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We report a line-scanning imaging modality of Com-
pressive Raman technology with a single-pixel detector.
The spatial information along the illumination line is
encoded onto one axis of a digital micromirror device,
while spectral coding masks are applied along the or-
thogonal direction. We demonstrate imaging and clas-
sification of three different chemical species. © 2020

Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

Spontaneous Raman spectroscopy permits characterization
of molecular species with high specificity in a label-free manner.
Typically, the Raman inelastically scattered light is spectrally dis-
persed and collected onto an array detector - for several positions
of the sample - resulting in a Raman hyperspectral image. This
measurement of a complete vibrational Raman spectrum per spa-
tial pixel, coupled with the weak Raman scattering cross-section
and detector array noise, requires lengthy acquisition times and
generates large data sets. In situations where hyperspectral mea-
surements simply aim to map the spatial distribution of known
molecules, such an acquisition process is highly inefficient. In-
stead of unmixing the spectral data in a post-processing step to
detect molecular species and/or estimate their concentrations
[1, 2], higher acquisition efficiencies can be achieved by encom-
passing compressive techniques in the acquisition process. In
Compressive Raman Technology (CRT), the measurement is di-
rectly designed to estimate quantities of interest (e.g., molecular
concentrations), rather than deducing them from complete hy-
perspectral measurements [3–9]. This is achieved by replacing
the array detector by a single-pixel detector combined with a
fast programmable optical filter, typically a digital micromirror
device (DMD). Based on the a priori knownledge of the Raman
spectra of the pure molecular species contained in the sample,
these filters select accurately chosen spectral components and
combine them into the detector (Fig. 2). Such CRT developments
have led to spontaneous Raman imaging with pixel dwell times
down to 30 µs [3, 10], which is orders of magnitude faster than
state-of-the-art Raman hyperspectral imaging [7].
To further improve CRT, we recently demonstrated a CRT line-

scan strategy based on spatial frequency-modulated illumina-
tion imaging [11], referred to as CRiSPY [12]. As opposed to
recent spatial encoding approaches [13–15], CRiSPY does not
use an spatially-resolved detector but combines both spatial and
spectral information into a single-pixel detector. It encodes the
1D spatial information into temporal frequencies, by modulating
modulates the illumination line with chirped cosines imprinted
on a rotating disk [11, 12]. In the present Letter, we explore an al-
ternative line-scan CRT strategy that does not require an external
modulator, but instead makes use of the bi-dimensionality of the
DMD exploits - for the first time in CRT - the bi-dimentionality
of the DMD (Fig. 2): (i) The Raman spectral information is dis-
persed across the λ−axis, and the DMD encodes this information
with dedicated spectral filters; (ii) The spatial information along
the line-focus is encoded onto the DMD x−axis, with Hadamard
matrices shifted to contain only positive values. We demonstrate
line-scan CRT with proof-of-concept experiments for chemically
specific classification of molecular species, and give evidence
that this approach is beneficial over point-scanning CRT in a
number of cases.

In line-scan CRT, both spatial (along the line-focus) and spectral
information is encoded in the signal measured onto the single-
pixel detector. The aim is to estimate the relative abundances
(proportions) of a set of Q molecular species (with known Raman
spectra) in each of the N resolved points along the illumination
line (Fig. 1). We denote P as the number of DMD patterns along
the x−axis (p = 1...P), Q as the number of pure chemical species
present in the sample (q = 1...Q), M as the number of spectral
filters (m = 1...M) and L as the number of resolved energy bins
along a Raman spectrum (l = 1...L). The N × Q matrix C is
the quantity to estimate, i.e., the spatial distribution of the pure
chemical species proportions. Each element of C, cq(xn), speci-
fies the proportions of the qth pure chemical species contained in
the resolved point xn of the illumination line. The P× N matrix
A contains the P patterns displayed along the DMD x−axis. The
L×M matrix F contains the M spectral filters fm. The Q× L ma-
trix S contains the known Raman spectra of the pure chemical
species. The measurements matrix, H, contains the number of
counts measured when displaying binary masks onto the DMD.
Each mask is formed by the Kronecker product of a row of A and
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a column of F (Fig. 2). Each column of H is recorded by keeping
the spectral filter fixed, and scanning through the rows of A
to obtain a complete set of spatial projections. Assuming the
generated signal is linear to the excitation intensity and ignoring
constant terms, the measurement process can be expressed as:

H = ACSF = ACGT (1)

where GT = SF.

Spatial patterns Spectral filtersProportionsMeasurements Pure spectra

H A C S F

Fig. 1. Visual representation of Eq. 1, with Q = M = 2.

Although the spatial and spectral dimensions could be con-
sidered conjointly, we handle them distinctly in this Letter. In
the spectral domain, the filters fm are calculated from the pure
Raman spectra sq with the same optimisation procedure as in
[6]. In the spatial domain, we choose the matrix A to be a modi-
fied Hadamard matrix with positive coefficients (S-matrix). The
S-matrix of size N is obtained by removing the first row and
column of a Hadamard matrix of size N + 1, and changing the
ones to zeros and minus ones to ones [16]. It is square (P = N),
invertible, and its binary nature complies with the DMD design
and its use at fast frame rates. For each line, we perform the
estimation in two steps. First, we estimate a spatial line image
of Raman intensities, for each spectral filter. In other words,
we seek to estimate the global matrix CGT , which elements
ηm(xn) represent the Raman intensity in each pixel xn, for the
spectral filter fm. Since our measurements are shot-noise limited
[7] and that ηm(xn) ≥ 0, we perform this estimation using the
classical EM algorithm (Richardson-Lucy), which seeks to maxi-
mize the Poisson likelihood under positivity constraints [17–19].
By reducing the estimation variance on the object pixels where
the positivity constraint applies For relatively sparse objects, its
gives better performances in terms of mean-square error as com-
pared to least-square estimation (data not shown), for relatively
sparse objects [20–22]. We will report more precisely on this
effect in a forthcoming publication. The resulting estimate is
denoted η̂m(xn). After a transpose operation, the estimation of
the species proportions reduces to a 1D CRT problem [6]:

η̂T(xn) = GcT(xn) (2)

with η̂(xn) = (η̂1(xn), ..., η̂M(xn)) and c(xn) =
(c1(xn), ..., cQ(xn)). If GTG is not singular, the propor-
tions along each line are finally estimated via least-square
estimation [6]:

ĉT(xn) =
[
GᵀG

]−1Gᵀη̂T(xn) (3)

The 2D image is built after performing these two estimation
steps for each line of the sample.

A simplified schematic of the experimental setup is depicted
in Fig. 2. On the illumination side, a continuous wave laser
operating at 532 nm (Verdi, Coherent Inc) is spectrally filtered
and expanded. The beam is brought to a line focus onto the sam-
ple plane with a combination of cylindrical lens, plano-convex
lens and microscope objective (Nikon 20x, 0.5 NA). On the de-
tection side, the scattered light from the object is relayed onto
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Fig. 2. (a) Schematic of the experimental setup. L1 − L6 -
convex lenses with focal lengths 50 mm, 150 mm, 150 mm,
150 mm, 100 mm, 150 mm and 50 mm, respectively. L7 - com-
bination of 2 lenses that image the DMD into the PMT with
× 3 de-magnification. Lcyl - cylindrical lens with focal length
150 mm, D - dichroic mirror, S - confocal slit, G - amplitude
grating, PMT - photomultiplier tube. (b) The spectral axis
gives access to the Raman spectrum, and allows to project op-
timized spectral filters. (c) The spatial axis gives access to the
spatial information along the line focus.

a confocal slit. A combination of dichroic mirror and notch
filter ensures only the Raman signal is retained. Next, it is dis-
persed with a blazed grating (600 mm−1, Thorlabs), and the
spatially dispersed wavelength components are imaged onto the
DMD (V-7001, Vialux -1024× 768 mirrors). The DMD λ−axis,
in conjunction with the grating, acts as a programmable spectral
filter. Since the line focus is imaged onto the DMD (≈ 22.5 de-
magnification), its x−axis offers control over the corresponding
spatial dimension of the object [Inset Fig. 2]. When the DMD pix-
els are in the ’ON’ state, the signal impinging on these pixels is
deflected into a photon-counting PMT (H7421-40, Hamamatsu),
while the rest is sent into a beam dump. A piezoelectric stage
scanner (P517, Physik Instrumente GmBH) holding the sample
is used to scan the y− axis, yielding 2D images.
In this configuration, the spatial resolution along x− is limited
by the imaging system and the size of one DMD mirror. In
the experiments, the DMD mirrors are binned 2-by-2 along
x−, resulting in an equivalent spatial resolution of about 1.2
µm. The line length on the illumination plane, together with
cropping from diverse optical elements, limits the field-of-view
along x− to about 220 µm. On the DMD plane, the spatial extent
of the line image only represents 1/3 of the entire DMD size,
but the S-patterns are displayed over the full DMD x−range
(P = 511). In the y− direction, the spatial resolution is about
1.5 µm (extent of the line focus on the sample). The spectral
resolution is estimated to 40 cm−1, limited by the grating and
the imaging system. This allows to bin the DMD mirrors 8-by-8
along λ−. Spatial calibration was performed by scanning a
bead of known size and matching its profile onto the DMD. The
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effective FOV was estimated by recording the Raman signal
from a spatially homogeneous sample (microscope glass slide)
and scanning it along the DMD x− axis.

The first experiment consisted in acquiring Raman line im-
ages with no spectral selectivity ( flm = 1∀l, m) of two mixtures
of beads (Sigma Aldrich). 30 µm polystyrene beads (PS), 20 µm
polymethylmethacrylate (PMMA) and 12 µm melamin resin
(MR) were dispersed in two different manners Fig. 3(b): (A) in
a sparse way, onto a CaF2 coverslip; (B) in a dense way, onto a
glass coverslip. The total laser power on the illuminated line was
set to 3.6 mW (1.1 × 10−5 W/µm2), so that the total count rate
lies in the linearity regime of the detector (1.5× 106 Hz). Fig. 3(a)
shows the signal obtained upon the projection of each S-pattern
for 10 ms, averaged over 50 measurements, and Fig. 3(b) the
associated estimated Raman line images. The signal along the
lines of sample B is higher due to the presence of more chemical
species along x− [Fig. 3(a, c)]. No further post-processing was
performed, except from the removal of some systematic periodic
artefacts on the estimated images, arising from yet unindentified
technical issues.

(a) Raw signal (b) Estimation

4
(c)

(d)

Fig. 3. (a) Signal after projection of S-patterns along each line
x−, for sample A and B. (b) Estimated images obtained with
the EM algorithm. (c-d) Cross-sections along the dotted lines
of (a, b). Results are averaged over 50 measures, and cropped
to show only the FOV. Scale bar = 30µm. x−: Line-scan axis,
y−: Piezo-scan axis. Colorbars units: counts.

Next, we performed CRT experiments to obtain Raman images
with chemical selectivity. The reference spectra were measured
with using the DMD x−axis as a virtual pinhole [12] [Fig. 2],
and the spectral filters fm optimised as in [6, 7] - see Fig. 4(a).
The resulting spectra and filters for sample A (Q = M = 4) are
shown in. In CRT experiments, the total laser power along the
line was chosen higher (10.6 mW - 3.3 × 10−5 W/µm2) than
for pure Raman line imaging described above, because of the
lower signal due to the spectral filtering. The 4 line-images,
corresponding to each spectral filter, are estimated, followed
by the proportion estimation in each pixel along the line via Eq.
3. The resulting proportion maps for sample A, thresholded
to [0 1], are shown in Fig. 4(b). The composite RGB maps are
obtained by combining the normalised proportion maps of the
three beads types. The results are shown for integration times
of 10 ms and 1 ms per projected S-pattern, with no averaging.
As a comparison, the same experiment was performed with

raster-scanning the DMD pixels along x− [Fig 2(c-left)], with
same irradiance and integration times. This is formally equiva-
lent to scanning the sample plane with a point-focus. Visually,
the line-scan measurements seem superior to the raster-scan
measurements, but this disparity is more striking for the sparse
sample A than for sample B. The difference in image quality is
quantitatively confirmed by the SNR values on the central pixels
of a PS bead (Fig. 4 (e-g)), defined as SNRPS = 〈ĉ(xPS)〉/σPS,
where 〈ĉ(xPS)〉 and σPS are the mean and standard deviation of
the estimated proportions, respectively. On the PS pixels, the
SNR improvement over raster-scanning is about 3 for object A,
and 1.5 for object B.

Fig. 4. (a) Reference spectra and associated spectral filters, for
sample A. (b) Estimated proportion maps with line-scan. (c-f)
Visualization of proportion maps of PS (red), PMMA (green)
and MR (blue), for line-scanning and raster-scanning.
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To better assess the efficiency of the presented line-scanning
technique over point-scanning, we compare the estimation
variances of the corresponding Raman line images, with no
spectral selectivity (Fig. 5). For sample A, the variance on
the object is lower for line-scanning than for raster-scanning.
For example, on the PS bead along central line of the sample,
the variance σ2 is about 3 times lower, leading to a SNR
improvement of

√
3 (SNR on pixel i: SNRi = 〈η̂(xi)〉/σi). On

the PMMA bead 1, the variance is about 6 times lower for
line-scanning, while for PMMA bead 2, it is only about 2 times
lower. For sample B, line-scanning leads to a relatively uniform
variance along the line which is similar to raster-scanning.
This leads to a limited SNR improvement. These results are
consistent with the CRT results of Fig. 4. They show that,
in terms of SNR, line-scanning seems mostly beneficial for
the lines along which the sample is sparse for the sparse
sample A, and brings a limited improvement to the denser
sample B. This stems from the shot-noise limited nature of our
measurements [7]. Here, the noise scales with the square-root
of the number of photons arising from the illuminated pixels
across the line [23]. In addition, the signal from pixel xn may
be affected by photon noise coming from the average Raman
signal along the entire line. This results in an object-dependent
SNR improvement, which is expected to increase for sparser
objects [20–23]. This is in contrast to measurements where
detectors exhibit signal-independent additive noise [16] : In this
case, the same S-multiplexing strategy would lead to an SNR
improvement of

√
N/2 , i.e. of 10 times, for both objects. The

precise mechanisms for the dependence of SNR improvement
due to the sparsity of the sample are out of the scope of this
paper and will be investigated in more details in a forthcoming
publication These aspects will be investigated in more details in
a forthcoming publication.
From this short analysis, we surmise that our line-scan CRT ap-
proach would bring a SNR advantage over point-scanning CRT,
and thus be faster, when samples are relatively sparse or when
the experimental configuration exhibits signal-independent
noise contributions. We emphasize that the spectral filtering
induced by CRT renders the samples more sparse, and thus
further improves the SNR, as long as the chemical species
spectral overlap is limited. The SNR and speed gain will then
depend on the spatial and spectral structure of the sample along
the multiplexed line.

In this Letter, we have demonstrated a simple approach for
line-scan CRT with S-multiplexing, with proof-of-concept ex-
periments. While a line-scan strategy includes some drawbacks
such as non-uniform illumination profile [24] or potential loss
in spatial or spectral resolution, we surmise line-scan CRT to be
beneficial over point-scanning CRT for SNR for relatively sparse
objects in many circumstances. While the mentioned speeds do
not compete with point-scanning CRT, they are expected to be
faster with approaches such as compressive-sensing [25, 26]. In
addition, the results could further be improved by filters design
and optimisation taking into account the spatial and spectral
domain conjointly.
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