Oulu-CASIA dataset

					Fold			
	1	2	3	4	5	6	7	8	9 10 Average P-value Significance
	c1 100 100 100 100 100 100 100 100 100 100	100
	c2 93.9 100 84.8 78.7 87.8 93.9 93.9 96.8 87.5 90	90.76	0.00057 significant
	c3 96.8 96.8 84.8 93.9 87.8 93.9 78.7 96.8 87.5 93.9 91.14	0.00067 significant
					Fold			
	1	2	3	4	5	6	7	8	9 10 Average P-value Significance
	c2 97.5 97.5 80 82.5 82.5 80 72.5 97.5 75 77.5 84.25
	c1 81.2 81.2 70.8 75 72.9 72.9 83.3 72.9 72.9 87.5 77.08	0.03650 significant
	c4 85 97.5 75 82.5 77.5 70 65 97.5 75 72.5 79.75	0.00597 significant

Table 5 .

 5 P-value comparisons between architecture for the Oulu-CASIA dataset. With c1 being the optimized architecture for CK+ 3, c2 the optimized architecture for Oulu-CASIA 4, and c4 the optimized architecture for CK+ 3 pre-trained on the CK+ dataset

Table 6 .

 6 LOSO results for CK+.

			Approach	Accuracy (%)
			LBP/Gabor + SRC[32]	98.09
	Approach	Accuracy (%)	DBN + MLP[33]	98.57
	CNN (AlexNet)[30]	94.4	CNN[34]	98.62
	DAE (DSAE)[31]	95.79	FAN[27]	99.69
	Our approach	97.56	Our approach	100

Table 7 .

 7 10-fold results for CK+.

	Approach	Accuracy (%)
	FLT[3]	74.17
	C3D[3]	74.38
	FLT+C3D[3]	81.49
	Our approach	84.17
	STC[29]	84.72
	LSTM (STC-NLSTM)[29]	93.45

Table 8 .

 8 [START_REF] Graves | A novel connectionist system for unconstrained handwriting recognition[END_REF]-fold results for Oulu-CASIA.

http://optuna.org/