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Weighted energy estimates for the
incompressible Navier-Stokes equations and
applications to axisymmetric solutions without
swirl

Pedro Gabriel Fernandez-Dalgo*!, Pierre Gilles
Lemarié-Rieusset?s

Abstract
We consider a family of weights which permit to generalize the
Leray procedure to obtain weak suitable solutions of the 3D incom-
pressible Navier-Stokes equations with initial data in weighted L?
spaces. Our principal result concerns the existence of regular global
solutions when the initial velocity is an axisymmetric vector field with-
out swirl such that both the initial velocity and its vorticity belong to

L2((1 472~ 2dx), with r = /22 + 22 and 7 € (0,2).
Keywords : Navier-Stokes equations, axisymmetric vector fields, swirl,

Muckenhoupt weights, energy balance
AMS classification : 35Q30, 76D05.

1 Introduction

In 1934, Leray [7] proved global existence of weak solutions for the 3D in-
compressible Navier—Stokes equations
Jdu=Au—(u-V)u—Vp
(NS)
V.-u=0, u(0,.) =uy
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in the case of a fluid filling the whole space whose initial velocity ug is in
L?. Leray’s strategy is to regularize the initial value and to mollify the non-
linearity through convolution with a bump function : let 6.(z) = %6(%),
where 6 € D(R?), 6§ is non-negative and radially decreasing and [ 6 dx = 1;
the mollified equations are then

o, = Au, — ((0e * u) - V)u, — Vp,
(NSe)
V-u =0, u,, (0,.) = 6. * uy.

Standard methods give existence of a smooth solution on an interval [0, T¢]
where T, ~ €3||, * ug||; 2. Then, the energy equality

t
et )1z + 2/0 IV ®ucllzds = [|0c = o3

allows one to extend the existence time and to get a global solution u;
moreover, the same energy equality allows one to use a compactness argument
and to get a subsequence u,, that converges to a solution u of the Navier—
Stokes equations (NS) which satisfies the energy inequality

t
lat, )3+ 2 / IV @ ul2ds < [Ju2
0

Weak solutions of equations (NS) that satisfy this energy inequality are called
Leray solutions.

Recently, Bradshaw, Kukavica and Tsai [2] and Ferndndez-Dalgo and
Lemarié-Rieusset [3] used Leray’s procedure to find a global weak solution to
the equations (NS) when ug is no longer assumed to have finite energy but
only to satisfy the weaker assumption

dx
2
— <
[ ) e < o

The solutions then satisfy, for every finite positive T,

dx T dx
su u(t, z)|? +/ /V u(t, z)|? < 4o00.
s [P s [ [ Ivenenr

Whereas the cases of finite energy and of infinite energy sound very sim-
ilar, this similarity breaks down when we consider higher regularity. In-
deed, if we assume that both the initial velocity uy and the initial vorticity
wo = V Aug are in L? (so that the divergence-free uy belongs to H'), we find




that the Leray solution is unique on some interval [0, 7] and remains in H'.
This is based on the energy equality for the vorticity w :

t t
ot )3 +2 [ IV 0wlpds = ol +2 [ [ o Vyudeds
0 0

The key point is the interpolation inequality

‘/w-(w-V)ud:v

Then the Young inequality gives

3/2 3/2
< Cllwl < w32V @ W]y,

t t
HMnM+/WV®MWwWW%+W/HW%&
0 0

We find that for some positive T~ ||wol|;* we have

o<t‘T

T

sup ||w||3 + / IV ®@wl|3ds < +oo.
0

This strategy fails if we only assume that

upl(x — <+
/|0()|1+H2 /|0 1+|$|2

Indeed, the energy estimate one might hope would be

I B /n 5V oulds

1+! \2
< Imli N Plb W/W Y el

w3l

T+ yx|2u”3d3

E w|*|V @ u| dz ds.

+c/
0 ||\/1+|33|2

+c/0t/1

We cannot control the last term due to the lack of integrability if we want to
use mterpolatlon inequalities, we should deal with [ e |2 ez [w|*|V @ u| dx
instead of [ HMQ w|?|V @ ul d.

In this paper, we show that this strategy may work in the case of an
axisymmetric flow with no swirl when we consider an axisymmetric weight

O(z) = ﬁ (with 0 < v < 2) where © = (21, 9, 23) and r = /% + 23. If,
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in cylindrical coordinates, ug = wug (7, 2) €, + u.(r, 2) e, and if we assume
that ug is in H(® dz), i.e.

/]uo(:c)|2 (z) d + / lwo ()2 B(x) dz < +o0,

we shall obtain the energy estimate
||\/5w(t,-)|!§+2/0t||\/5V®w||§ds
< VBl 20 [ VBl )2 [ VBV @l s
w0 [ VBl VBulsds
+c/0t VB w||? ds.

This will allow us to find a local-in-time solution in H'(® dx). Moreover, we
shall easily adapt Ladyzhenskaya’s result [5] on global existence of axisym-
metric solutions in H' and find a global solution in H'(® dx). Remark that,
in contrast with the case of H!, we cannot prove uniqueness of these regular
solutions.

2 Main results.

We shall first prove global existence in the weighted L? setting, in dimension
d with 2 < d < 4 when the weight ® satisfies some basic assumptions that
allow the use of Leray’s projection operator and of energy estimates :

Definition 2.1 An adapted weight function ® on R (2 < d < 4) is a con-
tinuous Lipschitz function ® such that :

o (HI)0<®<1.
o (H2) There exists Cy > 0 such that |V®| < C,®2
e (H3) There exists r € (1,2] such that ®" € A, (where A, is the Muck-

enhoupt class of weights). In the case d = 4, we require r < 2 as
well.

o (H4) There exists Cy > 0 such that ®(x) < ®(3) < CoX*®(x), for all
A > 1.



Examples of adapted weights can easily be given by radial slowly decaying
functions :

o d=2 d(x)= where 0 <y < 2

1
(1[a])™

ed=3ord=4,d(z)= where 0 < vy <2

1
(1+[a])”

o dzB,@(x):ﬁwherer=ﬂx%+x%and0§7<2.

The following result concerns the existence of weak suitable solutions
belonging to a weighted L? space, where the weight permits to consider
initial data with a weak decay at infinity.

Theorem 1 Let d € {2,3,4}. Consider a weight ® satisfying (H1) — (H4).
Let ugy be a divergence free vector field, such that ug belongs to L*(® dz, R?).
Then, there exists a global solution w of the problem

Ou=Au— (u-V)u—Vp

(N'S)
V-u=0, u(0,.) = ug

such that

e u belongs to L>=((0,T), L*(®dz)) and V@wu belongs to L*((0,T), L*(®dz)),
for all T >0,

® p=7 1cijca RiRj(uiuy),

o the map t € [0,400) — wul(t,.) is weakly continuous from [0,+0o0) to
L*(®dzx), and is strongly continuous at t = 0,

e u satisfies the local energy inequality : there exists a locally finite non-
negative measure p such that
ul? ul? ul?
o) = 2 wew v (M) v ) -,
2 2 2
(remark : p =0 when d = 2).

If we consider the problem of higher regularity, the case of dimension
d = 2 is easy, while, in the case d = 3, one must restrict the study to the
case of axisymmetric flows with no swirl (to circumvent the stretching effect
in the evolution of the vorticity).



Theorem 2 (Case d = 2.) Let ® be a weight satisfying (H1) — (H4). Let
uy be a divergence free vector field, such that uy, V @ ugy belong to L*(®dz).
Then there exists a global solution w of the problem

Ou=Au— (u-V)u—Vp

(NS)
V-u=0, u(0,.) = ug
such that
o uand V@u belong to L>=((0,T), L*(® dz)) and Aw belongs to L*((0,T), L*(® dx)),
for all T >0,

e the mapst € [0,400) — u(t,.) andt € [0,4+00) — VRul(t,.) are weakly
continuous from [0,+00) to L*(®dz), and are strongly continuous at
t=0,

Theorem 3 (Case d = 3.) Let ® be a weight satisfying (H1) — (H4). Let
uy be a divergence free axisymmetric vector field without swirl, such that
uy, V @ ug belong to L*(®dx). Assume moreover that ® depends only on
r = /a2 + 2% Then there exists a time T > 0, and a local solution u on
(0,T") of the problem

dhu=Au—(u-V)u—Vp
(VS)
V-u=0, u(0,.) = ug

such that

e w is axvisymmetric without swirl, u and V&wu belong to L>=((0,T), L*(® dz))
and Au belongs to L*((0,T), L*(® dx)),

e the mapst — wu(t,.) andt — Vu(t,.) are weakly continuous from [0,T")
to L*(® dz), and are strongly continuous at t = 0,

An extra condition on the weight permits to obtain a global existence
result. Moreover, if the vorticity is more integrable at time ¢t = 0, it will
remain so in positive times. The next theorem precise these conditions on
the weight.

Theorem 4 (Case d = 3.) Let ® be a weight satisfying (H1) — (H4). As-
sume moreover that ® depends only on r = \/x? +23. Let ¥ be another
continuous weight (that depends only on r) such that ® < ¥V <1, U € A,
and there exists C1 > 0 such that

IVU| < CiVOT and |AT] < C1DT.
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Let uy be a divergence free axisymmetric vector field without swirl, such
that ug, belongs to L*(®dz) and V & ugy belongs to L*(¥dz). Then there
exists a global solution w of the problem

du=Au—(u-V)u—Vp
(NVS)
V-u=0, u(0,.) = ug

such that

e w is azisymmetric without swirl, u belongs to L>=((0,T), L*(® dz)), V&
w belong to L>=((0,T), L*(¥ dx)) and Aw belongs to L*((0,T), L*(V dz)),
forall T >0,

e the mapst € [0,4+00) — u(t,.) andt € [0,4+00) — VRul(t,.) are weakly
continuous from [0, 4+00) to L2(<I> dz) and to L*(¥ dx) respectively, and
are strongly continuous att =0,

Example : we can take ®(x) =
v < 2.

and ¥(z) = +T+)5/2 with 0 < 4§ <

L
(14r)7 (1

3 Some lemmas on weights.

Let us first recall the definition of Muckenhoupt weights : for 1 < ¢ < 400,
a positive weight w belongs to A,(R?) if and only if

1 1—1
1 / e 1 _1 a
sup _ CIDdx) (— P a1 dw) < +00.
z€R4 p>0 (‘B(%, p)‘ B(z,p) |B('T7 p)' B(z,p)

(1)
Due to the Hélder inequality, we have A,(RY) € A (RY) if g <.
One easily cheks that wy = G777 +\ 5 belongs to A ,(R%) if and only if
—d(g—1) <vy<d.

Thus, ® = w, is an adapted weight if and only if 0 <~ <2 and v < d.

One may of course replace in inequality . 1)) the balls B(x, p) by the cubes
Qx,p) =lxy — pya1 + p[x -+ x]zg — p,xq + p[. Thus, we can see that,
if ®(z) = U(zy,22) and 1 < ¢ < +o0, then & € A, (R?) if and only if
U € A,(R?). In particular, ®(z) = is an adapted weight on R? if and

1
(14r)
only if 0 <~ < 2.



Lemma 3.1 Let ® satisfy (H1) and (H2) and let 1 <r < +o00. Then :
a) VOf € H' if and only if f € L*(®dz) and Vf € L*(® dx); moreover we

have
1/2
IVl ~ < [ese v f|2)dx)

b) @f € W if and only if f € L"(®"dx) and Vf € L"(®" dx); moreover

we have

1/r
D f |l =~ (/ (| f|" + |Vf|r)dx)

Proof. This is obvious since |[V®| < C1®%? < C1® and |[V(V®)| =

Lemma 3.2 If ® € A, then we have for all 0 € (0,1), ®° € A, with § =
’S%. In particular, if a weight ® satisfies (H3), we obtain ® € A, with
p:1+%:2—%<2, and so ® € As.

Proof. As % =1+ =2 we find by the Holder inequality

s p

(/fbf—i dx)é(/ o~ DG gy~
@ Q

- (/ (@3 (@) ) dx)é(/ oD g1
9 Q

= (/ ¢ dm)i(/ O~ dg)r s
@ Q
<

Let us recall that for a weight w € A, (1 < ¢ < +00), the Riesz transforms
and the Hardy—Littlewood maximal function are bounded on L?(w dx). We
thus have the following inequalities :

Lemma 3.3 Let ¢ satisfy (H1), (H2) and (H3). Then :

a) for j = 1,...,d, the Riesz transforms R, satisfy that ||\/6R]f||2 <
CINEfls and |NER, i < CINGfls

b) for j =1,...,d, the Riesz transforms R, satisfy that || PR, f|, < C||®f]l,
and | ®R; fllwrr < C||® fllwr;

c) if P is the Leray projection operator on divergence-free vector fields, then
for a wvector field w we have |[VOPuly < C||vVOuly and |VOPul|; <
OBl m;

d) if d € {2,3,4}, then for a vector field u we have

Ve ulli = VO ufls + VOV - aflo + VOV A 2.
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e) Let 0.(x) = 40(%), where 0 € D(R?), 0 is non-negative and radially

e

decreasing and [0dx = 1. Then we have |[V® (0. * f)|l2 < C||V® f||2 and
VO (0 * Hllar < CUNVP £l + |VO Vf]L2) (where the constant C does

not depend on € nor f).

Proof. a)is a consequence of ® € A, and of Lemmal[3.1] (since 9, (R; f) =
R;(9xf)). Similarly, b) is a consequence of " € A, and of Lemma [3.1]

c) is a consequence of a) : if v =Pu, then v; = Zzzl R; Ry, (ug).

d) is a consequence of a) : if R = (Ry,..., Rq), we have the identity

—Au=VA(VAu —-V(V-u)
so that
8ku = RkR N (V N 11) — RkR(V . 11).

e) is a consequence of ® € A, and of Lemma . a classical inequality
[] states that we have |0, * f| < M (where M is the Hardy-Littlewood
maximal function of f) and, similarly, |0k (6. * f)| < Ma,s. o

A final lemma states that ® is slowly decaying at infinity :

Lemma 3.4 Let ® satisfy (H1) and (H2). Then there ezists a constant Cs
such that

1
< D.
a2 =

If d =3 and ® depends only on r = \/x3 + 13, then

< o,
e

Proof. We define 7y = Lz and g(A\) = ®(\zy). We have

E
g'(\) = x0- VO (Azo) > —Cy(P(A\1))>? = —Crg(N)*/2.
Thus N
Cxz = [ g ) e =290 = 9(0) )
and we get :
B(a)2 < B(0) + Dol < V(1 + e
If & depends only on r, we find that

T e = Catlen 22,0) = ().



4 Proof of Theorem (the case of L*(®dx))

4.1 A priori controls

Let ¢ € D(RY) be a real-valued test function which is equal to 1 in a neigh-
borhood of 0 and let ¢ () = ¢(ex). Let

Ug e = P(¢eu0) .

Thus, ug, is divergence free and converges to uy in L2(<I> dx) since ¢ € A2,
Let 0.(z) = 0(%), where § € D(R?), 6 is non-negative and radially

decreasing and f€9 dx = 1. We denote b, = u, * 6.. Let u, be the unique
global solution of the problem

o, = Au, — (b, - V)u, — Vp,

(NS,)
V-u =0, u., (0,.) =up,

which belongs to C([0, +00), L*(R%)) N L2((0, +00), H'(RY)).
We want to demonstrate that

t
||\/5ue(t)|]%z+/ VOV @ u,||2: ds
0
t @)
< VB, + o [ VB + |V [ ds,
0

where Cy does not depend on € nor on uy. (When d = 4, the inequality will
hold only if ||[v/®u,(t)|| 2 remains small enough).

Since V@, VV/® € L™, pointwise multiplication by v/® maps boundedly
H' to H' and H! to H™*. Thus, vV®u, € L2H' and V®o,u, € L2H', we
can calculate [ dyu, - u. P dz and obtain :

2 ¢
/M@dw+/ /|V®ug|2 ddx ds
0

:/M@dm—/{)t/(VQ@ue) (VO @u)deds (3)

t 2
+/O /(|uTe|bE+puE) -V dz ds.

We use the fact that |[V®| < C’OCD% < Cy?, in order to control the follow-
ing term

t 1 t t
- [ e Feeuds| < ¢ [ IVEVSulau 0 [ VBl e,

10



Now, we analyze the integrals containing the pressure term. We distin-
guish two cases :

e Case 1: d=2andr € (1,2], or d =3 and r € [£,2], or d = 4 and
re [%, 2). For those values of d and r we have

o
IA
[\l S

d .
_ Z <land H2 % C L
2r

and

0 _ S <qiand H 5 c L.

IA
RRRSY
(STR-W

Using the continuity of the Riesz transforms on L"(®"dx),

! |u5|2|b6| ! \/_
i (—5— tpllu) [Ve|[drds < 0\|<I>(!ue||be|+\p!)llr|| duf| -,

t
< c/ VB, s [|Tbe o || VB || o ds
0

r—1

Using the Sobolev embedding H2 =3 C L2, the fact that IVV®| <
C'v/®, and the continuity of the maximal function operator on L?(®dz),

we have
VBl
< C[Vab. [y ¢ 7|V & (Vab,)|2 *
< C'IVBbJly 5 ([VBbls + VBV @ b, )% 5
< OBy (VB + VBV @ u]l2) i,
and

d_d
2 2r,

1—(2_4d
VOl < CIVEU ] 273 (|VBu s + VOV @ u,]|2)

rd_d
r 2

Using the embedding H
IVeu| -

r—1

1-(4-4) i
< CVau |, "IV e (Vau,):,

1—(2_4d
< CIVaul, " (Ve + VOV @ u|;2)

C L1, we also have

d_d
o2,

11



Hence, we find

¢ u|?|b,
R gy vy as

¢ _d
<c [ IVBul H(IVBu e+ VOV @) ds
0

Using the Young inequality, we then find for d =2 or d = 3

t w2[b,
/ /(‘ . ‘+Ip|lue|)|V<I>|dxds
0

/ ||\/_V®u€||des+C'cb/ IV Pug|72 + |V Pug| 5 i ds,

where, as d € {2,3}, we have 2=2¢ = 2.

When d = 4, provided that ||\/6u6||2 < € with Ceg < ¢ we find
Y[ u?[be
/ /(| |2| | + |p|uc]) [V®| da: ds
0

1 [t 1 /[t
< g/ VOV @ u|? ds+§/ [V ®ug||2, ds,
0 0

e Case 2: d=3andr € (1,2),ord=4andr € (1,3). Let ¢ = =
those values of d, r and ¢, we have

whr c 14
d d 2r
0<=— — <1and H-) ¢ 25
2 2r
and i d
og——§—1§1andH?*%*1chﬁ.
T

Using the continuity of the Riesz transforms on L"(®"dx), we have

t uE 2 bE
/ /(% + |p|jue|) |[VP| dx ds
0
t t
< [ 1t s+ [l s
t t
<C [ 10w VD gyds + 3 [ 1@l [V Bl 2, ds.

12



We have

||<I>b€7z-u5,j ||W1,r

< [ ®beitte illr + > (beittej Pl e + |9 bes Onticll e + 1P e s Oubes )

k
< C(|Vu,| 2o [VEb[la + [VEb.| 2= [VEV @ uclls + [VEu| 2 VIV @ b,
< C'(IVPullzz + VOV @ ull2) (VU] a1, + Vb u1))-
We have
IVEb| 1)

< OV, |V @ (VEb) 3t

< C'|[VBb [y (VB2 + VY @ b]ls)

< OBy T (VB 2 + VIV @ ull]p2)"
and finally we get

Z H(I)baiue,jHWl»T + ||<I)|ue|2||W“

,J

N

< CIVBu )y P (VB + VIV @ 12) .
On the other hand, we have
Vb, 2,
< CIVab ;" 2|V ® (VO]
< CIVau ;TR (VB + VY @)

S

-1

[SIIcH

Hence, we find again

t u.|?|b,
| Ry vay e as
0
¢ _d
gc/ VB2 (|[VBufs + [VEV ® u,|12)? ds.
0

and we conclude in the same way as for the first case.

In the Case 1 and Case 2, we have found

t u.|?|b,
[ [ g veacas

1 t
< SV + Co [ VBl + [ VBuo| s
0

13



From these controls, we get inequality , and thus inequality . In-
equality () gives us a control on the size of |[v/® u.||, on an interval of time
that does not depend on € :

Lemma 4.1 If « is a continuous non-negative function on [0,T) which sat-
isfies, for three constants A, B € (0,+00) and b € [1,00),

alt) < A+ B/Ot a(s) 4+ a(s)’ ds.

Let 0 < Ty < T and Ty = min(77, 3b(Ab—1+1(BT1)b—1))' We have, for every
t €0,Tp], a(t) < 3A.

Proof. We try to estimate the first time 7% < T} (if it exists) for which
we have

a(T*) = 3A.
We have A BT
1\b—1 b
< 4 (=1 .
a < BT, + ( I ) o
We thus find
* * b BT1 b—1

and thus

T*3°(A" '+ (BTy)"™Y) > 1.

<

By Lemma and , we thus find that there exists a constant Cp > 1
such that if Tj satisfies

o ifd=2 Cy (1 + ||u0||%2(¢dz)> T, <1
2
o ifd=3,Co (14 0ol2s0s) To<1
e if d =4 and Hu0||L2(¢dm) < C_lq>’ Ccp T(] < 1

then

To
sup || ue(tv‘)H%Q(@dczz)—i_/ IV @728 ar) @5 < Co(1+ 0ol 720 4z (4)
0<t<Tp 0

14



4.2 Passage to the limit and local existence

We know that u, is bounded in L>((0,T}), L*(® dr)) and V ®u, is bounded
in L?((0,Tp), L*(®dx)). This will alow us to use a simple variant of the
Aubin-Lions theorem :

Lemma 4.2 (Aubin—Lions theorem) Let s > 0, 1 < q and 0 < 0. Let
(fn) be a sequence of functions on (0,T) x R? such that, for all Ty € (0,T)
and all ¢ € D(R?),

o o f, is bounded in L*((0,Ty), H®)
o 00, fy is bounded in LI((0,T5), H?) .

Then, there exists a subsequence (f,,) such that f,, is strongly convergent
in L2 ([0, T) x RY). More precisely : if we denote fs the limit, then for all

To € (0,T) and all Ry > 0,

ng—r—+00

To
lim / | fr, — fool? dzdt = 0.
0 ‘33|§R0

For a proof of the Lemma, see [I, [6].

We want to verify that pd;u, is bounded in L*((0,7y), H*®) for some
s € (—00,0) and some « > 1.

In Case 1, we have that &b, ® u, and $p, = 23’21 23:1 R;R;(beu. ;) are
bounded in L*((0,Ty), L"), where a; = dfid, so that ag € [2,00) if d = 2,
ar €[5, 4] ifd=3and oy € (1,2] if d = 4.

In Case 2, we have that ®b,®u, and ®p, are bounded in L*2((0,Ty), Wh"),
where ay = r—o—zQi;—d and thus it is bounded in L*? L9, with q = dd_rr. We have
az €(3,2)if d=3 and oy € (1,2) if d = 4.

Let ¢ € D(RY). We have that ¢u, is bounded in L?((0,Tp), H'); more-
over, writing

3
du, = Au, — (Z 9;(beju.) + Vp€>

j=1

and using the embeddings L" C H2 * C H~' (in Case 1) or Lisr ¢
H~G=571 ¢ H~! (in Case 2) we see that ¢d,u, is bounded in L% ((0, Tp), H2).
Thus, by the Aubin-Lions theorem, there exist u and a sequence (€x)gen

converging to 0 such that u., converges strongly to u in L2 ([0,Tp) x R?):
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for every T' € (0,T,) and every R > 0, we have

T
lim / / lu,, —u|*drds = 0.
k—+o00 0 |y|<R

Then, we have that u,, converge *-weakly to u in L>=((0,7p), L*(®dz)),
V @ u,, converges weakly to V ® u in L?*((0,Tp), L*(®dz)), and u,, con-
verges weakly to u in L3((0,Tp), L3(®2dz)). We deduce that b, ® u,, is
weakly convergent in (L%°L5/%),. to b ® u and thus in D'((0,Ty) x R?); as
in Case 1, it is bounded in L*((0,7p), L"), and in Case 2 it is bounded in
L2((0,Ty), WhT), it is weakly convergent in these spaces respectively (as D
is dense in their dual spaces).

By the continuity of the Riesz transforms on L™ (®"dz) and on W (®"dx),
we find that in the Case 1 and Case 2, p,, is convergent to the distribution

p=3", Z?Zl R, R;j(u;u;). We have obtained
Ju=Au+ (u-V)u— Vp.

Moreover, we have seen that O,u is locally in L'H~2, and thus u has
representative such that ¢ — u(t,.) is continuous from [0, 7,) to D'(R?) and
coincides with u(0,.) + fg dyuds.

In the sense of distributions, we have

t t t
u(0, )+/ Juds=u= lim u, = lim u076k—|—/ o, ds = u0+/ oyuds,
0 k—+o00 k—+o0 0 0
hence, u(0,.) = ug, and u is a solution of (NS).
Now, we want to prove the energy balance. In the case of dimension 2,
we remark that, since v/®u € L*°L?N L2H', we have by interpolation that
V®u € L*L*, and then we can define ((u- V)u) - u. The equality

o)~ a8 - wup v (M) -

is then easy to prove.

Let us consider the case d > 3. We define
2 2 2
|ue’ )+A(%)—V (|u2€| ue) _v.(peue) _ |V®u6|2.

Ae — —3t(

As u, is locally strongly convergent in L2L?; and locally bounded in L>L? it
is then locally strongly convergent in LP L2, with p/ < co. Then, as VOV ®
u, is bounded in L?((0,7T),L?), by the Gagliardo-Nirenberg interpolation
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inequalities we obtain u,, is locally strongly convergent in LP' LY with 1%—1—% >
d

5.

In Case 1, we know that p., is locally weakly convergent in L*L" and we
know that u,, is locally strongly convergent in La-T L1, and hence p,, uc,
converges in the sense of distributions.

In Case 2, we know that p, is locally weakly convergent in L°L? and we

8
know that u,, is locally strongly convergent in L#-T Lq%l, and hence p,, u,
converges in the sense of distributions.

Thus, A, is convergent in D’'((0,T) x R%) to

€k
ul? u/?

u2 )+A(!2!2) v.<_u)—V-(pU),

A=—a,( .

and A = limy_, o [V ®@u,,|? If € D((0,T) x R?) is non-negative, we have
that VOV @ u,, is weakly convergent in L?L? to vV ® u, so that

//Aé’ddeZ lim //Aekedde— lim //|V®uek| 0dxds > //!V®u|2«9dxd3.
€400 k—+o0

Hence, there exists a non-negative locally finite measure p on (0,7) x R?
such that A = |Vul? + g, i.e. such that

uf”
2

[uf”

Oh( 5

)= A g - (@u)-v.@u)_ﬂ.

2

4.3 Convergence to the initial data

In order to take the limit to k — oo, first we introduce a test function 0 <
T

¢ < 1 which is equal to 1 in a neighborhood of 0 and we let pr(x) = ¢(F).
We have,

2 ¢
/wwabdx—k/ /\V®u€k|2 orPdr ds

/|u052( )’ OR O dr — Z / /auﬂc u,, (az<qu)+8®goR)dxds

1<i<d

b€k7i + peuekﬂ') (aiSOR ¢ 4 0;P SOR) dx ds

17



and then we find
t 2 t
limsup/wgmg@dx%—/ /]V@uek\2 or®dz ds

k—+00
Ul T

:/I 0(2) - / /au u (Do ® + 0, p)de ds

1<i<d

+Z// w; (0ipr © + 0,® pp) dx ds.

Since u,, = ug,, + fot drue, ds, we see that u,,(t,.) is convergent to u(t,.)
in D'(RY), hence is weakly convergent in L2 (as it is bounded in L*(®dxr)),
so that :

t. )| o (t )P
B e < sy [P
—+00

On the other hand, as V ® u,, is weakly convergent in L?L?(®dz), we have

t 2 t 2
/ /m%m@qq)dxds < limsup/ /MTUEIJQOR@CZ{L‘CLS.
0 0

k—+o0

Thus, letting R go to +00, we find by dominated convergence for every
t e (0,7p),

t
. ai +2 [ 199 052 a0
t t
<uolas — [ [ V0P odrds+ [ [ (uPuszp)- vodods
0 0
Letting ¢ go to 0, we find
lim sup [[u(t, ')H%Q(@dm) < HUOH%%M)-
t—0
As u is weakly continuous in L?(®dx), we also have

||u0||i2(<1>d:c) < lirgi}ionf [u(t, ')||%2(<I>d:c)‘

. . 2 o . .
This gives [[uol|72(g4e) = limeo [lu(?, )||L2 sdr)» Which allows to turn the
weak convergence into a strong convergence. o
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4.4 Global existence using a scaling argument

Let A > 0, then u. is a solution of the Cauchy initial value problem for
the approximated Navier—Stokes equations (N S,) on (0,7") with initial value
v if and only if u (¢, ) = Au.(\%t, \z) is a solution for the approximated
Navier-Stokes equations (NSy.) on (0,7/A\?) with initial value ug.x(z) =
Aug (Az). We shall write ugy = Aug(Az).

We have seen that

t
IVBu,a ()2 + / IVEY @ w2
0
t
< [V Buga |2 + cg/ VB2 + VB2 ds
0

(under the extra condition, when d = 4, that ||v/®u,(t)|| > remains smaller
than €).

By Lemma 4.1, we thus found that there exists a constant Cy > 1 such
that if T satisfies

o ifd=2 Cy (1 + ||u07,\||%2(¢dx)> =1

2
o if d=3, Co (1+ [opaggq ) T=1

o ifd=14 and ||UO,A||L2(<I>dm) < L Cq) T)\ =1

= C_q>’
then
2 & 2 2
sup || uea(t, ')”LQ(cbda:) +/ IV ®ue,>\HL2(¢>dag) ds < Cop(1+ HuO,/\HL2(<1>dx))~
0

0<t<T)
(5)

It gives that the solutions u, are controlled, uniformly in €, on (0, \>T})
since for t € (0,T)),

/]u€7A(t,x)|2<I>(x) dx:/|u6()\2t,y)|2<l>(%))\2ddy > )\Qd/\ue()\zt,:c)P(I)(x) dx
and

Ty A2Ty, y
/ /[V@ue,)\(t,x)&b(w) d:cdt:/ /\V®u€7A(s,y)]2®(X))\2_ddyds
0 0

A2Ty,
2)\2‘d/ /\v @ uc(t, r)]*®(x) dr dt
0
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T )\QT)\
/0 /|V®uE,A(t,x)|2q>(x) dr dit zCA/O IV @ w200 ds.

Moreover, we have limy_ ;o [[UoA]| 22 dz) = 0 when d = 4 and lim_, oo AT =

+o00 when 2 < d < 4. Indeed, we have

d(z
//\2|u0()\x)|2<13(x) dr = )\Q_d/ |u0(x)|2<13(§)d:p = /\4_d/ |u0(:1:)|2>\2q(>’<\i)<b(x) dx
Since %@q) < min{Cy, ﬁ(m)} by hypothesis (H4), we find by dominated

convergence that |[uo||r2@dx) = o()\%d) and thus limy_, o \2Ty = +00 .

Thus, if we consider a finite time 7" and a sequence €, we may choose A

such that ATy > T (and such that ||ug,||r2@ar) < €0 if d = 4); we have a
uniform control of u, , and of V®u, on (0,7)), hence a uniform control of
u. and of V® u, on (0,7). We may exhibit a solution on (0,7") using the
Rellich-Lions theorem by extracting a subsequence €, . A diagonal argument
permits then to obtain a global solution.

Theorem [1] is proved. o

5 Proof of Theorem (the case d = 2).

In the case of dimension d = 2, the Navier—Stokes equations are well-posed in
H' and we don’t need to mollify the equations. Thus, we may approximate
the Navier—Stokes equations with

o, = Au, — (u. - V)u, — Vp,
(NSe)
V-u =0, u., (0,.) =up,

with

Up,e = P(¢eu0> .

Then the vorticity w, is solution of

Owe = Awe — (ue - V)we

V- w.=0, We, (0,.) = wo e

with

Wo,e = VA (¢EUO).

u . belongs to H ! so we know that we have a global solution u.. We then

just have to prove that, for every finite time T, we have a uniform control

of the norms ||we || zoo((0,10),22(@ dz)) a0 || Vel 22((0,10),02(® da)) -
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We can calculate f 0w, - w.P dx so that

t 2 t
/M@d:c—l—/ /|Vw6\2 ddx ds
0

2 t 2
:/M@d:ﬁ—/ /V(M' ) - Vddr ds
> ; 2

¢ 2
+/ /|we| u, - Vo dzds.
0 2

t
u, -V@dxdsg/ H\/Eweui%\\\@uenﬁ
0
t
< / (IVBw |25 |V (VBwo) || 1252V @u | 1
0

As
/t/ |wel®
O 2

we obtain
t t 4
VB (b)) + / IVEVwdPa < Vw2 + Ca / Vw2 (1 + [[VBu},) ds
0 0

We can conclude that, for all 7' > 0 and for all ¢t € (0,7),

t . 4
VB, (1)[|22 + / IVEVw||22 < ||V Buwy,[[22650 50 fo (I VPuclla)3 ds
0

Thus, we have uniform controls on (0, 7). o

6 Proof of Theorems (3| and {4| (the axisym-

metric case)

6.1 Axisymmetry.

In R3, we consider the usual coordinates (x1, s, z3) and the cylindrical co-
ordinates (r, 6, z) given by the formulas x; = rcosf, 3 = rsinf and x3 = 2.
We denote (eq, e, e3) the usual canonical basis

e; = (1,0,0), e2=(0,1,0),e5 = (0,0, 1).
We attach to the point = (with r # 0) another orthonormal basis
10x Oz

x ) .
e, = — =cosfe;+sinfley, e = — = —sinfe;+cosfey, e, = s

or r 00

= es.
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For a vector field u = (uq, ug, uz) = uje; + ugey + uzez, we can see that
u = (ug cosf +ugsinf) e, + (—uy sinf + ug cos ) eg + uge,.

We will denote (u,, ug, u.), the coordinates of u in the basis (e,,eg, e,).
We will consider axially symmetric (axisymmetric) vector fields u without
swirl and axisymmetric scalar functions a, which means that

u=u.(rz)e +u,(r,z)e, and a=a(r,z).

6.2 The H! case.

We will use the following well known results of Ladyzhensaya [5, [6].

Proposition 6.1 Let uy be a divergence free axisymmetric vector field with-
out swirl, such that uy belongs to H'. Then, the following problem

du=Au—(u-V)u—Vp
(NS)
V-u=0, u(0,.) = ug

has a unique solution u € C([0,+00), H'). This solution is azisymmetric
without swirl. Moreover, u,V ®u belong to L>=((0,+00), L?), and V@ u, Au
belong to L?((0, +00), L?).

If ug € H?, we have the inequality

w(t)|? wol?

r

6.3 A priori controls

Let ¢ € D(R?) be a real-valued radial function which is equal to 1 in a
neighborhood of 0 and let ¢.(z) = ¢(e(x1,x2)). For € € (0, 1], let

Ugc = P(¢eu0>-

Thus, ug . is a divergence free axisymmetric without swirl vector field which
belongs to H!. As we have

Wo,e = VA Uoc = VA ((256110) = ¢6w0 + €(V¢) (6&3) A Uo,

using ® € A, and |eVe(ex)| < C%]lrz% <O V@, we can see that
li_ff(l) [ao — Wo.el| £2(® dz) + [|wo — wo,e | 20w day = 0.
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Let u, be the global solution of the problem

o, = Au, — (u. - V)u, — Vp,
(NS)
V cUe = 07 ue(07 ) = uO,E

given by the Proposition [6.1] We denote w. = V A u,, then
o, = Au, + (u. - V)u, — Vp.

and
Owe = Aw, + (we - V)ue — (ue - V)w,

As VUw, € L?H' (because VU, VU € L®) and VU, € L2H

can calculate f O, - w V¥ dx using so that

2 t
/Mwuw/ /\V®w42 Wdz ds
0
2 t 2
:/—]wo,e(x)\ \Ild:):—/ /V(—|w€| ) - VWdzds
2 ; 2

L
+// u - VU — (w, - u)w, - VU dx
0

2
_/Ot/((we.v)we).ue W dz ds

(6)

(7)

, we

|wo,e(@)]? e 2 ST
0 0

t
+C [ VU w2 VT wells]|VOuc |3 ds
0
t
—/ /((w6 - V)we) - ue ¥dxds
0

2 1 [t ¢
S/—]wo,e(x)\ \Ild:)s+1/ /|V®we|2 ‘I’dde‘FC/ IV w3 ds
0 0

2
t
ol / IV wo2(IVBuls + (|VBu[¥?) ds

_/Ot/((we.v)we).ue W dz ds

As we = we g €y, we have

w
€,0

We * Vw, = — e,.
r

23



In order to control u. - (w, - Vw,), we split the domain of integration in a
domain where r is small and a domain where r is large. The support of ¢,
is contained in {z / r < R} for some R > 0}, and the support of 1 — ¢; is
contained in {z / r > Ry} for some Ry > 0}. We have

inf &(z) = inf  P(z1,25,0) >0
ren T fgen

and similarly
inf U(z)= _inf  U(zy,29,0) > 0.
r<R \/a:%+x%<R

On the other hand, we have

inf r?®(z) = _inf (2% + 29)*®(21,2,0) > inf |2[*®(x) > 0.
r>Ro \/MM%O |z|>Ro

We then write :
t
—/ /((w6 -V)we) -u. Vdrds
0
t t
:/ /Cbl( (we - V)ue) - we ) Udx ds +/ /(w6 “ue)(we - Vo)V dx ds
0 0
t
+/ /%(WE ‘U )w, - VWdzx ds
0
t
- / /(1 — ¢1)(ue - (we - Vw,))Wdx ds
0
t t
SC/ /|We|2|v®ue|\1’3/2dxds+0/ /|w5|2|ug|\/6\11dxds.
0 0

As U € Ay, we have [V IV ® u; = ||V Ww,||2; moreover,

IV ® (Vou)lle < C(IVOUlz + V|2

and

IV ® (VIwllz < OV w2 + VIV @ w»),
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and thus we get

_/Ot/((we.v)we) ‘u, Wdrds

SO/Ot VIV @ a2 | VO | 13 |V O || 1o ds + C/Ot IV 16| VT || 13 ]|V e || 12 ds
O [ VTl o1Vl + VT @) s

o [ VB VT (VT2 + VIV @ ) ds
<c” / VBl + VB3 VB |3+ VT + |V Tewe [ ds

+§/0 VUV @ wll3 ds

We finally find that

t
||ﬁw€(t)||%z+/ VIV @ w2, ds
0
< |V W ][22 +0/( + [Veu, s + (|[VOulls™) |V Ww|f? ds

+0 [Vl -+ V)Vl + VT |+ VT ls
< ||\/_W0 ez
# 0 [ VBl + IV )Vl + VT [

We already know that ||v/®u.(t)|.> remains bounded (independently of
€) on every bounded interval, so that we may again use Lemma and
control supgc,<r, | Wt 72 (gan) + f Vw22 (g4, ds for some Tp, where
both Tj and the control don’ t depend on €. The control is then transferred
to the limit w since w = limw,, = lim V A u,,. This proves local existence of
a regular solution and Theorem |3|is proved.

6.4 The case of a very regular initial value.

We present a result apparently more restrictive that our main Theorem (The-
orem , but we will see that it implies almost directly our main Theorem.
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Proposition 6.2 Let ® be a weight satisfying (H1) — (H4). Assume more-
over that ® depends only on r = /a3 +13. Let ¥ be another continuous
weight (that depends only on r) such that ® < ¥ < 1, ¥ € Ay and there
exists C1 > 0 such that

IVU| < CiVOT and |AT] < C1DT.

Let ug be a divergence free axisymmetric vector field without swirl, such
that ug, belongs to L?(®dx), V@ uy and Aug belong to L*(Vdz). Then there
exists a global solution w of the problem

du=Au—(u-V)u—Vp
(NS)
V-u=0, u(0,.) = ug

such that

e w is arisymmetric without swirl, w belongs to L>((0,T), L*(® dx)), V&
w belong to L>=((0,T), L*(V dx)) and Aw belongs to L*((0,T), L*(¥ dx)),
for all T >0,

e the mapst € [0,4+00) — u(t,.) andt € [0,+00) — VRul(t,.) are weakly
continuous from [0, +00) to L*(® dz) and to L*(V dz) respectively, and
are strongly continuous at t =0,

Proof.

Ladyzenskaya’s inequality for axisymmetic fields with no swirl (Proposi-

tion 6.1]) gives
€ t 2 € 2
r T

As we have
Do, = POy + €dip(ex)wy + (Vo) (ex) A dpug + €(VIip) (ex) A u,

we can see that
li—{% IV ®woe =V ®wollr2waz = 0.

As
2
/ de < / |V &~V @wo |2V da—+ / |wo.e —wo| 2V dz),
r 0<r<1 1<r<+oo
we also have )
ti [ 10—l g
e—0 r
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We know that

2 ¢
/M\Ildx—l—/ /|V®w6]2 Vdz ds
2
/'“’06( W g — / /v ey G waras
//| - VVUdrds
t
—/ /(we'ue)wE -V\Ifdxds—/ /ue(w€~VwE)\Ildxds
0 0

which implies

t
VB ()]s +2 / VOV
0
t
< Vol +2 [ IVl VOV
0
t
4 / VBl ]|V B 24
0

t
1
+/ Dl 0 da ds
0 T

Furthermore, we have

f1- ¢1() 2 ! 2
— cljwe PP drds < [ |[VOu sV P03
0 0

and

t x bW

/ il )|u€7,«|]we|2dxds§C/ 12 e VeV e,

0 0

where
H—HL2 < OEHLQ < O(IVPwollz + VIV @ wol22)
< C'(IV@uolz + IV Vol 2 + VUV @ wyl|2)

and

VUi < CIVEV T AV Tu)l: < C([VOU 2V Tw. | 12+ | VIVEW 12)%,
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Then, if we denote Ay = ||[vV/®ugl[r2 + ||V Pwol|r2 + [[VIV & wol|z2, we
have

t
VTt + [ IVET 0w
0
t
<Vl +C [ VB
0
t
+ C@/ IVPwelF2 (1 + Ao + A5 + [V@uc s + [[VPuc|7:) ds
0
We can then conclude that, for all 7" > 0 and for all ¢ € (0,7),
t
VTl + [ VIV @l
0
T
S(||NWO,E||%2 + Oy sup/ ||\/6116”%2)666Supe>0f()t(1+A(2)+||\/$ue||L3+||\/5ue||2LB)ds
e0 Jo

Then, we can obtain a solution on (0,7") using the Aubin-Lions Theorem
and finish with a diagonal argument to get a global solution. o

6.5 End of the proof.

We begin by consider a local solution v on (0, Ty) with initial value ug given by
Theorem [3| which is continuous from (0, 7y) to D’. We take T3 € (0, Tp) such
that V@ (VAV)(Ty,.) € L*(®dx). We consider a solution w on (T}, +00) and
initial value v(7}) given by Proposition Our global solution is defined
asu=von (0,77) and u=w on (7}, +00). o
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