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In this paper, we present a new version for the generalized Gronwall inequality in the sense of g-fractional calculus. In this sense, we discuss the existence and uniqueness of a global solution to a Cauchy problem via the Gronwall inequality investigated. Moreover, we discuss the Pseudo-Dubois-Reymond lemma in their versions 1 and 2. Finally, we discuss the existence of solutions to a pseudo-variational problem in the form of Lagrange (49) in g-variational calculus and we attack the existence and uniqueness of the reformulation of Theorem 59 (Poincaré inequality in g-calculus).

Introduction

In this paper, we consider the following problem of calculus of variations in Lagrange form

J : C 1 g [a, b] → R q → ⊕ [a,b]
L t, q (t) , d ⊕ q (t) dt dt → min [START_REF] Almeida | A Caputo fractional derivative of a function with respect to another function[END_REF] subject to boundary condition

q(a) = q a (2)
where L is a Lagrangian i.e. a C 1 g [a, b] application with respect a last two variables defined by:

L : [a, b] × R × R → Dom (g) (t, x, v) → L (t, x, v) . (3) 
The theory of variation calculus is indeed rich in its construction since the first works and for its important contribution to the scientific community [START_REF] Van | The calculus of variations[END_REF][START_REF] Bliss | The problem of Lagrange in the calculus of variations[END_REF]. The field attracted the attention of notable mathematicians, starting with Newton and Leibniz, then started as a subject in its own right by the brothers Bernoulli Jakob and Johann. The variation calculation covers a wide range of mathematical applications [START_REF] Castilo | Composition fuctionals in calculus of variations: applications to products and quocients[END_REF][START_REF] Dwi Christyanti | Existence and Uniqueness Solution of Euler-Lagrange Equation in Sobolev Space W 1,p with Gateaux Derivative[END_REF][START_REF] Clarke | The Euler-Lagrange differential inclusion[END_REF]. Variational analysis methods can be applied to a huge variety of physical systems, whose balance configurations inevitably minimize an adequate functional, which normally represents the potential energy of the system. In 2020, Frederico et al. investigated the existence and uniqueness of solution for higher-order calculus of variations problems, involving composition of functional. Also, higher-order DuBois-Reymond conditions in the Sobolev space and consider the higher-order Noether's theorem and discuss invariance conditions for the main problem. Other works involving the discussion of the existence and uniqueness of variational problems, can be obtained in these papers [START_REF] Lu | A Poincarre inequality on R n and its application to potential fluid flows in space[END_REF][START_REF] Mcshane | The Du Bois-Reymond relation in the calculus of variations[END_REF].

We can also highlight the g-calculus theory, which at first was restricted in the classical sense, with its applications in physics, deceit and in mathematics itself, has gained prominence and space in other areas, in particular, in fractional calculus [14, 22, 16-18, 20, 21, 25]. In 2017 Babakhani et al. [START_REF] Babakhani | Some properties of pseudo-fractional operators[END_REF], discussed properties of pseudo-fractional operators, i.e., they presented the versions of the Caputo and Riemann-Liouville fractional derivatives with respect to another function in the g-calculus sense. In 2020, Sousa et al. [START_REF] Vanterler Da | ψ-Hilfer pseudofractional operator: new results about fractional calculus[END_REF], discussed the ψ-Hilfer fractional pseudo-operator and its properties. For a more detailed reading of applications in pseudo-fractional operators, we recommend these works [START_REF] Agahi | Pseudo-fractional integral inequality of Chebyshev type[END_REF][START_REF] Agahi | On pseudo-Mittag-Leffler functions and applications[END_REF][START_REF] Agahi | Chebyshev type inequalities for pseudo-integrals[END_REF][START_REF] Hosseini | On pseudo-fractional integrals inequalities related to Hermite-Hadamard type[END_REF].

On the other hand, Gronwall inequality is of paramount importance in discussing the existence and uniqueness of Cauchy problems, both in the classic, fractional and g-calculus sense. In 2018, Sousa and Oliveira [START_REF] Vanterler Da | A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator[END_REF], discussed a generalization for Gronwall inequality in the fractional sense and investigated the existence and uniqueness of solutions to a Cauchy problem via the ψ-Hilfer fractional operator. Through the Gronwall inequality (in fractional calculus), numerous researchers discussed properties such as existence, uniqueness and continuous dependence on the data of fractional differential equations [33, 34, 38-41, 1, 11, 12]. Other applications, in general, of fractional calculus, can be obtained in the works [START_REF] Chen | The stochastic fractional power dissipative equations in any dimension and applications[END_REF][START_REF] Gaul | Damping description involving fractional operators[END_REF][START_REF] Hilfer | Applications of Fractional Calculus in Physics[END_REF][START_REF] Metzler | Relaxation in filled polymers: a fractional calculus approach[END_REF].

Let a generator g :

[a, b] → [0, ∞] of the pseudo-addition ⊕. Let F : I × R d → R d , t 0 ∈ I e x 0 ∈ R d .
In this paper, we also consider the Cauchy problem associated with data (t 0 , x 0 ) any solution (J, x) is given by

   d ⊕ dt x (t) = F (t, x) x (t 0 ) = x 0 (4) 
with t 0 ∈ J. Motivated by the work above in this paper we aim to provide new results in the field of g-variational calculus, and we highlight the main points to be discussed:

1. We discuss a generalized version of Gronwall inequality in the g-calculus sense. 2. We investigate the existence and uniqueness of a global solution to the Cauchy problem (21). 3. We discussed the Pseudo-Dubois-Reymond Lemma versions 1 and 2. 4. We investigate the existence of pseudo-variational problem solutions in Lagrange form (49). 5. Finally, we attack the existence and uniqueness of the reformulation of Theorem 59 (Poincaré inequality in g-calculus).

The paper is organized as follows: in section 2, we present fundamental concepts of pseudo-analysis, in particular, a version for Dirichlet pseudo-integral formula. In section 3, the first result of the paper is discussed, i.e., we present the generalized Gronwall inequality in g-fractional calculus and some particular cases are presented. In this sense, section 4 is aimed at investigating the existence and uniqueness of a global solution to the Cauchy-Lipschitz problem via the Gronwall inequality, which completes the second main of the paper. In section 5, we attack versions 1 and 2 of the pseudo-DuBois-Reymond lemmas. In section 6, we conclude with the discussion of another result of this paper, i.e., we address the existence of solutions to a pseudo-variational problem in the form of Lagrange (49) and the existence and uniqueness of the reformulation of Theorem 59 (Poincare inequality in g-calculus).

Preliminaries

In this section, we give the necessary preliminaries on pseudo-analysis.

Pseudo-analysis

In this section, we recall some basic results of pseudo-operations, pseudoanalysis and pseudo-additive measures and integrals that will be used in the this paper. The presentation here can be found in [START_REF] Agahi | On pseudo-Mittag-Leffler functions and applications[END_REF][START_REF] Mesiar | Pseudo-aritheoremetical operations[END_REF][START_REF] Pap | An integral generated by decomposable measure[END_REF][START_REF] Pap | g-calculus[END_REF][START_REF] Pap | Pseudo-Laplace transform[END_REF][START_REF] Pap | Applications of the generated pseudo-analysis on nonlinear partial differential equations[END_REF].

Let The structure ([a, b] , ⊕, ) is a semiring (see [START_REF] Kuich | Semirings, Automata, Languages[END_REF]).

Definition 2 [START_REF] Pap | Pseudo-L p space and convergence[END_REF] An important class of pseudo-operations ⊕ and is when these are defined by a monotone and continuous function g

: [a, b] → [0, ∞],
i.e., pseudo-operations ⊕ and are given with

x ⊕ y = g -1 (g (x) + g (y)) and x y = g -1 (g (x) g (y)) .

Definition 3 [START_REF] Pap | Pseudo-L p space and convergence[END_REF] Let X be a non-empty set and A be a σ-algebra of subsets of a set X.

A set function m : A → [a, b] is called a σ-⊕-measure if it satisfies the following conditions 1. m (∅) = 0; 2. m ( ∞ i=1 A i ) = ∞ i=1 m(A i ) holds for any sequence {A i } i∈N of pairwise disjoint sets from A.
Definition 4 [START_REF] Pap | Pseudo-L p space and convergence[END_REF][START_REF] Pap | g-calculus[END_REF] Let pseudo-operations ⊕ and are defined by a monotone and continuous function g

: [a, b] → [0, ∞]. 1. The g-integral for a measurable function f : [c, d] → [a, b] is given by ⊕ [c,d] f dx = g -1 d c g (f (x)) dx .
2. The g-Laplace transform of function f is defined by

L ⊕ [f (x)] = g -1 (L [g (f (x))]) .
Pap in [START_REF] Pap | g-calculus[END_REF] defined g-derivative as follows.

Definition 5 [START_REF] Pap | g-calculus[END_REF] Let g be the additive generator of the strict pseudo-addition ⊕ on [a, b] such that g is continuously differentiable on (a, b). The corresponding pseudo-multiplication will always be defined as u v = g -1 (g(u)g(v)). If the function f is differentiable on (c, d) and has the same monotonicity as the function g, then the g-derivative of f at the point x ∈ (c, d) is defined by:

d ⊕ f (x) dx = g -1 d dx g (f (x)) .
Also, if there exists the n-g-derivative of f, then

d (n)⊕ f (x) dx = g -1 d n dx n g (f (x)) .
The reader interested on more details on g-derivatives and g-integral is refereed to the papers [START_REF] Pap | g-calculus[END_REF][START_REF] Sugeno | Pseudo-additive measures and integrals[END_REF]. The pseudo-operations and are proposed in [START_REF] Mesiar | Pseudo-aritheoremetical operations[END_REF].

Definition 6 [START_REF] Mesiar | Pseudo-aritheoremetical operations[END_REF] Let g be a generator of a pseudo-addition ⊕ on interval [-∞, +∞]. Binary operation and on [-∞, +∞] defined by the formulas:

x y = g -1 (g (x) -g (y)) and x y = g -1 g (x) g (y) , if expressions g (x) -g (y) and g(x) g(y) have sense are said to be the pseudosubtraction and pseudo-division consistent with the pseudo-addition ⊕.

Definition 7 [START_REF] Mesiar | Pseudo-aritheoremetical operations[END_REF] Let g : [-∞, +∞] → [-∞, +∞] be a continuous, strictly increasing and odd function such that g(0) = 0, g(1) = 1, g(+∞) = +∞. The system of pseudo-aritheoremetical operations {⊕, , , } generated by this function is said to be the consistent system.

Definition 8 [42] Let [a, b] + = {x ∈ [a, b] such that 0 ≤ g x} = {x ∈ [a, b] such that g (x) ≥ 0} and X a set. A function d : X × X → [a, b] + is a g-distance if 1. 0 ≤ g d (x, y), ∀x, y ∈ X and d (x, y) = 0 is and only if x = y; 2. d (x, y) = d (y, x) , ∀x, y ∈ X; 3. d (x, y) ≤ g d (x, z) ⊕ d (z, y) , ∀x, y, z ∈ X (the inequality is in generalized sense).
Definition 9 [START_REF] Bede | The theory of pseudo-linear operators[END_REF] Given a pseudo-linear space V over ([a, b] , ⊕, ) a generalized norm (g-norm) is a mapping

• g : V → [a, b] + such that 1. v g ≥ g 0, ∀v ∈ V and v g = 0. If and only if v = 0. 2. c v g = |c| g v g , ∀c ∈ [a, b] and v ∈ V . 3. v ⊕ w g ≤ g v g ⊕ w g , ∀v, w ∈ V .
Definition 10 [42] Given a pseudo-linear space V and a generalized norm

• g on V , we say that V is a generalized normed space. 

I α;ψ ⊕, ,+ f (x) = g -1 I α;ψ a+ g (f (x)) = ⊕ [a,x] g -1 ψ (t) (ψ (x) -ψ (t)) α-1 Γ (α) f (t) dt. ( 5 
)
Theorem 1 (Dirichlet formula pseudo-integral) Let a generator g : [a, b] → [0, ∞] of the pseudo-addition ⊕ and the pseudo multiplication be an increasing function. Assume that

Λ 1 = [a, b], Λ 2 = [a, x], where -∞ ≤ a < b ≤ ∞, -∞ ≤ a < x ≤ ∞, for a measurable function h (x, y) defined on Λ 1 × Λ 2 and at least one of the following integrals ⊕ [a,b] ⊕ [a,x] h (x, y) dx dy = ⊕ [a,b] ⊕ [y,b] h (x, y) dy dx (6) 
where on of the integrals is absolutely convergent.

Proof In fact, using the Definition 4, we have

⊕ [a,b] ⊕ [a,x] h (x, y) dx dy = ⊕ [a,b] g -1 x a g (h (x, y)) dx dy = g -1 b a x a g (h (x, y)) dxdy .
Using Dirichlet formula (sense classical), we have

⊕ [a,b] ⊕ [a,x] h (x, y) dx dy = g -1 b a x a g (h (x, y)) dxdy = ⊕ [a,b] g -1 b y g (h (x, y)) dy dx = ⊕ [a,b] ⊕ [y,b]
h (x, y) dy dx.

3 Generalized Gronwall inequality in g-fractional calculus

In this section, we present a version for the Gronwall inequality with respect to another function ψ in the fractional g-calculus sense, and after we discuss some particular cases. If

u (t) ≤ v (t) ⊕ p (t) ⊕ [a,t] g -1 ψ (τ ) (ψ (t) -ψ (τ )) α-1 u (τ ) dτ then u (t) ≤ v (t)⊕ ⊕ [a,t] ∞ k=1 (Γ (α) p (t)) k Γ (αk) g -1 ψ (τ ) (ψ (t) -ψ (τ )) αk-1 v (τ ) dτ.
Proof First, consider the following

Aφ (t) = p (t) ⊕ [a,t] g -1 ψ (τ ) (ψ (t) -ψ (τ )) α-1 φ (τ ) dτ (7) ∀t ∈ [a, b], for locally integral functions φ. Then u (t) ≤ v (t) ⊕ Au (t).
Integrating for n ∈ N we can write

u (t) ≤ n-1 k=0 A k v (t) ⊕ A n u (t) . (8) 
The next step, is usually mathematical induction that if φ is a nonnegative function, then

A k u (t) ≤ ⊕ [a,t] (Γ (α) p (t)) k Γ (αk) g -1 ψ (τ ) (ψ (t) -ψ (τ )) αk-1 u (τ ) dτ. (9) 
The inequality ( 9) is true for k = 1. Now, we suppose that the formula is true for some k = n ∈ N, then the induction hypothesis implies

A k+1 u (t) ≤ A ⊕ [a,t] (Γ (α) p (t)) k Γ (αk) g -1 ψ (τ ) (ψ (t) -ψ (τ )) αk-1 u (τ ) dτ = p (t) ⊕ [a,t] g -1 ψ (τ ) (ψ (t) -ψ (τ )) α-1 ⊕ [a,τ ] (Γ (α) p (t)) k Γ (αk) g -1 ψ (s) (ψ (τ ) -ψ (s)) αk-1 u (s) ds dτ. (10) 
By hypotheses, p is a nondecreasing function, that is p (τ ) ≤ p (t) for allτ ≤ t, then from inequality (10), we get

A k+1 u (t) ≤ Γ (α) k p (t) k+1 Γ (αk) ⊕ [a,t] ⊕ [a,τ ] g -1 ψ (τ ) (ψ (t) -ψ (τ )) α-1 g -1 ψ (s) (ψ (τ ) -ψ (s)) αk-1 u (s) ds dτ. (11) 
By Dirichlet formula pseudo-integral (see Theorem 1), the inequality (11) can be rewritten as

A k+1 u (t) ≤ Γ (α) k p (t) k+1 Γ (αk) ⊕ [a,t] u (τ ) ⊕ [τ,t] g -1 ψ (τ ) (ψ (t) -ψ (τ )) α-1 g -1 ψ (s) (ψ (τ ) -ψ (s)) αk-1 ds dτ. (12) 
Note that

g -1 ψ (τ ) (ψ (t) -ψ (τ )) α-1 = g -1 (ψ (τ )) g -1 (ψ (t) -ψ (τ ))
α-1

(13) and

g -1 (ψ (t) -ψ (τ )) α-1 g -1 ψ (s) (ψ (s) -ψ (τ )) α-1 = g -1 (ψ (t) -ψ (s)) α-1 ψ (s) (ψ (s) -ψ (τ )) α-1 . (14) 
Using the Eq.( 13) and Eq.( 14) in Eq.( 12), we have

A k+1 u (t) ≤ Γ (α) k p (t) k+1 Γ (αk) ⊕ [a,t] g -1 (ψ (τ )) u (τ ) ⊕ [τ,t] g -1 (ψ (t) -ψ (s)) α-1 ψ (s) (ψ (τ ) -ψ (s)) αk-1 ds dτ = Γ (α) k p (t) k+1 Γ (αk) ⊕ [a,t] g -1 (ψ (τ )) u (τ ) ⊕ [τ,t] g -1 ψ (s) (ψ (t) -ψ (τ )) α-1 1 - ψ (s) -ψ (τ ) ψ (t) -ψ (τ ) α-1 (ψ (s) -ψ (τ )) αk-1 ds dτ = Γ (α) k p (t) k+1 Γ (αk) ⊕ [a,t] g -1 (ψ (τ )) u (τ ) g -1 t τ ψ (s) (ψ (t) -ψ (τ )) α-1 1 - ψ (s) -ψ (τ ) ψ (t) -ψ (τ ) α-1 (ψ (s) -ψ (τ )) αk-1 ds dτ. (15) 
Realizing the changes of variables u = ψ (s) -ψ (τ ) ψ (t) -ψ (τ ) and using the definition of Beta function and relation with gamma function

B (x, y) = Γ (x) Γ (y) Γ (x + y)
in inequality [START_REF] Metzler | Relaxation in filled polymers: a fractional calculus approach[END_REF] we obtain

A k+1 u (t) ≤ Γ (α) k p (t) k+1 Γ (αk) ⊕ [a,t] g -1 (ψ (τ )) u (τ ) g -1 (ψ (t) -ψ (τ )) kα+α-1 1 0 (1 -u) α-1 u kα-1 du dτ = Γ (α) k p (t) k+1 Γ (αk) ⊕ [a,t] g -1 (ψ (τ )) u (τ ) g -1 (ψ (t) -ψ (τ )) kα+α-1 Γ (α) Γ (kα) Γ (α + kα) dτ ≤ (Γ (α) p (t)) k+1 Γ (αk + 1) ⊕ [a,t] g -1 (ψ (τ )) u (τ ) g -1 (ψ (t) -ψ (τ )) kα+α-1
dτ.

Let us now prove that A n u (t) → 0 as n → ∞. As p is a continuous function on [a, b], then by Weierstrass theorem, there exist a constant M > 0 such that p (t) ≤ M for all t ∈ [a, b] . Then, we obtain

A k+1 u (t) ≤ ⊕ [a,t] (Γ (α) p (t)) n Γ (αn) g -1 (ψ (τ )) u (τ ) g -1 (ψ (t) -ψ (τ )) αn-1 dτ.
Finally, we consider the series Using the ratio test to the series and the approximation, so we obtain

lim n→∞ Γ (αn) Γ (αn + α) = 0.
Therefore, the series converges and we conclude that 

u (t) ≤ ∞ k=0 A k v (t) ≤ v (t) ⊕ ⊕ [a,t] ∞ k=1 (Γ (α) p (t)) k Γ (αk) g -1 ψ (τ ) (ψ (t) -ψ (τ )) αk-1 v (τ ) dτ.
u (t) ≤ v (t)⊕b ⊕ [a,t] g -1 ψ (τ ) (ψ (t) -ψ (τ )) α-1 u (τ ) dτ , ∀t ∈ [a, b] .
Then, we can write

u (t) ≤ v (t)⊕ ⊕ [a,t] ∞ k=1 (Γ (α) b) k Γ (αk) g -1 ψ (τ ) (ψ (t) -ψ (τ )) αk-1 v (τ ) dτ , ∀t ∈ [a, b] .
Lemma 1 Under the hypotheses of Theorem 2, let v be a nondecreasing function on [a, b]. Then, we have

u (t) ≤ v (t) E ⊕ α (p (t) Γ (α) (ψ (t) -ψ (a)) α ) (16) ∀t ∈ [a, b], where E ⊕ α (•) is the Mittag-Leffler pseudo-function defined by E ⊕ α (z) = g -1 (E α g (z)
) and E α (•) is the Mittag-Leffler function of one parameter.

Proof In fact, as v is nondecreasing so for all τ ∈ [a, t] we have v (τ ) ≤ v (t) and we can write

u (t) ≤ v (t) ⊕ ⊕ [a,t] ∞ k=1 (Γ (α) p (t)) k Γ (αk) g -1 (ψ (τ )) g -1 (ψ (t) -ψ (τ )) αk-1 v (τ ) dτ ≤ v (t) 1 + ∞ k=1 (Γ (α) p (t)) k Γ (αk) ⊕ [a,t] g -1 (ψ (τ )) g -1 (ψ (t) -ψ (τ )) αk-1 dτ = v (t) 1 + ∞ k=1 (Γ (α) p (t)) k Γ (αk) g -1 t a ψ (τ ) (ψ (t) -ψ (τ )) αk-1 dτ = v (t) 1 + g -1 ∞ k=1 g (Γ (α) p (t)) k Γ (αk) (ψ (t) -ψ (a)) αk αk ≤ v (t) g -1 ∞ k=0 (g (Γ (α)) g (p (t)) g (ψ (t) -ψ (a)) α ) k Γ (αk + 1) = v (t) E ⊕ α (Γ (α) p (t) (ψ (t) -ψ (a)) α ) .
Next, we discuss some particular cases of the Gronwall inequality g-fractional calculus.

Remark 1 1. Choosing ψ (x) = x and α → 1 in Theorem 2, we have that the result is valid for the g-calculus version, i.e., if

u (t) ≤ v (t) ⊕ p (t) ⊕ [a,t] u (τ ) dτ (17) 
then

u (t) ≤ v (t) ⊕ ⊕ [a,t] ∞ k=1 (p (t)) k g -1 (t -τ ) k-1 v (τ ) dτ. (18) 
2. Choosing g (x) = x in Theorem 2, we have that the result is valid for the fractional calculus with respect to another function ψ, i.e., if [START_REF] Vanterler Da | A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator[END_REF] 

u (t) ≤ v (t) + p (t) t a ψ (τ ) (ψ (t) -ψ (τ )) α-1 u (τ ) dτ then u (t) ≤ v (t) + t a ∞ k=1 (Γ (α) p (t)) k Γ (αk) ψ (τ ) (ψ (t) -ψ (τ )) αk-1 v (τ ) dτ.
3. From the hypotheses of item 1, we have

u (t) ≤ v (t) exp (p (t) (t -a) α ) . (19) 
4. From the hypotheses of item 2, we have [START_REF] Vanterler Da | A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator[END_REF] 

u (t) ≤ v (t) E α (p (t) Γ (α) (ψ (t) -ψ (τ )) α ) . (20) 
5. Choosing ψ (x) = x, g (x) = x and α → 1, we have the classical version, i.e., if

u (t) ≤ v (t) + p (t) t a u (τ ) dτ then u (t) ≤ v (t) + t a ∞ k=1 (p (t)) k ψ (τ ) (t -τ ) k-1 v (τ ) dτ.
6. From the hypotheses of item 5, we have

u (t) ≤ v (t) exp (p (t) (t -a)) .
Starting with items 1 and 3, we will discuss the existence and uniqueness of a Cauchy g-calculus problem.

Existence and uniqueness of global solution

In this section we discuss the existence and uniqueness of global solutions to the Cauchy-Lipschitz problem in the g-calculus sense, using the Gronwall inequality.

Let a generator g : [a, b] → [0, ∞] of the pseudo-addition ⊕. Let F :

I × R d → R d , t 0 ∈ I and x 0 ∈ R d .
The Cauchy problem associated with data (t 0 , x 0 ) any solution (J, x) is given by

   d ⊕ dt x (t) = F (t, x) x (t 0 ) = x 0 (21) 
with t 0 ∈ J.

Definition 12

The solution (J, x) of the Cauchy problem ( 21) is said:

1. Maximal: if there is no solution J, x strictly extending (J, x), in other words such that J J and x = x in J. 2. Global: if J = I (in this case it is obviously maximal).

We assume throughout this section that the set of possible states of the system is the entire space Ω = R d . The whole theory exposed here, is based immediately: For J ⊂ I containing t 0 and x : J → R d the following properties are equivalent.

1. x ∈ C 1 J, R d , verify x (t 0 ) = x 0 and d ⊕ dt x (t) = F (t, x (t)) for all t ∈ J. 2. x ∈ C 0 J, R d is to check x (t) = x 0 ⊕ ⊕ [t0,t] F (s, x (s)) ds. (22) 
In fact, applying I ⊕, ,t0 (•) on both sides of systems (21) and using the initial condition x (t 0 ) = x 0 , we have

I ⊕, ,t0 D ⊕ x (t) = I ⊕, ,t0 F (t, x (t)) . (23) 
Using the definition of and ⊕ we get

g -1 (g (x (t)) -g (x (t 0 ))) = ⊕ [t0,t] F (s, x (s)) ds (24) 
implies

x (t) = x (t 0 ) ⊕ ⊕ [t0,t] F (s, x (s)) ds. (25) 
On the other hand, applying d ⊕ dt on both sides of Eq.( 25), we have

d ⊕ dt x (t) = F (t, x (t)).
Theorem 3 (Cauchy-Lipschitz global) Let a generator g : [a, b] → [a, b] of the pseudo-addition ⊕ and the pseudo multiplication be an increasing function. We assume that the vector field f : I × R d → R d is continued and globally Lipschitzian in relation to state variable. So, for any Cauchy data (t 0 , x 0 ), there is a unique global solution (I, x) for Cauchy problem [START_REF] Pap | Pseudo-L p space and convergence[END_REF]. In addition, any other solution (J, x) Cauchy problem is the restriction to J of x.

Proof We discuss the proof in four stages.

Uniqueness

We show the following property that includes the uniqueness of a possible global solution and the last statement of the theorem: be (J 1 , x 1 ) e (J 2 , x 2 ) two solutions to the Cauchy problem [START_REF] Pap | Pseudo-L p space and convergence[END_REF] and are

J 1 ∩ J 2 = J. Let show that x 1 = x 2 in J.
The difference z = x 1 x 2 checks, by subtraction

d ⊕ dt z (t) = d ⊕ dt x 1 (t) d ⊕ dt x 2 (t) = F (t, x 1 (t)) F (t, x 2 (t)) (1) (26) 
∀t ∈ J, as well as z (t 0 ) = 0. For all t ∈ J, t ≥ 0 applying I ⊕, ,t0 (•) on both sides of ( 21), we get

z (t) = ⊕ [t0,t] (F (s, x 1 (s)) F (s, x s (s))) ds. ( 27 
)
So we have

z (t) g ≤ g ⊕ [t0,t] F (s, x 1 (s)) F (s, x s (s)) g ds ≤ g ⊕ [t0,t] L (s) z (s) g ds. ( 28 
)
As this is true for every t ≥ t 0 that t → z (t) g is continuous and that L ≥ 0 (Lipschitz's constant), we can apply the Gronwall lemma (see Remark 1 item 3) and deduce that z (t) g ≤ g 0 exp (L (t) (t -t 0 )) , for all t ≥ t 0 .

This shows that z = 0 for t ≥ t 0 , in other words

x 1 = x 2 for t ∈ J ∩[t 0 , +∞).
A similar reasoning shows that x 1 = x 2 for t ∈ J ∩ (-∞, t 0 ]. 2. Now we discuss the linked priory, in other words, it is about assuming that the global solution (I, x) exists and establishing a limit that it must necessarily check. For this, we integrate again between t 0 and t ≥ t 0 , the differential equation to be obtained, using the initial condition x (0) = x 0 ,

x (t) = x 0 ⊕ ⊕ [t0,t] F (s, x (s)) ds, ∀t ≥ t 0 . ( 30 
)
We would like to use Gronwall Lemma (see Remark 1 item 3) again to estimate x, but to do that we need to be able to replace the term f and the only assumption available to us, is the fact that f is Lipschitzian with respect to spacial variable . We must therefore show a difference in the values of f , for example as follows

x (t) x 0 = ⊕ [t0,t] F (s, x 0 ) ds ⊕ ⊕ [t0,t] (F (s, x (s)) F (s, x 0 )) ds (31)
for all t ≥ t 0 .

Choosing z (t) = x (t) x 0 , we have

z (t) g ≤ g ⊕ [t0,t] F (s, x 0 ) g ds ⊕ ⊕ [t0,t] F (s, x (s)) F (s, x 0 ) g ds ≤ g ⊕ [t0,t] F (s, x 0 ) g ds ⊕ ⊕ [t0,t] L (s) z (s) g ds (32) 
for all t ≥ t 0 . Using the Gronwall lemma (see Remark 1 item 3), we have

z (t) g ≤ g ⊕ [t0,t] F (s, x 0 ) g ds exp (L (t) (t -t 0 )) , ∀t ≥ t 0 .
(33) A similar estimate is shown for t ≤ t 0 (putting absolute values in the integrals) then, if we ask from now on

ϕ (t) := 1 ⊕ x 0 g ⊕ ⊕ [t0,t] F (s, x 0 ) g ds , ∀t ∈ I (34) 
and

γ (t) := |L (t) (t -t 0 )| , ∀t ∈ I ( 35 
)
which depend only on the data t 0 , x 0 and f , then we obtained the following estimate a priory

x (t) g ≤ g ϕ (t) exp (γ (t)) , ∀t ∈ I. ( 36 
)
Note that we arbitrarily added 1 to the ϕ function so that ϕ (t) ≥ 1 and γ (t) ≥ 0, for all t ∈ I. In addition, we note that ϕ is decreasing in I∩] -∞, t 0 ] and increasing in I ∩ [t 0 , +∞[.

Introduction of a good functional space

Based on the previous calculations, we now know that just looking for x in the set of functions that satisfy the estimate [START_REF] Vanterler Da | ψ-Hilfer pseudofractional operator: new results about fractional calculus[END_REF].

In reality, we will have to relax this restriction a little bit, introducing the following space

E := z ∈ C 0 I, R d , sup t∈I ϕ (t) -1 g e -2 γ(t) z (t) g < ∞ ( 37 
)
whose norm is given by

z g := sup t∈I ϕ (t) -1 g e -2 γ(t) z (t) g . ( 38 
)
Note that the factor 2 we put in exponential compared to the amount obtained in the a priory limit. The presence of this factor is fundamental in the following (any > 1 factor will do). Besides that, dividing by ϕ would remain greater than 1. note that E, • δ,E is Banach.

Introduction of a fixed point problem

For any function z ∈ E, we define a new function

Θ (z) ∈ C 0 (I, R n ) by formula (Θ (z)) (t) := x 0 ⊕ ⊕ [t0,t] F (s, z (s)) ds, ∀t ∈ I. (39) 
We will discuss the properties of this application.

(i) Note that the functions are in E. Let's calculate Θ (x 0 ) (this is a small abuse of notation, we should write

Θ (t → x 0 )) (Θ (x 0 )) (t) = x 0 ⊕ ⊕ [t0,t] F (s, x 0 ) ds. (40) 
Taking the norm in (40), we have

(Θ (x 0 )) (t) g ≤ g x 0 g ⊕ ⊕ [t0,t] F (s, x 0 ) g ds ≤ g ϕ (t) (41) 
then Θ (x 0 ) ∈ E.

(ii) We prove that Θ take E in yourself. For this, be z, z ∈ E and we write

(Θ (z)) (t) (Θ ( z)) (t) = ⊕ [t0,t] (F (s, z (s)) F (s, z (s))) ds (42) 
which we increased as follows, using the f Lipschitzian factor and the monotony properties of ϕ,

(Θ (z)) (t) (Θ ( z)) (t) g ≤ g ⊕ [t0,t] F (s, z (s)) F (s, z (s)) g ds ≤ g z z g,E ϕ (t) ⊕ [t0,t] L (s) e 2 γ(s) ds ≤ g z z g,E 2 ϕ (t) g -1 e 2 γ(t) 2 . (43) 
So, we have

sup t∈I ϕ -1 (t) g e 2 γ(t) 2 (Θ (z)) (t) (Θ ( z)) (t) g ≤ g 1 2 z z g,E . (44) 
We deduce that Θ (z) Θ ( z) it's at E. Taking z = x 0 , as we sat that Θ (x 0 ) ∈ E, we deduce that Θ (z) ∈ E for all z ∈ E, that prove that Θ takes E in it self.

(iii) Now that we have established that Θ (E) ∈ E, we can go back to inequality (44),

Θ (z) Θ ( z) g ≤ g 1 2 z z g,E , ∀z, z ∈ E. (45) 
We prove that Θ is contracting by E. Observe here the importance of putting factor 2 in the exponential in the definition of E, it is that provides the contraction rate 1 2 in this inequality. To be convinced of this, we can repeat the previous calculations, replacing this coefficient in the definition of E with an arbitrary number λ > 0 and observe what this gives. 5. Solving the fixed point problem.

We are in the scope of applying the Banach fixed point theorem, which tells us that the Θ application admits a unique fixed point in E that we denote by x. This function is continuous and, therefore,

x (t) = (Θ (x)) (t) = x 0 ⊕ ⊕ [t0,t] F (s, x (s)) ds. (46) 
Taking t = t 0 , we obtain that x (t 0 ) = x 0 . On the other hand, this inequality prove that x is a unique anti-derivative of the continuous function s → F (s, x (s)) and that, therefore, is class C 1 and checks

d ⊕ dt x (t) = F (t, x (t)) (47) 
∀x ∈ I, which is the initial differential equation ( 21).

Pseudo-DuBois-Reymond Lemmas

In this section, the function g is defined in the sense of Definition 7, [a, b] ⊆ [-∞, +∞] and all the integrants of g-integral are supposed continuous functions with values in Dom(g). Let • denote the usual Euclidean norm of R.

We also denote by:

- on (a, b) (see [START_REF] Pap | g-calculus[END_REF]). Thus for this λ and y, we have from the hypothesis and the properties of

g-integral that ⊕ [a,b] [(f (x) λ) (f (x) λ)] dx = ⊕ [a,b] (f (x) λ) d ⊕ y(x) dx dx = ⊕ [a,b] f (x) d ⊕ y(x) dx dx λ ⊕ [a,b] d ⊕ y(x) dx dx = ⊕ [a,b] f (x) d ⊕ y(x) dx dx = 0. Observe that ⊕ [a,b] [(f (x) λ) (f (x) λ)] dx = g -1 b a g ((f (x) λ) (f (x) λ)) dx = g -1 b a [g(f (x) λ)] 2 dx = 0. Since g(0) = 0, it follows that ∀x ∈ [a, b], 0 ≤ b a [g(f (x) λ)] 2 dx = 0 ⇒ g(f (x) λ) = 0 ⇔ g(f (x)) = g(λ).
Since g is a continuous and strictly increasing function, we get that f (x) = λ as asserted. [START_REF] Pap | g-calculus[END_REF].

(z(x) y(x)) ⊕ f (x) d ⊕ y(x) dx dx = 0, ∀h ∈ D 1 , then f ∈ C 1 g [a, b] and d ⊕ f (x) dx = z(x). Proof Let ∀x ∈ [a, b], Z(x) = ⊕ [a,t] z(t) dt. Then Z ∈ C 1 g [a, b] and d ⊕ Z(x) dx = z(x) by
Since y ∈ D 1 , it follows by integrating the first term of the integral by parts and our hypothesis give

⊕ [a,b] (z(x) y(x)) ⊕ f (x) d ⊕ y(x) dx dx = ⊕ [a,b] (f (x) Z(x)) d ⊕ y(x) dx dx = 0.
But, according to Lemma 2, this implies that

f (x) Z(x) = c = constant, ∀x ∈ [a, b].
From Definition 2 and Definition 5, we have

f (x) Z(x) = c ⇔ g -1 (g(f (x)) -g(Z(x))) = c ⇔ g(f (x)) = g(Z(x)) + g(c) ⇔ f (x) = Z(x) ⊕ c ∈ C 1 g [a, b].
Hence by the definition of Z,

d ⊕ f (x) dx = z(x), ∀x ∈ [a, b]
as asserted. It's important to observe that the g-differentiability of the function f (x) was not assumed in advance.

Next, for f = 0, we obtain from Lemma 3 a theorem analogous to the socalled fundamental lemma of calculus of variations for the case of g-calculus.

Corollary 2 (Fundamental lemma of pseudo-calculus of variations)

If g ∈ C[a, b] and ⊕ [a,b] (g(x) y(x)) dx = 0, ∀y ∈ D 1 , then g(x) = 0 on [a.b].
6 Existence and uniqueness in g-variational calculus 6.1 Existence theorem Definition 13 (Lower semicontinuous) Let X be a topological space and a function J : X -→ R = R ∪ {+∞}. Then 1. the function J is lower semicontinuous if its epigraph:

epi J = {(x, a) ∈ X × R : j(x) ≤ a}; 2. the function J is sequentially lower semicontinuous if u k -→ u 0 ∈ X ⇒ J(u) ≤ lim k→∞ inf J(u k ) .
Let us consider the following pseudo-variational problem in Lagrange form

J : C 1 g [a, b] -→ R q -→ ⊕ [a,b] L t, q (t) , d ⊕ q (t) dt dt -→ min (49) subject to boundary condition q(a) = q a ( 50 
)
where L is a Lagrangian i.e. a C 1 g [a, b] application with respect a last two variables defined by:

L : [a, b] × R × R -→ Dom (g) (t, x, v) -→ L (t, x, v) . (51) 
Theorem 4 (Existence theorem for problem (49)) Suppose X ⊂ R is a reflexive Banach space and J : X -→ R is sequentially weakly lower semicontinuous and coercive over X, that is

J (q) ≥ (C 1 q ) ⊕ C 2 (52) 
for some C 1 > 0 and C 2 ∈ R. Suppose also that there exists q ∈ X with J (q) < +∞. Then Inf{J (q) : q ∈ X} (53) has at least one solution.

Proof By the assumption (52), we have that

(C 1 q ) ⊕ C 2 ≤ J (q) ⇔ g -1 (g(C 1 q ) + g(C 2 ) ≤ J (q) (54)
Since the function g is a increasing bijective function, the inequality (54) becomes,

g(C 1 q ) + g(C 2 ) ≤ g(J (q)) ⇔ g(C 2 ) ≤ g(J (q)) -g(C 1 q ) ⇔ C 2 ≤ J (q) (C 1 q ) ≤ J (q) ∀q ∈ X ≤ Inf{J (q) : q ∈ X} . (55) 
Let now be (q n ) n∈N ⊂ X a minimizing sequence for (53). Proceeding as above and using the coercivity (52), one has

q n ≤ (J (q n ) C 2 ) C 1 ∀n ∈ N (56) 
and that (q n ) n∈N is bounded in X, consequently the sequence ( q n ) n∈N is also bounded in X. Observe that, from (55) the right hand side of ( 56) is non-negative for all n ∈ N . Since X is a reflexive Banach space, there exists a subsequence (q n ) n∈N .of (q n ) n∈N weakly convergent in X such that qn q and J (q n ) → Inf{J (q) : q ∈ X} .

Finally, the definition of an infimum and the sequentially weakly lower semicontinuous of J assert that Inf{J (q) : q ∈ X} ≤ J (q) ≤ lim

qn→q inf J(q n ) ≤ Inf{J (q) : q ∈ X} , (57) 
that is q is solution of (53). The proof is complete.

Remark 2 1. The coercivity condition (52) ensures that lim q →∞ q∈X J (q) = +∞ ; which means that the infimum in (53) is finite.

2. Obviously, the degenerate case where J (q) ≡ +∞, ∀q ∈ X, is to rule out in the Theorem 53

Throughout the text we have 1 < p < ∞, and p denotes the adjoint of p . For any 1 ≤ r ≤ ∞, we denote

-By C ∞ c := C ∞ c ([a, b]; R)
as the standard space of infinitely g-differentiable functions compactly supported in (a, b) , by L r := L r (a, b; R) the usual space of r-Lebesgue g-integrable functions endowed with its usual norm • L r ; by W 1,r := W 1,r (a, b; R) the usual r-Sobolev space endowed with its usual norm • W 1,r , and W 1,r 0 (a, b; R) = C1 c (a, b; R) theorem [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF], we can assume (modulo an extraction) that the sequence (u n ) n∈N converges on L 2 (X) to a function u ∈ L 2 (X) .

Therefore, we have

d ⊕ u n dt -→ d ⊕ u dt = 0 on L 2 (X). Since X is connected,
we deduce that u is constant and then u = 0 because u ∈ W 1,2 0 (X) . This contradicts (60).

Proof (of Lemma 58) It is sufficient to combine (58) and (59), and use the Remark 2.

To guarantee the uniqueness in the Theorem 53, we need to introduce the property of semi-convexity in the Lagrangian. Definition 14 (Convexity) A function f : R -→ R is -Convex if for all x, y in its domain, and all λ ∈ [0, 1], we have f (λ x ⊕ (1 λ)) ≤ λ f (x) ⊕ (1 λ) f (y) ; -Strictly convex if for all x, y, x = y, in its domain, and all λ ∈ (0, 1), we have f (λ x ⊕ (1 λ)) < λ f (x) ⊕ (1 λ) f (y) .

In many situations, the hard part then is determining whether or not J is weakly lower semicontinuous. So, to overcome this situation, we often use the notion of regular Lagrangean, as follows: Theorem 6 (Existence and uniqueness) Let J : W 1,p -→ R.

Let us assume the following hypotheses:

-L(t, x, v) is regular; α |v| p ≤ L(t, x, v) ≤ β (|x| p ⊕ |v| p ) , with α, β > 0; -L(t, x, v) is convex on (R) 2 for any t ∈ W 1,p (X) . q(t) 2 + q(t) 2 + dt -→ min,

q(t 2 ) = q 2 , (63) 
in the class of functions q(•) ∈ Lip ([-1, 3]; R) q(•) ∈ W 1,2 ([t 1 , t 2 ]; R). It is not difficult to verify that the Lagrangian is strictly convex and satisfies the hypotheses of the Theorem 6, and therefore exists a unique solution q(•) ∈ W 1,2 ([t 1 , t 2 ]; R) of the problem (63).

Conclusions and open questions

The g-calculus theory is in its childhood so that much remains to be done. This is particularly true in the area of calculus of variations and optimal control, where, to the best of the author's knowledge, there is no result in g-variational calculus. Therefore, the results of this article are the pioneers in this area. In the present work we prove a new version for the generalized Gronwall inequality in the sense of g-fractional calculus. The existence and uniqueness of a global solution to a Cauchy problem via the g-Gronwall inequality are investigated. Moreover, we investigate the Pseudo-Dubois-Reymond lemma in their versions 1 and 2. Finally, we prove the existence and uniqueness of solutions to a pseudo-variational problem in the form of Lagrange in g-variational calculus. The present results are unequivocally of extreme importance for future works in the calculus of variations and optimal control in the sense of g-calculus, namely in the investigation of the necessary optimality conditions: the Euler-Lagrange equations and the Pontryagin Maximum Principle.

  [a, b] ⊂ [-∞, ∞]. The full order on [a, b] will be denoted by . Definition 1 [20] A binary operation ⊕ on [a, b] is pseudo-addition if it is commutative, non-decreasing (with respect to ), continuous, associative, and with a zero (neutral) element denoted by 0. Let [a, b] + = {x | x ∈ [a, b] , 0 x}. A binary operation on [a, b] is pseudo-multiplication if it is commutative, positively non-decreasing, i.e., x y implies x z y z for all z ∈ [a, b] + , associative and with a unit element 1 ∈ [a, b], i.e., for each x ∈ [a, b] , 1 x = x. Also, 0 x = 0 and that is distributive over ⊕, i.e., x (y ⊕ z) = (x y) ⊕ (x z).

Definition 11 [ 42 ]

 1142 Let a generator g : [a, b] → [0, ∞] of the pseudo-addition ⊕ and the pseudo multiplication be an increasing function. Also let ψ be an increasing and positive function on (a, b], having a continuous derivative ψ on (a, b). The left-sided and the right-sided Riemann-Liouville pseudo-differential integrals of order α > 0 of a measurable function f : [a, b] → [a, b] with respect to function ψ on [a, b] are defined by

Theorem 2

 2 Let u, v be two integrable functions and p continuous, with domain [a, b]. Let a generator g : [a, b] → [a, b] of the pseudo-addition ⊕ and the pseudo multiplication be an increasing function. Let ψ ∈ C 1 [a, b] an increasing function such that ψ (t) = 0 ∀t ∈ [a, b]. Assume that 1. u and v are nonnegative. 2. p in nonnegative and nondecreasing.

Corollary 1

 1 Let α > 0, I = [a, b] and f, ψ ∈ C 1 ([a, b] , R) two functions such that ψ is increasing and ψ (t) = 0 for all t ∈ I. Let u, v be two integrable functions and p continuous, with domain [a, b]. Let a generator g : [a, b] → [a, b] of the pseudo-addition ⊕ and the pseudo multiplication be an increasing function. Let ψ ∈ C 1 [a, b] an increasing function such that ψ (t) = 0 ∀t ∈ [a, b] . Suppose b ≥ 0 and v is a nonnegative function locally integrable on [a, b] and suppose also that u is nonnegative and locally integrable [a, b] with

  C[a, b] the usual space of all continuous functions y defined on [a, b] endowed with its usual norm y(x) 0 := max a≤x≤b |y(x)|; -C 1 g [a, b] the space of all continuous functions y defined on [a, b] which have continuous first g-derivatives endowed with the norm y(x) 1 := max a≤x≤b |y(x)| ⊕ max a≤x≤b d ⊕ y(x) dx ; -D 1 = y ∈ C 1 g ([a, b]; R) : y(a) = y(b) = 0 . Lemma 2 (Pseudo-DuBois-Reymond Lemma, version 1) If f ∈ C[a, b] and ⊕ [a,b] f (x) d ⊕ y(x) dx dx = 0, ∀y ∈ D 1 , then f (x) = constant on [a, b]. Proof Let a constant λ ∈ [a, b] such that the function ⊕ [a,b] [f (x) λ] dx = 0, and let ∀x ∈ [a, b], y(x) = ⊕ [a,x] [f (t) λ] dt = 0. (48) As g is a continuos bounded function on [a, b] then, there exists a λ ∈ [a, b] such that (48) holds. Note that y ∈ D 1 and with g-derivative d ⊕ y(x) dx = f (x) λ

Lemma 3 (

 3 Pseudo-DuBois-Reymond Lemma, version 2) If f, z ∈ C[a, b] and ⊕ [a,b]

Definition 15

 15 We say that L is regular if-L(t, x, v) ∈ L 1 ; -∂ ⊕ L(t, x, v) ∂x ∈ L 1 ; -∂ ⊕ L(t, x, v) ∂v ∈ L pfor any x ∈ W 1,p . Now, let's reformulate Theorem 53, to obtain the existence and uniqueness of solution.

Then 1

 1 Inf{J (x) : x ∈ W 1,p (X)} has at least one solution. In addition, if Example The most classical examples of a Lagrangian are the quadratic ones. Consider the following problem of pseudo-calculus of variations:

Let us remind that the compact embedding W 1,r → C holds for 1 < r ≤ +∞ (see [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF]).

Notice that, by choosing X appropriately (for example X = W 1,r ), we can always ensure that it is a reflexive Banach space.

Next, we state a practical result to ensure the coerciveness of J .

with α, β > 0 , then J is coercive over W 1,p .

To prove the previous lemma we need the following useful theorem:

Theorem 5 (Poincaré inequality in g-calculus) Let X ∈ R an open, bounded and connected set. Then, there exist a constant C X > 0 such that

for all functions u ∈ W 1,2 0 (X) .

Proof We do the proof by contradiction. Suppose that inequality (59) is not verified. We can then consider a sequence (u n ) n∈N ∈ W 1,2 0 (X) satisfying the following conditions:

From ( 60) and (61), one obtains

So, we have

By the Definition 7, we get

which proves on the one hand that d ⊕ u n dt -→ 0 on L 2 (X), and on the other hand that the sequence (u n ) n∈N is bounded on W 1,2 (X). By Rellich-Kondrachov's -L(t, x, v) is strictly convex on (R) 2 for any t ∈ X , this solution is unique. Proof We will prove this theorem in two steps:

-Step 1 : Existence

The proof of existence is analogous to the proof of Theorem 53, and have in mind the Lemma 58, and from the following assumptions: 1. L(t, x, v) is regular; 2. xn -→ x in W 1,p ; 3. the compact embedding W 1,p → C holds; one can obtain that

and one can conclude as in (6.1).

and show that this implies x1 = x2 . Let

We thus obtain

The convexity of L ensures that the integrate is non-negative. As the integral is null, so the only possibility is

We now use the strict convexity of L to get that x1 = x2 and

The proof is complete.