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Weighted energy estimates for the incompressible

Navier-Stokes equations and applications to axisymmetric solutions without swirl

Introduction

In 1934, Leray [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF] proved global existence of weak solutions for the 3D incompressible Navier-Stokes equations (NS)

   ∂ t u = ∆u -(u • ∇)u -∇p ∇ • u = 0, u(0, .) = u 0 1
in the case of a fluid filling the whole space whose initial velocity u 0 is in L 2 . Leray's strategy is to regularize the initial value and to mollify the non-linearity through convolution with a bump function: let θ ǫ (x) = 1 ǫ 3 θ( x ǫ ), where θ ∈ D(R 3 ), θ is non-negative and radially decreasing and θ dx = 1; the mollified equations are then

(NS ǫ )    ∂ t u ǫ = ∆u ǫ -((θ ǫ * u ǫ ) • ∇)u ǫ -∇p ǫ ∇ • u ǫ = 0, u ǫ (0, .) = θ ǫ * u 0 .
Standard methods give existence of a smooth solution on an interval [0, T ǫ ] where T ǫ ≈ ǫ 3 θ ǫ * u 0 -2

2 . Then, the energy equality

u ǫ (t, .) 2 2 + 2 t 0 ∇ ⊗ u ǫ 2 2 ds = θ ǫ * u 0 2 2
allows one to extend the existence time and to get a global solution u ǫ ; moreover, the same energy equality allows one to use a compactness argument and to get a subsequence u ǫ k that converges to a solution u of the Navier-Stokes equations (NS) which satisfies the energy inequality u(t, .) 2 2 + 2

t 0 ∇ ⊗ u 2 2 ds ≤ u 0 2 2 .
Weak solutions of equations (NS) that satisfy this energy inequality are called Leray solutions.

There are many ways to extend Leray's results to settings where u 0 has infinite energy. A natural one is based on a splitting u = v + w where v satisfies an equation

∂ t v = ∆v + F (v), where ∇ • F (v) = 0,
that is easy to solve and w satisfies perturbed Navier-Stokes equations

∂ t w + w • ∇w = ∆w -∇q -v • ∇w -w • ∇v -v • ∇v -F (v)
for which Leray's formalism still holds. For instance, if u 0 ∈ L p with 2 ≤ p < 3, Calderón [START_REF] Calderón | Existence of weak solutions for the Navier-Stokes equations with initial data in L p[END_REF][START_REF] Lemarié-Rieusset | Quelques remarques sur les équations de Navier-Stokes dans R 3 . Séminaire X-EDP[END_REF] splits u 0 into v 0 + w 0 where v 0 is a divergence-free vector field which is small in L 3 and w 0 belongs to L 2 . Then, v is the mild solution of the Navier-Stokes problem with v 0 as initial value. Another recent example is the way Seregin and Šverák [START_REF] Seregin | On global weak solutions to the Cauchy problem for the Navier-Stokes equations with large L 3 initial initial data[END_REF] deal with global weak solutions for large initial values in L 3 , by splitting u into v + w, where v = e t∆ u 0 and w which has a finite energy.

Another way to extend Leray's method is to consider weighted energy inequalities in L 2 (Φ dx), or similarly energy inequalities for

√ Φu. √ Φu is solution of    ∂ t ( √ Φu) = √ Φ∆u - √ Φ(u • ∇)u - √ Φ∇p ∇ • u = 0, √ Φu(0, .) = √ Φu 0
The problem is that the non-linear part of the equation -√ Φ(u•∇)u-√ Φ∇p will then contribute to the energy balance, in contrast to the case of the Leray method. More precisely, we may write

- √ Φ(u • ∇)u = -u • ∇( √ Φu) - √ Φu • ( √ Φu • ∇ 1 √ Φ ).
The advection term u • ∇( √ Φu) corresponds to a transport by a divergencefree vector field and will not contribute to the energy; in order to control the impact of

√ Φu • ( √ Φu • ∇ 1 √ Φ ) on √ Φu, it is natural to assume that ∇ 1 √ Φ
is bounded; assuming that Φ is positive, we find that

1 Φ( λx |x| ) ≤ 1 √ Φ(0)
+ Cλ, and thus that 1 1+|x| 2 ≤ CΦ(x). Recently, Bradshaw, Kukavica and Tsai [START_REF] Bradshaw | Existence of global weak solutions to the Navier-Stokes equations in weighted spaces[END_REF] and Fernández-Dalgo and Lemarié-Rieusset [START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF] used Leray's procedure to find a global weak solution to the equations (NS) when u 0 is no longer assumed to have finite energy but only to satisfy the weaker assumption

|u 0 (x)| 2 dx 1 + |x| 2 < +∞.
The solutions then satisfy, for every finite positive T ,

sup 0≤t≤T |u(t, x)| 2 dx 1 + |x| 2 + T 0 |∇ ⊗ u(t, x)| 2 dx 1 + |x| 2 < +∞.
For the proof, a precise description of the presssure is needed, as it interfers as well in the energy balance; This point has been discussed in [START_REF] Bradshaw | On the local pressure expansion for the Navier-Stokes equations[END_REF] and [START_REF] Fernández-Dalgo | Characterisation of the pressure term in the incompressible Navier-Stokes equations on the whole space[END_REF]. The scheme of proof of existence of such weak solutions can easily be generalized to equations which behave like the Navier-Stokes equations, for instance the magneto-hydrodynamic equations [START_REF] Fernández-Dalgo | Discretely self-similar solutions for 3D MHD equations and global weak solutions in weighted L 2 spaces[END_REF][START_REF] Fernández-Dalgo | Weak-strong uniqueness in weighted L 2 spaces and weak suitable solutions in local Morrey spaces for the MHD equations[END_REF].

An application of solutions in L 2 ( 1 1+|x| 2 dx) is given in [START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF]: a simple proof of existence of discretely self-similar solutions to the Navier-Stokes problem when the initial value is locally square integrable (and discretely homogeneous: λu 0 (λx) = u 0 (x) for some λ > 1). This existence was first proved by Chae and Wolf [START_REF] Chae | Existence of discretely self-similar solutions to the Navier-Stokes equations for initial value in L 2 loc (R 3 )[END_REF], and Bradshaw and Tsai [START_REF] Bradshaw | Discretely self-similar solutions to the Navier-Stokes equations with data in L 2 loc[END_REF], as a generalization of the result of Jia and Šverák [START_REF] Jia | Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions[END_REF] for a regular homogeneous initial value (λu 0 (λx) = u 0 (x) for every λ > 1), see [START_REF] Lemarié-Rieusset | The Navier-Stokes problem in the 21st century[END_REF] for the case of locally square-integrable homogeneous initial value. If u 0 is homogeneous and locally square-integrable, then it belongs to L 2 uloc ; thus, the proof of Jia and Šverák relied on the control of weak solutions in the space L 2 uloc of uniformly locally square integrable vector fields, following the theory developed in [START_REF] Lemarié-Rieusset | Recent developments in the Navier-Stokes problem[END_REF]. If u 0 is discretely homogeneous and locally square-integrable, then it may fail to belong to L 2 uloc , but it belongs to L 2 ( 1 1+|x| γ dx) for γ > 1.

Whereas the cases of finite energy and of infinite energy sound very similar, this similarity breaks down when we consider higher regularity.

When we consider solutions in function spaces with decaying weights, the growth of solutions can be amplified by the non-linearities. The authors in [START_REF] Bradshaw | Existence of global weak solutions to the Navier-Stokes equations in weighted spaces[END_REF] and [START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF] used the transport structure of the non-linearity (u • ∇)u to get good controls for the velocity in some weighted spaces. When dealing with derivatives of the velocity, one loses the transport structure of non-linearities. The problem comes from the stretching term ω • ∇u in the equations for the vorticity

∂ t ω = ∆ω + (ω • ∇)u -(u • ∇)ω.
In the case when u 0 belongs to the classical Sobolev space H 1 , for which local existence of a unique mild solution is known, this stretching term may potentially lead to blow-up in finite time, since it has a non-linear impact on the growth of ω 2 . There are two cases when this impact can be controlled: the case of 2D fluids (as the stretching term is equal to 0) and the case of axisymmetric vector fields with no swirl [START_REF] Ladyzhenskaya | Unique solvability in the large of a threedimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry[END_REF][START_REF] Leonardi | On the Axially Symmetric Flows in R 3[END_REF]. In the case of weighted estimates, one cannot even get local control of the size of the vorticity in L 2 (Φ dx) in general, but we shall show that we have global existence of a weak solution such that √ Φω(t, .) 2 remains bounded on every bounded interval of times, when we work in 2D or when we consider axisymmetric vector fields with no swirl and weights that depend only on the distance to the symmetry axis.

Main results.

We shall first prove global existence in the weighted L 2 setting, in dimension d with 2 ≤ d ≤ 4 when the weight Φ satisfies some basic assumptions that allow the use of Leray's projection operator and of energy estimates:

Definition 2.1 An adapted weight function Φ on R d (2 ≤ d ≤ 4) is a con- tinuous Lipschitz function Φ such that: • (H1) 0 < Φ ≤ 1. • (H2) There exists C 1 > 0 such that |∇Φ| ≤ C 1 Φ 3 2
• (H3) There exists r ∈ (1, 2] such that Φ r ∈ A r (where A r is the Muckenhoupt class of weights). In the case d = 4, we require r < 2 as well.

• (H4) There exists

C 2 > 0 such that Φ(x) ≤ Φ( x λ ) ≤ C 2 λ 2 Φ(x), for all λ ≥ 1.
Examples of adapted weights can easily be given by radial slowly decaying functions:

• d = 2, Φ(x) = 1 (1+|x|) γ where 0 ≤ γ < 2 • d = 3 or d = 4, Φ(x) = 1 (1+|x|) γ where 0 ≤ γ ≤ 2 • d = 3, Φ(x) = 1 (1+r) γ where r = x 2 1 + x 2 2 and 0 ≤ γ < 2.
The following result concerns the existence of weak solutions belonging to a weighted L 2 space, where the weight permits to consider initial data with a weak decay at infinity. Theorem 1 Let d ∈ {2, 3, 4}. Consider a weight Φ satisfying (H1) -(H4). Let u 0 be a divergence free vector field, such that u 0 belongs to L 2 (Φ dx, R d ).

Then, there exists a global solution u of the problem

(NS)    ∂ t u = ∆u -(u • ∇)u -∇p ∇ • u = 0, u(0, .) = u 0 such that • u belongs to L ∞ ((0, T ), L 2 (Φdx)
) and ∇⊗u belongs to L 2 ((0, T ), L 2 (Φdx)), for all T > 0,

• p = 1≤i,j≤d R i R j (u i u j ),
• the map t ∈ [0, +∞) → u(t, .) is weakly continuous from [0, +∞) to L 2 (Φ dx), and strongly continuous at t = 0,

• For d ∈ {2, 3}, u satisfies the local energy inequality: there exists a locally finite non-negative measure µ such that

∂ t ( |u| 2 2 ) = ∆( |u| 2 2 ) -|∇ ⊗ u| 2 -∇ • |u| 2 2 u -∇ • (pu) -µ,
and we have µ = 0 when d = 2.

We observe that we do not prove the local energy inequality for the solutions in dimension 4. We refer the papers [START_REF] Dong | Boundary partial regularity for the high dimensional Navier-Stokes equations[END_REF], [START_REF] Wang | A unified proof on the partial regularity for suitable weak solutions of non-stationary and stationary Navier-Stokes equations[END_REF] and [START_REF] Wu | Partially regular weak solutions of the Navier-Stokes equations in R 4 × [0, +∞[END_REF] for more information on suitable solutions in dimension 4.

If we consider the problem of higher regularity, the case of dimension d = 2 is easy, while, in the case d = 3, one must restrict the study to the case of axisymmetric flows with no swirl (to circumvent the stretching effect in the evolution of the vorticity).

Theorem 2 (Case d = 2.) Let Φ be a weight satisfying (H1) -(H4). Let u 0 be a divergence free vector field, such that u 0 , ∇ ⊗ u 0 belong to L 2 (Φdx). Then there exists a global solution u of the problem

(NS)    ∂ t u = ∆u -(u • ∇)u -∇p ∇ • u = 0, u(0, .) = u 0 such that
• u and ∇⊗u belong to L ∞ ((0, T ), L 2 (Φ dx)) and ∆u belongs to L 2 ((0, T ), L 2 (Φ dx)), for all T > 0,

• the maps t ∈ [0, +∞) → u(t, .) and t ∈ [0, +∞) → ∇⊗u(t, .) are weakly continuous from [0, +∞) to L 2 (Φdx), and are strongly continuous at t = 0.

Theorem 3 (Case d = 3.) Let Φ be a weight satisfying (H1) -(H4). Let u 0 be a divergence free axisymmetric vector field without swirl, such that u 0 , ∇ ⊗ u 0 belong to L 2 (Φ dx). Assume moreover that Φ depends only on r = x 2 1 + x 2 2 . Then there exists a time T > 0, and a local solution u on (0, T ) of the problem

(NS)    ∂ t u = ∆u -(u • ∇)u -∇p ∇ • u = 0, u(0, .) = u 0 such that
• u is axisymmetric without swirl, u and ∇⊗u belong to L ∞ ((0, T ), L 2 (Φ dx)) and ∆u belongs to L 2 ((0, T ), L 2 (Φ dx)),

• the maps t → u(t, .) and t → ∇u(t, .) are weakly continuous from [0, T ) to L 2 (Φ dx), and are strongly continuous at t = 0.

An extra condition on the weight permits to obtain a global existence result. Moreover, if the vorticity is more integrable at time t = 0, it will remain so in positive times. The next theorem precise these conditions on the weight.

Theorem 4 (Case d = 3.) Let Φ be a weight satisfying (H1) -(H4). Assume moreover that Φ depends only on r = x 2 1 + x 2 2 . Let Ψ be another continuous weight (that depends only on r) such that Φ ≤ Ψ ≤ 1, Ψ ∈ A 2 and there exists

C 1 > 0 such that |∇Ψ| ≤ C 1 √ ΦΨ and |∆Ψ| ≤ C 1 ΦΨ.
Let u 0 be a divergence free axisymmetric vector field without swirl, such that u 0 , belongs to L 2 (Φdx) and ∇ ⊗ u 0 belongs to L 2 (Ψdx). Then there exists a global solution u of the problem

(NS)    ∂ t u = ∆u -(u • ∇)u -∇p ∇ • u = 0, u(0, .) = u 0 such that • u is axisymmetric without swirl, u belongs to L ∞ ((0, T ), L 2 (Φ dx)), ∇⊗ u belong to L ∞ ((0, T ), L 2 (Ψ dx)) and ∆u belongs to L 2 ((0, T ), L 2 (Ψ dx))
, for all T > 0,

• the maps t ∈ [0, +∞) → u(t, .) and t ∈ [0, +∞) → ∇⊗u(t, .) are weakly continuous from [0, +∞) to L 2 (Φ dx) and to L 2 (Ψ dx) respectively, and are strongly continuous at t = 0.

Example: we can take Φ

(x) = 1 (1+r) γ and Ψ(x) = 1 (1+r 2 ) δ/2 with 0 ≤ δ ≤ γ < 2. Of course, Φ ≈ 1 (1+r 2 ) γ/2
. The case δ < γ means that, if ω has a better decay at initial time, it will keep this beter decay at all times.

3 Some lemmas on weights.

Let us first recall the definition of Muckenhoupt weights: for 1 < q < +∞, a positive weight Φ belongs to A q (R d ) if and only if sup

x∈R d ,ρ>0 1 |B(x, ρ)| B(x,ρ) Φ dx 1 q 1 |B(x, ρ)| B(x,ρ) Φ -1 q-1 dx 1-1 q < +∞.
(1) We refer to the Chapter 9 in [START_REF] Grafakos | Modern Fourier Analysis[END_REF].

Due to the Hölder inequality, we have

A q (R d ) ⊂ A r (R d ) if q ≤ r. One easily cheks that w γ = 1 (1+|x|) γ belongs to A q (R d ) if and only if -d(q -1) < γ < d.
Thus, Φ = w γ is an adapted weight if and only if 0 ≤ γ ≤ 2 and γ < d.

One may of course replace in inequality (1) the balls B(x, ρ) by the cubes

Q(x, ρ) =]x 1 -ρ, x 1 + ρ[× • • • ×]x d -ρ, x d + ρ[. Thus, we can see that, if Φ(x) = Ψ(x 1 , x 2 ) and 1 < q < +∞, then Φ ∈ A q (R 3 ) if and only if Ψ ∈ A q (R 2 ). In particular, Φ(x) = 1 (1+r) γ is an adapted weight on R 3 if and only if 0 ≤ γ < 2.
Lemma 3.1 Let Φ satisfy (H1) and (H2) and let 1 ≤ r < +∞. Then: a)

√ Φf ∈ H 1 if and only if f ∈ L 2 (Φ dx) and ∇f ∈ L 2 (Φ dx); moreover we have √ Φf H 1 ≈ Φ(|f | 2 + |∇f | 2 ) dx 1/2 b) Φf ∈ W 1,r if and only if f ∈ L r (Φ r dx) and ∇f ∈ L r (Φ r dx); moreover we have Φf W 1,r ≈ Φ r (|f | r + |∇f | r ) dx 1/r
Proof. This is obvious since

|∇Φ| ≤ C 1 Φ 3/2 ≤ C 1 Φ and |∇( √ Φ)| = 1 2 |∇Φ| Φ √ Φ ≤ 1 2 C 1 √ Φ. ⋄ Lemma 3.2 If Φ ∈ A s then we have for all θ ∈ (0, 1), Φ θ ∈ A p with θ = p-1 s-1 . In particular, if a weight Φ satisfies (H3), we obtain Φ ∈ A p with p = 1 + r-1 r = 2 -1 r < 2, and so Φ ∈ A 2 .
Proof. As 1 p = 1 s + s-p ps , we find by the Hölder inequality

( Q Φ p-1 s-1 dx) 1 p ( Q Φ -( p-1 s-1 )( 1 p-1 ) dx) 1-1 p = ( Q (Φ 1 s (Φ -1 s-1 ) s-p ps ) p dx) 1 p ( Q Φ -( p-1 s-1 )( 1 p-1 ) dx) 1-1 p ≤ ( Q Φ dx) 1 s ( Q Φ -1 s-1 dx) 1 p -1 s +1-1
p ⋄ Let us recall that for a weight w ∈ A q (1 < q < +∞), the Riesz transforms and the Hardy-Littlewood maximal function are bounded on L q (w dx). We thus have the following inequalities: H2) and (H3). Then: a) for j = 1, . . . , d, the Riesz transforms R j satisfy that Leray projection operator on divergence-free vector fields, then for a vector field u we have

Lemma 3.3 Let Φ satisfy (H1), (
√ ΦR j f 2 ≤ C √ Φf 2 and √ ΦR j f H 1 ≤ C √ Φf H 1 ; b) for j = 1, . . . , d, the Riesz transforms R j satisfy that ΦR j f r ≤ C Φf r and ΦR j f W 1,r ≤ C Φf W 1,r ; c) if P is the
√ ΦPu 2 ≤ C √ Φu 2 and √ ΦPu H 1 ≤ C √ Φu H 1 ; d) if d ∈ {2, 3, 4}, then for a vector field u we have √ Φ u H 1 ≈ √ Φ u 2 + √ Φ∇ • u 2 + √ Φ∇ ∧ u 2 . e) Let θ ǫ (x) = 1 ǫ d θ( x ǫ )
, where θ ∈ D(R d ), θ is non-negative and radially decreasing and θ dx = 1. Then we have

√ Φ (θ ǫ * f ) 2 ≤ C √ Φ f 2 and √ Φ (θ ǫ * f ) H 1 ≤ C( √ Φ f L 2 + √ Φ ∇f L 2 ) (where the constant C does not depend on ǫ nor f ). Proof. a) is a consequence of Φ ∈ A 2 and of Lemma 3.1 (since ∂ k (R j f ) = R j (∂ k f )). Similarly, b) is a consequence of Φ r ∈ A r and of Lemma 3.1. c) is a consequence of a): if v = Pu, then v j = d k=1 R j R k (u k ). d) is a consequence of a): if R = (R 1 , . . . , R d ), we have the identity -∆u = ∇ ∧ (∇ ∧ u) -∇(∇ • u) so that ∂ k u = R k R ∧ (∇ ∧ u) -R k R(∇ • u).
e) is a consequence of Φ ∈ A 2 and of Lemma 3.1: Theorem 2.1.10 in Chapter 2 of [START_REF] Grafakos | Classical harmonic analysis[END_REF] states that we have

|θ ǫ * f | ≤ M f (where M f is the Hardy- Littlewood maximal function of f ) and, similarly, |∂ k (θ ǫ * f )| ≤ M ∂ k f . ⋄
A final lemma states that Φ is slowly decaying at infinity: Lemma 3.4 Let Φ satisfy (H1) and (H2). Then there exists a constant C 3 such that

1 (1 + |x|) 2 ≤ C 3 Φ. If d = 3 and Φ depends only on r = x 2 1 + x 2 2 , then 1 (1 + |r|) 2 ≤ C 3 Φ.
Proof. We define x 0 = 1 |x| x and g(λ) = Φ(λx 0 ). We have

g ′ (λ) = x 0 • ∇Φ(λx 0 ) ≥ -C 1 (Φ(λx 0 )) 3/2 = -C 1 g(λ) 3/2 .
Thus

C 1 λ ≥ - λ 0 g ′ (µ)g(µ) -3/2 dµ = 2(g(λ) -1/2 -g(0) -1/2 )
and we get

Φ(x) -1/2 ≤ Φ(0) + C 1 2 |x| ≤ C 3 (1 + |x|).
If Φ depends only on r, we find that

1 (1 + |r|) 2 ≤ C 3 Φ(x 1 , x 2 , 0) = C 3 Φ(x). ⋄
4 Proof of Theorem 1 (the case of L 2 (Φ dx))

A priori controls

Let φ ∈ D(R d ) be a real-valued test function which is equal to 1 in a neighborhood of 0 and let φ ǫ (x) = φ(ǫx). Let

u 0,ǫ = P(φ ǫ u 0 ).
Thus, u 0,ǫ is divergence free and converges to

u 0 in L 2 (Φ dx) since Φ ∈ A 2 . Let θ ǫ (x) = 1 ǫ d θ( x ǫ )
, where θ ∈ D(R d ), θ is non-negative and radially decreasing and θ dx = 1. We denote b ǫ = u ǫ * θ ǫ . Let u ǫ be the unique global solution of the problem

(NS ǫ )    ∂ t u ǫ = ∆u ǫ -(b ǫ • ∇)u ǫ -∇p ǫ ∇ • u ǫ = 0, u ǫ (0, .) = u 0,ǫ which belongs to C([0, +∞), L 2 (R d )) ∩ L 2 ((0, +∞), Ḣ1 (R d )). We want to demonstrate that √ Φu ǫ (t) 2 L 2 + t 0 √ Φ∇ ⊗ u ǫ 2 L 2 ds ≤ √ Φu 0,ǫ 2 
L 2 + C Φ t 0 √ Φu ǫ 2 L 2 + √ Φu ǫ 2d L 2 ds, (2) 
where C Φ does not depend on ǫ nor on u 0 . (When d = 4, the inequality will hold only if

√ Φu ǫ (t) L 2 remains small enough). Since √ Φ, ∇ √ Φ ∈ L ∞ , pointwise multiplication by √ Φ maps boundedly H 1 to H 1 and H -1 to H -1 . Thus, √ Φu ǫ ∈ L 2 H 1 and √ Φ∂ t u ǫ ∈ L 2 H -1 , we can calculate ∂ t u ǫ • u ǫ Φ dx and obtain: |u ǫ (t, x)| 2 2 Φ dx + t 0 |∇ ⊗ u ǫ | 2 Φdx ds = |u 0,ǫ (x)| 2 2 Φ dx - t 0 (∇ ⊗ u ǫ ) • (∇Φ ⊗ u ǫ ) dx ds + t 0 ( |u ǫ | 2 2 b ǫ + p ǫ u ǫ ) • ∇Φ dx ds. (3) 
We use the fact that |∇Φ| ≤ C 0 Φ 3 2 ≤ C 0 Φ, in order to control the following term

- t 0 (∇ ⊗ u ǫ ) • (∇Φ ⊗ u ǫ )dx ds ≤ 1 8 t 0 √ Φ ∇⊗u ǫ 2 L 2 +C t 0 √ Φ u ǫ 2 L 2 .
Now, we analyze the integrals containing the pressure term. We distinguish two cases:

• Case 1: d = 2 and r ∈ (1, 2], or d = 3 and r ∈ [ 6 5 , 2], or d = 4 and r ∈ [ 4 3 , 2). For those values of d and r we have

0 ≤ d 2 - d 2r ≤ 1 and Ḣ d 2 -d 2r ⊂ L 2r and 0 ≤ d r - d 2 ≤ 1 and Ḣ d r -d 2 ⊂ L r r-1 .
Using the continuity of the Riesz transforms on L r (Φ r dx),

t 0 ( |u ǫ | 2 |b ǫ | 2 + |p ǫ ||u ǫ |) |∇Φ| dx ds ≤ t 0 Φ(|u ǫ | |b ǫ | + |p ǫ |) r √ Φu ǫ r r-1 ≤ C t 0 √ Φu ǫ 2r √ Φb ǫ 2r √ Φu ǫ r r-1 ds
Using the Sobolev embedding

Ḣ d 2 -d 2r ⊂ L 2r , the fact that |∇ √ Φ| ≤ C √
Φ, and the continuity of the maximal function operator on L 2 (Φdx), we have

√ Φb ǫ 2r ≤ C √ Φb ǫ 1-( d 2 -d 2r ) 2 ∇ ⊗ ( √ Φb ǫ ) d 2 -d 2r 2 ≤ C ′ √ Φb ǫ 1-( d 2 -d 2r ) 2 ( √ Φb ǫ 2 + √ Φ∇ ⊗ b ǫ 2 ) d 2 -d 2r ≤ C ′′ √ Φu ǫ 1-( d 2 -d 2r ) 2 ( √ Φu ǫ 2 + √ Φ∇ ⊗ u ǫ 2 ) d 2 -d 2r ,
and

√ Φu ǫ 2r ≤ C √ Φu ǫ 1-( d 2 -d 2r ) 2 ( √ Φu ǫ 2 + √ Φ∇ ⊗ u ǫ 2 ) d 2 -d 2r .
Using the embedding

Ḣ d r -d 2 ⊂ L r r-1 , we also have √ Φu ǫ r r-1 ≤ C √ Φu ǫ 1-( d r -d 2 ) 2 ∇ ⊗ ( √ Φu ǫ ) d r -d 2 L 2 ≤ C √ Φu ǫ 1-( d r -d 2 ) 2 ( √ Φu ǫ 2 + √ Φ∇ ⊗ u ǫ L 2 ) d r -d 2 .
Hence, we find

t 0 ( |u ǫ | 2 |b ǫ | 2 + |p ǫ ||u ǫ |) |∇Φ| dx ds ≤ C t 0 √ Φu ǫ 3-d 2 2 ( √ Φu ǫ 2 + √ Φ∇ ⊗ u ǫ L 2 ) d 2 ds.
Using the Young inequality, we then find for d = 2 or d = 3

t 0 ( |u ǫ | 2 |b ǫ | 2 + |p ǫ ||u ǫ |) |∇Φ| dx ds ≤ 1 8 t 0 √ Φ∇ ⊗ u ǫ 2 L 2 ds + C Φ t 0 √ Φu ǫ 2 L 2 + √ Φu ǫ 12-2d 4-d L 2 ds,
where, as d ∈ {2, 3}, we have 12-2d 4

-d = 2d. When d = 4, provided that √ Φ u ǫ 2 < ǫ 0 with Cǫ 0 < 1 8 we find t 0 ( |u ǫ | 2 |b ǫ | 2 + |p ǫ ||u ǫ |) |∇Φ| dx ds ≤ 1 8 t 0 √ Φ∇ ⊗ u ǫ 2 L 2 ds + 1 8 t 0 √ Φu ǫ 2 L 2 ds,
• Case 2: d = 3 and r ∈ (1, 6 5 ), or d = 4 and r ∈ (1, 4 3 ). Let q = dr d-r ; for those values of d, r and q, we have

W 1,r ⊂ L q 0 ≤ d - d r ≤ 1 and Ḣd(1-1 r ) ⊂ L 2r 2-r . and 0 ≤ d r - d 2 -1 ≤ 1 and Ḣ d r -d 2 -1 ⊂ L q q-1 .
Using the continuity of the Riesz transforms on L r (Φ r dx), we have

t 0 ( |u ǫ | 2 |b ǫ | 2 + |p ǫ ||u ǫ |) |∇Φ| dx ds ≤ t 0 Φ|u ǫ | 2 q √ Φb ǫ q q-1 ds + t 0 Φp ǫ q √ Φu ǫ q q-1 ds ≤C t 0 Φ|u ǫ | 2 W 1,r √ Φb ǫ q q-1 ds + ij t 0 Φb ǫ,i u ǫ,j W 1,r √ Φu ǫ q q-1 ds. We have Φb ǫ,i u ǫ,j W 1,r ≤ Φb ǫ,i u ǫ,j r + k ( b ǫ,i u ǫ,j ∂ k Φ L r + Φ b ǫ,i ∂ k u ǫ,j L r + Φ u ǫ,i ∂ k b ǫ,j L r ) ≤C( √ Φu ǫ 2r 2-r √ Φb ǫ 2 + √ Φb ǫ 2r 2-r √ Φ∇ ⊗ u ǫ 2 + √ Φu ǫ 2r 2-r √ Φ∇ ⊗ b ǫ 2 ), ≤C ′ ( √ Φu ǫ L 2 + √ Φ∇ ⊗ u ǫ L 2 )( √ Φu ǫ Ḣd(1-1 r ) + √ Φb ǫ Ḣd(1-1 r ) ). We have √ Φb ǫ Ḣd(1-1 r ) ≤ C √ Φb ǫ 1-(d-d r ) 2 ∇ ⊗ ( √ Φb ǫ ) d-d r 2 ≤ C ′ √ Φb ǫ 1-(d-d r ) 2 ( √ Φb ǫ 2 + √ Φ∇ ⊗ b ǫ 2 ) d-d r ≤ C ′′ √ Φu ǫ 1-(d-d r ) 2 ( √ Φu ǫ L 2 + √ Φ∇ ⊗ u ǫ L 2 ) d-d r ,
and finally we get

i,j Φb ǫ,i u ǫ,j W 1,r + Φ|u ǫ | 2 W 1,r ≤ C √ Φu ǫ 1-(d-d r ) 2 ( √ Φu ǫ L 2 + √ Φ∇ ⊗ u ǫ L 2 ) 1+d-d r .
On the other hand, we have

√ Φb ǫ q q-1 ≤ C √ Φb ǫ 2-( d r -d 2 ) 2 ∇ ⊗ ( √ Φb ǫ ) d r -d 2 -1 2 ≤ C ′ √ Φu ǫ 2-( d r -d 2 ) 2 ( √ Φu ǫ L 2 + √ Φ∇ ⊗ u ǫ L 2 ) d r -d 2 -1 .
Hence, we find again

t 0 ( |u ǫ | 2 |b ǫ | 2 + |p ǫ ||u ǫ |) |∇Φ| dx ds ≤ C t 0 √ Φu ǫ 3-d 2 2 ( √ Φu ǫ 2 + √ Φ∇ ⊗ u ǫ L 2 ) d 2 ds.
and we conclude in the same way as for the first case.

In the Case 1 and Case 2, we have found

t 0 ( |u ǫ | 2 |b ǫ | 2 + |p ǫ ||u ǫ |) |∇Φ| dx ds ≤ 1 8 √ Φu ǫ 2 L 2 + C Φ t 0 √ Φu ǫ 2 L 2 + √ Φu ǫ 2d L 2 ds.
From these controls, we get inequality (3), and thus inequality (2). Inequality [START_REF] Bradshaw | Discretely self-similar solutions to the Navier-Stokes equations with data in L 2 loc[END_REF] gives us a control on the size of √ Φ u ǫ 2 on an interval of time that does not depend on ǫ:

Lemma 4.1 If α is a continuous non-negative function on [0, T ) which sat- isfies, for three constants A, B ∈ (0, +∞) and b ∈ [1, ∞), α(t) ≤ A + B t 0 α(s) + α(s) b ds. Let 0 < T 1 < T and T 0 = min(T 1 , 1 3 b (A b-1 +(BT 1 ) b-1 ) ). We have, for every t ∈ [0, T 0 ], α(t) ≤ 3A.
Proof. We try to estimate the first time T * < T 1 (if it exists) for which we have α(T * ) = 3A.

We have

α ≤ A BT 1 + ( BT 1 A ) b-1 α b .
We thus find

α(T * ) ≤ 2A + T * (3A) b (1 + ( BT 1 A ) b-1 )
and thus

T * 3 b (A b-1 + (BT 1 ) b-1 ) ≥ 1.
⋄ By Lemma 4.1 and (2), we thus find that there exists a constant C Φ ≥ 1 such that if T 0 satisfies

• if d = 2, C Φ 1 + u 0 2 L 2 (Φdx) T 0 ≤ 1 • if d = 3, C Φ 1 + u 0 2 L 2 (Φdx) 2 T 0 ≤ 1 • if d = 4 and u 0 L 2 (Φ dx) ≤ 1 C Φ , C Φ T 0 ≤ 1 then sup 0≤t≤T 0 u ǫ (t, .) 2 L 2 (Φdx) + T 0 0 ∇ ⊗ u ǫ 2 L 2 (Φ dx) ds ≤ C Φ (1 + u 0 2 L 2 (Φ dx) ). (4)

Passage to the limit and local existence

We know that u ǫ is bounded in L ∞ ((0, T 0 ), L 2 (Φ dx)) and ∇ ⊗ u ǫ is bounded in L 2 ((0, T 0 ), L 2 (Φ dx)). This will alow us to use a simple variant of the Aubin-Lions theorem:

Lemma 4.2 (Aubin-Lions theorem) Let s > 0, 1 < q and σ < 0. Let (f n ) be a sequence of functions on (0, T ) × R d such that, for all T 0 ∈ (0, T ) and all ϕ ∈ D(R d ),

• ϕf n is bounded in L 2 ((0, T 0 ), H s ) • ϕ∂ t f n is bounded in L q ((0, T 0 ), H σ ) .
Then, there exists a subsequence

(f n k ) such that f n k is strongly convergent in L 2 loc ([0, T ) × R d ).
More precisely: if we denote f ∞ the limit, then for all T 0 ∈ (0, T ) and all R 0 > 0, lim

n k →+∞ T 0 0 |x|≤R 0 |f n k -f ∞ | 2 dx dt = 0.
For a proof of the Lemma, see [START_REF] Boyer | Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models[END_REF][START_REF] Lemarié-Rieusset | The Navier-Stokes problem in the 21st century[END_REF].

We want to verify that ϕ∂ t u ǫ is bounded in L α ((0, T 0 ), H -s ) for some s ∈ (-∞, 0) and some α > 1.

In Case 1, we have that Φb ǫ ⊗ u ǫ and Φp ǫ = 3

i=1 3 j=1 R i R j (b ǫ,i u ǫ,j ) are bounded in L α 1 ((0, T 0 ), L r ), where α 1 = 2r dr-d , so that α 1 ∈ [2, ∞) if d = 2, α 1 ∈ [ 4 3 , 4] if d = 3 and α 1 ∈ (1, 2] if d = 4.
In Case 2, we have that Φb ǫ ⊗u ǫ and Φp ǫ are bounded in L α 2 ((0, T 0 ), W 1,r ), where α 2 = 2r r+dr-d and thus it is bounded in L α 2 L q , with q = dr d-r . We have

α 2 ∈ ( 4 3 , 2) if d = 3 and α 2 ∈ (1, 2) if d = 4. Let ϕ ∈ D(R d ).
We have that ϕu ǫ is bounded in L 2 ((0, T 0 ), H 1 ); moreover, writing

∂ t u ǫ = ∆u ǫ - 3 j=1 ∂ j (b ǫ,j u ǫ ) + ∇p ǫ and using the embeddings L r ⊂ Ḣ d 2 -d r ⊂ H -1 (in Case 1) or L dr d-r ⊂ H -( d r -d 2 -1) ⊂ H -1 (in Case 2) we see that ϕ∂ t u ǫ is bounded in L α i ((0, T 0 ), H -2 ).
Thus, by the Aubin-Lions theorem, there exist u and a sequence (ǫ k ) k∈N converging to 0 such that u ǫ k converges strongly to u in L 2 loc ([0, T 0 ) × R 3 ): for every T ∈ (0, T 0 ) and every R > 0, we have

lim k→+∞ T 0 |y|<R |u ǫ k -u| 2 dx ds = 0.
Then, we have that u ǫ k converge *-weakly to u in L ∞ ((0, T 0 ), L 2 (Φdx)), ∇ ⊗ u ǫ k converges weakly to ∇ ⊗ u in L 2 ((0, T 0 ), L 2 (Φdx)), and u ǫ k converges weakly to u in L 3 ((0, T 0 ), L 3 (Φ 3 2 dx)). We deduce that b ǫ k ⊗ u ǫ k is weakly convergent in (L 6/5 L 6/5 ) loc to b ⊗ u and thus in D ′ ((0, T 0 ) × R d ); as in Case 1, it is bounded in L α 1 ((0, T 0 ), L r ), and in Case 2 it is bounded in L α 2 ((0, T 0 ), W 1,r ), it is weakly convergent in these spaces respectively (as D is dense in their dual spaces).

By the continuity of the Riesz transforms on L r (Φ r dx) and on W 1,r (Φ r dx), we find that in the Case 1 and Case 2, p ǫ k is convergent to the distribution p = 3 i=1 3 j=1 R i R j (u i u j ). We have obtained

∂ t u = ∆u + (u • ∇)u -∇p.
Moreover, we have seen that ∂ t u is locally in L 1 H -2 , and thus u has representative such that t → u(t, .) is continuous from [0, T 0 ) to D ′ (R d ) and coincides with u(0, .)

+ t 0 ∂ t u ds.
In the sense of distributions, we have u(0, .)+

t 0 ∂ t u ds = u = lim k→+∞ u ǫ k = lim k→+∞ u 0,ǫ k + t 0 ∂ t u n k ds = u 0 + t 0 ∂ t u ds,
hence, u(0, .) = u 0 , and u is a solution of (NS). Now, we want to prove the energy balance. In the case of dimension 2, we remark that, since

√ Φu ∈ L ∞ L 2 ∩ L 2 H 1 , we have by interpolation that √ Φu ∈ L 4 L 4
, and then we can define ((u • ∇)u) • u. The equality

∂ t ( |u| 2 2 ) = ∆( |u| 2 2 ) -|∇u| 2 -∇ • |u| 2 2 u -∇ • (pu)
is then easy to prove. Let us consider the case d = 3. We define

A ǫ = -∂ t ( |u ǫ | 2 2 ) + ∆( |u ǫ | 2 2 ) -∇ • |u ǫ | 2 2 u ǫ -∇ • (p ǫ u ǫ ) = |∇ ⊗ u ǫ | 2 .
As u ǫ k is locally strongly convergent in L 2 L 2 ; and locally bounded in

L ∞ L 2 , it is then locally strongly convergent in L p ′ L 2 , with p ′ < ∞. Then, as √ Φ∇ ⊗ u ǫ is bounded in L 2 ((0, T ), L 2 ), by the Gagliardo-Nirenberg interpolation inequalities we obtain u ǫ k is locally strongly convergent in L p ′ L q ′ with 2 p ′ + 3 q ′ > d 2 .
In Case 1, we know that p ǫ k is locally weakly convergent in L α 1 L r and by the remark above, u ǫ k is locally strongly convergent in L α 1 α 1 -1 L r r-1 , and hence p ǫ k u ǫ k converges in the sense of distributions.

In Case 2, we know that p ǫ k is locally weakly convergent in L α 2 L q and and by the remark above, u ǫ k is locally strongly convergent in L α 2 α 2 -1 L q q-1 , and hence p ǫ k u ǫ k converges in the sense of distributions.

Thus,

A ǫ k is convergent in D ′ ((0, T ) × R 3 ) to A = -∂ t ( |u| 2 2 ) + ∆( |u| 2 2 ) -∇ • |u| 2 2 u -∇ • (pu),
and

A = lim k→+∞ |∇ ⊗ u ǫ k | 2 . If θ ∈ D((0, T ) × R d ) is non-negative, we have that √ θ∇ ⊗ u ǫ k is weakly convergent in L 2 L 2 to √ θ∇ ⊗ u, so that Aθ dx ds = lim ǫ k →+∞ A ǫ k θ dx ds = lim k→+∞ |∇⊗u ǫ k | 2 θ dx ds ≥ |∇⊗u| 2 θ dx ds.
Hence, there exists a non-negative locally finite measure µ on (0, T ) × R 3 such that A = |∇u| 2 + µ, i.e. such that

∂ t ( |u| 2 2 ) = ∆( |u| 2 2 ) -|∇u| 2 -∇ • |u| 2 2 u -∇ • (pu) -µ.

Strong convergence to the initial data

We use again inequalities ( 2) and ( 4). We know that on (0, T 0 ) we have a control of u ǫ L 2 (Φ dx) that holds uniformly in ǫ and t. Thus, inequality [START_REF] Bradshaw | Discretely self-similar solutions to the Navier-Stokes equations with data in L 2 loc[END_REF] gives us

u ǫ (t, .) L 2 (Φ dx) ≤ u 0,ǫ L 2 (Φ dx) + C Φ t(1 + u 0 2 L 2 (Φ dx) + u 0 2d L 2 (Φ dx) ).
Since

u ǫ k = u 0,ǫ k + t 0 ∂ t u ǫ k ds, we see that u ǫ k (t, .) is convergent to u(t, .) in D ′ (R d ), hence is weakly convergent in L 2 (Φ dx) (as it is bounded in L 2 (Φdx)); on the other hand, u 0,ǫ k is strongly convergent to u 0 in L 2 (Φ dx). Thus, we have u(t, .) L 2 (Φ dx) ≤ u 0 L 2 (Φ dx) + C Φ t(1 + u 0 2 L 2 (Φ dx) + u 0 2d L 2 (Φ dx) ). In particular, lim sup t→0 u(t, .) L 2 (Φ dx) ≤ u 0 L 2 (Φ dx) .
Moreover, we have

u = u 0 + t 0 ∂ t u ds, so that u(t, .) is convergent to u 0 in D ′ (R d ), hence is weakly convergent in L 2 (Φ dx). Thus, we have u 0 L 2 (Φ dx) ≤ lim inf t→0 u(t, .) L 2 (Φ dx) .
This gives u 0 2 L 2 (Φdx) = lim t→0 u(t, .) 2 L 2 (Φdx) , which allows to turn the weak convergence into a strong convergence. ⋄

Global existence using a scaling argument

Let λ > 0, then u ǫ is a solution of the Cauchy initial value problem for the approximated Navier-Stokes equations (NS ǫ ) on (0, T ) with initial value u 0,ǫ if and only if u ǫ,λ (t, x) = λu ǫ (λ 2 t, λx) is a solution for the approximated Navier-Stokes equations (NS λǫ ) on (0, T /λ 2 ) with initial value u 0,ǫ,λ (x) = λu 0,ǫ (λx). We shall write u 0,λ = λu 0 (λx).

We have seen that

√ Φu ǫ,λ (t) 2 L 2 + t 0 √ Φ∇ ⊗ u ǫ,λ 2 L 2 ≤ √ Φu 0,ǫ,λ 2 
L 2 + C Φ t 0 √ Φu ǫ,λ 2 
L 2 + √ Φu ǫ,λ 2d 
L 2 ds
(under the extra condition, when d = 4, that √ Φu ǫ,λ (t) L 2 remains smaller than ǫ 0 ). By Lemma 4.1, we thus found that there exists a constant

C Φ ≥ 1 such that if T λ satisfies • if d = 2, C Φ 1 + u 0,λ 2 L 2 (Φdx) T λ = 1 • if d = 3, C Φ 1 + u 0,λ 2 L 2 (Φdx) 2 T λ = 1 • if d = 4 and u 0,λ L 2 (Φ dx) ≤ 1 C Φ , C Φ T λ = 1 then sup 0≤t≤T λ u ǫ,λ (t, .) 2 L 2 (Φdx) + T λ 0 ∇ ⊗ u ǫ,λ 2 
L 2 (Φ dx) ds ≤ C Φ (1 + u 0,λ 2 
L 2 (Φ dx) ).
(5) It gives that the solutions u ǫ are controlled, uniformly in ǫ, on (0, λ 2 T λ ) since for t ∈ (0, T λ ),

|u ǫ,λ (t, x)| 2 Φ(x) dx = |u ǫ (λ 2 t, y)| 2 Φ( y λ )λ 2-d dy ≥ λ 2-d |u ǫ (λ 2 t, x)| 2 Φ(x) dx and T λ 0 |∇ ⊗ u ǫ,λ (t, x)| 2 Φ(x) dx dt = λ 2 T λ 0 |∇ ⊗ u ǫ,λ (s, y)| 2 Φ( y λ )λ 2-d dy ds ≥λ 2-d λ 2 T λ 0 |∇ ⊗ u ǫ (t, x)| 2 Φ(x) dx dt T λ 0 |∇ ⊗ u ǫ,λ (t, x)| 2 Φ(x) dx dt ≥C λ λ 2 T λ 0 ∇ ⊗ u ǫ 2 L 2 (Φdx) ds.
Moreover, we have lim λ→+∞ u 0,λ L 2 (Φ dx) = 0 when d = 4 and lim λ→+∞ λ 2 T λ = +∞ when 2 ≤ d ≤ 4. Indeed, we have

λ 2 |u 0 (λx)| 2 Φ(x) dx = λ 2-d |u 0 (x)| 2 Φ( x λ ) dx = λ 4-d |u 0 (x)| 2 Φ( x λ ) λ 2 Φ(x) Φ(x) dx Since Φ( x λ ) λ 2 Φ(x) ≤ min{C 2 , 1 λ 2 Φ(x)
} by hypothesis (H4), we find by dominated convergence that u 0,λ

L 2 (Φ dx) = o(λ 4-d
2 ) and thus lim λ→+∞ λ 2 T λ = +∞ . Thus, if we consider a finite time T and a sequence ǫ k , we may choose λ such that λ 2 T λ > T (and such that u 0,λ L 2 (Φ dx) < ǫ 0 if d = 4); we have a uniform control of u ǫ,λ and of ∇ ⊗ u ǫ,λ on (0, T λ ), hence a uniform control of u ǫ and of ∇ ⊗ u ǫ on (0, T ). We may exhibit a solution on (0, T ) using the Rellich-Lions theorem by extracting a subsequence ǫ kn . A diagonal argument permits then to obtain a global solution.

Theorem 1 is proved. ⋄ 5 Proof of Theorem 2 (the case d = 2).

In the case of dimension d = 2, the Navier-Stokes equations are well-posed in H 1 and we don't need to mollify the equations. Thus, we may approximate the Navier-Stokes equations with

(NS ǫ )    ∂ t u ǫ = ∆u ǫ -(u ǫ • ∇)u ǫ -∇p ǫ ∇ • u ǫ = 0, u ǫ (0, .) = u 0,ǫ with u 0,ǫ = P(φ ǫ u 0 ).
Then the vorticity ω ǫ is solution of

   ∂ t ω ǫ = ∆ω ǫ -(u ǫ • ∇)ω ǫ ∇ • ω ǫ = 0, ω ǫ (0, .) = ω 0,ǫ with ω 0,ǫ = ∇ ∧ (φ ǫ u 0 ).
u 0,ǫ belongs to H 1 , so we know that we have a global solution u ǫ . We then just have to prove that, for every finite time T 0 , we have a uniform control of the norms ω ǫ L ∞ ((0,T 0 ),L 2 (Φ dx)) and ∇ω ǫ L 2 ((0,T 0 ),L 2 (Φ dx)) .

We can calculate ∂ t ω ǫ • ω ǫ Φ dx so that

|ω ǫ (t, x)| 2 2 Φ dx + t 0 |∇ω ǫ | 2 Φdx ds = |ω 0,ǫ (x)| 2 2 Φ dx - t 0 ∇( |ω ǫ | 2 2 ) • ∇Φdx ds + t 0 |ω ǫ | 2 2 u ǫ • ∇Φ dx ds. As t 0 |ω ǫ | 2 2 u ǫ • ∇Φ dx ds ≤ t 0 √ Φω ǫ 2 L 8 3 √ Φu ǫ L 4 ≤ t 0 ( √ Φω ǫ 3/4 L 2 ∇( √ Φω ǫ ) 1/4 L 2 ) 2 √ Φu ǫ L 4
we obtain

√ Φω ǫ (t) 2 L 2 + t 0 √ Φ∇ω ǫ 2 L 2 ≤ √ Φω 0,ǫ 2 
L 2 + C Φ t 0 √ Φω ǫ 2 L 2 (1 + √ Φu ǫ 4 3 L 4 ) ds 20 
We can conclude that, for all T > 0 and for all t ∈ (0, T ),

√ Φω ǫ (t) 2 L 2 + t 0 √ Φ∇ω ǫ 2 L 2 ≤ √ Φω 0,ǫ 2 
L 2 e C Φ sup ǫ>0 t 0 (1+ √ Φuǫ L 4 ) 4 3 ds
Thus, we have uniform controls on (0, T ). ⋄

6 Proof of Theorems 3 and 4 (the axisymmetric case)

6.1 Axisymmetry.

In R 3 , we consider the usual coordinates (x 1 , x 2 , x 3 ) and the cylindrical coordinates (r, θ, z) given by the formulas x 1 = r cos θ, x 2 = r sin θ and x 3 = z.

We denote (e 1 , e 2 , e 3 ) the usual canonical basis e 1 = (1, 0, 0), e 2 = (0, 1, 0), e 3 = (0, 0, 1).

We attach to the point x (with r = 0) another orthonormal basis For a vector field u = (u 1 , u 2 , u 3 ) = u 1 e 1 + u 2 e 2 + u 3 e 3 , we can see that u = (u 1 cos θ + u 2 sin θ) e r + (-u 1 sin θ + u 2 cos θ) e θ + u 3 e z .

We will denote (u r , u θ , u z ) p the coordinates of u in the basis (e r , e θ , e z ). We will consider axially symmetric (axisymmetric) vector fields u without swirl and axisymmetric scalar functions a, which means that u = u r (r, z) e r + u z (r, z) e z and a = a(r, z).

6.2

The H 1 case.

We will use the following well known results of Ladyzhenskaya [START_REF] Ladyzhenskaya | Unique solvability in the large of a threedimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry[END_REF][START_REF] Lemarié-Rieusset | The Navier-Stokes problem in the 21st century[END_REF]. Proposition 6.1 Let u 0 be a divergence free axisymmetric vector field without swirl, such that u 0 belongs to H 1 . Then, the following problem

(NS)    ∂ t u = ∆u -(u • ∇)u -∇p ∇ • u = 0, u(0, .) = u 0
has a unique solution u ∈ C([0, +∞), H 1 ). This solution is axisymmetric without swirl. Moreover, u, ∇ ⊗ u belong to L ∞ ((0, +∞), L 2 ), and ∇ ⊗ u, ∆u belong to L 2 ((0, +∞), L 2 ). If u 0 ∈ H 2 , we have the inequality

|ω(t)| 2 r 2 dx ≤ |ω 0 | 2 r 2 ≤ ∇ ⊗ ω 0 2 2 .

A priori controls

Let φ ∈ D(R 2 ) be a real-valued radial function which is equal to 1 in a neighborhood of 0 and let φ ǫ (x) = φ(ǫ(x 1 , x 2 )). For ǫ ∈ (0, 1], let u 0,ǫ = P(φ ǫ u 0 ).

Thus, u 0,ǫ is a divergence free axisymmetric without swirl vector field which belongs to H 1 . As we have

ω 0,ǫ = ∇ ∧ u 0,ǫ = ∇ ∧ (φ ǫ u 0 ) = φ ǫ ω 0 + ǫ(∇φ)(ǫx) ∧ u 0 , using Φ ∈ A 2 and |ǫ∇φ(ǫx)| ≤ C 1 r 1 r≥ 1 Cǫ ≤ C ′ 1 r≥ 1 Cǫ √ Φ, we can see that lim ε→0 u 0 -u 0,ǫ L 2 (Φ dx) + ω 0 -ω 0,ǫ L 2 (Ψ dx) = 0.
Let u ǫ be the global solution of the problem

(NS ǫ )    ∂ t u ǫ = ∆u ǫ -(u ǫ • ∇)u ǫ -∇p ǫ ∇ • u ǫ = 0, u ǫ (0, .) = u 0,ǫ
given by the Proposition 6.1. We denote ω ǫ = ∇ ∧ u ǫ , then

∂ t u ǫ = ∆u ǫ + (u ǫ • ∇)u ǫ -∇p ǫ (6) 
and

∂ t ω ǫ = ∆ω ǫ + (ω ǫ • ∇)u ǫ -(u ǫ • ∇)ω ǫ (7) As √ Ψω ǫ ∈ L 2 H 1 (because √ Ψ, ∇ √ Ψ ∈ L ∞ ) and √ Ψ∂ t ω ǫ ∈ L 2 H -1 , we can calculate ∂ t ω ǫ • ω ǫ Ψ dx using (7) so that |ω ǫ (t, x)| 2 2 Ψ dx + t 0 |∇ ⊗ ω ǫ | 2 Ψdx ds = |ω 0,ǫ (x)| 2 2 Ψ dx - t 0 ∇( |ω ǫ | 2 2 ) • ∇Ψdx ds + t 0 |ω ǫ | 2 2 u ǫ • ∇Ψ -(ω ǫ • u ǫ )ω ǫ • ∇Ψ dx - t 0 ((ω ǫ • ∇)ω ǫ ) • u ǫ Ψ dx ds ≤ |ω 0,ǫ (x)| 2 2 Ψ dx + 1 8 t 0 |∇ ⊗ ω ǫ | 2 Ψdx ds + C t 0 √ Ψ ω ǫ 2 2 ds + C t 0 √ Ψ ω ǫ 2 √ Ψ ω ǫ 6 √ Φu ǫ 3 ds - t 0 ((ω ǫ • ∇)ω ǫ ) • u ǫ Ψ dx ds ≤ |ω 0,ǫ (x)| 2 2 Ψ dx + 1 4 t 0 |∇ ⊗ ω ǫ | 2 Ψdx ds + C t 0 √ Ψ ω ǫ 2 2 ds + C ′ t 0 √ Ψ ω ǫ 2 2 ( √ Φu ǫ 3 + ( √ Φu ǫ 4/ 3 
3 ) ds

- t 0 ((ω ǫ • ∇)ω ǫ ) • u ǫ Ψ dx ds
As ω ǫ = ω ǫ,θ e θ , we have

ω ǫ • ∇ω ǫ = - ω 2 ǫ,θ r e r .
In order to control u ǫ • (ω ǫ • ∇ω ǫ ), we split the domain of integration in a domain where r is small and a domain where r is large. The support of φ 1 is contained in {x / r < R} for some R > 0}, and the support of 1

-φ 1 is contained in {x / r > R 0 } for some R 0 > 0}. We have inf r<R Φ(x) = inf √ x 2 1 +x 2 2 <R Φ(x 1 , x 2 , 0) > 0 and similarly inf r<R Ψ(x) = inf √ x 2 1 +x 2 2 <R Ψ(x 1 , x 2 , 0) > 0.
On the other hand, we have inf

r>R 0 r 2 Φ(x) = inf √ x 2 1 +x 2 2 >R 0 (x 2 1 + x 2 2 )Φ(x 1 , x 2 , 0) ≥ inf |x|>R 0 |x| 2 Φ(x) > 0.
We then write:

- t 0 ((ω ǫ • ∇)ω ǫ ) • u ǫ Ψ dx ds = t 0 φ 1 ( (ω ǫ • ∇)u ǫ ) • ω ǫ ) Ψ dx ds + t 0 (ω ǫ • u ǫ )(ω ǫ • ∇φ 1 )Ψ dx ds + t 0 φ 1 (ω ǫ • u ǫ )ω ǫ • ∇Ψdx ds - t 0 (1 -φ 1 )(u ǫ • (ω ǫ • ∇ω ǫ ))Ψdx ds ≤C t 0 |ω ǫ | 2 |∇ ⊗ u ǫ | Ψ 3/2 dx ds + C t 0 |ω ǫ | 2 |u ǫ | √ Φ Ψ dx ds. As Ψ ∈ A 2 , we have √ Ψ∇ ⊗ u ǫ 2 ≈ √ Ψω ǫ 2 ; moreover, ∇ ⊗ ( √ Φu ǫ ) 2 ≤ C( √ Φu ǫ 2 + √ Ψω ǫ 2 ) and ∇ ⊗ ( √ Ψω ǫ ) 2 ≤ C( √ Ψω ǫ 2 + √ Ψ∇ ⊗ ω ǫ 2 ),
and thus we get

- t 0 ((ω ǫ • ∇)ω ǫ ) • u ǫ Ψ dx ds ≤C t 0 √ Ψ∇ ⊗ u ǫ L 2 √ Ψω ǫ L 3 √ Ψω ǫ L 6 ds + C t 0 √ Φu ǫ L 6 √ Ψω ǫ L 3 √ Ψω ǫ L 2 ds ≤C ′ t 0 √ Ψω ǫ 3 2 L 2 ( √ Ψω ǫ L 2 + √ Ψ∇ ⊗ ω ǫ L 2 ) 3 2 ds + C ′ t 0 √ Φu ǫ L 2 √ Ψω ǫ 3 2 L 2 ( √ Ψω ǫ L 2 + √ Ψ∇ ⊗ ω ǫ L 2 ) 1 2 ds ≤C ′′ t 0 ( √ Φu ǫ 2 + √ Φu ǫ 4/3 2 ) √ Ψω ǫ 2 2 + √ Ψω ǫ 3 2 + √ Ψω ǫ 6 2 ds + 1 8 t 0 √ Ψ∇ ⊗ ω ǫ 2 2 ds
We finally find that

√ Ψω ǫ (t) 2 L 2 + t 0 √ Ψ∇ ⊗ ω ǫ 2 L 2 ds ≤ √ Ψω 0,ǫ 2 
L 2 + C (1 + √ Φu ǫ 3 + ( √ Φu ǫ 4/3 3 ) √ Ψω ǫ 2 2 ds + C t 0 ( √ Φu ǫ 2 + √ Φu ǫ 4/3 2 ) √ Ψω ǫ 2 2 + √ Ψω ǫ 3 2 + √ Ψω ǫ 6 2 ds ≤ √ Ψω 0,ǫ 2 L 2 + C ′ t 0 (1 + √ Φu ǫ 2 + √ Φu ǫ 4/3 2 ) √ Ψω ǫ 2 2 + √ Ψω ǫ 6 2 ds (8) 
We already know that √ Φu ǫ (t) L 2 remains bounded (independently of ǫ) on every bounded interval, so that we may again use Lemma 4.1 and control sup 0≤t≤T 0 ω ǫ (t, .) 2

L 2 (Ψdx) + T 0 0 ∇ω ǫ 2 L 2 (Ψdx)
ds for some T 0 , where both T 0 and the control don't depend on ǫ. The control is then transferred to the limit ω since ω = lim ω ǫ k = lim ∇ ∧ u ǫ k . This proves local existence of a regular solution and Theorem 3 is proved.

The case of a very regular initial value.

We present a result apparently more restrictive that our main Theorem (Theorem 4), but we will see that it implies almost directly our main Theorem. Let u 0 be a divergence free axisymmetric vector field without swirl, such that u 0 , belongs to L 2 (Φdx), ∇ ⊗ u 0 and ∆u 0 belong to L 2 (Ψdx). Then there exists a global solution u of the problem

(NS)    ∂ t u = ∆u -(u • ∇)u -∇p ∇ • u = 0, u(0, .) = u 0 such that
• u is axisymmetric without swirl, u belongs to L ∞ ((0, T ), L 2 (Φ dx)), ∇⊗ u belong to L ∞ ((0, T ), L 2 (Ψ dx)) and ∆u belongs to L 2 ((0, T ), L 2 (Ψ dx)), for all T > 0,

• the maps t ∈ [0, +∞) → u(t, .) and t ∈ [0, +∞) → ∇⊗u(t, .) are weakly continuous from [0, +∞) to L 2 (Φ dx) and to L 2 (Ψ dx) respectively, and are strongly continuous at t = 0.

Proof.

Ladyzhenskaya's inequality for axisymmetric fields with no swirl (Proposition 6.1) gives

|ω ǫ (t)| 2 r 2 dx ≤ |ω 0,ǫ | 2 r 2 dx. (9) 
As we have

∂ i ω 0,ǫ = φ ǫ ∂ i ω 0 + ǫ∂ i φ(ǫx)ω 0 + ǫ(∇φ)(ǫx) ∧ ∂ i u 0 + ǫ 2 (∇∂ i φ)(ǫx) ∧ u 0 ,
we can see that lim We 

ω ǫ r L 2 √ Ψu ǫ L ∞ √ Ψω ǫ L 2 ,
where

ω ǫ r L 2 ≤ C ω 0,ǫ r L 2 ≤ C( √ Ψω 0,ǫ L 2 + √ Ψ∇ ⊗ ω 0,ǫ L 2 ) ≤ C ′ ( √ Φu 0 L 2 + √ Ψω 0 L 2 + √ Ψ∇ ⊗ ω 0 L 2 ) and √ Ψu ǫ 2 L ∞ ≤ C ∇ ⊗ ( √ Ψu ǫ ) 2 ∆( √ Ψu ǫ ) 2 ≤ C ′ ( √ Φu ǫ L 2 + √ Ψω ǫ L 2 + √ Ψ∇ ⊗ ω ǫ L 2 ) 2 .
Then, if we denote

A 0 = √ Φu 0 L 2 + √ Ψω 0 L 2 + √ Ψ∇ ⊗ ω 0 L 2 , we get √ Ψω ǫ (t) 2 L 2 + t 0 √ Ψ∇ ⊗ ω ǫ 2 L 2 ≤ √ Ψω 0,ǫ 2 
L 2 + C t 0 √ Φu ǫ 2 L 2 + C Φ t 0 √ Ψω ǫ 2 L 2 (1 + A 0 + A 2 0 + √ Φu ǫ L 3 + √ Φu ǫ 2 L 3 ) ds
So, we conclude that, for all T > 0 and for all t ∈ (0, T ),

√ Ψω ǫ (t) 2 L 2 + t 0 √ Ψ∇ ⊗ ω ǫ 2 L 2 ≤( √ Ψω 0,ǫ 2 
L 2 + C Φ sup ǫ>0 T 0 √ Φu ǫ 2 L 2 )e C Φ sup ǫ>0 t 0 (1+A 2 0 + √ Φuǫ L 3 + √ Φuǫ 2 L 3 ) ds
Thus, we can obtain a solution on (0, T ) using the Aubin-Lions Theorem and finish with a diagonal argument to get a global solution. ⋄ 6.5 End of the proof.

We begin by consider a local solution v on (0, T 0 ) with initial value u 0 given by Theorem 3, which is continuous from (0, T 0 ) to D ′ . We take T 1 ∈ (0, T 0 ) such that ∇⊗(∇∧v)(T 1 , .) ∈ L 2 (Φdx). We consider a solution w on (T 1 , +∞) and initial value v(T 1 ) given by Proposition 6.2. Our global solution is defined as u = v on (0, T 1 ) and u = w on (T 1 , +∞). ⋄

e r = ∂x ∂r = cos θ e 1 +sin θ e 2 , e θ = 1 r ∂x ∂θ = -sin θ e 1 +cos θ e 2 ,

 22 e z = ∂x ∂z = e 3 .
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 62 Let Φ be a weight satisfying (H1) -(H4). Assume moreover that Φ depends only on r = x 2 1 + x 2 2 . Let Ψ be another continuous weight (that depends only on r) such that Φ ≤ Ψ ≤ 1, Ψ ∈ A 2 and there existsC 1 > 0 such that |∇Ψ| ≤ C 1 √ ΦΨ and |∆Ψ| ≤ C 1 ΦΨ.

ǫ→0∇

  ⊗ ω 0,ǫ -∇ ⊗ ω 0 L 2 (Ψ dx) = 0. As |ω 0,ǫ -ω 0 | 2 r 2 dx ≤ C( 0<r<1 |∇⊗ω 0,ǫ -∇⊗ω 0 | 2 Ψ dx+ 1<r<+∞ |ω 0,ǫ -ω 0 | 2 Ψ dx),we also havelim ǫ→0 |ω 0,ǫ -ω 0 | 2 r 2 dx = 0.

  • u ǫ )ω ǫ • ∇Ψ dx ds -

	which implies							
					√	Ψω ǫ (t) 2 L 2 + 2	0	t	√	Ψ∇ω ǫ	2 L 2
					≤	√	Ψω 0,ǫ	2 L 2 + 2	0	t	√	Ψω ǫ L 2	√	Ψ∇ω ǫ L 2
					+		0	t			√	Φu ǫ L 3	√	Ψω ǫ	2 L 3
					+		0	t		1 r	|u r,ǫ ||ω ǫ | 2 Ψ dx ds
	Furthermore, we have
											0	t	√	Φu ǫ L 3	√	Ψω ǫ	2 L 3
	and									
	0	t	φ 1 (x) r	|u ǫ,r ||ω
	know that					
			|ω ǫ (t, x)| 2 2	Ψ dx +	0	t	|∇ ⊗ ω ǫ | 2 Ψdx ds
		=			|ω 0,ǫ (x)| 2 2	Ψ dx -	0	t	∇(	|ω ǫ | 2 2	) • ∇Ψdx ds
		+	0	t		|ω ǫ | 2 2	u ǫ • ∇Ψ dx ds
		-	0	t	(ω ǫ t 0	u ǫ (ω ǫ • ∇ω ǫ ) Ψ dx ds

t 0 1 -φ 1 (x) r |u r,ǫ ||ω ǫ | 2 Ψ dx ds ≤ ǫ | 2 dx ds ≤ C t 0