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Estimation of the extreme-value index of a heavy-tailed distribution is investigated when some functional random covariate (i.e. valued in some infinite-dimensional space) information is available and the scalar response variable is right-censored. A weighted kernel version of Hill's estimator of the extreme-value index is proposed and its asymptotic normality is established under mild assumptions. A simulation study is conducted to assess the finite-sample behavior of the proposed estimator.

Introduction

In this paper, we are interested in nonparametric conditional tail index estimation of the conditional distribution of the random variable of interest given a covariate. When some covariate is recorded simultaneously with the quantity of interest Y , the tail index can depend on the covariate and is referred in the sequel to as conditional tail index or conditional extreme value-index. This parameter drives the tail heaviness of the distribution of Y and thus plays a central role in the analysis of extremes, making its estimation a crucial issue. Then, we consider the situation where some covariate information X is available to the investigator, and the distribution of Y depends on X.

Specifically, we focus on the problem of estimating a conditional extreme-value index of a heavy-tailed distribution when some functional covariate information X ∈ E is available, where E is an infinite dimensional space associated with a semi-metric d(•, •). The analysis of functional data have been extensively studied for example in [START_REF] Ramsay | Some tools for functional data analysis[END_REF] the authors have developed the fundamental theory around the functional data. Parametric model estimators are developed [START_REF] Bosq | Linear processes in function spaces: theory and applications[END_REF][START_REF] Ramsay | Functional data analysis[END_REF] and nonparametric estimators have been proposed in [START_REF] Ferraty | Nonparametric models for functional data, with application in regression, time series prediction and curve discrimination[END_REF] by establishing the strong consistency of estimators related to regression function. Despite the greater interest in practice, the study of the functional random covariate case have been initiated recently, we refer to the works in [START_REF] Gardes | Conditional extremes from heavy-tailed distributions: An application to the estimation of extreme rainfall return levels[END_REF] based on the estimation of extreme rainfalls given the geographical location and also in [START_REF] Ferrez | Extreme temperature analysis under forest cover compared to an open field[END_REF] they studied the extreme temperatures given topological parameters and the estimation of extreme earthquakes given the location in [START_REF] Pisarenko | Characterization of the frequency of extreme earthquake events by the generalized pareto distribution[END_REF].

Normally, in real-life practical application, the variable of interest may be incomplete. In classical applications such as the analysis of lifetime data (survival analysis, reliability theory, insurance), a typical feature which appears is censorship. For example, in medical follow up, the response variable Y represents the time elapsed from the entry of a patient in, say, a follow-up study until death. If, at the time that the data collection is performed, the patient is still alive or has withdrawn from the study for some reason, the variable of interest Y will not be available. A convenient way to model this situation is the introduction of a random variable C (called a censoring random variable), independent of Y , such that only the pairs (Z i , δ i ), 1 i n are observed where Z i = min(Y i , C i ) and δ i = 1 {Yi Ci} and 1 {A} is the indicator function of the event A.

Estimation of the extreme value-index or high quantiles with censored data when covariate information is not available was the purpose of many investigations. When there is no covariate information, estimation of the extreme-value index from censored data is considered by [START_REF] Beirlant | Peaks-over-threshold modeling under random censoring[END_REF][START_REF] Brahimi | On the asymptotic normality of hill's estimator of the tail index under random censoring[END_REF][START_REF] Delafosse | Almost sure convergence of a tail index estimator in the presence of censoring[END_REF][START_REF] Einmahl | Statistics of extremes under random censoring[END_REF][START_REF] Gomes | A note on statistics of extremes for censoring schemes on a heavy right tail[END_REF][START_REF] Gomes | Estimation of the extreme value index for randomly censored data[END_REF] and [START_REF] Worms | New estimators of the extreme value index under random right censoring, for heavy-tailed distributions[END_REF]. [START_REF] Beirlant | Estimation of the extreme value index and extreme quantiles under random censoring[END_REF] and [START_REF] Einmahl | Statistics of extremes under random censoring[END_REF] additionally address estimation of extreme quantiles. [START_REF] Ndao | Modélisation de valeurs extrêmes conditionnelles en présence de censure[END_REF] and [START_REF] Ndao | Nonparametric estimation of the conditional extreme-value index with random covariates and censoring[END_REF] address estimation of the conditional extreme-value index and conditional extreme quantiles with fixed and random covariates. Some important literature is devoted to the estimation of the conditional quantile of a scalar response given a functional covariate. [START_REF] Gardes | Functional kernel estimators of large conditional quantiles[END_REF] dealt with the estimation of conditional quantiles when the covariate is functional and when the order of the quantiles converges to one as the sample size increases. [START_REF] Chaouch | Randomly censored quantile regression estimation using functional stationary ergodic data[END_REF] investigated the conditional quantile estimation of a randomly censored scalar response variable given a functional random covariate whenever a stationary ergodic data are considered.

However, based on the literature and our knowledge, estimation of the functional conditional extreme value-index of a heavy-tailed distribution under random right censoring has not yet been addressed, when covariate is a functional random variable. Our methodology combines a kernel version of Hill?s estimator of the extreme-value index (such as developed in [START_REF] Goegebeur | Nonparametric regression estimation of conditional tails: the random covariate case[END_REF] in the uncensored case) with a weighting term whose role is to correct for censoring (such as in [START_REF] Einmahl | Statistics of extremes under random censoring[END_REF] and [START_REF] Brahimi | On the asymptotic normality of hill's estimator of the tail index under random censoring[END_REF], who estimate the unconditional extreme-value index with censoring). This idea is already used in [START_REF] Ndao | Nonparametric estimation of the conditional extreme-value index with random covariates and censoring[END_REF]. Following the same idea, we propose a functional Hill-type estimator depending on a semi-metric d(., .).

The remainder of this paper is organized as follows. Some notation and definition are introduced in Section 2. The construction of our estimator of the functional conditional extreme value index is summarized in Section 3. Assumptions are introduced and the asymptotic normality of the proposed estimator is established in Section 4. Section 5 illustrates the finite sample behavior of the proposed estimator via simulations. The conclusion and some perspectives are presented in Section 6. All proofs are presented in the Appendix in Section 7.

Notation and Definition

Let (X i , Y i ) i = 1, • • • , n be the independent copies of the random pairs (X, Y ), where Y is positive real random variable and X be a functional random variable, X ∈ E is an infinite dimensional space associated to semi-metric. We assume that the variable Y is randomly right censored by a positive random variable C defined on the same probability space (Ω, C, P) as Y . Therefore, we really observe independent triplets (X i , δ i , Z i ), where In this paper, we focus on heavy tails. More specifically, we assume that the conditional survival function satisfies the following condition (A1).

Z i = min(Y i , C i ) and δ i = 1 {Yi Ci} for i = 1 • • • , n
F (t|x) = r 1 (x) exp - t 1 1 γ 1 (x) -ε 1 (µ|x) dµ µ (1) 
and

G(t|x) = r 2 (x) exp - t 1 1 γ 2 (x) -ε 2 (µ|x) dµ µ (2) 
where γ 1 (x), γ 2 (x) are positive unknown functions of the covariate x, r respectively. Thus,

F (u|x) = u -1 γ 1 (x) L 1 (u|x) and G(u|x) = u -1 γ 2 (x) L 2 (u|x)
where for x fixed, L 1 (.|x) and L 2 (.|x) are slowly varying functions at infinity, that is, for all λ > 0,

lim y→∞ L i (λu|x) L i (u|x) = 1, i = 1, 2.
By conditional independence between Y and C, the conditional survival function H(•|x) of Z given X = x is also a regularly varying function at infinity with index -1 γ(x) as expressed as follow:

H(z|x) = 1 -H(z|x) = F (t|x)G(t|x) = r(x) exp - z 1 1 γ(x) -(ε(µ|x)) dµ µ with γ(x) = γ 1 (x)p(x) where p(x) = γ2(x) γ1(x)+γ2(x)
is the ultimate proportion of uncensored observations among Z i , i = 1, • • • , n; the proof of this statement is out of scope of presented paper (see [START_REF] Einmahl | Statistics of extremes under random censoring[END_REF][START_REF] Ndao | Modélisation de valeurs extrêmes conditionnelles en présence de censure[END_REF] for more details) and r(x) = r 1 (x)r 2 (x), ε(µ|x) = ε 1 (µ|x) + ε 2 (µ|x). In the sequel, we further assume that L i (u|x), i = 1, 2 belong to the Hall class of slowly-varying functions.

Construction of the estimator

Let (X i , δ i , Z i ), i = 1, . . . , n, be independent realizations of the random vector (X, δ, Z) where [START_REF] Goegebeur | Nonparametric regression estimation of conditional tails: the random covariate case[END_REF], the authors proposed a Hill's version of the conditional extreme value index when the covariate response is in R p . Following the same idea, we propose a functional Hill-type estimator depending on a semi-metric d(., .):

Z i = min(Y i , C i ) and δ i = 1 {Yi Ci} for i = 1 • • • , n and (X, Z) ∈ E × R * + . If Z i were uncensored it means that Z i = Y i for all i, in
γH n (x) = n i=1 K(h -1 d(x, X i )) (log Z i -log y n ) 1 {Zi>yn} / n i=1 K(h -1 d(x, X i ))1 {Zi>yn} , (3) 
where K(.) is a real-valued kernel function on E, h = h n is a positive non-random bandwidth sequence such that h → 0 as n → ∞ and y n is non-random threshold sequence with y n → ∞ as n → ∞.

The estimator (3) is not consistent for γ 1 (x) if it is directly applied to the censored sample (X i , δ i , Z i ), i = 1, • • • , n. Indeed, under appropriate regularity assumptions, estimator (3) will converge to the extreme-value index γ(x) of the conditional distribution of Z given X = x. To accommodate censoring, we suggest, like in [START_REF] Ndao | Nonparametric estimation of the conditional extreme-value index with random covariates and censoring[END_REF], to divide (3) by the proportion pn (x) of uncensored observations among the Z i , i = 1, • • • , n that are larger than y n , in a neighborhood of x:

pn (x) = H 1 n (y n |x) H n (y n |x) where H n (y n |x) = n i=1 B i (x)1 {Zi>yn} , H 1 n (y n |x) = n i=1 B i (x)1 {Zi>yn,δi=1}
and B i (x) are the well-known Nadaraya-Watson weights defined by

B i (x) = K(h -1 d(x, X i )) n j=1 K(h -1 d(x, X j ))
.

The survival functions H n (y n |x) and H 

, x) = 1 n(µ (1) x (h)) n i=1 K( d(x,Xi) h )1 {Zi>yn,δi=1} and ζn (y n , x) = 1 n(µ (1) x (h)) n i=1 K( d(x,Xi) h )1 {Zi>yn} and ĝn (x) = 1 n(µ (1) x (h)) n i=1 K( d(x,Xi) h ) Therefore we propose to estimate γ 1 (.) by γc,H n (x) = γH n (x) pn (x) . (4) 
This estimator depends on the bandwidth h, the threshold y n and the semi-metric d(•, •). The choice of the semi-metric is a crucial point in nonparametric functional data analysis (see [START_REF] Ferraty | Nonparametric Functional Data Analysis: Theory and Practice[END_REF]). To the best of our knowledge, theoretical advances for choosing the semi-metric in practical situations have not yet been developed.

Once the semi-metric has been chosen, packages are available in the literature (see https://cran.r-project.org/web/packages/fda.usc/index.html) to evaluate proximities between functional data. In the simulation study in Section 5, we will discussed the impact of the degree of derivatives on the performance of our estimator when semi-metric based on derivatives are considered for smooth curves as covariates.

Let us introduce the following conditional expectation whose asymptotic expansion will enable us to study the asymptotic expansion of our proposed estimator (4)

S n (y n , r; x) = E (log Z -log y n ) r 1 {Z>yn} |X = x . (5) 

Assumptions and asymptotic results

In this section, we first give some regularity conditions for proving our results. Some of those assumptions have been adapted from different authors including [START_REF] Chaouch | Randomly censored quantile regression estimation using functional stationary ergodic data[END_REF][START_REF] Gardes | A moving window approach for nonparametric estimation of the conditional tail index[END_REF][START_REF] Gardes | Functional kernel estimators of large conditional quantiles[END_REF]; [START_REF] Ndao | Nonparametric estimation of the conditional extreme-value index with random covariates and censoring[END_REF].

(A2). The kernel K is classical kernel density function with support [0, 1], and there exist real number 0 < C < C < ∞ such that C K(t) C for all t ∈ [0, 1].

(A3). There exist K r > 0, K > 0, K γ > 0, µ 0 > 1 such that for all (x, x ) ∈ E × E and µ > µ 0 , log r(x) -log r(x ) K r d(x, x ), (µ|x) -(µ|x ) K d(x, x ), 1 γ(x) - 1 γ(x ) K γ d(x, x ).
To make everything clearly, we may assume that the integral of K is equal to one. Under condition (A2), we introduce the new notation that µ (j)

x (h) = E K j h -1 d(x, X) for j = 1, 2.
Let B(t, r) be the ball of center t and radius r then we define the function ϕ x (h) = P (X ∈ B(x, h)) which is the small ball probability. By condition (A2) and Lemma 7.2 in the Appendix, it is shown that for j > 0, µ

x (h) has the same asymptotic order as ϕ x (h).

(A4). Suppose that there exist a function ρ(x) < 0 and a regularly varying function A(•|x) which not changing the sign eventually at infinity with index ρ(x) and with lim yn→∞ A(y n |x) = 0 such that for all x > 0, lim t→∞

H ← 1 -1 ut |x /H ← 1 -1 t |x -u γ(x) A(t|x) = u γ(x) u ρ(x) -1 ρ(x) .
The aforementioned condition is called second-order condition in classical extreme value theory.

Considering the condition (A4) which control the behavior of H ← (•|x), we need an additional condition to control the oscillation of H ← (u|x) when considered as a function of the covariate x. That condition is expressed in terms of conditional expectation S n (y n , r; x) defined in [START_REF] Chaouch | Randomly censored quantile regression estimation using functional stationary ergodic data[END_REF] as defined in [START_REF] Goegebeur | A local moment type estimator for the extreme value index in regression with random covariates[END_REF].

(A5). The conditional expectation S n (y n , r; x) satisfies that, for y n → ∞, h → 0 as n → ∞ and (x , x) ∈ E × E Φ n (y n , h; x) := sup r∈{1,2} sup x ∈B(x,h) S n (y n , r; x ) S n (y n , r; x) -1 1 {d(x ,x)<h} → 0 if n → ∞.
Remark 1. For sake of simplicity, we choose to deal with the naive kernel estimator.

It is easy to construct a smooth version of this naive estimator. To do so, it suffices to change the basic indicator function into a smooth cumulative distribution function.

For more details, see [START_REF] Ferraty | Nonparametric Functional Data Analysis: Theory and Practice[END_REF]. However, the theoretical properties stated in Theorem 4.1 can not be considered as valid for the smooth version of our estimator.

We now derive the limiting distribution of the proposed estimator (4) of γ 1 (x). The proof is given in the Appendix.

Theorem 4.1. Suppose (A1)-(A5) hold. Let y n be non-random threshold sequence and h be a sequence of bandwidth, such that y n → ∞ and h → 0, nH(

y n |x) → ∞, σ -1 n (x) A 1 H(yn|x) ∨ (h log y n ) ∨ ϕ x (h) → 0 as n → ∞. For all x ∈ E, such that ϕ x (h) > 0, σ -1 n (x) γc,H n (x) -γ 1 (x) D → N 0, γ 3 1 (x) γ(x)
where

σ n (x) =   nH(yn|x) µ (1) x (h) 2 µ (2) 
x (h)

   -1/2 . The condition σ -1 n (x) A 1 H(yn|x) ∨ (h log y n ) ∨ ϕ x (h) → 0 in Theorem 6 is a combination of three conditions. The first one σ -1 n (x)A 1 H(yn|x)
→ 0 is similar to the one in [START_REF] Ndao | Nonparametric estimation of the conditional extreme-value index with random covariates and censoring[END_REF] and [START_REF] Goegebeur | Nonparametric regression estimation of conditional tails: the random covariate case[END_REF] and is classical in extreme value theory. Since (µ (1) x (h))

2 µ (2) 
x (h)

has the same asymptotic order as ϕ x (h) accord-

ing to Lemma 7.2 below, σ -1 n (x) ((h log y n ) ∨ ϕ x (h)) → 0 is equivalent to nH(y n |x)ϕ x (h) ((h log y n ) ∨ ϕ x (h)) 2 → 0.
It imposes to h log y n and ϕ x (h) to be negligible compared to the standard deviation σ n (x) of the estimator. For practical implementation, we have to choose the bandwidth h and the non-random threshold sequence such that y n = Z (n-k) is in the ball B(x, h), where Z (n-k) is the (n -k) th order statistic.

Simulation studies

In this section, we assess, via simulations, finite-sample performance of our estimator [START_REF] Brahimi | On the asymptotic normality of hill's estimator of the tail index under random censoring[END_REF]. We also provide comparisons with two simple estimation strategies of the tail index of a heavy-tailed distribution under random censoring.

Simulation design

The main goal of this section is to demonstrate the efficiency of the proposed estimator in terms of consistency. For this purpose, we consider the simulation of N = 500 replications of a sample of size n (n = 200, n = 500) of random triple (X i , δ i , Z i ) where

Z i = min(C i , Y i ) and X i is a functional covariate X ∈ E which is defined by X(t) = Ω(2 -cos(πW t)) + (1 -Ω)cos(πW t), for all t ∈ [0, 1],
where W is normally distributed with mean zero and unit variance and Ω is a random variable Bernoulli distributed with parameter p = 1/2 as in [START_REF] Chaouch | Randomly censored quantile regression estimation using functional stationary ergodic data[END_REF]. The conditional distribution of Y given X = x is a Burr distribution with parameter

τ (x) = 2, λ 1 (x) = 2/(8 X 2 2 -3), which implies that γ 1 (x) = 1 τ (x)λ1(x) , with X 2 2 = 1 0 X 2 (t)dt = 4Ω 2 -4Ω(2Ω -1) sin(πW ) πW + (2Ω -1) 2 1 2 + sin(2πW ) 4πW .
The conditional distribution of C given X = x is also Burr distribution with parameter

γ 2 (x) = 1 τ (x)λ2(x)
, where the parameter γ 2 (x) is chosen to yield various values for the overall censoring percentage c (c = 10%, 20%, 30%, 40%). Since γ

(x) = γ 1 (x)p(x) with p(x) = γ2(x) γ1(x)+γ2(x) = λ1(x) λ1(x)+λ2(x) is the ultimate proportion of uncensored observations among Z i for i = 1, • • • , n then γ 1 (x) is selected, we choose γ 2 (x) such that 1 -p(x)
is approximately to (10%, 20%, 30%, 40%) as censoring percentage. In this simulation, we are interested to calculate the conditional tail index estimator presented in Equation ( 4). In practice there is some parameters to be fixed. Let K be an asymmetric linear kernel defined as K(u) = (1.9 -1.8u)1 [0,1] (u). Our simulation show that the choice of kernel has no impact. The estimator γc,H n (x) depends on the bandwidth parameter h which is chosen using the cross-validation implemented in [START_REF] Gardes | Functional kernel estimators of large conditional quantiles[END_REF].

h opt = arg min h∈H n i=1 n j=1 1 {Zi>Zj} -F n,-i (Z j |x i ) 2 ,
with F n-i is the kernel conditional Kaplan-Meier estimator used in [START_REF] Ndao | Nonparametric estimation of the conditional extreme-value index with random covariates and censoring[END_REF] which depends on parameter h. The aforementioned estimator is calculated on the sample (X j , δ j , Z j ), for j = 1, • • • , n and i = j. In case the bandwidth is already been selected then, next step is to determine the non random threshold y n . We take y n as the (n -k)th order statistic Z (n-k) , as is classical in extreme value statistics. Several method have been mentioned in literature and in this paper we adopted the method used by [START_REF] Ndao | Nonparametric estimation of the conditional extreme-value index with random covariates and censoring[END_REF] as described as follow:

(1) we compute the estimate γc,H n-k (x) with k = 1, • • • , n -1, (2) we form several successive "blocks" of estimates γc,H n-k (x) (one block for k ∈ {1, . . . , 15}, a second block for k ∈ {16, . . . , 30} and so on), (3) we calculate the standard deviation of the estimates within each block, (4) we determine the k-value to be used (thereafter denoted by k * ) from the block with minimal standard deviation. Precisely, we take the middle value of the k-values in the block (see [START_REF] Goegebeur | A local moment type estimator for the extreme value index in regression with random covariates[END_REF][START_REF] Ndao | Nonparametric estimation of the conditional extreme-value index with random covariates and censoring[END_REF])

Finally, we estimate γ 1 (x) by γc,H n-k (x) with (h, k) = (h * , k * ).
Other thing to discuss is the selection of semi-metric whose choice will become an important stage for the behavior of nonparametric statistics for functional data. According to the literature the semi-metric based on the derivative are used in practice for the smoothing curve while semi-metric based on functional principal analysis and partial least squares are adapted for rough curves for more details, refer to [START_REF] Ferraty | Nonparametric Functional Data Analysis: Theory and Practice[END_REF]. Since the curves of X(t) are smoothing curves according to [START_REF] Gardes | Functional kernel estimators of large conditional quantiles[END_REF], the semi-metric distance based on the derivative will be used to determine the distance between two curves X 1 and X 2 . We consider the semi-metric:

d derive q (X 1 , X 2 ) = X (q) 1 (t) -X (q) 2 (t) 2 dt, (6) 
where q is the degree of derivative and where X (q) denotes the qth derivative of X.

Results

The performance of our estimator γc,H n-k * (x) defined in ( 4) is evaluated using Mean Squared Error (MSE) and Mean Absolute Error (MAE). We also provide the averaged value (over the N samples) of the number of threshold excesses k * . The accuracy of our estimator depends on the censoring percentage and on the degree of derivative of the semi-metric d derive q (., .) defined in [START_REF] De Haan | Extreme value theory: An introduction[END_REF].

To illustrate the performance of our estimator, we make a comparison with two simple estimation strategies. The first one is a complete-case procedure ("CC" for short): we remove all censored observations from the simulated samples. Then, we compute the estimator proposed in [START_REF] Goegebeur | Nonparametric regression estimation of conditional tails: the random covariate case[END_REF] presented in Equation (3). While, the second strategy is the ignored case, where, we consider that δ i for i = 1, • • • , n equally to one for all observations. We consider the observations Z i , i = 1, . . . , n as if they were uncensored. That kind of strategy is called Ignored case ("CI" for Censoring-Ignored).

In Table 1, we give the different value of empirical MSE and empirical MAE of our estimators at different sample size with respect to the different censoring percentage and degree of derivative respectively. As expected, the quality of the estimator deteriorates as the censoring percentage increases and the sample size decreases. Our estimator performs well at high level of derivative of semi-metric distance. This is not surprising since semi-metric distance parameter is known to play a key role to guaranty the behavior of nonparametric statistic in functional data analysis specially when curves appear to be smooth. The interested reader is referred to [START_REF] Ferraty | Nonparametric Functional Data Analysis: Theory and Practice[END_REF].

Considering the results in Table 1, CI and CC estimators of γ 1 (x) are quitely biased, even though when censoring is moderate. As result, our estimator in equation ( 4) proved a significant result regarding the issues of estimating the functional conditional extreme value index under censorship.

As illustrated from Table 1, the Hill's kernel version estimator under censorship (4) of γ 1 (x) shows to be well performed in almost simulation cases. As result, it performs quite better on low censoring percentage for large enough sample size and its quality becomes worst as the censored rate increases and sample size decreases. As by [START_REF] Ferraty | Nonparametric Functional Data Analysis: Theory and Practice[END_REF] advice that in cases of the smoothing curve, the semi-metric based on the derivative is a better one. After going through we have observed that the high order derivative gives a better result.

Figure 2 shows the boxplots of the N realizations of our estimator (4) for different values of the censoring percentage c (10%,20%,30%,40%). This figure illustrates the distribution of the obtained estimates for N = 500 replications of estimator 4 for sample size n = 200 and n = 500. One can observed that the proposed estimator performs quite well especially when the sample size is large enough and the censoring percentage decreases. This conclusion is expected, since it is confirmed by the results in Table 1. 

Conclusion and further work

We considered the estimation of the conditional extreme value-index when some functional random covariate (i.e. valued in some infinite-dimensional space) information is available and the scalar response variable is right-censored. Its asymptotic properties were established and its finite sample performance was illustrated on a simulation study. Also a comparison with two simple estimation strategies has been provided. In future research, we will focus on a functional Weissman kernel type estimator for high quantiles and establish its asymptotic behavior. The case where the distribution of the dependent variable Y is not heavy-tailed will also be addressed.

Appendix

Preliminary

In order to prove our results, we now start by introducing the following notation:

H(y|x) = P (Z > y|X = x) as the conditional survival function of Z given X = x and H 1 (y|x) = P (Z > y, δ = 1|X = x) is a sub-distribution function of Z given X = x.
We further define px (

y n ) = H 1 (yn|x) H(yn|x) , W nψ (x) =   n µ (1) x (h) 2 H 1 (y n |x)) µ (2) x (h)    1/2 ψn (y n , x) -E ψn (y n , x) H 1 (y n |x) , W nζ (x) =   n µ (1) x (h) 2 H(y n |x) µ (2) 
x (h)

   1/2 ζn (y n , x) -E ζn (y n , x)
H(y n |x) .

Lemma 7.1. Suppose (A1) and (A3) hold. If y n → ∞ and h log y n → 0 as n → ∞, then

sup d(x,x ) h H(y n |x) H(y n |x ) -1 = O(h log y n ).
Proof of Lemma 7.1 From (A1), we have log

H(y n |x) H(y n |x ) = log(r(x)) -log(r(x )) + yn 1 1 γ(x ) - 1 γ(x) + ε(µ|x ) -ε(µ|x) du u .
Under (A3), we easily get log H(y n |x)

H(y n |x ) K r d(x, x ) + yn 1 (K γ + K ε )d(x, x ) du u K r d(x, x ) + (K γ + K ε )d(x, x ) yn 1 du u (K r + (K γ + K ε )d(x, x ) log(y n ) (K r + (K γ + K ε )h log(y n ). Thus, sup d(x,x ) h log H(y n |x) H(y n |x ) = O(h log(y n )) → 0, as n → ∞
and considering that log(z + 1) ∼ z as z → 0, we get the desired result.

Lemma 7.2. Suppose (A2) holds and let x ∈ E such that ϕ x (h) > 0, there exist constants 0

< C1 < C2 < ∞ such that C1 ϕ x (h) µ (1) x (h) 2 µ (2) 
x (h) C2 ϕ x (h).

Proof of Lemma 7.2 Under Lemma 3 in [START_REF] Gardes | Functional kernel estimators of large conditional quantiles[END_REF], we get,

C 1 1 [0,1] ( d(x, X) h ) K( d(x, X) h ) C 2 1 [0,1] ( d(x, X) h ) (7) C 1 ϕ x (h) E K( d(x, X) h ) C 2 ϕ x (h) (C 1 ϕ x (h)) 2 µ (1) x (h) 2 (C 2 ϕ x (h)) 2 .
Similarly, we can write

C 2 1 ϕ x (h) µ (2) x (h) C 2 2 ϕ x (h). (8) 
Using ( 7) and ( 8), we prove the desired result.

Lemma 7.3. Suppose (A1)-(A3) hold, let y n → ∞ and h log y n → 0 as n → ∞.

Then, ∀x ∈ E such that ϕ x (h) > 0.

(

) E[ ζn (y n , x)] = H(y n |x) [1 + O(h log y n )] (2) E[ ψn (y n , x)] = H 1 (y n |x) [1 + O(h log y n )]. 1 
Proof of Lemma 7.3

(1) Let us first recall that ζn (y n , x) = 1

n(µ (1) 
x (h))

n i=1 K( d(x, X i ) h )1 {Zi>yn} .
The couple (X i , Z i ), i = 1, . . . , n being identically distributed, using conditional expectation, we can write

E[ ζn (y n , x)] = 1 µ (1) 
x (h)

E K h -1 d(x, X) H(y n |X) .
Simple calculations yield

E[ ζn (y n , x)] -H(y n |x) = 1 µ (1) 
x (h)

E K h -1 d(x, X) H(y n |X) -H(y n |x) = 1 µ (1) 
x (h)

E K h -1 d(x, X) H(y n |X) -H(y n |x) |E[ ζn (y n , x)] -H(y n |x)| ≤ H(y n |x) µ (1) 
x (h)

E K h -1 d(x, X) H(y n |X) H(y n |x) -1 1 {d(x,X)<h} , under Lemma 7.1 H(y n |X) H(y n |x) -1 1 {d(x,X)<h} h log y n thus, E[ ζn (y n , x)] -H(y n |x) = H(y n |x)O(h log y n ). (9) 
(2) Calculations for ψn (y n , x) are similar as above and are omitted for conciseness.

Lemma 7.4. Suppose (A1)-(A3) hold, let y n → ∞ and h log y n → 0 as n → ∞.

Then, ∀x ∈ E such that ϕ x (h) > 0,

W nψ (x) D ---→ N (0, 1) , W nζ (x) D ---→ N (0, 1) .
Therefore the random vector W n (x) = (W nψ (x), W nζ (x)) T converges in distribution to a bivariate Gaussian vector N (0, M) where,

M := 1 p(x) p(x)
1 .

Proof of Lemma 7.4.

Let us first rewrite W nψ (x) and W nζ (x) as follow:

W nζ (x) = 1 nµ (2) 
x (h)H(y n |x)

1/2 n i=1 K( d(x, X i ) h )1 {Zi>yn} -EK( d(x, X i ) h )1 {Zi>yn} := 1 nµ (2)
x (h)H(y n |x)

1/2 n i=1 Q i,n and 
W nψ (x) = 1 nµ (2) 
x (h)H 1 (y n |x)

1/2 n i=1 K( d(x, X i ) h )1 {Zi>yn,δi=1} -EK( d(x, X i ) h )1 {Zi>yn,δi=1} := 1 nµ (2) x (h)H 1 (y n |x) 1/2 n i=1 Q i,n
where for all i = 1, • • • , n the random variables Q i,n and Q i,n are defined as follow

Q i,n = K( d(x, X i ) h )1 {Zi>yn,δi=1} -EK( d(x, X i ) h )1 {Zi>yn,δi=1} Q i,n = K( d(x, X i ) h )1 {Zi>yn} -EK( d(x, X i ) h )1 {Zi>yn} .
Consider that {Q i,n , Q i,n , ∀i = 1, • • • , n} are the set of centered, independent identically distributed random variables. Now let us focus on the calculation of their variances:

V ar(Q i,n ) = V ar(K( d(x, X) h )1 {Z>yn} ) (10) = E K( d(x, X) h )1 {Z>yn} 2 -E K( d(x, X) h )1 {Z>yn} 2 = R 1 -R 2 2 .
By determining R 1 and R 2 separately, we get

R 1 = E K( d(x, X) h )1 {Z>yn} 2 = E K 2 h -1 d(x, X) H(y n |X) = H(y n |x)E K 2 h -1 d(x, X) + H(y n |x)E K 2 h -1 d(x, X) H(y n |X) H(y n |x) -1 .
Under Lipschitz conditions (A3) and Lemma 7.1,

sup d(x,X) h H(y n |X) H(y n |x) -1 = O(h log y n ), then R 1 = H(y n |x)E K 2 h -1 d(x, X) [1 + O(h log y n )] (11) 
= H(y n |x)µ (2) x (h

) [1 + O(h log y n )] .
Simple calculations yield

R 2 = E K( d(x, X) h )1 {Z>yn} = E K h -1 d(x, X) H(y n |X) = H(y n |x)E K h -1 d(x, X) + H(y n |x)E K h -1 d(x, X) H(y n |X) H(y n |x) -1 .
Using the same arguments as above, we get

R 2 = H(y n |x)µ (1) x (h) [1 + O(h log y n )] . ( 12 
)
By substituting the result of Equations ( 12) and [START_REF] Ferraty | Nonparametric Functional Data Analysis: Theory and Practice[END_REF] in Equation [START_REF] Ferraty | Nonparametric models for functional data, with application in regression, time series prediction and curve discrimination[END_REF], we obtain

V ar(Q i,n ) = H(y n |x)µ (2) x (h) (1 + O(h log y n )) -H(y n |x)µ (1) x (h) (1 + O(h log y n ))
Then, under Lemma 7.2, the variance of W nζ (x) is given by

V ar(W nζ (x)) = 1 nµ (2) x (h)H(y n |x) nV ar(Q i,n ) = 1 µ (2)
x (h)H(y n |x)

H(y n |x)µ (2) x (h) (1 + O(h log y n )) - 1 µ (2)
x (h)H(y n |x)

H(y n |x)µ (1) x (h) (1 + O(h log y n )) 2 = 1 + O(h log y n ) - 1 µ (2)
x (h)H(y n |x)

H(y n |x)µ (1) x (h) (1 + O(h log y n )) 2 → 1 as n → ∞.
The proof for V ar(W nψ (x)) is similar and is thus omitted. Thus, we have

V ar(W nψ (x)) → 1 as n → ∞. ( 13 
)
Let now determine the covariance of Cov (W nψ (x), W nζ (x)):

Cov (W nψ (x), W nζ (x)) = Cov   1 nµ (2) 
x (h)H 1 (y n |x)

1/2 n i=1 Q i,n , 1 nµ (2) 
x (h)H(y n |x)

1/2 n l=1 Q l,n   = 1 nµ (2) x (h) H 1 (y n |x)H(y n |x) Cov n i=1 Q i,n , n l=1 Q l,n = px (y n ) nµ (2) x (h)H 1 (y n |x) Cov n i=1 Q i,n , n l=1 Q l,n = px (y n ) nµ (2) x (h)H 1 (y n |x) n l=1 n i=1 Cov Q i,n , Q l,n = px (y n ) nµ (2) x (h)H 1 (y n |x) n i=1 Cov Q i,n , Q i,n since Cov Q i,n , Q l,n = 0 for i = l. Now let us consider the covariance Cov Q 1,n , Q 1,n given by Cov Q 1,n , Q 1,n = Cov K( d(x, X) h )1 {Z>yn,δ=1} , K( d(x, X) h )1 {Z>yn} (14) = E K 2 ( d(x, X) h )1 {Z>yn,δ=1} -E K( d(x, X) h )1 {Z>yn,δ=1} E K( d(x, X) h )1 {Z>yn} := R 3 -R 4 .
From the previous result, we obtain

R 3 = H 1 (y n |x)µ (2) x (h) (1 + O(h log y n )) R 4 = H 1 (y n |x)H(y n |x) µ (1) x (h) (1 + O(h log y n )) 2 .
Thus, the covariance Cov Q 1,n , Q 1,n is given by

Cov Q 1,n , Q 1,n = H 1 (y n |x)µ (2) x (h) (1 + O(h log y n ))-H 1 (y n |x)H(y n |x) µ (1) x (h) (1 + O(h log y n )) 2 (15) It follows from Equation (15) that Cov (W nψ (x), W nζ (x)) = px (y n ) nµ (2) 
x (h)H [START_REF] Einmahl | Statistics of extremes under random censoring[END_REF][START_REF] Ndao | Modélisation de valeurs extrêmes conditionnelles en présence de censure[END_REF]). Now, we can prove that Lyapunov's condition for asymptotic normality of the sum of triangular arrays is verified, since we have deduce that V ar(W nψ (x)) → 1) as n → ∞.

1 (y n |x) n i=1 Cov Q i,n , Q i,n = px (y n ) µ (2) x (h)H 1 (y n |x) H 1 (y n |x)µ (2) x (h) (1 + O(h log y n )) - px (y n ) µ (2) x (h)H 1 (y n |x) H 1 (y n |x)H(y n |x) µ (1) x (h) (1 + O(h log y n )) 2 . From Lemma 7.2, the covariance Cov (W nψ (x), W nζ (x)) → p(x), since lim yn→∞ px (y n ) = p(x), as n → ∞ (see

Let us consider that

n i=1 E|Q i,n | 3 = nE|Q 1,n | 3 → 0 as n → ∞ by assuming that Q 1,n is bounded random variable with Q i,n = 1 nµ (2) x (h)H 1 (yn|x) 1/2 Q i,n : |Q 1,n | 2 nµ (2) x (h)H 1 (y n |x) |Q 1,n | 3 2 nµ (2) x (h)H 1 (y n |x) |Q 1,n | 2 2 nµ (2) x (h)H 1 (y n |x) 1 nµ (2) 
x (h)H 1 (y n |x)

1/2 Q 1,n 2 2 nµ (2) x (h)H 1 (y n |x) 3/2 Q 1,n 2 nE|Q 1,n | 3 2 nµ (2) x (h)H 1 (y n |x) 3/2 nV ar(Q 1,n ) 2 nµ (2) x (h)H 1 (y n |x) 1/2 (1 + o(1)) - 2 nµ (2) x (h)H 1 (y n |x) 1/2 H 1 (y n |x) (µ (1) 
x (h)) 2 µ

(2)

x (h)

(1 + o(1)) .
Since nH

1 (y n |x)µ (2) 
x (h) → ∞, the Lyapunov condition is verified, therefore

W nψ (x)/ V ar(W nψ (x)) D ---→ N (0, 1)
. Now, we want to show that W n (x) = (W nψ (x), W nζ (x)) T converges in distribution to a Gaussian vector N (0, M) where,

M := 1 p(x) p(x)
1 .

To prove that W n (x) = (W nψ (x), W nζ (x)) T converges in distribution to N (0, M), according to Cramér-Wold's device, it is sufficient to show that e T W n (x) D ---→ N (0, e T Me) for all e = (e 1 , e 2 ) T .

We can write that

e T W n (x) = 1 nµ (2) 
x (h)H 1 (y n |x)

1/2 n i=1 K( d(x, X i ) h ) e 1 1 {Zi>yn,δi=1} + px (y n )e 2 1 {Zi>yn} - 1 nµ (2) 
x (h)H 1 (y n |x)

1/2 n i=1 E K( d(x, X i ) h ) e 1 1 {Zi>yn,δi=1} + px (y n )e 2 1 {Zi>yn} = 1 nµ (2) 
x (h)H 1 (y n |x)

1/2 n i=1 Q i,n
where

Q i,n = K( d(x, X i ) h ) e 1 1 {Zi>yn,δi=1} + px (y n )e 2 1 {Zi>yn} -E K( d(x, X i ) h ) e 1 1 {Zi>yn,δi=1} + px (y n )e 2 1 {Zi>yn} .
Hence the variance is given by

V ar(e T W n (x)) = 1 nµ (2) x (h)H 1 (y n |x) nV ar(Q 1,n )
where

V ar(Q 1,n ) = V ar K( d(x, X i ) h ) e 1 1 {Zi>yn,δi=1} + px (y n )e 2 1 {Zi>yn} (16) 
= E K( d(x, X i ) h ) e 1 1 {Zi>yn,δi=1} + px (y n )e 2 1 {Zi>yn} 2 - E K( d(x, X i ) h ) e 1 1 {Zi>yn,δi=1} + px (y n )e 2 1 {Zi>yn} 2 , =: R 5 -R 6 .
Now, some simple algebra yields ( 17)

R 5 = E K 2 ( d(x, X i ) h ) e 2 1 1 {Zi>yn,δi=1} + px (y n )2e 1 e 2 1 {Zi>yn,δi=1} + px (y n )e 2 2 1 {Zi>yn} = E K 2 ( d(x, X i ) h )e 2 1 1 {Zi>yn,δi=1} + 2e 1 e 2 px (y n )E K 2 ( d(x, X i ) h )1 {Zi>yn,δi=1} + px (y n )e 2 2 E K 2 ( d(x, X i ) h )1 {Zi>yn} = e 2 1 H 1 (y n |x)µ (2) x (h) (1 + O(h log y n )) + 2e 1 e 2 px (y n )H 1 (y n |x)µ (2) x (h) (1 + O(h log y n )) + e 2 2 H 1 (y n |x)µ (2) x (h) (1 + O(h log y n )) = e 2 1 + 2e 1 e 2 px (y n ) + e 2 2 H 1 (y n |x)µ (2) x (h) (1 + O(h log y n )) .
Similar calculations yield:

R 6 = e 2 1 E K( d(x, X i ) h )1 {Zi>yn,δi=1} 2 + px (y n )e 2 2 E K( d(x, X i ) h )1 {Zi>yn} 2 (18) 
+ 2 px (y n )e 1 e 2 E K( d(x, X i ) h )1 {Zi>yn,δi=1} E K( d(x, X i ) h )1 {Zi>yn} = e 2 1 H 1 (y n |x)µ (1) x (h) (1 + O(h log y n )) 2 + px (y n )e 2 2 H(y n |x)µ (1) x (h) (1 + O(h log y n )) 2 + 2 px (y n )e 1 e 2 H 1 (y n |x)µ (1) x (h) (1 + O(h log y n )) H(y n |x)µ (1) x (h) (1 + O(h log y n )) = e 2 1 H 1 (y n |x)µ (1) x (h) (1 + O(h log y n )) 2 + 1 px (y n ) e 2 2 H 1 (y n |x)µ (1) x (h) (1 + O(h log y n )) 2 + 2 1 px (y n ) e 1 e 2 H 1 (y n |x)µ (1) x (h) (1 + O(h log y n )) H 1 (y n |x)µ (1) x (h) (1 + O(h log y n )) = e 2 1 + 2e 1 e 2 1 px (y n ) + 1 p(x) e 2 2 H 1 (y n |x)µ (1) x (h) (1 + O(h log y n )) 2 .
By substituting the final result of Equation ( 17) and [START_REF] Gomes | A note on statistics of extremes for censoring schemes on a heavy right tail[END_REF] in Equation ( 16) then, the variance of V ar(Q 1,n ) is given by

V ar(Q 1,n ) = e 2 1 + 2e 1 e 2 px (y n ) + e 2 2 H 1 (y n |x)µ (2) x (h) (1 + O(h log y n )) + e 2 1 + 2e 1 e 2 1 px (y n ) + 1 px (y n ) e 2 2 H 1 (y n |x)µ (1) x (h) (1 + O(h log y n )) 2 .
Then,

V ar(e T W n (x)) = 1 nµ (2) x (h)H 1 (y n |x) nV ar(Q 1,n ) = e 2 1 + 2e 1 e 2 px (y n ) + e 2 2 ) µ (2) x (h)H 1 (y n |x) H 1 (y n |x)µ (2) x (h) (1 + O(h log y n )) + e 2 1 + 2e 1 e 2 1 √ px(yn) + 1 px(yn) e 2 2 µ (2) 
x (h)H 1 (y n |x) H 1 (y n |x)µ (1) x (h

) (1 + O(h log y n )) 2 .
Using again Lemma 7.2, we deduce that V ar(e T W n (x)) → e 2 1 + 2e 1 e 2 p(x) + e 2 2 = e T Me as n → ∞. Therefore, for all e ∈ R 2 , e = 0, e T W n (x) converges in distribution to the univariate normal distribution N (0, e T Me). The convergence W n (x) D ---→ N (0, M) follows from Cramer-Wold device.

Lemma 7.5. Suppose (A1)-(A4) hold. If y n → ∞, σ -1 n (x) h log y n ∨ ϕ x (h) ∨ A 1 H(yn|x) → 0. Then for all x ∈ E, such that ϕ x (h) > 0 σ -1 n (x) (p n (x) -p(x)) D -→ N (0, p(x)(1 -p(x))) .
Proof of Lemma 7.5

Now, let us focus on the term T 2 (x) defined as follow T 2 (x) := σ -1 n (x) (p n (x) -p(x)). This term can be rewritten as

T 2 (x) = σ -1 n (x) pn (x) - H 1 (y n |x) H(y n |x) + σ -1 n (x) H 1 (y n |x) H(y n |x) -p(x) .
Let us deal with the first term of the above summation. Applying uniform Delta method and some algebra, we get

σ -1 n (x)   ψn(yn,x) H(yn|x) -H 1 (yn|x) H(yn|x) ζn(yn,x) H(yn|x) -1   = n H(y n |x)(µ (1) 
x (h)) 2 µ

(2)

x (h) 1/2   ψn(yn,x)-H 1 (yn|x) H(yn|x) ζn(yn,x) H(yn|x) -1   =     px (y n ) n H 1 (yn|x)(µ (1) x (h)) 2 µ (2)
x (h) ψn(yn,x)

H 1 (yn|x) -1 n H(yn|x)(µ (1)
x (h)) 2 µ

(2)

x (h) ζn(yn,x)

H(yn|x) -1     =     px (y n ) n H 1 (yn|x)(µ (1) x (h)) 2 µ (2)
x (h) ψn(yn,x)

H 1 (yn|x)
-E ψn(yn,x)

H 1 (yn|x) n H(yn|x)(µ (1)
x (h)) 2 µ

(2)

x (h) ζn(yn,x)

H(yn|x) -E ζn(yn,x) H(yn|x)     +     px (y n ) n H 1 (yn|x)(µ (1) x (h)) 2 µ (2) x (h) E ψn(yn,x) H 1 (yn|x) -1 n H(yn|x)(µ (1) x (h)) 2 µ (2) x (h) E ζn(yn,x) H(yn|x) -1     .
Since E ζn(y,x) H(yn|x) -1 = O(h log y n ) and E ψn(y,x)

H 1 (yn|x) 
-1 = O(h log y n ) according to Lemma

and by assumption

σ -1 n (x) (h log y n ) → 0, as n → ∞, it follows that σ -1 n (x)   ψn(yn,x) H(yn|x) -H 1 (yn|x) H(yn|x) ζn(yn,x) H(yn|x) -1   =     px (y n ) n H 1 (yn|x)(µ (1) x (h)) 2 µ (2)
x (h) ψn(yn,x)

H 1 (yn|x) 
-E ψn(yn,x)

H 1 (yn|x) n H(yn|x)(µ (1) 
x (h)) 2 µ

(2)

x (h) ζn(yn,x)

H(yn|x) -E ζn(yn,x) H(yn|x)     = px (y n )W nψ (x) W nζ (x) + o(1). (19) 
Using the convergence of W n (x) D ---→ N (0, M), Delta method and the fact that px (y n ) → p(x) , the quantity in Equation ( 19) converges to bivariate Gaussian vector N (0, Σ) where

Σ := p(x) p(x) p(x) 1 .
Let consider a given function Φ(ω 1 , ω 2 ) = ω1 ω2 and apply again uniform Delta method (see [START_REF] Schervish | Theory of statistics[END_REF][START_REF] Van Der Vaart | Asymptotic statistics[END_REF]), we have

σ -1 n (x) pn (x) - H 1 (y n |x) H(y n |x) = σ -1 n (x) Φ ψn (y n , x) H(y n |x) , ζn (y n , x) H(y n |x) -Φ H 1 (y n |x) H(y n |x) , 1 
converges in distribution to N (0, Φ (p(x), 1)Σ(Φ (p(x), 1)) T ).

By adapting the similar idea in [START_REF] Beirlant | Estimation of the extreme value index and extreme quantiles under random censoring[END_REF], we want to show that

σ -1 n (x) H 1 (y n |x) H(y n |x) -p(x) = σ -1 n (x) H 1 (y n |x) H(y n |x) -p(x) = o p (1). Let setting that y n ∈ [1, ∞[ ∞ yn z -1/γ1(x)-1/γ2(x)-1 L(z)dz y -1/γ1(x)-1/γ2(x) n L(z) -γ(x) = ∞ yn H(z|x) z dz H(y n |x)) -γ(x) = ε(y n |x).
By changing variable, we have

lim yn→∞ ∞ yn H(z|x) z dz H(y n |x) = lim yn→∞ ∞ 1 H(y n s|x) H(y n |x) ds s .
Since the function H(.|x)) is regular varying,

H(y n s|x) H(y n |x) = (y n s) -1/γ(x)L(yns|x) y -1/γ(x) n L(y n |x) = s -1/γ(x) L(y n s|x) L(y n |x) → s -1/γ(x) as n → ∞ Therefore lim yn→∞ ∞ yn H(z|x) z dz H(y n |x) = γ(x).
Hence,

∞ yn H(z|x) z dz = γ(x)H(y n |x) (1 + O(ε(y n |x)))
Remark that

H 1 (y n |x) = P (min(Y, C) > y n , δ = 1|X = x) = P (Y > y n , Y -C < 0|X = x) .
After some calculations, we can write

H 1 (y n |x) = ∞ yn 0 -∞ f Y (u|x)f C (u -v|x)dv du = ∞ yn f Y (u|x) ∞ u f C (w|x)dw du = ∞ yn f Y (u|x)G(u|x)du.
From here, we do some decomposition

T 1 (x) = σ -1 n (x) (γ H n (x) -γ(x)) = σ -1 n (x) n i=1 K(h -1 d(x, X i )) log (Z i /y n ) 1 {Zi>yn} / n i=1 K(h -1 d(x, X i ))1 {Zi>yn} -γ(x) = σ -1 n (x) 1 nµ (1) 
x (h)

n i=1 K(h -1 d(x, X i )) log (Z i /y n ) 1 {Zi>yn} / ζn (y n , x) -γ(x) = σ -1 n (x) 1 nµ (1) 
x (h)

n i=1 K(h -1 d(x, X i )) log (Z i /y n ) 1 {Zi>yn} / ζn (y n , x) -γ(x) H(y n |x) ζn (y n , x) -σ -1 n (x) γ(x) -γ(x) H(y n |x) ζn (y n , x) .
Since H(y n |x)/ ζn (y n , x) = 1 + o p (1) (from proof of Lemma 7.5) and using the fact

that H 1 (yn|x) H(yn|x) → p(x) under Lemma A1 in [21] T 1 (x) =    n µ (1) x (h) 2 H(y n |x)µ (2) 
x (h)

   1/2 1 nµ (1) 
x (h)

n i=1 K(h -1 d(x, X i )) log (Z i /y n ) 1 {Zi>yn} -γ(x)H(y n |x) -γ(x)    n µ (1) 
x

(h) 2 H(y n |x)µ (2) 
x (h)

   1/2 ζn (y n , x) -H(y n |x) .
Similar calculations give

T 2 (x) =    n µ (1) 
x (h)

2 H(y n |x)µ (2) 
x (h)

   1/2 H(y n |x) ζn (y n , x) ψn (y n , x) -H 1 (y n |x) -p(x) ζn (y n , x) -H(y n |x) +    nH(y n |x) µ (1) 
x (h)

2 µ (2) x (h)    1/2 H(y n |x) ζn (y n , x) H 1 (y n |x) H(y n |x) -p(x) =    n µ (1) x (h) 2 H(y n |x)µ (2) 
x (h)

   1/2 ψn (y n , x) -H 1 (y n |x) -p(x) ζn (y n , x) -H(y n |x) + o p (1).
Thus, to prove the asymptotic normality of our estimator, it is sufficient to establish asymptotic normality of the random vector

Ξ n (x) :=    n µ (1) x (h) 2 H(y n |x)µ (2) 
x (h)

   1/2    ψn (y n , x) -H 1 (y n |x) 1 nµ (1) x (h) n i=1 K(h -1 d(x, X i )) log (Z i /y n ) 1 {Zi>yn} -γ(x)H(y n |x)    .
To prove the asymptotic normality of Ξ n (x), we use Cramér-Wold's device. Let e = (e 1 , e 2 ) be a vector of real numbers, e = 0. Then,

e T Ξ n (x) = 1 nH(y n |x)µ (2) 
x (h)

1/2 n i=1 χ i,n (x),
where,

χ i,n (x) = e 1 K(h -1 d(x, X i ))1 {Zi>yn,δi=1} + e 2 K(h -1 d(x, X i )) log (Z i /y n ) 1 {Zi>yn} - n µ (1) 
x (h)

2 e 1 H 1 (y n |x) + e 2 γ(x)H(y n |x) . From Remark 1.2.3 in [6] lim yn→∞ E(log Z -log y n |Z > y n ) = γ(x).
Let us introduce the new notation

S n (y n , r; x) = E (log Z -log y n ) r 1 {Z>yn} |X = x and S n (y n , r; x) := E K 2 h -1 d(x, X) log(Z/y n ) r 1 {Z>yn} .
Consider a rate function B(•|x) with B(t|x) → 0 for t → ∞ of constant sign for large values of t, such that for all positive u.

lim t→∞ H(ut|x)/ H(t|x) -u -1/γ(x) B(t|x) = u -1/γ(x) u ρ(x)/γ(x) -1 γ(x)ρ(x) .
Let's define

T n (u; x) := H(ut|x)/ H(t|x) -u -1/γ(x) B(t|x) -u -1/γ(x) u ρ(x)/γ(x) -1 γ(x)ρ(x) . (20) 
Some algebraic calculation yield here

S n (y n , r; x) = ∞ yn (log z -log y n ) r d(H(z|x) integral by part = -lim z→∞ (log z -log y n ) r H(z|x) + r ∞ yn (log z -log y n ) r-1 H(z|x) z dz
considering that the first term equal to zero, then

S n (y n , r; x) = r ∞ yn (log z -log y n ) r-1 H(z|x) z dz = r H(y n |x) ∞ yn (log z -log y n ) r-1 H(z|x) z H(y n |x) dz = r H(y n |x) ∞ 1 (log w) r-1 H(wy n |x) w H(y n |x)
dw with change of variable z/y n = w.

Considering the ratio H(wyn|x)) H(yn|x) from second order condition of extreme value theory in Equation ( 20), S n (y n , r; x) can be rewritten as (log w) r-1 w -1/γ(x)-1 w ρ(x)/γ(x) -1 γ(x)ρ(x) dw

L 3 = ∞ 1
(log w) r-1 T n (w; x) dw w

For L 1 , let w -1/γ(x) = exp(-v) implies that log w = γ(x)v and w -1/γ(x)-1 dw = γ(x) exp(-v)dv, then

L 1 = ∞ 0 (γ(x)v) r-1 γ(x) exp(-v)dv = γ r (x) ∞ 0 v r-1 exp(-v)dv = γ r (x)Γ(r) For L 2 , let w -1-ρ(x) γ(x)
= exp(-v) implies that log w = γ(x) 1-ρ(x) v and w The calculation of E (log Z -log y n ) r 1 {Z>yn,δ=1} |X = x is similar to E (log Z -log y n ) r 1 {Z>yn} |X = x , then is omitted.

Then,

S n (y n , r; x) = E K 2 h -1 d(x, X) S n (y n , r; X)

S n (y n , r; x) -µ (2) x (h)S n (y n , r; x) = E K 2 h -1 d(x, X) [S n (y n , r; X) -S n (y n , r; x)]

S n (y n , r; x) -µ (2) x (h)S n (y n , r; x) = S n (y n , r; x)E K 2 h -1 d(x, X)

S n (y n , r; X) S n (y n , r; x) -1

S n (y n , r; x) -µ (2) x (h)S n (y n , r; x) ≤ S n (y n , r; x)E K 2 h -1 d(x, X)

S n (y n , r; X) S n (y n , r; x) -1 1 {d(X,x)<h} .

Thus, Assumption (A5) yields, S n (y n , r; x) = µ (2) x (h)S n (y n , r; x) (1 + O(Φ n (y n , h; x))) .

By considering that B(y n |x) → 0 and y n → ∞ as n → ∞ , we have E K 2 h -1 d(x, X) log(Z/y n )1 {Z>yn} = γ(x)H(y n |x)µ (2) x (h) (1 + O(Φ n (y n , h; x))) E K 2 h -1 d(x, X) log(Z/y n )1 {Z>yn,δ=1} = γ(x)H 1 (y n |x)µ (2) x (h) (1 + O(Φ n (y n , h; x))) E K 2 h -1 d(x, X) (log(Z/y n )) 2 1 {Z>yn} = 2γ 2 (x)H(y n |x)µ (2) x (h) (1 + O(Φ n (y n , h; x))) .

The variance of e T Ξ n (x) is given by,

V ar(e T Ξ n (x)) = 1 nH(y n |x)µ

(2)

x (h)

nV ar(χ i,n (x)) where V ar(χ i,n (x)) = e 2 1 µ (2) x (h)H 1 (y n |x) + 2e 2 2 γ 2 (x)µ (2) x (h)H(y n |x) + 2e 1 e 2 γ(x)µ (2) x (h)H 1 (y n |x) + o(1)

= µ (2) x (h)H(y n |x) e 2 1 p(x) + 2e 2 2 γ 2 (x) + 2e 1 e 2 p(x)γ(x) + o(1).

Therefore the variance of e T Ξ n (x) is given by V ar(e T Ξ n (x)) = e 2 1 p(x) + 2e 

x (h)

1/2 χ i,n (x) 3 = 0.
The calculation is the same as in proof of Lemma 7.5, therefore it is omitted. According to Cramér-Wold's device, for e = (e 1 , e 2 ) ∈ R 2 , with e = 0 and e T Ξ n (x) converges in distribution to N (0, e T Πe) which implies that Ξ n (x) converges in distribution N (0, Π). An application of Delta method shows that 

where 1 A

 1 is the indicator function of the event A. We assume that Y and C are independent given X = x, where C 1 , • • • , C n are independent each other. Let F (•|x) and G(•|x) be the conditional cumulative distribution functions of random variables Y and C given X = x respectively. Let F (•|x) and G(•|x) be the conditional survival function of random variable Y and C given X = x respectively.

Figure 1

 1 Figure 1 below illustrates some realization of random curves of the given functional random variable X(•).

Figure 1 .

 1 Figure 1. Ten realization of the random curves of function X(•).

( a )Figure 2 .

 a2 Figure 2. Boxplot of the N=500 estimates of γ 1 (x) for censored rate 10%, 20%, 30%, 40% respectively for sample size n = 200 left and right n = 500.

S 1 ( 1 ( 1 ( 1 (

 1111 n (y n , r; x) = r H(y n |x)∞ log w) r-1 w -1/γ(x)-1 dw + r H(y n |x)B(y n |x) ∞ log w) r-1 w -1/γ(x)-1 w ρ(x)/γ(x) -1 γ(x)ρ(x) dw + r H(y n |x)B(y n |x) ∞ log w) r-1 T n (w; x) dw w = r H(y n |x) (L 1 + B(y n |x)(L 2 + L 3 )) log w) r-1 w -1/γ(x)-1 dw L 2 = ∞ 1

- 1

 1 1 exp(-v)dv -γ r (x) Theorem B 2.18[START_REF] Drees | On smooth statistical tail functionals[END_REF] in[START_REF] De Haan | Extreme value theory: An introduction[END_REF], we have from a function B 0 (•|x), possibly different from the functionB(•|x) though with B 0 (y n |x) ≈ B(y n |x), y n → ∞ and for each , δ > 0, such |T n (w)| w ρ(x)/γ(x)+δ . Then, 1 exp -1 -ρ(x) γ(x) -δ v dv = Γ(r) γ(x) 1 -ρ(x) -γ(x)δ r provided 0 < δ < (1 -ρ(x))/γ(x), thus L 3 = o(1) for y n → ∞. Therefore, S n (y n , r; x) = γ r (x)Γ(r + 1) H(y n |x) 1 + B(y n |x) ρ(x) 1 (1 -ρ(x)) r -1 (1 + o(1)) .

2 2 γ 2

 2 (x) + 2e 1 e 2 p(x)γ(x) + o(1) = e T Πe + o(1)The next step is to establish the asymptotic normality of e T Ξ ( x), we check that the Lyapunov's criterion for triangular arrays of random variables holds: n |x)µ

  to N 0, γ 3

Table 1 .

 1 Table of MSE and MAE of the estimators value with sample size n = 200 and n = 500 for N = 500 replications and Ω = 1 .

		For sample size of n = 200	For sample size of n = 500
		MSE(γ n (x)) MAE(γ n (x))	k	MSE(γ n (x)) MAE(γ n (x)	k
			For censorship case			
	order=4 10%	0.1082	0.2599	65.152	0.0423	0.1653	161.188
	20%	0.2277	0.4072	72.096	0.2054	0.3945	185.388
	30%	0.6504	0.7666	77.024	0.6503	0.7585	199.204
	40%	1.3434	1.1366	81.700	1.3152	1.1357	207.872
	order=3 10%	0.1097	0.2698	63.304	0.0449	0.1716	160.132
	20%	0.2392	0.4153	72.684	0.1903	0.4021	179.536
	30%	0.6790	0.7847	76.296	0.6542	0.7901	195.024
	40%	1.3555	1.1429	82.232	1.3478	1.1399	209.060
	order=2 10%	0.1098	0.2714	64.032	0.0484	0.1770	162.200
	20%	0.2474	0.4243	75.036	0.1968	0.4029	186.136
	30%	0.7083	0.8029	78.760	0.6677	0.8009	197.180
	40%	1.3692	1.1591	81.028	1.3401	1.1484	207.652
			For Ignored case			
	order=4 10%	0.1293	0.3010	67.280	0.0933	0.2657	160.836
	20%	0.3584	0.5448	67.756	0.3314	0.4586	166.248
	30%	0.7708	0.8481	71.116	0.7642	0.8320	171.396
	40%	1.3964	1.1642	74.812	1.3918	1.1521	189.216
	order=3 10%	0.1351	0.3012	64.256	0.0937	0.2606	162.640
	20%	0.3863	0.5737	68.904	0.3352	0.5544	166.996
	30%	0.7904	0.8604	69.884	0.7790	0.8499	179.536
	40%	1.4184	1.1747	74.756	1.4050	1.1684	191.240
	order=2 10%	0.1384	0.3020	66.076	0.0970	0.2638	165.192
	20%	0.3872	0.5763	70.024	0.3503	0.5601	172.144
	30%	0.8068	0.8704	69.996	0.7839	0.8702	179.052
	40%	1.4223	1.1763	75.176	1.3912	1.1699	186.312
			For Complete case			
	order=4 10%	0.1452	0.3096	58.805	0.0973	0.2572	148.662
	20%	0.3941	0.5624	54.577	0.3498	0.4650	138.925
	30%	0.8326	0.8692	51.255	0.7988	0.8464	128.993
	40%	1.4637	1.1811	47.553	1.4191	1.1798	120.135
	order=3 10%	0.1526	0.3190	60.603	0.0975	0.2573	144.235
	20%	0.3999	0.5773	56.256	0.3472	0.5618	134.688
	30%	0.8524	0.8878	52.626	0.7915	0.8746	125.360
	40%	1.5323	1.2115	48.851	1.4318	1.1868	116.549
	order=2 10%	0.1545	0.3200	58.339	0.0987	0.2652	144.933
	20%	0.4043	0.5805	54.242	0.3585	0.5631	135.297
	30%	0.8562	0.8899	50.807	0.8078	0.8818	126.054
	40%	1.5907	1.2961	47.148	1.4424	1.1895	117.176

(x) γ(x) .
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Thus,

|x . Hence, we can rewrite as

Thus as result,

Consequently, we obtain

Proof of main results

Proof of Theorem 4.1

We decompose for any fixed x ∈ E,