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Weighted energy estimates for the
incompressible Navier-Stokes equations and

applications to axisymmetric solutions without
swirl

Pedro Gabriel Fernández-Dalgo∗†, Pierre Gilles
Lemarié-Rieusset‡§

Abstract
We consider a family of weights which permit to generalize the

Leray procedure to obtain weak suitable solutions of the 3D incom-
pressible Navier–Stokes equations with initial data in weighted L2

spaces. Our principal result concerns the existence of regular global
solutions when the initial velocity is an axisymmetric vector field with-
out swirl such that both the initial velocity and its vorticity belong to
L2((1 + r2)−

γ
2 dx), with r =

√
x2

1 + x2
2 and γ ∈ (0, 2).

Keywords : Navier–Stokes equations, axisymmetric vector fields, swirl,
Muckenhoupt weights, energy balance
AMS classification : 35Q30, 76D05.

1 Introduction

In 1934, Leray [7] proved global existence of weak solutions for the 3D in-
compressible Navier–Stokes equations

(NS)


∂tu = ∆u− (u · ∇)u−∇p

∇ · u = 0, u(0, .) = u0
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in the case of a fluid filling the whole space whose initial velocity u0 is in
L2. Leray’s strategy is to regularize the initial value and to mollify the non-
linearity through convolution with a bump function : let θε(x) = 1

ε3
θ(x

ε
),

where θ ∈ D(R3), θ is non-negative and radially decreasing and
∫
θ dx = 1;

the mollified equations are then

(NSε)


∂tuε = ∆uε − ((θε ∗ uε) · ∇)uε −∇pε

∇ · uε = 0, uε, (0, .) = θε ∗ u0.

Standard methods give existence of a smooth solution on an interval [0, Tε]
where Tε ≈ ε3‖θε ∗ u0‖−2

2 . Then, the energy equality

‖uε(t, .)‖2
2 + 2

∫ t

0

‖∇ ⊗ uε‖2
2 ds = ‖θε ∗ u0‖2

2

allows one to extend the existence time and to get a global solution uε;
moreover, the same energy equality allows one to use a compactness argument
and to get a subsequence uεk that converges to a solution u of the Navier–
Stokes equations (NS) which satisfies the energy inequality

‖u(t, .)‖2
2 + 2

∫ t

0

‖∇ ⊗ u‖2
2 ds ≤ ‖u0‖2

2.

Weak solutions of equations (NS) that satisfy this energy inequality are called
Leray solutions.

Recently, Bradshaw, Kukavica and Tsai [2] and Fernández-Dalgo and
Lemarié-Rieusset [3] used Leray’s procedure to find a global weak solution to
the equations (NS) when u0 is no longer assumed to have finite energy but
only to satisfy the weaker assumption∫

|u0(x)|2 dx

1 + |x|2
< +∞.

The solutions then satisfy, for every finite positive T ,

sup
0≤t≤T

∫
|u(t, x)|2 dx

1 + |x|2
+

∫ T

0

∫
|∇ ⊗ u(t, x)|2 dx

1 + |x|2
< +∞.

Whereas the cases of finite energy and of infinite energy sound very sim-
ilar, this similarity breaks down when we consider higher regularity. In-
deed, if we assume that both the initial velocity u0 and the initial vorticity
ω0 = ∇∧u0 are in L2 (so that the divergence-free u0 belongs to H1), we find
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that the Leray solution is unique on some interval [0, T ] and remains in H1.
This is based on the energy equality for the vorticity ω :

‖ω(t, .)‖2
2 + 2

∫ t

0

‖∇ ⊗ ω‖2
2 ds = ‖ω0‖2

2 + 2

∫ t

0

∫
ω · (ω · ∇)u dx ds.

The key point is the interpolation inequality∣∣∣∣∫ ω · (ω · ∇)u dx

∣∣∣∣ ≤ C‖ω‖3
3 ≤ C ′‖ω‖3/2

2 ‖∇ ⊗ ω‖
3/2
2 .

Then the Young inequality gives

‖ω(t, .)‖2
2 +

∫ t

0

‖∇ ⊗ ω‖2
2 ds ≤ ‖ω0‖2

2 + C ′′
∫ t

0

‖ω‖6
2 ds.

We find that for some positive T ≈ ‖ω0‖−4
2 we have

sup
0≤t‘T

‖ω‖2
2 +

∫ T

0

‖∇ ⊗ ω‖2
2 ds < +∞.

This strategy fails if we only assume that∫
|u0(x)|2 dx

1 + |x|2
+

∫
|ω0(x)|2 dx

1 + |x|2
< +∞.

Indeed, the energy estimate one might hope would be

‖ 1√
1 + |x|2

ω(t, .)‖2
2 + 2

∫ t

0

‖ 1√
1 + |x|2

∇⊗ ω‖2
2 ds

≤ ‖ 1√
1 + |x|2

ω0‖2
2 + 4(

∫ t

0

‖ 1√
1 + |x|2

ω‖2
2 ds)

1/2(

∫ t

0

‖ 1√
1 + |x|2

∇⊗ ω‖2
2 ds)

1/2

+ C

∫ t

0

‖ 1√
1 + |x|2

ω‖2
3‖

1√
1 + |x|2

u‖3 ds

+ C

∫ t

0

∫
1

1 + |x|2
|ω|2|∇ ⊗ u| dx ds.

We cannot control the last term due to the lack of integrability : if we want to
use interpolation inequalities, we should deal with

∫
1

(1+|x|2)3/2 |ω|2|∇ ⊗ u| dx
instead of

∫
1

1+|x|2 |ω|
2|∇ ⊗ u| dx.

In this paper, we show that this strategy may work in the case of an
axisymmetric flow with no swirl when we consider an axisymmetric weight
Φ(x) = 1

(1+r)γ
(with 0 ≤ γ < 2) where x = (x1, x2, x3) and r =

√
x2

1 + x2
2. If,
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in cylindrical coordinates, u0 = u0,r(r, z) er + u0,z(r, z) ez and if we assume
that u0 is in H1(Φ dx), i.e.∫

|u0(x)|2 Φ(x) dx+

∫
|ω0(x)|2 Φ(x) dx < +∞,

we shall obtain the energy estimate

‖
√

Φω(t, .)‖2
2 + 2

∫ t

0

‖
√

Φ∇⊗ ω‖2
2 ds

≤ ‖
√

Φω0‖2
2 + 2(

∫ t

0

√
Φω‖2

2 ds)
1/2(

∫ t

0

‖
√

Φ∇⊗ ω‖2
2 ds)

1/2

+ C

∫ t

0

‖
√

Φω‖2
3‖
√

Φ u‖3 ds

+ C

∫ t

0

‖
√

Φω‖3
3 ds.

This will allow us to find a local-in-time solution in H1(Φ dx). Moreover, we
shall easily adapt Ladyzhenskaya’s result [5] on global existence of axisym-
metric solutions in H1 and find a global solution in H1(Φ dx). Remark that,
in contrast with the case of H1, we cannot prove uniqueness of these regular
solutions.

2 Main results.

We shall first prove global existence in the weighted L2 setting, in dimension
d with 2 ≤ d ≤ 4 when the weight Φ satisfies some basic assumptions that
allow the use of Leray’s projection operator and of energy estimates :

Definition 2.1 An adapted weight function Φ on Rd (2 ≤ d ≤ 4) is a con-
tinuous Lipschitz function Φ such that :

• (H1) 0 < Φ ≤ 1.

• (H2) There exists C1 > 0 such that |∇Φ| ≤ C1Φ
3
2

• (H3) There exists r ∈ (1, 2] such that Φr ∈ Ar (where Ar is the Muck-
enhoupt class of weights). In the case d = 4, we require r < 2 as
well.

• (H4) There exists C2 > 0 such that Φ(x) ≤ Φ(x
λ
) ≤ C2λ

2Φ(x), for all
λ ≥ 1.
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Examples of adapted weights can easily be given by radial slowly decaying
functions :

• d = 2, Φ(x) = 1
(1+|x|)γ where 0 ≤ γ < 2

• d = 3 or d = 4, Φ(x) = 1
(1+|x|)γ where 0 ≤ γ ≤ 2

• d = 3, Φ(x) = 1
(1+r)γ

where r =
√
x2

1 + x2
2 and 0 ≤ γ < 2.

The following result concerns the existence of weak suitable solutions
belonging to a weighted L2 space, where the weight permits to consider
initial data with a weak decay at infinity.

Theorem 1 Let d ∈ {2, 3, 4}. Consider a weight Φ satisfying (H1)− (H4).
Let u0 be a divergence free vector field, such that u0 belongs to L2(Φ dx,Rd).
Then, there exists a global solution u of the problem

(NS)


∂tu = ∆u− (u · ∇)u−∇p

∇ · u = 0, u(0, .) = u0

such that

• u belongs to L∞((0, T ), L2(Φdx)) and ∇⊗u belongs to L2((0, T ), L2(Φdx)),
for all T > 0,

• p =
∑

1≤i,j≤dRiRj(uiuj),

• the map t ∈ [0,+∞) 7→ u(t, .) is weakly continuous from [0,+∞) to
L2(Φ dx), and is strongly continuous at t = 0,

• u satisfies the local energy inequality : there exists a locally finite non-
negative measure µ such that

∂t(
|u|2

2
) = ∆(

|u|2

2
)− |∇ ⊗ u|2 −∇ ·

(
|u|2

2
u

)
−∇ · (pu)− µ,

(remark : µ = 0 when d = 2).

If we consider the problem of higher regularity, the case of dimension
d = 2 is easy, while, in the case d = 3, one must restrict the study to the
case of axisymmetric flows with no swirl (to circumvent the stretching effect
in the evolution of the vorticity).
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Theorem 2 (Case d = 2.) Let Φ be a weight satisfying (H1) − (H4). Let
u0 be a divergence free vector field, such that u0,∇⊗ u0 belong to L2(Φdx).
Then there exists a global solution u of the problem

(NS)


∂tu = ∆u− (u · ∇)u−∇p

∇ · u = 0, u(0, .) = u0

such that

• u and∇⊗u belong to L∞((0, T ), L2(Φ dx)) and ∆u belongs to L2((0, T ), L2(Φ dx)),
for all T > 0,

• the maps t ∈ [0,+∞) 7→ u(t, .) and t ∈ [0,+∞) 7→ ∇⊗u(t, .) are weakly
continuous from [0,+∞) to L2(Φdx), and are strongly continuous at
t = 0,

Theorem 3 (Case d = 3.) Let Φ be a weight satisfying (H1) − (H4). Let
u0 be a divergence free axisymmetric vector field without swirl, such that
u0,∇ ⊗ u0 belong to L2(Φ dx). Assume moreover that Φ depends only on
r =

√
x2

1 + x2
2. Then there exists a time T > 0, and a local solution u on

(0, T ) of the problem

(NS)


∂tu = ∆u− (u · ∇)u−∇p

∇ · u = 0, u(0, .) = u0

such that

• u is axisymmetric without swirl, u and∇⊗u belong to L∞((0, T ), L2(Φ dx))
and ∆u belongs to L2((0, T ), L2(Φ dx)),

• the maps t 7→ u(t, .) and t 7→ ∇u(t, .) are weakly continuous from [0, T )
to L2(Φ dx), and are strongly continuous at t = 0,

An extra condition on the weight permits to obtain a global existence
result. Moreover, if the vorticity is more integrable at time t = 0, it will
remain so in positive times. The next theorem precise these conditions on
the weight.

Theorem 4 (Case d = 3.) Let Φ be a weight satisfying (H1) − (H4). As-
sume moreover that Φ depends only on r =

√
x2

1 + x2
2. Let Ψ be another

continuous weight (that depends only on r) such that Φ ≤ Ψ ≤ 1, Ψ ∈ A2

and there exists C1 > 0 such that

|∇Ψ| ≤ C1

√
ΦΨ and |∆Ψ| ≤ C1ΦΨ.
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Let u0 be a divergence free axisymmetric vector field without swirl, such
that u0, belongs to L2(Φdx) and ∇ ⊗ u0 belongs to L2(Ψdx). Then there
exists a global solution u of the problem

(NS)


∂tu = ∆u− (u · ∇)u−∇p

∇ · u = 0, u(0, .) = u0

such that

• u is axisymmetric without swirl, u belongs to L∞((0, T ), L2(Φ dx)), ∇⊗
u belong to L∞((0, T ), L2(Ψ dx)) and ∆u belongs to L2((0, T ), L2(Ψ dx)),
for all T > 0,

• the maps t ∈ [0,+∞) 7→ u(t, .) and t ∈ [0,+∞) 7→ ∇⊗u(t, .) are weakly
continuous from [0,+∞) to L2(Φ dx) and to L2(Ψ dx) respectively, and
are strongly continuous at t = 0,

Example : we can take Φ(x) = 1
(1+r)γ

and Ψ(x) = 1
(1+r2)δ/2

with 0 ≤ δ ≤
γ < 2.

3 Some lemmas on weights.

Let us first recall the definition of Muckenhoupt weights : for 1 < q < +∞,
a positive weight w belongs to Aq(Rd) if and only if

sup
x∈Rd,ρ>0

(
1

|B(x, ρ)|

∫
B(x,ρ)

Φ dx

) 1
q
(

1

|B(x, ρ)|

∫
B(x,ρ)

Φ−
1
q−1 dx

)1− 1
q

< +∞.

(1)
Due to the Hölder inequality, we have Aq(Rd) ⊂ Ar(Rd) if q ≤ r.

One easily cheks that wγ = 1
(1+|x|)γ belongs to Aq(Rd) if and only if

−d(q − 1) < γ < d.

Thus, Φ = wγ is an adapted weight if and only if 0 ≤ γ ≤ 2 and γ < d.
One may of course replace in inequality (1) the balls B(x, ρ) by the cubes

Q(x, ρ) =]x1 − ρ, x1 + ρ[× · · ·×]xd − ρ, xd + ρ[. Thus, we can see that,
if Φ(x) = Ψ(x1, x2) and 1 < q < +∞, then Φ ∈ Aq(R3) if and only if
Ψ ∈ Aq(R2). In particular, Φ(x) = 1

(1+r)γ
is an adapted weight on R3 if and

only if 0 ≤ γ < 2.
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Lemma 3.1 Let Φ satisfy (H1) and (H2) and let 1 ≤ r < +∞. Then :
a)
√

Φf ∈ H1 if and only if f ∈ L2(Φ dx) and ∇f ∈ L2(Φ dx); moreover we
have

‖
√

Φf‖H1 ≈
(∫

Φ(|f |2 + |∇f |2) dx

)1/2

b) Φf ∈ W 1,r if and only if f ∈ Lr(Φr dx) and ∇f ∈ Lr(Φr dx); moreover
we have

‖Φf‖W 1,r ≈
(∫

Φr(|f |r + |∇f |r) dx
)1/r

Proof. This is obvious since |∇Φ| ≤ C1Φ3/2 ≤ C1Φ and |∇(
√

Φ)| =
1
2
|∇Φ|

Φ

√
Φ ≤ 1

2
C1

√
Φ. �

Lemma 3.2 If Φ ∈ As then we have for all θ ∈ (0, 1), Φθ ∈ Ap with θ =
p−1
s−1

. In particular, if a weight Φ satisfies (H3), we obtain Φ ∈ Ap with

p = 1 + r−1
r

= 2− 1
r
< 2, and so Φ ∈ A2.

Proof. As 1
p

= 1
s

+ s−p
ps

, we find by the Hölder inequality

(

∫
Q

Φ
p−1
s−1 dx)

1
p (

∫
Q

Φ−( p−1
s−1

)( 1
p−1

)dx)1− 1
p

= (

∫
Q

(Φ
1
s (Φ−

1
s−1 )

s−p
ps )p dx)

1
p (

∫
Q

Φ−( p−1
s−1

)( 1
p−1

)dx)1− 1
p

≤ (

∫
Q

Φ dx)
1
s (

∫
Q

Φ−
1
s−1 dx)

1
p
− 1
s

+1− 1
p

�
Let us recall that for a weight w ∈ Aq (1 < q < +∞), the Riesz transforms

and the Hardy–Littlewood maximal function are bounded on Lq(w dx). We
thus have the following inequalities :

Lemma 3.3 Let Φ satisfy (H1), (H2) and (H3). Then :
a) for j = 1, . . . , d, the Riesz transforms Rj satisfy that ‖

√
ΦRjf‖2 ≤

C‖
√

Φf‖2 and ‖
√

ΦRjf‖H1 ≤ C‖
√

Φf‖H1;
b) for j = 1, . . . , d, the Riesz transforms Rj satisfy that ‖ΦRjf‖r ≤ C‖Φf‖r
and ‖ΦRjf‖W 1,r ≤ C‖Φf‖W 1,r ;
c) if P is the Leray projection operator on divergence-free vector fields, then
for a vector field u we have ‖

√
ΦPu‖2 ≤ C‖

√
Φu‖2 and ‖

√
ΦPu‖H1 ≤

C‖
√

Φu‖H1;
d) if d ∈ {2, 3, 4}, then for a vector field u we have

‖
√

Φu‖H1 ≈ ‖
√

Φu‖2 + ‖
√

Φ∇ · u‖2 + ‖
√

Φ∇∧ u‖2.
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e) Let θε(x) = 1
εd
θ(x

ε
), where θ ∈ D(Rd), θ is non-negative and radially

decreasing and
∫
θ dx = 1. Then we have ‖

√
Φ (θε ∗ f)‖2 ≤ C‖

√
Φ f‖2 and

‖
√

Φ (θε ∗ f)‖H1 ≤ C(‖
√

Φ f‖L2 + ‖
√

Φ ∇f‖L2) (where the constant C does
not depend on ε nor f).

Proof. a) is a consequence of Φ ∈ A2 and of Lemma 3.1 (since ∂k(Rjf) =
Rj(∂kf)). Similarly, b) is a consequence of Φr ∈ Ar and of Lemma 3.1.

c) is a consequence of a) : if v = Pu, then vj =
∑d

k=1 RjRk(uk).
d) is a consequence of a) : if R = (R1, . . . , Rd), we have the identity

−∆u = ∇∧ (∇∧ u)−∇(∇ · u)

so that
∂ku = RkR∧ (∇∧ u)−RkR(∇ · u).

e) is a consequence of Φ ∈ A2 and of Lemma 3.1 : a classical inequality
[4] states that we have |θε ∗ f | ≤ Mf (where Mf is the Hardy–Littlewood
maximal function of f) and, similarly, |∂k(θε ∗ f)| ≤ M∂kf . �

A final lemma states that Φ is slowly decaying at infinity :

Lemma 3.4 Let Φ satisfy (H1) and (H2). Then there exists a constant C3

such that
1

(1 + |x|)2
≤ C3Φ.

If d = 3 and Φ depends only on r =
√
x2

1 + x2
2, then

1

(1 + |r|)2
≤ C3Φ.

Proof. We define x0 = 1
|x|x and g(λ) = Φ(λx0). We have

g′(λ) = x0 · ∇Φ(λx0) ≥ −C1(Φ(λx0))3/2 = −C1g(λ)3/2.

Thus

C1λ ≥ −
∫ λ

0

g′(µ)g(µ)−3/2 dµ = 2(g(λ)−1/2 − g(0)−1/2)

and we get

Φ(x)−1/2 ≤ Φ(0) +
C1

2
|x| ≤

√
C3(1 + |x|).

If Φ depends only on r, we find that

1

(1 + |r|)2
≤ C3Φ(x1, x2, 0) = C3Φ(x).

�
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4 Proof of Theorem 1 (the case of L2(Φ dx))

4.1 A priori controls

Let φ ∈ D(Rd) be a real-valued test function which is equal to 1 in a neigh-
borhood of 0 and let φε(x) = φ(εx). Let

u0,ε = P(φεu0).

Thus, u0,ε is divergence free and converges to u0 in L2(Φ dx) since Φ ∈ A2.
Let θε(x) = 1

εd
θ(x

ε
), where θ ∈ D(Rd), θ is non-negative and radially

decreasing and
∫
θ dx = 1. We denote bε = uε ∗ θε. Let uε be the unique

global solution of the problem

(NSε)


∂tuε = ∆uε − (bε · ∇)uε −∇pε

∇ · uε = 0, uε, (0, .) = u0,ε

which belongs to C([0,+∞), L2(Rd)) ∩ L2((0,+∞), Ḣ1(Rd)).
We want to demonstrate that

‖
√

Φuε(t)‖2
L2 +

∫ t

0

‖
√

Φ∇⊗ uε‖2
L2 ds

≤ ‖
√

Φu0,ε‖2
L2 + CΦ

∫ t

0

‖
√

Φuε‖2
L2 + ‖

√
Φuε‖2d

L2 ds,

(2)

where CΦ does not depend on ε nor on u0. (When d = 4, the inequality will
hold only if ‖

√
Φuε(t)‖L2 remains small enough).

Since
√

Φ,∇
√

Φ ∈ L∞, pointwise multiplication by
√

Φ maps boundedly
H1 to H1 and H−1 to H−1. Thus,

√
Φuε ∈ L2H1 and

√
Φ∂tuε ∈ L2H−1, we

can calculate
∫
∂tuε · uεΦ dx and obtain :∫

|uε(t, x)|2

2
Φ dx+

∫ t

0

∫
|∇ ⊗ uε|2 Φdx ds

=

∫
|u0,ε(x)|2

2
Φ dx−

∫ t

0

∫
(∇⊗ uε) · (∇Φ⊗ uε) dx ds

+

∫ t

0

∫
(
|uε|2

2
bε + puε) · ∇Φ dx ds.

(3)

We use the fact that |∇Φ| ≤ C0Φ
3
2 ≤ C0Φ, in order to control the follow-

ing term∣∣∣∣−∫ t

0

∫
(∇⊗ uε) · (∇Φ⊗ uε)dx ds

∣∣∣∣ ≤ 1

8

∫ t

0

‖
√

Φ∇⊗u‖2
L2(Φdx)+C

∫ t

0

‖
√

Φ u‖2
L2(Φdx).
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Now, we analyze the integrals containing the pressure term. We distin-
guish two cases :

• Case 1: d = 2 and r ∈ (1, 2], or d = 3 and r ∈ [6
5
, 2], or d = 4 and

r ∈ [4
3
, 2). For those values of d and r we have

0 ≤ d

2
− d

2r
≤ 1 and Ḣ

d
2
− d

2r ⊂ L2r

and

0 ≤ d

r
− d

2
≤ 1 and Ḣ

d
r
− d

2 ⊂ L
r
r−1 .

Using the continuity of the Riesz transforms on Lr(Φrdx),∫ t

0

∫
(
|uε|2|bε|

2
+ |p||uε|) |∇Φ| dx ds ≤

∫ t

0

‖Φ(|uε| |bε|+ |p|)‖r‖
√

Φuε‖ r
r−1

≤ C

∫ t

0

‖
√

Φuε‖2r‖
√

Φbε‖2r‖
√

Φuε‖ r
r−1
ds

Using the Sobolev embedding Ḣ
d
2
− d

2r ⊂ L2r, the fact that |∇
√

Φ| ≤
C
√

Φ, and the continuity of the maximal function operator on L2(Φdx),
we have

‖
√

Φbε‖2r

≤ C‖
√

Φbε‖
1−( d

2
− d

2r
)

2 ‖∇ ⊗ (
√

Φbε)‖
d
2
− d

2r
2

≤ C ′‖
√

Φbε‖
1−( d

2
− d

2r
)

2 (‖
√

Φbε‖2 + ‖
√

Φ∇⊗ bε‖2)
d
2
− d

2r

≤ C ′′‖
√

Φuε‖
1−( d

2
− d

2r
)

2 (‖
√

Φuε‖2 + ‖
√

Φ∇⊗ uε‖2)
d
2
− d

2r ,

and

‖
√

Φuε‖2r ≤ C‖
√

Φuε‖
1−( d

2
− d

2r
)

2 (‖
√

Φuε‖2 + ‖
√

Φ∇⊗ uε‖2)
d
2
− d

2r .

Using the embedding Ḣ
d
r
− d

2 ⊂ L
r
r−1 , we also have

‖
√

Φuε‖ r
r−1

≤ C‖
√

Φuε‖
1−( d

r
− d

2
)

2 ‖∇ ⊗ (
√

Φuε)‖
d
r
− d

2

L2

≤ C‖
√

Φuε‖
1−( d

r
− d

2
)

2 (‖
√

Φuε‖2 + ‖
√

Φ∇⊗ uε‖L2)
d
r
− d

2 .
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Hence, we find∫ t

0

∫
(
|uε|2|bε|

2
+ |p||uε|) |∇Φ| dx ds

≤ C

∫ t

0

‖
√

Φuε‖
3− d

2
2 (‖

√
Φuε‖2 + ‖

√
Φ∇⊗ uε‖L2)

d
2 ds.

Using the Young inequality, we then find for d = 2 or d = 3∫ t

0

∫
(
|uε|2|bε|

2
+ |p||uε|) |∇Φ| dx ds

≤ 1

8

∫ t

0

‖
√

Φ∇⊗ uε‖2
L2 ds+ CΦ

∫ t

0

‖
√

Φu0‖2
L2 + ‖

√
Φu0‖

12−2d
4−d
L2 ds,

where, as d ∈ {2, 3}, we have 12−2d
4−d = 2d.

When d = 4, provided that ‖
√

Φ uε‖2 < ε0 with Cε0 <
1
8

we find∫ t

0

∫
(
|uε|2|bε|

2
+ |p||uε|) |∇Φ| dx ds

≤ 1

8

∫ t

0

‖
√

Φ∇⊗ uε‖2
L2 ds+

1

8

∫ t

0

‖
√

Φu0‖2
L2 ds,

• Case 2: d = 3 and r ∈ (1, 6
5
), or d = 4 and r ∈ (1, 4

3
). Let q = dr

d−r ; for
those values of d, r and q, we have

W 1,r ⊂ Lq

0 ≤ d

2
− d

2r
≤ 1 and Ḣd(1− 1

r
) ⊂ L

2r
2−r .

and

0 ≤ d

r
− d

2
− 1 ≤ 1 and Ḣ

d
r
− d

2
−1 ⊂ L

q
q−1 .

Using the continuity of the Riesz transforms on Lr(Φrdx), we have

∫ t

0

∫
(
|uε|2|bε|

2
+ |p||uε|) |∇Φ| dx ds

≤
∫ t

0

‖Φ|uε|2‖q‖
√

Φbε‖ q
q−1
ds+

∫ t

0

‖Φp‖q‖
√

Φuε‖ q
q−1
ds

≤C
∫ t

0

‖Φ|uε|2‖W 1,r‖
√

Φbε‖ q
q−1
ds+

∑
ij

∫ t

0

‖Φbε,iuε,j‖W 1,r‖
√

Φuε‖ q
q−1
ds.

12



We have

‖Φbε,iuε,j‖W 1,r

≤ ‖Φbε,iuε,j‖r +
∑
k

(‖bε,iuε,j ∂kΦ‖Lr + ‖Φ bε,i ∂kuε,j‖Lr + ‖Φuε,i ∂kbε,j‖Lr)

≤ C(‖
√

Φuε‖ 2r
2−r
‖
√

Φbε‖2 + ‖
√

Φbε‖ 2r
2−r
‖
√

Φ∇⊗ uε‖2 + ‖
√

Φuε‖ 2r
2−r
‖
√

Φ∇⊗ bε‖2),

≤ C ′(‖
√

Φuε‖L2 + ‖
√

Φ∇⊗ uε‖L2)(‖
√

Φuε‖Ḣd(1− 1
r ) + ‖

√
Φbε‖Ḣd(1− 1

r )).

We have

‖
√

Φbε‖Ḣd(1− 1
r )

≤ C‖
√

Φbε‖
1−(d− d

r
)

2 ‖∇ ⊗ (
√

Φbε)‖
d− d

r
2

≤ C ′‖
√

Φbε‖
1−(d− d

r
)

2 (‖
√

Φbε‖2 + ‖
√

Φ∇⊗ bε‖2)d−
d
r

≤ C ′′‖
√

Φuε‖
1−(d− d

r
)

2 (‖
√

Φuε‖L2 + ‖
√

Φ∇⊗ uε‖L2)d−
d
r ,

and finally we get∑
i,j

‖Φbε,iuε,j‖W 1,r + ‖Φ|uε|2‖W 1,r

≤ C‖
√

Φuε‖
1−(d− d

r
)

2 (‖
√

Φuε‖L2 + ‖
√

Φ∇⊗ uε‖L2)1+d− d
r .

On the other hand, we have

‖
√

Φbε‖ q
q−1

≤ C‖
√

Φbε‖
2−( d

r
− d

2
)

2 ‖∇ ⊗ (
√

Φbε)‖
d
r
− d

2
−1

2

≤ C ′‖
√

Φuε‖
2−( d

r
− d

2
)

2 (‖
√

Φuε‖L2 + ‖
√

Φ∇⊗ uε‖L2)
d
r
− d

2
−1.

Hence, we find again∫ t

0

∫
(
|uε|2|bε|

2
+ |p||uε|) |∇Φ| dx ds

≤ C

∫ t

0

‖
√

Φuε‖
3− d

2
2 (‖

√
Φuε‖2 + ‖

√
Φ∇⊗ uε‖L2)

d
2 ds.

and we conclude in the same way as for the first case.

In the Case 1 and Case 2, we have found∫ t

0

∫
(
|uε|2|bε|

2
+ |p||uε|) |∇Φ| dx ds

≤ 1

8
‖
√

Φuε‖2
L2 + CΦ

∫ t

0

‖
√

Φu0‖2
L2 + ‖

√
Φu0‖2d

L2 ds.
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From these controls, we get inequality (3), and thus inequality (2). In-
equality (2) gives us a control on the size of ‖

√
Φ uε‖2 on an interval of time

that does not depend on ε :

Lemma 4.1 If α is a continuous non-negative function on [0, T ) which sat-
isfies, for three constants A,B ∈ (0,+∞) and b ∈ [1,∞),

α(t) ≤ A+B

∫ t

0

α(s) + α(s)b ds.

Let 0 < T1 < T and T0 = min(T1,
1

3b(Ab−1+(BT1)b−1)
). We have, for every

t ∈ [0, T0], α(t) ≤ 3A.

Proof. We try to estimate the first time T ∗ < T1 (if it exists) for which
we have

α(T ∗) = 3A.

We have

α ≤ A

BT1

+ (
BT1

A
)b−1αb.

We thus find

α(T ∗) ≤ 2A+ T ∗(3A)b(1 + (
BT1

A
)b−1)

and thus
T ∗3b(Ab−1 + (BT1)b−1) ≥ 1.

�

By Lemma 4.1 and (2), we thus find that there exists a constant CΦ ≥ 1
such that if T0 satisfies

• if d = 2, CΦ

(
1 + ‖u0‖2

L2(Φdx)

)
T0 ≤ 1

• if d = 3, CΦ

(
1 + ‖u0‖2

L2(Φdx)

)2

T0 ≤ 1

• if d = 4 and ‖u0‖L2(Φ dx) ≤ 1
CΦ

, CΦ T0 ≤ 1

then

sup
0≤t≤T0

‖ uε(t, .)‖2
L2(Φdx) +

∫ T0

0

‖∇⊗uε‖2
L2(Φ dx) ds ≤ CΦ(1+‖u0‖2

L2(Φ dx)). (4)
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4.2 Passage to the limit and local existence

We know that uε is bounded in L∞((0, T0), L2(Φ dx)) and ∇⊗uε is bounded
in L2((0, T0), L2(Φ dx)). This will alow us to use a simple variant of the
Aubin–Lions theorem :

Lemma 4.2 (Aubin–Lions theorem) Let s > 0, 1 < q and σ < 0. Let
(fn) be a sequence of functions on (0, T ) × Rd such that, for all T0 ∈ (0, T )
and all ϕ ∈ D(Rd),

• ϕfn is bounded in L2((0, T0), Hs)

• ϕ∂tfn is bounded in Lq((0, T0), Hσ) .

Then, there exists a subsequence (fnk) such that fnk is strongly convergent
in L2

loc([0, T )× Rd). More precisely : if we denote f∞ the limit, then for all
T0 ∈ (0, T ) and all R0 > 0,

lim
nk→+∞

∫ T0

0

∫
|x|≤R0

|fnk − f∞|2 dx dt = 0.

For a proof of the Lemma, see [1, 6].

We want to verify that ϕ∂tuε is bounded in Lα((0, T0), H−s) for some
s ∈ (−∞, 0) and some α > 1.

In Case 1, we have that Φbε⊗uε and Φpε =
∑3

i=1

∑3
j=1 RiRj(bε,iuε,j) are

bounded in Lα1((0, T0), Lr), where α1 = 2r
dr−d , so that α1 ∈ [2,∞) if d = 2,

α1 ∈ [4
3
, 4] if d = 3 and α1 ∈ (1, 2] if d = 4.

In Case 2, we have that Φbε⊗uε and Φpε are bounded in Lα2((0, T0),W 1,r),
where α2 = 2r

r+dr−d and thus it is bounded in Lα2Lq, with q = dr
d−r . We have

α2 ∈ (4
3
, 2) if d = 3 and α2 ∈ (1, 2) if d = 4.

Let ϕ ∈ D(Rd). We have that ϕuε is bounded in L2((0, T0), H1); more-
over, writing

∂tuε = ∆uε −

(
3∑
j=1

∂j(bε,juε) +∇pε

)

and using the embeddings Lr ⊂ Ḣ
d
2
− d
r ⊂ H−1 (in Case 1) or L

dr
d−r ⊂

H−( d
r
− d

2
−1) ⊂ H−1 (in Case 2) we see that ϕ∂tuε is bounded in Lαi((0, T0), H−2).

Thus, by the Aubin–Lions theorem, there exist u and a sequence (εk)k∈N
converging to 0 such that uεk converges strongly to u in L2

loc([0, T0) × R3):
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for every T̃ ∈ (0, T0) and every R > 0, we have

lim
k→+∞

∫ T̃

0

∫
|y|<R

|uεk − u|2 dx ds = 0.

Then, we have that uεk converge *-weakly to u in L∞((0, T0), L2(Φdx)),
∇ ⊗ uεk converges weakly to ∇ ⊗ u in L2((0, T0), L2(Φdx)), and uεk con-

verges weakly to u in L3((0, T0), L3(Φ
3
2dx)). We deduce that bεk ⊗ uεk is

weakly convergent in (L6/5L6/5)loc to b⊗ u and thus in D′((0, T0)× Rd); as
in Case 1, it is bounded in Lα1((0, T0), Lr), and in Case 2 it is bounded in
Lα2((0, T0),W 1,r), it is weakly convergent in these spaces respectively (as D
is dense in their dual spaces).

By the continuity of the Riesz transforms on Lr(Φrdx) and onW 1,r(Φrdx),
we find that in the Case 1 and Case 2, pεk is convergent to the distribution
p =

∑3
i=1

∑3
j=1RiRj(uiuj). We have obtained

∂tu = ∆u + (u · ∇)u−∇p.

Moreover, we have seen that ∂tu is locally in L1H−2, and thus u has
representative such that t 7→ u(t, .) is continuous from [0, T0) to D′(Rd) and
coincides with u(0, .) +

∫ t
0
∂tu ds.

In the sense of distributions, we have

u(0, .)+

∫ t

0

∂tu ds = u = lim
k→+∞

uεk = lim
k→+∞

u0,εk+

∫ t

0

∂tunk ds = u0+

∫ t

0

∂tu ds,

hence, u(0, .) = u0, and u is a solution of (NS).
Now, we want to prove the energy balance. In the case of dimension 2,

we remark that, since
√

Φu ∈ L∞L2 ∩ L2H1, we have by interpolation that√
Φu ∈ L4L4, and then we can define ((u · ∇)u) · u. The equality

∂t(
|u|2

2
) = ∆(

|u|2

2
)− |∇u|2 −∇ ·

(
|u|2

2
u

)
−∇ · (pu)

is then easy to prove.
Let us consider the case d ≥ 3. We define

Aε = −∂t(
|uε|2

2
) + ∆(

|uε|2

2
)−∇ ·

(
|uε|2

2
uε

)
−∇ · (pεuε) = |∇ ⊗ uε|2.

As uεk is locally strongly convergent in L2L2; and locally bounded in L∞L2, it
is then locally strongly convergent in Lp

′
L2, with p′ <∞. Then, as

√
Φ∇⊗

uε is bounded in L2((0, T ), L2), by the Gagliardo-Nirenberg interpolation
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inequalities we obtain uεk is locally strongly convergent in Lp
′
Lq
′
with 2

p′
+ 3
q′
>

d
2
.

In Case 1, we know that pεk is locally weakly convergent in LαLr and we
know that uεk is locally strongly convergent in L

α
α−1L

r
r−1 , and hence pεkuεk

converges in the sense of distributions.
In Case 2, we know that pεk is locally weakly convergent in LβLq and we

know that uεk is locally strongly convergent in L
β
β−1L

q
q−1 , and hence pεkuεk

converges in the sense of distributions.
Thus, Aεk is convergent in D′((0, T )× Rd) to

A = −∂t(
|u|2

2
) + ∆(

|u|2

2
)−∇ ·

(
|u|2

2
u

)
−∇ · (pu),

and A = limk→+∞ |∇ ⊗ uεk |2. If θ ∈ D((0, T )×Rd) is non-negative, we have
that

√
θ∇⊗ uεk is weakly convergent in L2L2 to

√
θ∇⊗ u, so that∫∫

Aθ dx ds = lim
εk→+∞

∫∫
Aεkθ dx ds = lim

k→+∞

∫∫
|∇⊗uεk |2θ dx ds ≥

∫∫
|∇⊗u|2θ dx ds.

Hence, there exists a non-negative locally finite measure µ on (0, T ) × R3

such that A = |∇u|2 + µ, i.e. such that

∂t(
|u|2

2
) = ∆(

|u|2

2
)− |∇u|2 −∇ ·

(
|u|2

2
u

)
−∇ · (pu)− µ.

4.3 Convergence to the initial data

In order to take the limit to k → ∞, first we introduce a test function 0 ≤
ϕ ≤ 1 which is equal to 1 in a neighborhood of 0 and we let ϕR(x) = ϕ( x

R
).

We have,∫
|uεk(t, x)|2

2
ϕRΦ dx+

∫ t

0

∫
|∇ ⊗ uεk |2 ϕRΦdx ds

=

∫
|u0,ε(x)|2

2
ϕRΦ dx−

∑
1≤i≤d

∫ t

0

∫
∂iuεk · uεk (∂iϕR Φ + ∂iΦϕR)dx ds

+
∑
i

∫ t

0

∫
(
|uεk |2

2
bεk,i + pεuεk,i) (∂iϕR Φ + ∂iΦϕR) dx ds
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and then we find

lim sup
k→+∞

∫
|uεk(t, x)|2

2
ϕRΦ dx+

∫ t

0

∫
|∇ ⊗ uεk |2 ϕRΦdx ds

=

∫
|u0(x)|2

2
ϕRΦ dx−

∑
1≤i≤d

∫ t

0

∫
∂iu · u (∂iϕR Φ + ∂iΦϕR)dx ds

+
∑
i

∫ t

0

∫
(
|u|2

2
+ p)ui (∂iϕR Φ + ∂iΦϕR) dx ds.

Since uεk = u0,εk +
∫ t

0
∂tuεk ds, we see that uεk(t, .) is convergent to u(t, .)

in D′(Rd), hence is weakly convergent in L2
loc (as it is bounded in L2(Φdx)),

so that : ∫
|u(t, x)|2

2
ϕRΦ dx ≤ lim sup

k→+∞

∫
|uεk(t, x)|2

2
ϕRΦ dx.

On the other hand, as ∇⊗ uεk is weakly convergent in L2L2(Φdx), we have∫ t

0

∫
|∇ ⊗ u|2

2
ϕRΦ dx ds ≤ lim sup

k→+∞

∫ t

0

∫
|∇ ⊗ uεk |2

2
ϕRΦ dx ds.

Thus, letting R go to +∞, we find by dominated convergence for every
t ∈ (0, T0),

‖u(t, .)‖2
L2(Φdx) + 2

∫ t

0

‖∇ ⊗ u(s, .)‖2
L2(Φdx) ds

≤‖u0‖2
L2(Φdx) −

∫ t

0

∫
∇(|u|2) · ∇Φ dx ds+

∫ t

0

∫
(|u|2u + 2pu) · ∇Φ dx ds

Letting t go to 0, we find

lim sup
t→0

‖u(t, .)‖2
L2(Φdx) ≤ ‖u0‖2

L2(Φdx).

As u is weakly continuous in L2(Φdx), we also have

‖u0‖2
L2(Φdx) ≤ lim inf

t→0
‖u(t, .)‖2

L2(Φdx).

This gives ‖u0‖2
L2(Φdx) = limt→0 ‖u(t, .)‖2

L2(Φdx), which allows to turn the
weak convergence into a strong convergence. �
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4.4 Global existence using a scaling argument

Let λ > 0, then uε is a solution of the Cauchy initial value problem for
the approximated Navier–Stokes equations (NSε) on (0, T ) with initial value
u0,ε if and only if uε,λ(t, x) = λuε(λ

2t, λx) is a solution for the approximated
Navier–Stokes equations (NSλε) on (0, T/λ2) with initial value u0,ε,λ(x) =
λu0,ε(λx). We shall write u0,λ = λu0(λx).

We have seen that

‖
√

Φuε,λ(t)‖2
L2 +

∫ t

0

‖
√

Φ∇⊗ uε,λ‖2
L2

≤ ‖
√

Φu0,ε,λ‖2
L2 + CΦ

∫ t

0

‖
√

Φuε,λ‖2
L2 + ‖

√
Φuε,λ‖2d

L2 ds

(under the extra condition, when d = 4, that ‖
√

Φuε,λ(t)‖L2 remains smaller
than ε0).

By Lemma 4.1, we thus found that there exists a constant CΦ ≥ 1 such
that if Tλ satisfies

• if d = 2, CΦ

(
1 + ‖u0,λ‖2

L2(Φdx)

)
Tλ = 1

• if d = 3, CΦ

(
1 + ‖u0,λ‖2

L2(Φdx)

)2

Tλ = 1

• if d = 4 and ‖u0,λ‖L2(Φ dx) ≤ 1
CΦ

, CΦ Tλ = 1

then

sup
0≤t≤Tλ

‖ uε,λ(t, .)‖2
L2(Φdx) +

∫ Tλ

0

‖∇⊗uε,λ‖2
L2(Φ dx) ds ≤ CΦ(1 + ‖u0,λ‖2

L2(Φ dx)).

(5)
It gives that the solutions uε are controlled, uniformly in ε, on (0, λ2Tλ)

since for t ∈ (0, Tλ),∫
|uε,λ(t, x)|2Φ(x) dx =

∫
|uε(λ2t, y)|2Φ(

y

λ
)λ2−d dy ≥ λ2−d

∫
|uε(λ2t, x)|2Φ(x) dx

and∫ Tλ

0

∫
|∇ ⊗ uε,λ(t, x)|2Φ(x) dx dt =

∫ λ2Tλ

0

∫
|∇ ⊗ uε,λ(s, y)|2Φ(

y

λ
)λ2−d dy ds

≥λ2−d
∫ λ2Tλ

0

∫
|∇ ⊗ uε(t, x)|2Φ(x) dx dt
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∫ Tλ

0

∫
|∇ ⊗ uε,λ(t, x)|2Φ(x) dx dt ≥Cλ

∫ λ2Tλ

0

‖∇ ⊗ uε‖2
L2(Φdx) ds.

Moreover, we have limλ→+∞ ‖u0,λ‖L2(Φ dx) = 0 when d = 4 and limλ→+∞ λ
2Tλ =

+∞ when 2 ≤ d ≤ 4. Indeed, we have∫
λ2|u0(λx)|2Φ(x) dx = λ2−d

∫
|u0(x)|2Φ(

x

λ
) dx = λ4−d

∫
|u0(x)|2

Φ(x
λ
)

λ2Φ(x)
Φ(x) dx

Since
Φ( x

λ
)

λ2Φ(x)
≤ min{C2,

1
λ2Φ(x)

} by hypothesis (H4), we find by dominated

convergence that ‖u0,λ‖L2(Φ dx) = o(λ
4−d

2 ) and thus limλ→+∞ λ
2Tλ = +∞ .

Thus, if we consider a finite time T and a sequence εk, we may choose λ
such that λ2Tλ > T (and such that ‖u0,λ‖L2(Φ dx) < ε0 if d = 4); we have a
uniform control of uε,λ and of ∇⊗uε,λ on (0, Tλ), hence a uniform control of
uε and of ∇ ⊗ uε on (0, T ). We may exhibit a solution on (0, T ) using the
Rellich–Lions theorem by extracting a subsequence εkn . A diagonal argument
permits then to obtain a global solution.

Theorem 1 is proved. �

5 Proof of Theorem 2 (the case d = 2).

In the case of dimension d = 2, the Navier–Stokes equations are well-posed in
H1 and we don’t need to mollify the equations. Thus, we may approximate
the Navier–Stokes equations with

(NSε)


∂tuε = ∆uε − (uε · ∇)uε −∇pε

∇ · uε = 0, uε, (0, .) = u0,ε

with
u0,ε = P(φεu0).

Then the vorticity ωε is solution of
∂tωε = ∆ωε − (uε · ∇)ωε

∇ · ωε = 0, ωε, (0, .) = ω0,ε

with
ω0,ε = ∇∧ (φεu0).

u0,ε belongs to H1, so we know that we have a global solution uε. We then
just have to prove that, for every finite time T0, we have a uniform control
of the norms ‖ωε‖L∞((0,T0),L2(Φ dx)) and ‖∇ωε‖L2((0,T0),L2(Φ dx)).
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We can calculate
∫
∂tωε · ωεΦ dx so that∫

|ωε(t, x)|2

2
Φ dx+

∫ t

0

∫
|∇ωε|2 Φdx ds

=

∫
|ω0,ε(x)|2

2
Φ dx−

∫ t

0

∫
∇(
|ωε|2

2
) · ∇Φdx ds

+

∫ t

0

∫
|ωε|2

2
uε · ∇Φ dx ds.

As∫ t

0

∫
|ωε|2

2
uε · ∇Φ dx ds ≤

∫ t

0

‖
√

Φωε‖2

L
8
3
‖
√

Φuε‖L4

≤
∫ t

0

(‖
√

Φωε‖3/4

L2 ‖∇(
√

Φωε)‖1/4

L2 )2‖
√

Φuε‖L4

we obtain

‖
√

Φωε(t)‖2
L2 +

∫ t

0

‖
√

Φ∇ωε‖2
L2 ≤ ‖

√
Φω0,ε‖2

L2 + CΦ

∫ t

0

‖
√

Φωε‖2
L2(1 + ‖

√
Φuε‖

4
3

L4) ds

We can conclude that, for all T > 0 and for all t ∈ (0, T ),

‖
√

Φωε(t)‖2
L2 +

∫ t

0

‖
√

Φ∇ωε‖2
L2 ≤ ‖

√
Φω0,ε‖2

L2eCΦ supε>0

∫ t
0 (1+‖

√
Φuε‖L4 )

4
3 ds

Thus, we have uniform controls on (0, T ). �

6 Proof of Theorems 3 and 4 (the axisym-

metric case)

6.1 Axisymmetry.

In R3, we consider the usual coordinates (x1, x2, x3) and the cylindrical co-
ordinates (r, θ, z) given by the formulas x1 = r cos θ, x2 = r sin θ and x3 = z.

We denote (e1, e2, e3) the usual canonical basis

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

We attach to the point x (with r 6= 0) another orthonormal basis

er =
∂x

∂r
= cos θ e1+sin θ e2, eθ =

1

r

∂x

∂θ
= − sin θ e1+cos θ e2, ez =

∂x

∂z
= e3.
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For a vector field u = (u1, u2, u3) = u1e1 + u2e2 + u3e3, we can see that

u = (u1 cos θ + u2 sin θ) er + (−u1 sin θ + u2 cos θ) eθ + u3 ez.

We will denote (ur, uθ, uz)p the coordinates of u in the basis (er, eθ, ez).
We will consider axially symmetric (axisymmetric) vector fields u without
swirl and axisymmetric scalar functions a, which means that

u = ur(r, z) er + uz(r, z) ez and a = a(r, z).

6.2 The H1 case.

We will use the following well known results of Ladyzhensaya [5, 6].

Proposition 6.1 Let u0 be a divergence free axisymmetric vector field with-
out swirl, such that u0 belongs to H1. Then, the following problem

(NS)


∂tu = ∆u− (u · ∇)u−∇p

∇ · u = 0, u(0, .) = u0

has a unique solution u ∈ C([0,+∞), H1). This solution is axisymmetric
without swirl. Moreover, u,∇⊗u belong to L∞((0,+∞), L2), and ∇⊗u,∆u
belong to L2((0,+∞), L2).

If u0 ∈ H2, we have the inequality∫
|ω(t)|2

r2
dx ≤

∫
|ω0|2

r2
≤ ‖∇⊗ ω0‖2

2.

6.3 A priori controls

Let φ ∈ D(R2) be a real-valued radial function which is equal to 1 in a
neighborhood of 0 and let φε(x) = φ(ε(x1, x2)). For ε ∈ (0, 1], let

u0,ε = P(φεu0).

Thus, u0,ε is a divergence free axisymmetric without swirl vector field which
belongs to H1. As we have

ω0,ε = ∇∧ u0,ε = ∇∧ (φεu0) = φεω0 + ε(∇φ)(εx) ∧ u0,

using Φ ∈ A2 and |ε∇φ(εx)| ≤ C 1
r
1r≥ 1

Cε
≤ C ′1r≥ 1

Cε

√
Φ, we can see that

lim
ε→0
‖u0 − u0,ε‖L2(Φ dx) + ‖ω0 − ω0,ε‖L2(Ψ dx) = 0.
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Let uε be the global solution of the problem

(NSε)


∂tuε = ∆uε − (uε · ∇)uε −∇pε

∇ · uε = 0, uε(0, .) = u0,ε

given by the Proposition 6.1. We denote ωε = ∇∧ uε, then

∂tuε = ∆uε + (uε · ∇)uε −∇pε (6)

and
∂tωε = ∆ωε + (ωε · ∇)uε − (uε · ∇)ωε (7)

As
√

Ψωε ∈ L2H1 (because
√

Ψ,∇
√

Ψ ∈ L∞) and
√

Ψ∂tωε ∈ L2H−1, we
can calculate

∫
∂tωε · ωεΨ dx using (7) so that∫

|ωε(t, x)|2

2
Ψ dx+

∫ t

0

∫
|∇ ⊗ ωε|2 Ψdx ds

=

∫
|ω0,ε(x)|2

2
Ψ dx−

∫ t

0

∫
∇(
|ωε|2

2
) · ∇Ψdx ds

+

∫ t

0

∫
|ωε|2

2
uε · ∇Ψ − (ωε · uε)ωε · ∇Ψ dx

−
∫ t

0

∫
((ωε · ∇)ωε) · uε Ψ dx ds

≤
∫
|ω0,ε(x)|2

2
Ψ dx+

1

8

∫ t

0

∫
|∇ ⊗ ωε|2 Ψdx ds+ C

∫ t

0

‖
√

Ψωε‖2
2 ds

+ C

∫ t

0

‖
√

Ψωε‖2‖
√

Ψωε‖6‖
√

Φuε‖3 ds

−
∫ t

0

∫
((ωε · ∇)ωε) · uε Ψ dx ds

≤
∫
|ω0,ε(x)|2

2
Ψ dx+

1

4

∫ t

0

∫
|∇ ⊗ ωε|2 Ψdx ds+ C

∫ t

0

‖
√

Ψωε‖2
2 ds

+ C ′
∫ t

0

‖
√

Ψωε‖2
2(‖
√

Φuε‖3 + (‖
√

Φuε‖4/3
3 ) ds

−
∫ t

0

∫
((ωε · ∇)ωε) · uε Ψ dx ds

As ωε = ωε,θ eθ, we have

ωε · ∇ωε = −
ω2
ε,θ

r
er.
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In order to control uε · (ωε · ∇ωε), we split the domain of integration in a
domain where r is small and a domain where r is large. The support of φ1

is contained in {x / r < R} for some R > 0}, and the support of 1 − φ1 is
contained in {x / r > R0} for some R0 > 0}. We have

inf
r<R

Φ(x) = inf√
x2

1+x2
2<R

Φ(x1, x2, 0) > 0

and similarly
inf
r<R

Ψ(x) = inf√
x2

1+x2
2<R

Ψ(x1, x2, 0) > 0.

On the other hand, we have

inf
r>R0

r2Φ(x) = inf√
x2

1+x2
2>R0

(x2
1 + x2)2Φ(x1, x2, 0) ≥ inf

|x|>R0

|x|2Φ(x) > 0.

We then write :

−
∫ t

0

∫
((ωε · ∇)ωε) · uε Ψ dx ds

=

∫ t

0

∫
φ1( (ωε · ∇)uε) · ωε ) Ψ dx ds+

∫ t

0

∫
(ωε · uε)(ωε · ∇φ1)Ψ dx ds

+

∫ t

0

∫
φ1(ωε · uε)ωε · ∇Ψdx ds

−
∫ t

0

∫
(1− φ1)(uε · (ωε · ∇ωε))Ψdx ds

≤C
∫ t

0

∫
|ωε|2|∇ ⊗ uε|Ψ3/2 dx ds+ C

∫ t

0

∫
|ωε|2|uε|

√
Φ Ψ dx ds.

As Ψ ∈ A2, we have ‖
√

Ψ∇⊗ uε‖2 ≈ ‖
√

Ψωε‖2; moreover,

‖∇ ⊗ (
√

Φuε)‖2 ≤ C(‖
√

Φuε‖2 + ‖
√

Ψωε‖2)

and
‖∇ ⊗ (

√
Ψωε)‖2 ≤ C(‖

√
Ψωε‖2 + ‖

√
Ψ∇⊗ ωε‖2),
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and thus we get

−
∫ t

0

∫
((ωε · ∇)ωε) · uε Ψ dx ds

≤C
∫ t

0

‖
√

Ψ∇⊗ uε‖L2‖
√

Ψωε‖L3‖
√

Ψωε‖L6 ds+ C

∫ t

0

‖
√

Φuε‖L6‖
√

Ψωε‖L3‖
√

Ψωε‖L2 ds

≤C ′
∫ t

0

‖
√

Ψωε‖
3
2

L2(‖
√

Ψωε‖L2 + ‖
√

Ψ∇⊗ ωε‖L2)
3
2 ds

+ C ′
∫ t

0

‖
√

Φuε‖L2‖
√

Ψωε‖
3
2

L2(‖
√

Ψωε‖L2 + ‖
√

Ψ∇⊗ ωε‖L2)
1
2 ds

≤C ′′
∫ t

0

(‖
√

Φuε‖2 + ‖
√

Φuε‖4/3
2 )‖
√

Ψωε‖2
2 + ‖

√
Ψωε‖3

2 + ‖
√

Ψωε‖6
2 ds

+
1

8

∫ t

0

‖
√

Ψ∇⊗ ωε‖2
2 ds

We finally find that

‖
√

Ψωε(t)‖2
L2 +

∫ t

0

‖
√

Ψ∇⊗ ωε‖2
L2 ds

≤ ‖
√

Ψω0,ε‖2
L2 + C

∫
(1 + ‖

√
Φuε‖3 + (‖

√
Φuε‖4/3

3 )‖
√

Ψωε‖2
2 ds

+ C

∫ t

0

(‖
√

Φuε‖2 + ‖
√

Φuε‖4/3
2 )‖
√

Ψωε‖2
2 + ‖

√
Ψωε‖3

2 + ‖
√

Ψωε‖6
2 ds

≤ ‖
√

Ψω0,ε‖2
L2

+ C ′
∫ t

0

(1 + ‖
√

Φuε‖2 + ‖
√

Φuε‖4/3
2 )‖
√

Ψωε‖2
2 + ‖

√
Ψωε‖6

2 ds

(8)

We already know that ‖
√

Φuε(t)‖L2 remains bounded (independently of
ε) on every bounded interval, so that we may again use Lemma 4.1 and

control sup0≤t≤T0
‖ ωε(t, .)‖2

L2(Ψdx) +
∫ T0

0
‖∇ω‖2

L2(Ψdx) ds for some T0, where
both T0 and the control don’t depend on ε. The control is then transferred
to the limit ω since ω = limωεk = lim∇∧uεk . This proves local existence of
a regular solution and Theorem 3 is proved.

6.4 The case of a very regular initial value.

We present a result apparently more restrictive that our main Theorem (The-
orem 4), but we will see that it implies almost directly our main Theorem.
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Proposition 6.2 Let Φ be a weight satisfying (H1)− (H4). Assume more-
over that Φ depends only on r =

√
x2

1 + x2
2. Let Ψ be another continuous

weight (that depends only on r) such that Φ ≤ Ψ ≤ 1, Ψ ∈ A2 and there
exists C1 > 0 such that

|∇Ψ| ≤ C1

√
ΦΨ and |∆Ψ| ≤ C1ΦΨ.

Let u0 be a divergence free axisymmetric vector field without swirl, such
that u0, belongs to L2(Φdx), ∇⊗u0 and ∆u0 belong to L2(Ψdx). Then there
exists a global solution u of the problem

(NS)


∂tu = ∆u− (u · ∇)u−∇p

∇ · u = 0, u(0, .) = u0

such that

• u is axisymmetric without swirl, u belongs to L∞((0, T ), L2(Φ dx)), ∇⊗
u belong to L∞((0, T ), L2(Ψ dx)) and ∆u belongs to L2((0, T ), L2(Ψ dx)),
for all T > 0,

• the maps t ∈ [0,+∞) 7→ u(t, .) and t ∈ [0,+∞) 7→ ∇⊗u(t, .) are weakly
continuous from [0,+∞) to L2(Φ dx) and to L2(Ψ dx) respectively, and
are strongly continuous at t = 0,

Proof.
Ladyzenskaya’s inequality for axisymmetic fields with no swirl (Proposi-

tion 6.1) gives ∫
|ωε(t)|2

r2
dx ≤

∫
|ω0,ε|2

r2
dx. (9)

As we have

∂iω0,ε = φε∂iω0 + ε∂iφ(εx)ω0 + ε(∇φ)(εx) ∧ ∂iu0 + ε2(∇∂iφ)(εx) ∧ u0,

we can see that
lim
ε→0
‖∇ ⊗ ω0,ε −∇⊗ ω0‖L2(Ψ dx) = 0.

As∫
|ω0,ε − ω0|2

r2
dx ≤ C(

∫
0<r<1

|∇⊗ω0,ε−∇⊗ω0|2Ψ dx+

∫
1<r<+∞

|ω0,ε−ω0|2Ψ dx),

we also have

lim
ε→0

∫
|ω0,ε − ω0|2

r2
dx = 0.
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We know that∫
|ωε(t, x)|2

2
Ψ dx+

∫ t

0

∫
|∇ ⊗ ωε|2 Ψdx ds

=

∫
|ω0,ε(x)|2

2
Ψ dx−

∫ t

0

∫
∇(
|ωε|2

2
) · ∇Ψdx ds

+

∫ t

0

∫
|ωε|2

2
uε · ∇Ψ dx ds

−
∫ t

0

∫
(ωε · uε)ωε · ∇Ψ dx ds−

∫ t

0

∫
uε(ωε · ∇ωε) Ψ dx ds

which implies

‖
√

Ψωε(t)‖2
L2 + 2

∫ t

0

‖
√

Ψ∇ωε‖2
L2

≤ ‖
√

Ψω0,ε‖2
L2 + 2

∫ t

0

‖
√

Ψωε‖L2‖
√

Ψ∇ωε‖L2

+

∫ t

0

‖
√

Φuε‖L3‖
√

Ψωε‖2
L3

+

∫ t

0

1

r
|ur,ε||ωε|2Ψ dx ds

Furthermore, we have∫ t

0

∫
1− φ1(x)

r
|ur,ε||ωε|2Ψ dx ds ≤

∫ t

0

‖
√

Φuε‖L3‖
√

Ψωε‖2
L3

and ∫ t

0

∫
φ1(x)

r
|uε,r||ωε|2dx ds ≤ C

∫ t

0

‖ωε
r
‖L2‖
√

Ψuε‖L∞‖
√

Ψωε‖L2 ,

where

‖ωε
r
‖L2 ≤ C‖ω0,ε

r
‖L2 ≤ C(‖

√
Ψω0,ε‖L2 + ‖

√
Ψ∇⊗ ω0,ε‖L2)

≤ C ′(‖
√

Φu0‖L2 + ‖
√

Ψω0‖L2 + ‖
√

Ψ∇⊗ ω0‖L2)

and

‖
√

Ψuε‖2
L∞ ≤ C‖∇⊗(

√
Ψuε)‖2‖∆(

√
Ψuε)‖2 ≤ C ′(‖

√
Φuε‖L2+‖

√
Ψωε‖L2+‖

√
Ψ∇⊗ωε‖L2)2.
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Then, if we denote A0 = ‖
√

Φu0‖L2 + ‖
√

Ψω0‖L2 + ‖
√

Ψ∇ ⊗ ω0‖L2 , we
have

‖
√

Ψωε(t)‖2
L2 +

∫ t

0

‖
√

Ψ∇⊗ ωε‖2
L2

≤‖
√

Ψω0,ε‖2
L2 + C

∫ t

0

‖
√

Φuε‖2
L2

+ CΦ

∫ t

0

‖
√

Ψωε‖2
L2(1 + A0 + A2

0 + ‖
√

Φuε‖L3 + ‖
√

Φuε‖2
L3) ds

We can then conclude that, for all T > 0 and for all t ∈ (0, T ),

‖
√

Ψωε(t)‖2
L2 +

∫ t

0

‖
√

Ψ∇⊗ ωε‖2
L2

≤(‖
√

Ψω0,ε‖2
L2 + CΦ sup

ε>0

∫ T

0

‖
√

Φuε‖2
L2)eCΦ supε>0

∫ t
0 (1+A2

0+‖
√

Φuε‖L3+‖
√

Φuε‖2
L3 ) ds

Then, we can obtain a solution on (0, T ) using the Aubin–Lions Theorem
and finish with a diagonal argument to get a global solution. �

6.5 End of the proof.

We begin by consider a local solution v on (0, T0) with initial value u0 given by
Theorem 3, which is continuous from (0, T0) to D′. We take T1 ∈ (0, T0) such
that∇⊗(∇∧v)(T1, .) ∈ L2(Φdx). We consider a solution w on (T1,+∞) and
initial value v(T1) given by Proposition 6.2. Our global solution is defined
as u = v on (0, T1) and u = w on (T1,+∞). �

References

[1] F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incom-
pressible Navier-Stokes Equations and Related Models, Applied Math-
ematical Sciences book series 183, Springer, USA, 2012.

[2] Z. Bradshaw, I. Kukavica and T.P. Tsai, Existence of global
weak solutions to the Navier-Stokes equations in weighted spaces,
arXiv:1910.06929v1

[3] P.G Fernández-Dalgo and P.G. Lemarié–Rieusset, Weak solutions for
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[6] P.G. Lemarié-Rieusset, The Navier-Stokes problem in the 21st century,
CRC Press, Boca Raton, FL, 2016.

[7] J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace,
Acta Math. 63 (1934), 193-248.

29


	Introduction
	Main results.
	Some lemmas on weights.
	Proof of Theorem 1 (the case of L2( dx))
	A priori controls
	Passage to the limit and local existence
	Convergence to the initial data
	Global existence using a scaling argument

	Proof of Theorem 2 (the case d=2).
	Proof of Theorems 3 and 4 (the axisymmetric case)
	Axisymmetry.
	The H1 case.
	A priori controls
	The case of a very regular initial value.
	End of the proof.


