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Supporting many gestures on small surfaces allows users to interact remotely with complex environments

such as smart homes, large remote displays, or virtual reality environments, and switching between them

(e.g., AR setup in a smart home). Providing eyes-free gestures in these contexts is important as this avoids

disrupting the user’s visual attention. However, very few techniques enable large sets of commands on small

wearable devices supporting the user’s mobility and even less provide eyes-free interaction. We present

Side-Crossing Menus (SCM), a gestural technique enabling large sets of gestures on a smartwatch. Contrary

to most gestural techniques, SCM relies on broad and shallow menus that favor small and rapid gestures. We

demonstrate with a first experiment that users can efficiently perform these gestures eyes-free aided with

tactile cues; 95% accuracy after training 20 minutes on a representative set of 30 gestures among 172. In a

second experiment, we focus on the learning of SCM gestures and do not observe significant differences with

conventional Multi-stroke Marking Menus in gesture accuracy and recall rate. As both techniques utilize

contrasting menu structures, our results indicate that SCM is a compelling alternative for enhancing the input

capabilities of small surfaces.

CCS Concepts: • Human-centered computing→ Gestural input.

Additional Key Words and Phrases: Gestural interaction; Marking menus; Small surface; Eyes-free interactions

ACM Reference Format:
Bruno Fruchard, Eric Lecolinet, and Olivier Chapuis. 2020. Side-Crossing Menus: Enabling Large Sets of

Gestures for Small Surfaces. Proc. ACM Hum.-Comput. Interact. 4, ISS, Article 189 (November 2020), 19 pages.

https://doi.org/10.1145/3427317

1 INTRODUCTION
Eyes-free interaction is especially useful when users interact remotely with their surrounding

environment. For instance, users can control Internet-of-Things devices rapidly in a smart home, or

when interacting with a remote large display, keep their visual focus on the primary task without

interruptions. It is also beneficial when users cannot see the input device, for instance, when using

opaque Head-Mounted Displays (HMD) in Virtual Reality (VR) setups. These environments are

becoming more and more complex, as they require users to interact with more smart objects, with

multiple displays at the same time (e.g., visualisation [26] and control rooms [41]), or to perform

complex visual analytics tasks [14, 35].
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Supporting user mobility is essential in these environments [8]. Small wearable devices like

smartwatches are adequate as they do not hinder mobility while leveraging proprioceptive skills to

interact eyes-free. However, they only provide small interactive surfaces that limit touch interactions

[53]. Gestural interactions, and particularly stroke movements, adapt to small surfaces [10, 22, 29,

55, 58], but only a few support eyes-free interactions [62].

We present Side-Crossing Menus (SCM), a gestural technique enabling large sets of gestures on

small surfaces (172 gestures on a smartwatch) to issue multiple commands consistently in various

environments. The design of SCM aims at optimizing the input capabilities of small interactive

surfaces. It relies on a grid interface [24, 33] and defines a gesture as an arbitrary stroke between

two cells that enters the ending cell through a specific side. An SCM gesture thus involves two

original characteristics: a) it depends on the side crossed to enter the final cell, which substantially

increases the number of possible gestures, and b) it does not force users to perform a specific shape

nor to follow a specific path between the two cells. As observed in our experiments, users can

leverage this feature to favor speed (small quick gestures) versus reliability (long safe gestures),

or draw shapes that are easier for them to remember. Furthermore, in contrast with conventional

gestural techniques [59], this design relies on broad and shallow menus that reveal their set of

commands at once and do not require users to navigate deep hierarchies.

Many gestural techniques provide a smooth transition from novice to expert usages [31, 59]. To

preserve this advantage, we focus on promoting eyes-free interactions with SCM by building on

bezel gestures [43]. Bezel gestures enable users to place their finger correctly on the bezels of the

interactive surface before performing a gesture on the sensitive surface. Moreover, they provide

an explicit modifier for avoiding conflicts with common interactions, like scrolling gestures on a

smartwatch. To support accurate eyes-free interactions, we leverage passive tactile feedback using

tactile aids on the bezels [10, 22, 55], and active tactile feedback using short vibrations when the

user enters a cell.

To validate the design of SCM, we report results from two experiments. The first focuses on

expert (eyes-free) selections and suggests that users require little training to master SCM gestures

(95% accuracy after training 20 minutes on a representative set of 30 gestures among 172). In

the second experiment, we sought to understand how efficiently users learn SCM gestures as

the SCM structure contrasts with conventional techniques. Hence, we compared our approach to

Multi-stroke Marking Menus (MMM) [62] and did not find significant differences in the gesture

accuracy and recall rate. This result is promising as it hints that SCM is likely a good alternative to

this conventional baseline, while providing a complementary hierarchical structure. Furthermore,

our results provide empirical data on gesture learning using stroke gestures, which remain rarely

studied in the literature [21, 38].

2 SIDE-CROSSING MENUS
In this section, we present the design of SCM and its various features. We also explain how we

support expert users performing eyes-free gestures with simple passive and active tactile aids.

2.1 Interaction Design
The design of SCM relies on a grid interface [24, 33]. On a smartwatch, this grid typically consists

of 3 × 3 = 9 cells [33] (Figure 1). SCM builds on bezel gestures to facilitate eyes-free interactions

and avoid conflicting with common interactions such as pointing and swipe gestures [29, 43]. To

distinguish these gestures without actuating the bezels, we make SCM gestures start from the

border cells (only touches less than 3mm away from the bezel are considered as the start of a

gesture). As several gestures can originate from a unique starting cell, a starting cell corresponds

to an SCM menu (e.g., the middle-right starting cell corresponds to the menu "edit" on Figure 1).

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. ISS, Article 189. Publication date: November 2020.



Side-Crossing Menus 189:3

EditGallery

Social

Media

Navigation

Folders

Settings

TV

Edit

add

removepaste

cut

copyrefuse

delete

read align

undo redounread

archive

mark

move link

save

font

flag

reportsend

add

removepaste

cut

copyrefuse

delete

read align

undo redounread

archive

mark

move link

save

font

flag

reportsend
Edit

font

(a) (b) (c)

Fig. 1. SCM novice mode rendered using an auxiliary display, e.g., a headset, a large display, a smart glass. (a)
An SCMmenu is bound to a starting cell (eight menus are depicted). (b) Commands are located in arrowheads
indicating how to enter ending cells. The orange circle depicts the user’s initial touch. (c) The user performs a
SCM gesture to select a command. The orange arrow depicts the user’s trace.

An SCM Gesture consists of a stroke from one cell to another by crossing a specific side of

the latter (Figure 1c). Three components merely characterize it: the starting cell, the ending cell

(different from the starting cell and not necessarily on the border), and the side of the ending cell
crossed to enter it. Because they depend on two areas (a starting and an ending cell), these gestures

are position-dependent.

2.1.1 Number of Commands and Layout. Using a grid of 9 cells, an SCMmenu can contain between

21 and 22 commands (depending on its location, an ending cell can support 2 to 4 commands,

Figure 1b and 1c). The technique can thus support a total of 21×4+22×4=172 commands.

While providing many commands on a small surface is an advantageous feature of SCM, one is

unlikely to use such a large set of gestures on a small device. The real advantage is to give freedom

to designers or users in the way they design the menu system. Indeed, because of its large size,

an SCM menu can usually contain all related commands to avoid using submenus, contrary to

techniques that only support a small number of gestures at each level of the menu as Marking

menus (8 items). This feature avoids forcing designers to use deep and narrow hierarchies when

they think this is undesirable [31, 62]. Moreover, using only a subset of all possible gestures enables

creating spatial groupings to group related commands can together. This feature is common on

the Desktop, through "inner groups" of commands separated by horizontal lines in linear menus.

Nevertheless, linear menus do not support eyes-free interaction and techniques that do usually

lack efficient means for grouping related commands.

2.1.2 Interaction Modes. SCM provides a novice mode, rendered using an auxiliary display, for

depicting SCM gestures allowing to learn the associations between the commands and the gestures

(Figure 1). Dwelling on a menu cell for more than 300ms triggers the novice mode and reveals

all the commands this menu comprises. Commands are depicted inside arrowheads that indicate

which side of the cell the users must cross to trigger them (Figure 1b and 1c). When entering a cell,

the users highlight the command they will trigger (Figure 1c). They can then trigger this command

by releasing their finger from the surface. They can cancel a gesture by moving their finger back

to the starting area. While we considered canceling by sliding out of the interactive surface, this

would override bezel-to-bezel gestures [29] that SCM supports.

Considering the large number of possible gestures and the small size of a smartwatch, the visual

rendering of the novice mode cannot reasonably be rendered on the watch, and is, thus, rendered

on an auxiliary display depending on the context: a VR/AR headset, a TV set (smart home), or a

large screen display. Similarly, one could use smart glasses [48] or on-arm projected graphics [58]

in a mobile or smart home context. Once users can recall a set of gestures (expert users), they can

perform them eyes-free.
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Fig. 2. Example of two strategies for selecting the same command. The user maximizes speed without relying
on vibrations (left) or maximizes accuracy by relying on them and the edges of the interactive surface (right).

2.1.3 Path Flexible Gestures. SCM gestures are not necessarily straight lines and offer much path

flexibility to users for performing gestures according to their preferences. Despite Marking menus

share this feature [31, 61, 62], SCM emphasizes this flexibility by providing loose constraints. Users

can thus adopt various strategies for performing gestures. For instance, they might prefer moving

their finger slowly, cell by cell, to ensure accurate movement, or sliding it rapidly to the ending

area for faster interaction (Figure 2).

Moreover, enabling users to perform multiple paths provides several advantages: (1) users can

correct gestures that are partially erroneous by changing their trajectory, (2) they can use gestures

that they find easier to memorize (e.g., symbolic shapes [4, 34], metaphorical gestures [28, 54], or
shapes like phone unlock patterns), and (3) can adapt their movements according to the constraints

of the interaction context (e.g., thumb or index finger used for input).

2.1.4 Simple Recognition Algorithm. Although users can draw complex paths instead of straight

lines, SCM gestures can be easily and reliably recognized because the program only needs to detect

the starting and ending cells and the direction from which the ending cell is entered (which can be

done trivially by checking the position of the user’s finger just before entering this cell). Therefore,

there is no need for a complex gesture recognition algorithm [56] and this design ensures an almost

perfect recognition rate.

2.2 Passive and Active Tactile Aids
SCM relies on small movements performed on a surface. This characteristic is especially advanta-

geous when one uses SCM in AR or VR environments [17] as it avoids performing large tiring 3D

gestures. However, performing small gestures without visual assistance can be challenging [11, 22].

We thus propose two kinds of tactile aids for supporting eyes-free interactions.

(a) (b)

Fig. 3. The bezels of a watch can provide tactile aids to help the users interacting eyes-free. (a) The smartwatch
used in our experiments augmented with tactile aids (paper stickers highlighted with dotted lines) on the
bezels. (b) An example of a commercial watch with bumps integrated to its design that one could use as
tactile aids (highlighted with dotted lines).
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Passive Tactile Aids provide help for initiating gestures. They consist of stickers placed on the

bezels that users can feel under their fingertip (depicted inside dotted white lines in Figure 3a).

The locations and shapes of the spaces between the stickers respectively indicate the ideal locations
and directions to start the gestures. This simple aid noticeably improves performance because it

prevents users from drifting their finger to the wrong cell. These aids are of little cost as the stickers

do not cover the touchscreen nor drastically impact the smartwatch’s aesthetic. In fact, they are

hardly visible and could be integrated into the bezels of a commercial product (Figure 3b).

Active Tactile Aids provide help for completing gestures. They consist of short vibrations emitted

when the user’s finger crosses the side of a cell. This mechanism is a simple way to notify users

their finger just entered a cell and one can count the total number of vibrations corresponding to

a given path (e.g., the path on Figure 1c would involve four vibrations). An advantage of active

aids over passive aids is that they do no modify the surface, which might be uncomfortable when

performing drag or swipe operations in the center of the screen.

A drawback of using vibrations is that they slow down the interaction because of their latency.

However, active tactile aids are mostly intended for helping the transition from novice to expert

use. We assume that users would no longer use them after some training, i.e., when they know the

paths sufficiently well.

3 RELATEDWORK
In this section, we contextualize our work according to relevant literature. Primarily, we present

stroke gestural techniques [59] supporting eyes-free interaction on small touch surfaces and

demonstrate how our approach differs and complements them.

3.1 Marking Menus and Variants
Marking Menus [30] and their variants use size-independent directional gestures [7] that enable
eyes-free interactions [11, 27, 49] but strongly constrain each menu level to eight items [31]. They

rely on deep and narrow hierarchies that one can navigate using compound marks [31]. While

these compound marks require large surfaces to interact, Multi-stroke Marking Menus [62] only

require small surfaces by relying on successive independent strokes. However, this may conflict

with the idea that chunking [12] should help perform and memorize commands.

Previous work also considered additional dimensions such as taps [49], stroke curvature [6], or

the starting position [61] of gestures to increase the number of commands while avoiding deep

hierarchies of menus. While most of these techniques have been designed for the mouse or the

trackpad, some of them have been adapted to smartphones [44], smartwatches [15], and smart

glasses [22] but only provide a limited set of commands (28 in [44]) or text entry. These two last

studies ([15, 22]) focused on speed rather than accuracy and revealed error rates of approximately

20%.

While the deep and narrow structure of Marking menus constrains the number of items per

level and lacks the conventional pre-visualization of linear menus [5], it facilitates visual search by

displaying a small set of items at once. Conversely, SCM’s broad and shallow structure imposes a

demanding visual search but supports a large number of items in a menu and shows them all at

once.

3.2 Position-Dependent Gestures
Position-dependent gestures [19, 25, 63] require the user to start and end gestures at specific locations.
Compared to techniques using size-independent gestures, such as Marking menus, this feature

considerably increases the gesture set’s size. However, they are more difficult to perform eyes-free

[36]. This probably explains why recent techniques such as M3 [63] or PageFlip [25] did not focus
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on eyes-free interaction. By guiding users with cheap and simple tactile aids, SCM provides a

compelling means for interacting eyes-free.

3.3 Leveraging Spatial Memory
Spatially consistent interfaces leverage user spatial memory skills to facilitate command learning

[32, 45, 46]. For example, displaying commands in a grid showed benefits for learning [24, 33]. This

approach relies mostly on spatial landmarks on which users can rely [20, 52]. We build on previous

work with SCM by disposing commands inside nine cells on a smartwatch [33] to facilitate user

learning on the long-term.

3.4 Crossing Interfaces
Crossing allows selecting a command by entering its area [1, 3, 43, 47]. This enables selecting several

items in a single gesture, or selecting an item and controlling its parameters as demonstrated by

FlowMenus [23] and Control menus [40]. In the context of eyes-free interaction, these continuous

movements can be guided by providing active feedback, e.g., sounds [18, 37] or vibrations [2, 9, 42].

3.5 Bezels and Tactile Aids
Bezels [27, 29, 43, 49, 57] and other tactile aids provide a way to improve accuracy [55] or to interact

eyes-free [10, 60], e.g., by taking advantage of a watchband [39, 60]. Tactile aids can augment the

back [16] or the front of the device [10, 13, 22] to alleviate the lack of visual information. However,

either these techniques were designed for relatively large surfaces (e.g., a mobile phone [27], tablet

[49], or trackpad [19]) or they only support a limited number of commands [27, 29]. As an exception,

Blasko and Feiner’s technique [10] allows performing a large number of commands on a smartwatch,

but at the price of multi-segmented strokes and multi-level menus and its efficiency has not been

evaluated. While EdgeWrite [55] leverages extruded bezels to support strokes from corners to

corners of a small interactive area, its design does not support large gesture sets. Moreover, it does

not offer as much flexibility for categorizing commands as SCM or MMM and it requires adding

a permanent template on the interactive area to help the finger moving appropriately. As such a

modification might conflict with common interactions, we opted to use MMM as a baseline in the

user study reported below.

3.6 Menu Layout
Compared to most previous techniques, SCM provides much freedom for users and designers for

laying out menus. For instance, conventional Marking menus leverage deep and narrow hierarchies,

which highly impacts the organization of menus and makes it difficult to create groups of commands

and highlight their relations. While SCM might be difficult to navigate at first because of visual

search, it better highlights semantic relations between commands and should leverage spatial

memory on the long-term. These different types of techniques are thus complementary, as one or

the other may be more adapted depending on the context (e.g., the number of commands and their

semantic relations).

4 EFFECTIVENESS OF SCM
To validate the design of SCM, we performed a first experiment evaluating whether users can

perform SCM gestures accurately. We evaluated the usability of the technique in expert mode, i.e.,
eyes-free. This was a mandatory first evaluation as such a technique would be of little interest

without providing an efficient expert mode.
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Fig. 4. (a) The five gesture Types evaluated in the experiment (for a given starting area "S"). (b) Visual stimulus
indicating the gesture to perform to complete a trial.

Participants.We recruited 12 right-handed participants in our local universities (3 women, 9

men), aged from 21 to 38 (mean=27, median=26). Three of them already used a smartwatch, two

on a daily basis.

Apparatus.We used an Android Polar M600 smartwatch with a touch-screen of 23.3×23.3mm

and a resolution of 240×240 pixels (Figure 3a). The size of the bezels was 6.5mm, except for the

top bezel (15.5mm). We connected the smartwatch through WiFi to a node.js [51] server running

on a 15” Macbook. We used an Android program running on the smartwatch to capture SCM

gestures. This program was interacting remotely with the server for storing data and controlling

the experiment.

Context. The participants wore the smartwatch on their left wrist and interacted with their

right index finger. They sat at a desk in front of the laptop displaying the visual stimuli. We used

an external display for showing the stimuli, because SCM is designed to mainly control ”external”

environments. To ensure the smartwatch was out of their sight, they had to lay their wrist on their

knee below the desk. We made sure they felt comfortable before starting the experiment.

Experimental Design.We distinguish five representative gesture Types that one can perform

with SCM (Figure 4a). Straight gestures that consist in straight strokes, Opposite gestures that
consist in entering the ending cell from the side opposite of the starting cell, and Indirect gestures
that includes all others. Since the distance between cells for Straight and Indirect gestures can vary,

we differentiate Short and Long movements (Figure 4a).

We chose six starting cells (StartCell), i.e., menu cells, three starting from a corner (top-left,

top-right, bottom-right) and three starting from the middle of a side (middle-left, bottom-middle,

middle-right), and randomly picked five gestures for each of them (one for each Type) to compose a

representative set of gestures as in [31, 61, 63]. We hence obtained a total of 30 (Type × StartCell)

representative gestures of the 172 possible SCM gestures.

The participant started a trial by touching the touchscreen of the smartwatch. A "Start" and "End"

labels were then displayed to indicate the starting and ending cells of the gesture to perform, and

the ending cell comprised an arrowhead indicating how to enter it (Figure 4b). No other information

was provided to the participants (e.g., the movement to perform). Moreover, no visual feedback was

displayed on the screen, and the participants could not see the smartwatch screen, as explained

above. A trial ended once the participant completed a gesture (i.e., finger released outside the

starting cell of the movement).

Our purpose in this experiment was to evaluate the user’s ability to perform SCM gestures. We

thus instructed the participants to be as accurate as possible to avoid a confounding factor between

accuracy and speed. To ensure that participants would follow this instruction, they had to wait after

completing a trial for two seconds if they completed a trial correctly, and for six seconds otherwise.

At the end of each trial, they were notified whether they performed the gesture successfully or not,

and we depicted the actual trace of their movement for two seconds.
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Fig. 5. Results of the first experiment with 95% CIs. Success rates (a) for all gestures, (b) depending on the
type of gestures (Straight-Short (SS), Straight-Long (SL), Opposite (O), Indirect-Short (IS), Indirect-Long (IL)),
over the blocks. (c) Results of the questionnaire’s Likert-scales.

The experiment consisted of six blocks and for each block the participants had to perform the 30

gestures described above (random order). The first block (B0) was a training block. We recorded

data over 5 blocks (BlockNbr, B1 to B5), for a total of 5×30×12=1800 gestures. On completing

all the blocks, the participants filled a questionnaire consisting of Likert-scales ranging from

1 (very negative) to 7 (very positive) about: the physical and mental demand required to perform

gestures, whether tactile aids helped them, whether visual representation of the gestures was easy to
understand, their evaluation of their accuracy in the last block, and of their improvement throughout
the whole experiment.

In summary, we used a within-subject design with 3 factors: Type, StartCell, and BlockNbr. The

experiment lasted approximately 30 minutes.

4.1 Results
The main result of the experiment is that participants performed SCM gestures accurately from

the beginning of the experiment (B1: 89.2%), and that their performance improved until the end

(B5: 95.0%), see Figure 5a. We analyzed our data using three-way ANOVA’s for the model Type

× StartCell × BlockNbr, and post-hoc paired Student t-tests (Holm-Bonferonni corrected) and

report Cohen’s d effect sizes. We further report empirical results on the participants’ success rate,
trial completion time, and gesture execution time, i.e., the time spent on the interactive surface to

perform the gesture (Shapiro-Wilk tests of normality show no evidence of non-normality for the

above measures). We also discuss the results from the questionnaires filled by the participants.

Success rate. The participants performed the gestures accurately from the first block (89.2%)

and they improved their performance until the last block (95%) (Figure 5a). This is confirmed by an

effect of BlockNbr (F4,44=4.28, p=0.005).

We found an effect of Type (F4,44 =4.29, p =0.005) on the success rate, but no interaction with

BlockNbr (F16,176=0.53, p=0.929, see Figure 5b). Post-hoc t-tests show a worse overall success rate

for Straight-Long against Indirect-Long (p<0.001, d=1.16, 88.3% vs. 94.7%), and for Opposite against
Straight-Short (p=0.036, d=0.50, 89.7% vs. 93.6%). Note, however, that post-hoc t-tests do not show

significant differences for the last block.

We also found an effect of StartCell on the success rate (F5,55 =8.42, p < 0.001), showing that

participants performed worse by starting from the middle-left cell than any other (p’s <0.05). We

found no interaction of StartCell with BlockNbr (F20,220=1.34, p=0.157), but an interaction with

Type on success rate (F20,220=3.20, p<0.001). Post-hoc t-tests suggest that the worse performance

of the the middle-left cell is mainly caused by Straight-Long and Opposite gestures. Note also that

participants have been, overall, significantly more accurate for gesture starting from a corner, than

from the middle of a side (p=0.023, d=0.72, 94.1% vs. 89.5%). However, again, these effects disappear

for the last block.
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Trial Completion and Gesture Execution Times. We found an effect of the block number

on the trial completion time (F4,44 =5.52, p < 0.001). Indeed, the participants improved from 4.7s

in the first block to 3.55s in the last block, showing an important effect of training. The average

gesture execution time (time spent on the interactive surface) was 1.54s, and we found no effect of

the block number (F4,44=0.95, p=0.45). Note that the difference between the trial completion time

and the gesture time comprises the time spent to react to the stimuli plus the time spent on the

bezel of the device.

Without surprise we found an effect of the gesture Type on both times, shorter gestures being

faster than long gestures, and Opposite gestures being the slowest gestures. As for the success rate,

the participants performed better when the gestures started from a corner (p=0.010, d=0.52, 3.72s

vs. 4.38s), but this was not the case for the gesture execution time.

Questionnaire. We depict the results of the questionnaire in Figure 5c. The partici-

pants found the tactile aids very useful to perform gestures accurately. They reported to

use them to guide their movements by sliding on the edges, thus rely on them to initi-

ate a gesture. Interestingly, while participants were positive about their perceived perfor-

mance in the last block, they did not perceive a great improvement throughout the exper-

iment albeit they did improve. This hints that one can easily master SCM gestures. Fur-

thermore, the participants did not seem to have difficulties understanding the SCM concept.

Fig. 6. Each colored line depicts the
movement of one user during the
last block of the experiment for the
gesture depicted in Figure 4b.

Finally, participants mentioned a small level of physical de-
mand but a relatively high level of mental demand, which is

not surprising as the technique relies on a different approach

than conventional techniques.

Participant Movements. Figure 6 depicts the movement

traces of all participants in the last block for the gesture

depicted in Figure 4b. We can see that most of them chose

to move across the sensitive surface horizontally (crossing

its central cell), but three participants preferred to cross the

ending cell before entering it from the proper side, and one

participant preferred to perform a long movement, using the

four edges as tactile aids. This demonstrates that participants

use genuinely different strategies to perform the same ges-

tures, even though no instruction was given in this regard.

5 LEARNABILITY OF SCM ANDMARKING GESTURES
This section presents a second experiment aimed at assessing the learnability of SCM gestures.

To better understand the capabilities of SCM, we chose to compare it to Multi-stroke Marking

Menus (MMM) [62], one of the rare gestural techniques that also enable large gesture sets for

eyes-free interaction on small surfaces. As mentioned above, these techniques rely on different

hierarchical structures that likely leverage different memorization types (e.g., spatial memory,

shape memory). By comparing them, we aim at understanding how easily can users learn both

hierarchical structures and whether SCM provides an interesting alternative to the conventional

MMM.

Moreover, this experiment investigates whether users can use the SCM novice mode, and it

provides data on the transition from novice to expert users while using SCM. Besides, it provides

empirical data on the learning of marking gestures, which remain mostly evaluated on their

mechanical benefits, but rarely on their learning benefits [6, 20].
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Participants. We recruited 12 new participants including two left-handed in our local universi-

ties (7 women, 5 men), aged from 23 to 32 (mean=27.8, median=28). Five of them already used a

smartwatch, one on a daily basis.

Apparatus and Context. We used the same setup as in the first experiment, but this time

recorded the participants’ movements on the bezels using a camera. To do so while keeping the

smartwatch out of the participants’ sight, we set up a cardboard screen behind which participants

could lay their hands to interact.

Task and Stimulus. The participants had to select commands in a menu hierarchy. Commands

were textual items (e.g., "monkey"), and the visual stimuli were the names of the commands to

select. We displayed the stimulus on the laptop screen as soon as a trial started (i.e., when the user

touched the screen of the smartwatch). On completing a trial, we informed participants of their

success or failure by providing the actual name of the command they selected in a respectively

blue or red square.

Interaction design. We implemented MMM as described in [62]. On selecting a submenu, the

items it comprises are revealed with an offset, and the items of the previous level fade out during

one second. To return to a previous level in case of a wrong selection, if the user initiated a stroke,

she can slide back to the starting position; otherwise, she can perform a quick tap. Lastly, if the user

does not interact for more than 2s, all selections are canceled and the novice mode is deactivated.

Learning (8 trials)

Training (12 trials)

Recall (8 trials)Technique A Technique B

Fig. 7. Experimental design that consists of one training, six learning, and four recall blocks for each technique.

Experimental Design.We follow a within-subject design with primary factor tech, half of the

participants starting with MMM and the other half with SCM. For each technique, the experiment

consisted of learning and recall blocks (Figure 7). The participants always started a trial in the

expert mode (i.e., commands are hidden and no visual feedback). During learning blocks, however,

they could trigger the novice mode with a long press of 300ms to reveal the commands and display

their movement trace on the laptop screen (Figure 8). Before starting the series of learning and

recall blocks, the participants had to complete a training block of twelve trials. We used abstract

command names for this specific block (e.g., "c7_10" for the tenth command of menu 7) to avoid

possible learning effects.

Fig. 8. Novice modes of the SCM (left) and MMM (right) techniques used in the experiment. The orange line
depicts the user movement trace; a straight line joining the starting and ending point of the movement in the
case of MMM.
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Command sets: We built two sets of commands consisting of eight menus each. Both sets con-

sisted of four menus containing commands to select and four menus serving as distractors. We

counterbalanced these sets between participants for each technique. We filled each of these eight

menus with twenty commands; they comprised four submenus comprising four commands (16),

and four independent commands. The submenus contained unrelated items, e.g., the menu Animals
contained four submenus named fishes, birds, reptiles, and mammals.

Menu Hierarchies: The MMM hierarchy consisted of 8 menus at the first level; 4 submenus (placed

on the off-axes) and 4 independent commands at the second level; and 4 commands per submenu at

the third level. We chose this way of organizing commands because the two techniques can support

almost the same amount of commands (172 for SCM and 160 for MMM), and this organization

provides a neat hierarchy for MMM that would be disadvantaged otherwise. The SCM hierarchy

consisted of submenus next to spatial landmarks like the corners or the center of the surface to help

categorizing them spatially. We placed the independent commands on the remaining free slots.

Set of Targets: We asked the participants to learn two commands per menu (overall eight com-

mands per technique). We chose the commands by considering their "distance" from the menu

root, either close or far (factor distance). This "distance" is either related to the cells (for SCM,

we use the same criterion as in the first experiment), or to the menu depth (for MMM). For SCM,

close commands correspond to straight- or indirect-close gestures, and far commands to indirect-far
gestures. For MMM, close commands correspond to second-level selections, and far commands to

third-level selections. We placed the commands randomly and chose the positions of the target

commands randomly.

In summary, we used a within-subject design with 3 factors: tech, BlockNbr (recall or learning

blocks), and distance. On completing the experiment, we asked the participants to fill the same

questionnaire as in the first experiment.

5.1 Results
We report in the following on the success rate, recall rate, learning curves, trial completion time,
bezel interaction time (time spent on the bezels for SCM), and gesture execution time (time spent on

the interactive surface). We use three-way ANOVA’s with the model tech × BlockNbr × distance

(the data does not exhibit a strong departure from normality). We also discuss the results from the

questionnaires filled by the participants.

The primary outcome of this experiment is that we did not find significant differences between

the two techniques (neither significant tech × distance or tech × BlockNbr interactions) for the

success rate, recall rate, or task completion time.

Success and Recall Rate. The only difference between the success and recall rates is that the
latter includes the gestures that the participant remembered properly but performed inaccurately.

To assess the recall rate, we asked the participants, on trial failures, what movement they intended

to perform.

Figure 9a shows the evolution of the success rate for each technique. As stated above we found no

significant effect of tech on the success rate (F1,11=0.002, p=0.934) and the recall rate (F1,11=0.04,

p=0.834), and no significant interactions tech × BlockNbr (F3,33=0.69, p=0.564 and F3,33=1.26,

p=0.304) and tech × distance (F1,11=1.84, p=0.203 and F1,11=0.71, p=0.417).

As expected, we have a significant effect of BlockNbr on both success rate (F3,33=22.9, p<0.001,

Figure 9a) and recall rate (F3,33=41.2, p<0.001). Indeed, the success rate increased between recall

blocks, from 52.1% for the first recall block to 79.2% for the last and the recall rate from 57.8% for

the first block to 85.4% for the last.

We also have a significant effect of distance on both success rate (F1,11=17.85, p <0.001) and

recall rate (F1,11 = 12.91, p = 0.004). The participants selected Close commands more successfully
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Fig. 9. Main results of the second experiment with 95% bootstrap CIs. (a) Success rate of trials during recall
blocks. Evolution of the (b) trial completion time and (c) total execution time (time spent on the interactive
surface, and the bezels using SCM) throughout the experiment (in seconds).

(76.7% vs. 61.1%) and recalled them more efficiently (81.8% vs. 67.7%) than Far commands. Thus,

deeper or farther commands seem more difficult to learn using both techniques.

Learning Curves. To evaluate the evolution of the user expertise, we consider the rate of trials

completed in expert mode during the learning blocks. With this approach, we can observe that the

participants relied less and less on the novice mode throughout the experiment to reach 22.9% in

the sixth learning block (F5,55=4.9, p<0.001), and that the participants seemed to rely less on the

novice mode using SCM than MMM (overall 5.3% vs. 9.2%, F1,11=4.32, p=0.06).

Bezel Interaction Time. Using video analyses, we assessed how long participants touched the

tactile cues on the bezel of the device while using SCM. The participants relied less on these passive

tactile cues during the learning blocks than the recall blocks (p<0.001, 0.67 vs. 1.35s), presumably

because they could see the trace of the movement in the novice mode. For the recall phases, we
found no significant effect of BlockNbr or distance on the bezel interaction time (p’s >0.183).

Gesture and Execution Time. We found no significant effect of the techniques on the gesture

execution time (4.94 vs. 4.68s on average for all blocks, F1,11=0.80, p=0.39). However, when taking

into account both bezel interaction and gesture execution time, the total execution time is slightly
longer for SCM (F1,11=25.40, p<0.001, Figure 9c, no interaction with BlockNbr or distance).

Trial Total Completion Time. We found no significant effect of the techniques on the trial
total completion time: an ANOVA revealed no effect of tech (F1,11=1.31, p=0.276, Figure 9b), nor

an interaction with BlockNbr and distance. We explain this result by the fact that the participants

recalled gestures faster using SCM [45], although they needed some extra time to place their finger

correctly on the bezel for initiating a gesture.

Unsurprisingly, the participants selected commands faster throughout the experiment, and faster

with Close commands, so that there is an effect of BlockNbr (F9,99=35.3, p<0.001, Figure 9b) and

of distance (F1,11=48.6, p<0.001).

Questionnaire. The analysis of the various seven-level Likert-scales did not yield significant

differences between the techniques. We use Wilcoxon’s paired t-tests in the following and report

the means of the Likert-items (1 is worst, 7 is best): physical demand (p=0.26, mean=5.13), mental
demand (p=0.44, 4.17), improvement (p=0.38, 4.87). Again, the participants found that vibrations

and tactile cues were very helpful when interacting with SCM (respective means 6.25 and 5.25).

6 DISCUSSION
Our study results suggest that one can efficiently select multiple commands using SCM, although

it supports an unusually large set of gestures. One of our concerns was that SCM could be more

difficult to master than techniques that rely on very simple gestures, such as Marking menus.

Nevertheless, the second experiment did not yield significant differences when comparing both

techniques. The experiments also showed that users can quickly master SCM gestures, perform
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these gestures eyes-free (first experiment), and learn them efficiently (second experiment). In the

following, we first discuss the effectiveness of SCM and then its learnability and efficiency in

compared to MMM. We finally present design guidelines for implementing SCM gestures.

6.1 SCM effectiveness
The results of the first experiment show that users could perform all types of SCM gestures

accurately eyes-free. We observed a success rate of 95% after 20 min of practice, and since the

beginning, the level of accuracy was rather high for a gestural technique (89.2%). This suggests

that the technique is not hard to master, at least in a lab context, considering that participants

experienced the technique for the first time and that 75% of them never used a touch-sensitive

smartwatch in the past. Moreover, we observed only small differences between the various types

of SCM gestures. As these types represent SCM gestures, this also suggests that we would likely

observe similar results for all the others.

We observed rather long SCM’s trial completion times in the last blocks of both experiments

(3.55s in the first, 5.69s in the second). These times include the reaction time (i.e., recall time too),

bezel interaction time, and the time to perform the gesture on the touchscreen. Two main factors

can explain these extended times: we focused our evaluation on the user accuracy hence did not

constrain the trial time, and we tested the techniques in the most challenging case, i.e., by saturating

the gesture set and their visual output. This exacerbated disadvantages of the two techniques: the

visual search required by SCM, and the lack of a pre-visualization feature in the MMM design [5].

We hypothesize more experienced users would produce shorter completion times with smaller

gesture sets.

In both experiments, the participants leveraged the path flexibility of the SCM design to perform

SCM gestures using various paths (Figure 6). Some of them remarked they preferred to rely on the

edges while others were more confident using vibrations. This ability to choose a specific path

is likely to reduce selection errors because users can choose a "safer" path if they are not fully

confident when interacting eyes-free [11].

6.2 Learnability and Efficiency
The results of our second experiment demonstrate that the participants learned the SCM and MMM

gestures efficiently. Although SCM gestures may seem more complicated than marking gestures,

our results do not provide evidence in this regard. This is promising as it indicates that SCM is a

compelling alternative to MMM. Furthermore, these two techniques are complementary as SCM

offers broad and shallow menus, which provides more freedom to designers for organizing menu

items, whereas MMM are better adapted for creating numerous menus containing a small number

of items (hardly more than 8 [31], and even less on the borders (5) and corners (3) of the screen).

SCM provides an advantage in this regard, as many applications comprise menus with a relatively

large number of items [5].

Moreover, SCM enables creating meaningful spatial layouts (e.g., placing related commands in

the same corner), thus creating subgroups in the same menu. These subgroups are immediately

visible and do not require opening submenus to visualize their elements, which contrasts with

techniques that only support small menus, such as MMM. This was, for example, pointed out by a

participant in the second experiment: "[SCM is] easier to visualize" (P10). Furthermore, this feature

likely leverages spatial memory skills of the users on the long-term [33, 45, 46].

In addition, SCM provides the opportunity to drawing symbolic or metaphorical gestures [28]
that might take longer to perform but are likely easier to memorize than conventional directional

marks. Although we did not evaluate this opportunity, this feature of SCM is worth mentioning

as users do not necessarily favor speed. For instance, when selecting infrequent commands that
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are difficult to undo (e.g., turning on a device), the ability to recall the correct gesture is more

important than its duration. Similarly, performing a slower but more reliable gesture is likely more

appropriate when selecting critical commands (e.g., quitting an application).

Enhancing user freedom also enables users to change their behavior based on their expertise.

While novice users may favor accuracy, expert users may favor speed and thus change the way

they perform the gestures. The user behavior may also depend on their understanding of the SCM

design, their physical abilities, their level of experience, or the effect of the command (e.g., slower

gestures for critical commands that should not be executed by mistake).

At last, we did not observe differences in the trial completion time between the techniques. While

using passive tactile cues on the bezels helps improving accuracy, this does not seem to hinder the

command selection process. As suggested by prior work (and observed in our pilot studies), using

the technique eyes-free without assistance can be challenging. These results suggest that using

cheap and simple tactile cues provides a simple means to ensure accurate eyes-free selection [19].

6.3 SCM Design guidelines
Based on the study results and our observations of the participants’ behaviors, we propose several

guidelines for designing SCM gestures. These guidelines mostly concern the types of SCM gestures

that one should favor when mapping the most frequent actions.

(1) Place important menus in the corner cells as they are easier to locate and, thus, provide faster
and more accurate interaction.We observed in both experiments that the participants selected

commands significantly faster (first experiment 3.72s vs. 4.39s, second experiment 7.31 vs.

9.10s) and significantly more accurately (94.1% vs. 89.5%, 89.8% vs. 80.4%) when starting

gestures from the corners.

(2) Leverage straight gestures for frequent actions as they are faster to perform than other SCM
gestures.We observed in both experiments that straight gestures are significantly faster to

perform (first experiment 3.31s vs 4.54s, second 5.64s vs. 8.91s) than other SCM gestures.

(3) Provide to users examples of various paths for performing unique SCM gestures to stimulate
their creativity. We observed in our experiments that some users adapted their strategies

based on their expertise, while others did not. It is unclear whether they did this on purpose,

i.e., if they realized they could use other strategies. To ensure that users grasp the freedom

provided by SCM, we recommend making this explicit as soon as possible, for instance, by

demonstrating how one can perform the same gesture using different paths when users

experience the technique for the first time.

6.4 Limitations
Interaction Contexts. Although SCM is a gestural interaction technique designed for small mobile

devices, we did not study its efficiency in challenging contexts like walking outside or running.

The experiment results, however, are still valuable as we envision users using SCM while being

seated on a couch in front of a TV, standing in front of a wall display, or standing still to interact

with an AR setup. While further research is needed to address the efficiency of SCM and MMM in

challenging scenarios, previous work showed the advantage of using tactile aids and bezel gestures

in such scenarios [11, 49] suggesting the SCM design is adequate for these scenarios.

MenuHierarchies. The second experiment required amenu hierarchy that would not disadvantage

MMM. For this purpose we chose a simple and coherent hierarchy, with similar features as SCM and

conventional spring menus [7]: The first level consisted of menu roots, the second of commands

or sub-menus, and the third only contained commands. Although we cannot say this hierarchy is

optimal, it seemed to be the fairest in comparison with SCM.
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(a) (b)

Fig. 10. SCM adapts to various device shapes. (a) Examples of small round touch-sensitive surfaces integrated
in a smartwatch and a VR controller (highlighted in orange). (b) Examples of SCM layouts using hexagonal
cells better suited for round surfaces.

7 EXTENSIONS OF SCM
Alternate Shapes and Devices. Not all devices have a rectangular shape. For examples, some

smartwatches or devices for interacting with AR and VR systems have round surfaces (Figure 10a).

In such cases, rectangular cells do not fit the form factor of the device [50]. SCM does not rely

solely on rectangular cells and adapts to circular devices as illustrated in Figure 10b. One could for

instance use polygonal cells to provide more sides, and therefore more commands per cell, which

allows reducing the number of cells without impeding the input capabilities.
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Fig. 11. Menu layout designed for larger surfaces.
This layout uses a 4×4 grid and various cell sizes
(the four middle cells are merge to produce one
larger cell) to emphasize frequent commands.

Scaling to larger surfaces. Despite we pre-
sented SCM as a solution to enable large gesture

sets on small surfaces, it also adapts to larger
surfaces (e.g., tablets and smartphones). For in-

stance, extending M3 [63] and Bezel-Tap [49],

one could dedicate a small area of the screen,

typically close to the user’s hand, to enable

quick shortcuts using the thumb. In such a case,

using a sensitive bezel would provide both pas-

sive feedback to guide the user and an activa-

tion mechanism to avoid conflicting with com-

mon interactions.

Another option consists in using a grid of

4×4 cells in order to provide more menus and

more commands per menu. Larger surfaces also

enable using cells of various sizes (Figure 11).

Using this feature, one could emphasize the

most important commands of a menu. Furthermore, the cell sizes can adapt dynamically to user

actions (e.g., opening a menu) to change the layout of the grid while preserving spatial landmarks.

Continuous control. Using the same principle than FlowMenu [23] or Control Menus [40],

SCM could enable continuous control by relying on a simple dwell mechanism. By dwelling on a

cell (e.g., as proposed in M3 menus [63]), users can select a specific command and continue their

movement to control the value of a variable without lifting the finger from the surface. This feature,

which leverages the fact that SCM relies on position-dependent gestures, would not be compatible

with size-independent marking gestures.
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8 CONCLUSION
We presented Side-Crossing Menus, a new gestural interaction technique enhancing small surfaces’

input capabilities with large gesture sets. One can use SCM eyes-free by using passive (stickers)

and active (vibrations) tactile aids. SCM provides a solution for interacting with various types of

devices in various contexts. It also enhances user freedom by allowing them to use various paths to

perform a given gesture.

We presented a user study evaluating the efficiency of the SCM concept. A first experiment

focused on the effectiveness of SCM showed that novice users found the gestures intuitive and

quickly reached a high level of accuracy. A second experiment focusing on gesture learning

showed no significant difference when comparing SCM to Multi-stroke Marking Menus (MMM),

an established baseline. The results of these two experiments suggest that SCM is adequate for

performing large sets of gestures on small surfaces and that it is complementary to Multi-stroke

Marking menus and adapts to more diverse scenarios.

Future work should focus on evaluating SCM in the context of circular and large surfaces to assess

whether our results can be generalized to these surfaces. Also, our study focused on interacting

with the index finger, whereas VR controllers might rather use the thumb as a primary interacting

finger (see Figure 10). Thus, further studies are required using the thumb. At last, to ensure SCM

fits perfectly mobile contexts prone to jitters (e.g., when walking or running), further analyses are

needed within these challenging contexts.
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