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Introduction

The long-time behavior of deterministic and stochastic processes and of their discretetime approximations has been an active research area, with applications in all field of science. In this manuscript, we consider Stochastic Differential Equations (SDEs) of the type

dXptq " f pXptqqdt `K ÿ k"1 σ k dβ k ptq,
where Xptq P R d , σ k P R d , β k are independent standard real-valued Wiener processes. The drift f : R d Ñ R is assumed to be non-globally Lipschitz continuous, instead it has polynomial growth and satisfies a one-sided Lipschitz continuous condition, see Assumptions 1 and 2. Under these conditions, the SDE is globally well-posed and admits a unique invariant probability µ ‹ , such that

ErϕpXpT qqs Ñ T Ñ8 ż ϕdµ ‹ ,
exponentially fast, for any initial condition Xp0q and any real-valued Lipschitz continuous function ϕ. In general, no explicit expression for f is known. We study the question of approximating the invariant distribution µ ‹ using a numerical scheme. The main novelty of this article is to show that an explicit scheme can be used, without loss of computational efficiency, even if the nonlinearity f is not globally Lipschitz continuous. Applying an explicit scheme for SDEs with non-globally Lipschitz continuous coefficients may lead to important issues due to the lack of moment bounds, see for instance [START_REF] Hutzenthaler | Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients[END_REF]. In the last two decades, many strategies have been explored: see for instance the monograph [START_REF] Hutzenthaler | Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients[END_REF] and references therein, and the articles [START_REF] Hutzenthaler | Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients[END_REF], [START_REF] Sabanis | A note on tamed Euler approximations[END_REF], [START_REF] Kelly | Adaptive time-stepping strategies for nonlinear stochastic systems[END_REF], [START_REF] Milstein | Computing ergodic limits for Langevin equations[END_REF], among many other contributions.

In this article, we apply the tamed Euler-Maruyama method (see Equation 6)

X n`1 " X n `∆tf pX n q 1 `∆t}f pX n q} `K ÿ k"1 σ k ∆β k n ,
for which for every T , one has moment bounds of the type

sup 0ďn∆tďT `Er}X n } m s ˘1 m ă 8.
To the best of our knowledge, the question of the dependence with respect to T , and the possibility to have uniform in time moment bounds, has not been studied in the literature yet.

Our first contribution (see Theorem 3.1) is to prove that, under appropriate assumptions, one has

sup 0ďn∆tďT `Er}X n } m s ˘1 m ď Cp}x 0 }qp1 `T M q,
where X 0 " x 0 , for some M ě 1. As a consequence, the growth with respect to T is at most polynomial. We only proved upper bounds, and the question whether uniform moment bounds (with M " 0) remains open.

Our second contribution is to apply these upper bounds for the analysis of the error between ErϕpX N qs and ş ϕdµ ‹ , see Theorem 3.2. Under appropriate assumptions, one has

ˇˇErϕpX N qs ´ż ϕdµ ‹ ˇˇď Cp}x 0 }, ϕq ´expp´γN ∆tq ``1 `pN ∆tq M ˘∆t ¯,
where γ ą 0. Contrary to existing works in the literature concerning the numerical approximation of the invariant distribution for SDEs (this is a classical problem, see for instance [START_REF] Mattingly | Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise[END_REF], [START_REF] Mattingly | Convergence of numerical timeaveraging and stationary measures via Poisson equations[END_REF], [START_REF] Talay | Second order discretization schemes of stochastic differential systems for the computation of the invariant law[END_REF]), the weak error |ErϕpX N qs ´ErϕpXpN ∆tqqs is not of size ∆t uniformly in time, and one cannot take the limit T " N ∆t Ñ 8 in the weak error estimate. Nevertheless, the fact that the dependence with respect to T " N ∆t is at most polynomial is striking, and analyzing the computational cost (see Corollary 3.3) shows that, to have an error less than ε, the cost is of size

Cpεq ď Cε ´1| logpεq| 1`M .
Passing from the case with uniform in time moment bounds(M " 0) to the case with polynomial dependence (M ě 1) does not substantially increase the computational cost and the method is effective. In the numerical experiments that have been performed (and are not reported here), it has not been possible to exhibit the polynomial growth with respect to time in the moment bounds or in the weak error estimate.

One of the objectives of this article is to present in a simplified framework the strategy and the arguments used in a companion paper devoted to the case of semilinear parabolic Stochastic Partial Differential Equations. The presentation is intended to be pedagogical. This manuscript is organized as follows. The setting is presented in Section 2, including the statement of precise assumptions (Assumptions 1 and 2), properties of the solutions of the SDE (3), and the definition of the numerical scheme (Equation ( 6)). The main results are stated and discussed in Section 3. The proof of Theorem 3.1 is provided in Section 4, whereas Section 5 presents the proof of Theorem 3.2.

Setting

Let d P N. The standard inner product and norm in the space R d are denoted by x¨, ¨y and } ¨} respectively.

Let us first state assumptions concerning the nonlinear drift coefficient f : it is assumed to be of class C 2 , with at most polynomial growth (Assumption 1, and to satisfy a one-sided Lipschitz continuity condition (Assumption 2).

Assumption 1. Let f : R d Ñ R d be of class C 2 , with at most polynomial growth in the following sense: there exists q P N such that (1) N q pf q :" sup

xPR d }f pxq} `ř2 j"1 sup }h 1 },...,}h j }ď1
}D j f pxq.ph 1 , . . . , h j q}

1 `|x| q ă 8.
The notation Df pxq.h and D 2 f pxq.ph 1 , h 2 q is used to denote first and second order derivatives of f at point x, in directions h, h 1 , h 2 P R d . Assumption 2. The following condition is satisfied: there exists γ ą 0 such that for all x 1 , x 2 P R d one has [START_REF] Hutzenthaler | Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients[END_REF] xf px 2 q ´f px 1 q, x 2 ´x1 y ď ´γ|x 2 ´x1 | 2 .

Let us now describe the noise. Let σ 1 , . . . , σ K P R d and let `β1 ptq ˘tě0 , . . . `βK ptq ˘tě0 be independent standard real-valued Wiener processes, defined on a probability space pΩ, F, Pq satisfying the usual conditions. In the sequel, the notation

σdBptq " K ÿ k"1 σ k dβ k ptq is used.
In this work, we consider the following SDE with values in R d :

(3) dXptq " f pXptqqdt `σdBptq.

Owing to the locally Lipschitz and the one-sided Lipschitz properties of the function f , it is straigthforward to check that for any x 0 P R d , there exists a unique global solution `Xx 0 ptq ˘tě0 to (3) with X x 0 p0q " x 0 . Moreover, for every m P r1, 8q, there exists a polynomial function P m : R Ñ R such that (4) sup tě0 Er}X x 0 ptq} m s ď P m p}x 0 }q.

Finally, there exists a unique invariant distribution µ ‹ , such that any Lipschitz continuous function ϕ : R d Ñ R, one has for all T P p0, 8q and x 0 P R d

(5) ˇˇErϕpX x 0 pT qqs ´ż ϕdµ ‹ ˇˇď e ´γT Lippϕqp1 `}x 0 }q.

Moment bounds (4) are obtained by an application of the Itô formula, and the use of the one-sided Lipschitz continuity condition [START_REF] Hutzenthaler | Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients[END_REF]. Applying the Krylov-Bogoliubov criterion, the moment bounds (4) yield existence of invariant distributions, and uniqueness follows from a straightforward coupling argument: if x 1 0 , x 2 0 P R d are two initial conditions, then almost surely for all t ě 0 one has }X x 2 0 ptq ´Xx 1 0 ptq} ď e ´γt }x 2 0 ´x1 0 }, using the one-sided Lipschitz condition [START_REF] Hutzenthaler | Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients[END_REF], where the processes X x 1 0 and X x 2 0 are driven by the same noise process.

In the sequel, to simplify notation the dependence with respect to x 0 is omitted: Xptq " X x 0 ptq for all t ě 0.

The objective is to define estimators of ş ϕdµ ‹ , using an explicit integrator for the discretization of the SDE (3). Note that in general, no explicit expression of the invariant distribution µ ‹ is known, and if dimension d is large quadrature rules are not efficient and Monte-Carlo methods are usually employed.

Let ∆t denote the time-step size, and without loss of generality assume that ∆t P p0, ∆t 0 s for some arbitrarily fixed ∆t 0 ą 0. Let t n " n∆t, and define the Wiener increments as ∆β k n " β k pt n`1 q ´βk pt n q, and σ∆B n " σ k ∆tβ k n , for all n ě 0. In this work, we consider the explicit tamed Euler-Maruyama method

(6) X n`1 " X n `∆t 1 `α∆t}f pX n q} f pX n q `σ∆B n ,
where α P p0, 8q is a given parameter and X 0 " x 0 . The parameter α does not play an important role in the sequel, and the notation M n " α}f pX n q} is used. Introduce a continuous-time auxiliary process `Xptq ˘tě0 as follows: for all t ě 0, set

(7) Xptq " x 0 `ż t 0 1 1 `∆tM psq f pX psq qds `ż t 0 σdBpsq
where ptq " n if and only if t n ď t ă t n`1 , and `Xn ˘ně0 is defined by the tamed explicit Euler-Maruyama scheme [START_REF] Mattingly | Convergence of numerical timeaveraging and stationary measures via Poisson equations[END_REF]. Observe that one has Xpt n q " X n for all n ě 0.

The process `Xn ˘ně0 and `Xptq ˘tě0 depend on the time-step size ∆t and on the initial condition x 0 , however the dependence is omitted to simplify notation.

Remark 2.1. The explicit tamed Euler-Maruyama scheme (6) can be interpreted as coming from the application of the standard explicit Euler-Maruyama scheme for the SDE dX ∆t ptq " f ∆t pX ∆t ptqqdt `σdBptq with modified drift coefficient

f ∆t pxq " f pxq 1 `α}f pxq} .
However, the function f ∆t does not satisfy a one-sided Lipschitz continuity condition as in Assumption 2, with γ ą 0. Indeed, let d " 1 and assume that f is a polynomial function, for instance f pxq " ´x ´x3 , then one checks that

f 1 ∆t pxq Ñ xÑ˘8 0.
As a consequence, the long-time behavior (uniform in time moment bounds, existence and uniqueness of invariant distriutions) of the process X ∆t may be non trivial. It may even be the case that sup xPR f 1 ∆t pxq ą 0, in which case uniform in time moment bounds are not expected to hold. In turn no information on the behavior of the scheme (6) is obtained by using the interpretation of the tamed scheme.

Main results

The objective of this section is to state the two main results of this article: Theorem 3.1 concerning moment bounds and Theorem 3.2 concering weak error estimates. The most striking feature is the polynomial dependence with respect to the time T (and with respect to the norm of the initial condition). The consequences in terms of computational cost for the approximation of the invariant distributions are also discussed, see Corollary 3.3. Theorem 3.1. Let Assumptions 1 and 2 be satisfied. For every m P r1, 8q, there exists a polynomial function P m : R 2 Ñ R, such that for all T P p0, 8q and x 0 P R d , one has where `Xn ˘ně0 is defined by the tamed Euler-Maruyama scheme [START_REF] Mattingly | Convergence of numerical timeaveraging and stationary measures via Poisson equations[END_REF].

In Theorem 3.2, the function ϕ is allowed to have at most polynomial growth (as well as its derivatives).

To simplify the presentation, the degrees of the polynomial functions P m in Theorem 3.1 and P r and Q r in Theorem 3.2 are not indicated, however they could be identified by a close inspection of the proofs. This is left to the interested readers. Since we want to insist on the polynomial dependence with respect to time T or N ∆t, the exact value of the degrees does not matter.

Let us now draw consequences of Theorem 3.2 in terms of computational cost. In practice, the expectation ErϕpX n qs needs to be approximated using Monte-Carlo averages. The total computational cost may be reduced for instance using the Multilevel Monte-Carlo method. Since those aspects are not specific to the situation studied in this article, we only consider the cost per realization. The cost to sample a realization of X N is proportional to N . Then one has the following result. There exists a constant C " Cpx 0 , ϕq P p0, 8q, such that for all ε P p0, 1q, the error satisfies ˇˇErϕpX N qs ´ż ϕdµ ‹ ˇˇď ε with a computational cost satisfying

Cpεq ď Cε ´1| logpεq| 1`R
for some R P N.

Since | logpεq| R " ε 1 R
for all R P N, one has Cpεq ď C α ε ´1 α , for all α P p0, 1q. If in Theorems 3.1 and 3.2 the upper bounds were uniform in time, one could choose R " 0 in Corollary 3.3. The polynomial growth with respect to T only introduces a polynomial factor in | logpεq|, which does not significantly increase the computational cost. Note that if the dependence with respect to T in Theorems 3.1 and 3.2 had been exponential, an additional factor which would have been a power of ε ´1 would have appeared in Corollary 3.3, and in turn the computational cost would have significantly increased.

Proof of Corollary 3.3. The error estimate of Theorem 3.2 is rewritten as follows: there exists R P N such that

ˇˇErϕpX N qs ´ż ϕdµ ‹ ˇˇď C `expp´γN ∆tq `p1 `pN ∆tq R q∆t ˘,
where C is a constant (depending on x 0 and ϕ). Note that R may depend on ϕ (more precisely on the value of r such that N r pϕq ă 8.

The parameters N and ∆t are chosen such that N ∆t " C| logpεq| and pN ∆tq R ∆t " Cε. This leads to ∆t " Cε| logpεq| ´R, and finally N " C| logpεq|∆t ´1 " Cε ´1| logpεq| 1`R . This concludes the proof of Corollary 3.3. Remark 3.4. In [START_REF] Milstein | Computing ergodic limits for Langevin equations[END_REF], the authors propose to use the so-called rejecting exploding trajectories technique to approximate ergordic averages ş ϕdµ ‹ , for SDEs with non-globally Lipschitz coefficients. This technique requires to introduce an auxiliary truncation parameter. However, even if in practice it is effective, this technique does not lead to a clean analysis of the cost as in Corollary 3.3.

Remark 3.5. The results can be generalized, under appropriate assumptions, to SDEs driven by multiplicative noise dXptq " f pXptqqdt `σpXptqqdBptq, where σpxqdBptq " ř K k"1 σ k pxqdβ k ptq. Slight modifications of the proof of Theorem 3.1 are sufficient if the functions σ k , k P t1, . . . , Ku, are assumed to be bounded. These functions are also to be Lipschitz continuous. The one-sided Lipschitz condition (2) from Assumption 2 needs to be modified to ensure the uniqueness of the invariant distribution by the coupling argument providing [START_REF] Mattingly | Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise[END_REF]. The condition (2) also needs to be modified in order to be able to prove Theorem 3.2, in particular to prove exponential decrease in time of derivatives of the solution of the associated Kolmogorov equation.

These modifications and the statements of appropriate conditions would only make the presentation more complex, so for pedagogical reasons the details are only provided for the additive noise case.

Proof of Theorem 3.1

Recall that M n " α}f pX n q}, and that the auxiliary process `Xptq ˘tě0 is defined by [START_REF] Milstein | Computing ergodic limits for Langevin equations[END_REF]. Introduce an auxiliary parameter R " ∆t ´κ, where κ P p0, 1 2q q and q is given by Assumption 1.

For every n ě 0, let Ω R,tn " t sup 0ď ďn }X } ď Ru, and to simplify notation let χ n " 1 Ω R,tn denote the indicator function of the set Ω R,tn . Let also χ ´1 " 1.

To prove Theorem 3.1, it suffices to prove the following two auxiliary results.

Lemma 4.1. For every m P r1, 8q, there exists a polynomial function P 1 m : R 2 Ñ R, such that for all T P p0, 8q and x 0 P R d , one has Since γ ą 0, using Young's inequality and Gronwall's lemma, one obtains

}Y ptq} 2 ď C ż t 0 }f pZpsqq} 2 ds.
Multiplying by χ n´1 and using Minkowski's inequality, for every m P r1, 8q, one obtains

(12) `Erχ n´1 }Y pt n q} 2m s ˘1 m ď C ż t 0 `Erχ n´1 }f pZpsqq} 2m s ˘1 m ds.
Since f has at most polymomial growth (Assumption 1), oo obtain (10), it is thus sufficient to prove that for every m P r1, 8q, one has an estimate of the type (13) sup 0ďtďtnďT Erχ n´1 }Zptq} m s ď P m pT, }x 0 }q.

By definition of the auxiliary process Z, one has for all t ě 0

Zptq " Xptq ´ż t 0 f p Xpsqqds " X 0 `ż t 0 σdBpsq ´ż t 0 ∆tM ps 1 `∆tM psq f pX psq qds `ż t 0 " f pX psq q ´f p Xpsqq ‰ ds ": Z 0 ptq `Z1 ptq `Z2 ptq.
First, for all 0 ď t ď t n ď T , one has

`Erχ n´1 }Z 0 ptq} m s ˘1 m ď `ErZ 0 ptq} m ˘1 m ď }x 0 } `Cm T 1 2 ,
for some C m P p0, 8q. Second, recall that M " α}f pX q}. Since f has at most polynomial growth (Assumption 1), one obtains

`Erχ n´1 }Z 1 ptq} m s ˘1 m ď α∆t ż t 0 `Erχ n´1 }f pX psq q} 2m s ˘1 m ds ď C∆tp1 `R2q q ď Cp∆t 0 `∆t 1´2qκ 0 q,
where we recall that R " ∆t ´κ with 2qκ ă 1.

It remains to deal with the term Erχ n´1 }Z 2 ptq} m s. Using the fact that the derivative of f has at most polynomial growth (Assumption 1) and Minkowski and Cauchy-Schwarz inequalities, one obtains for all t ě 0

`Erχ n´1 }Z 2 ptq} m s ˘1 m ď ż t 0 `χn´1 }f pX psq ´f p Xpsq} m ˘1 m ds ď C ż t 0 `Erχ n´1 }X psq ´Xpsq} 2m s ˘1 2m `1 `Erχ n´1 }X psq } 2mq s `Erχ n´1 } Xpsq} 2mq s ˘1 2m ds.
The first factor in the integrand above is treated as follows: for s ď t ă t n , one obtains

χ n´1 }X psq ´Xpsq} ď χ n´1 |s ´t psq | 1 `∆tM psq }f pX psq } `C}σ `Bpsq ´Bpt psq q ˘} ď C∆tp1 `Rq q `C}Bpsq ´Bt psq }.
As a consequence, one obtains

`Erχ n´1 }X psq ´Xpsq} 2p s ˘1 2p ď C p `∆tp1 `Rq q `∆t 1 2 ˘ď C∆t 1 2 p∆t 1 2 ´κq 0 `1q,
for all ∆t P p0, ∆t 0 s, using the definition R " ∆t ´κ with 2qκ ă 1.

To treat the second factor of the integrand above, it suffices to write

Erχ n´1 }X psq } 2mq s `Erχ n´1 } Xpsq} 2mq ď CErχ n´1 }X psq } 2mq s `CErχ n´1 } Xpsq ´X psq } 2mq ,
and to use the estimate on the first factor above and the inequality Erχ n´1 }X psq } 2mq s ď R 2mq .

Finally, using again the inequality ∆t

1 2 R q ď ∆t 1 2 ´qκ 0
for all ∆t P p0, ∆t 0 s, one obtains

`Erχ n´1 }Z 2 ptq} m s ˘1 m ď Cp∆t 0 qT.
Gathering the estimates then yields (13). Inserting (13) in the inequality (12) then yields Erχ n´1 }Y pt n q} m s ď P m pT, }x 0 }q, if t n ď T and ∆t P p0, ∆t 0 s.

Since X n " Xpt n q " Y pt n q `Zpt n q, this concludes the proof of Lemma 4.1.

Proof of Lemma 4.2. Recall that χ n " 1 Ω R,tn , with Ω R,tn " t sup 0ď ďn }X } ď Ru and χ ´1 " 1. As a consequence, one has

1 ´χn " 1 Ω c R,tn " 1 Ω c R,t n´1 `1Ω R,t n´1 1 }Xn}ąR " 1 ´χn´1 `χn´1 1 }Xn}ąR .
One thus obtains the equality

1 ´χn " n ÿ "0 χ ´11 }X }ąR .
Let m P N. Using Minkowksi, Cauchy-Schwarz and Markov inequalities, one obtains

`Erp1 ´χn q}X n } m s ˘1 m ď n ÿ "0 `Erχ ´11 }X }ąR }X n } m s ˘1 m ď n ÿ "0 `Er}X n } 2m s ˘1 2m `Erχ ´1 }X } θ R θ s ˘1 2m ,
where θ P N is chosen below.

On the one hand, by construction of the tamed Euler scheme, one has

} Xptq} ď }x 0 } `T ∆t `} ż t 0 σp XpsqqdBpsq}, thus `Er}X n } 2m s ˘1 2m ď Cp}x 0 } `T 1 2 `T ∆t q.
On the other hand, applying Lemma 4.1 yields

Erχ ´1}X } θ s ď P 1 θ pT, }x 0 }q. Gathering the estimates yields

`Erp1 ´χn q}X n } m s ˘1 m ď CP 1 θ pT, }x 0 }q 1 2m p1 `T ∆t qp}x 0 } `T 1 2 `T ∆t qR ´θ 2m .
Since R " ∆t ´κ, it suffices to choose θ such that θκ 2m ą 2 in order to obtain (11). This concludes the proof of Lemma 4.2.

Proof of Theorem 3.2

The objective of this section is to prove Theorem 3.2. In Section 5.1, some auxiliary results concerning the solution of the associated Kolmogorov equation. Even if this type of results is standard, a proof is provided for completeness. Then Theorem 3.2 follows from the weak error analysis of Section 5.2.

Like in Section 4, the values of constants C P p0, 8q and of polynomial functions P r or P may change from line to line. with initial condition up0, ¨q " ϕ. Set upt, ¨q ´ş ϕdµ ‹ . The objective of this section is to prove the following lemma.

Lemma 5.1. Let Assumptions 1 and 2 be satisfied. For any r P N, there exists R P N such that the following holds: for all ϕ : R d Ñ R of class C 2 which satisfies N r pϕq ă 8q, for all γ 1 P r0, γq, one has

sup tě0 N R pupt, ¨qqe γ 1 t ă 8.
In other words, the function u and its first and second order spatial derivatives Dupt, ¨q and Dupt, ¨q have at most polynomial growth, and N R pupt, ¨qq decreases exponentially fast when t Ñ 8. This type of result and the strategy of the proof are standard. A specific feature of the approach considered in this article is that a weaker result is employed: since we do not expect to prove uniform in time weak error estimates, and to have polynomial in time dependence instead, it is sufficient to use uniform in time upper bounds for the derivatives Dupt, ¨q and Dupt, ¨q. Thus in the analysis of the weak error due to temporal discretization, one will use estimates with γ 1 " 0. Keeping γ 1 ą 0 would only allow to reduce the degree of the polynomial dependence with respect to T , but this does not qualitatively change the analysis of the cost. The fact that γ 1 ą 0 has a role only to estimate the error upt, xq " upt, xq ´ş ϕdµ ‹ , and as will be clear below for this contribution one can take γ 1 " γ (see also [START_REF] Mattingly | Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise[END_REF]).

Proof. Recall that, for every x P R d , the solution of (3) with initial condition Xp0q " x is denoted by `Xx ptq ˘tě0 .

First, let x 1 , x 2 P R d , then the one-sided Lipschitz condition (2) implies Using the one-sided Lipschitz condition (2), the at most polynomial growth of f and its derivatives (Assumption 1) and Young's inequality, one has

1 2
d}ζ h 1 ,h 2 ptq} 2 dt " xDf pX x ptqq.ζ h 1 ,h 2 ptq, ζ h 1 ,h 2 ptqy `xD 2 f pX x ptqq.pη h 1 ptq, η h 2 ptqq, ζ h 1 ,h 2 ptqy ď ´pγ ` q}ζ h 1 ,h 2 ptq} 2 `1 4 N q pf q 2 p1 `}X x ptq} 2q qe ´4γt }h 1 } 2 }h 2 } 2 .

8 ,

 8 sup ∆tPp0,∆t 0 s sup 0ďn∆tďT Er}X m } p s ď P m pT, }x 0 }q. Theorem 3.2. Let Assumptions 1 and 2 be satisfied. For every r P N, there exists polynomial functions P r : R 2 Ñ R and Q r : R Ñ R, such that the following holds: if ϕ : R d Ñ R is a function of class C 2 such that N r pϕq " sup xPR d |ϕpxq| `ř2 j"1 sup }h 1 },...,}h j }ď1 |D j f pxq.ph 1 , . . . , h j q| 1 `|x| r ă then for all N P N, x 0 P R d and ∆t P p0, ∆t 0 s, one has (9) ˇˇErϕpX N qs ´ż ϕdµ ‹ ˇˇď N r pϕq ´expp´γN ∆tqQ r p}x 0 }q `∆tP r pN ∆t, }x 0 }q ¯,

Corollary 3 . 3 .

 33 Let x 0 P R d and ϕ : R d Ñ R of class C 2 such that N r pϕq ă 8.

0ďn∆tďTLemma 4 . 2 . 2 . 0 f p Xpsqqds " ż t 0 f 2

 422002 Erχ n´1 }X n } m s ď P 1 m pT, }x 0 }q. For every m P r1, 8q, there exists a polynomial function P 2 m : R 2 Ñ R, such that for all T P p0, 8q and x 0 P R d , one has (11) sup ∆tPp0,∆t 0 s sup 0ďn∆tďT Erp1 ´χn q}X n } m s ď P 2 m pT, }x 0 }q. Theorem 3.1 is then a straightforward consequence of Lemma 4.1 and Lemma 4.Proof of Theorem 3.1. Since Ω R,tn Ă Ω R,t n´1 , one has χ n ď χ n´1 . Writing Er}X n } m s " Erχ n }X n } m s `Erp1 ´χn q}X n } m s ď Erχ n´1 }X n } m s `Erp1 ´χn q}X n } m s, combining the auxiliary moment bounds (10) and (11) then concludes the proof. In the proofs, values of constants C, C m P p0, 8q and polynomial functions P m may change from line to line. Proof of Lemma 4.1. Introduce two auxiliary processes `Y ptq ˘tě0 and `Zptq ˘tě0 as follows: for all t ě 0, Zptq :" Xptq ´ż t 0 f p Xpsqqds Y ptq :" Xptq ´Zptq. One obtains the following equality: for all t ě 0 Y ptq " ż t pY psq `Zpsqqds, thus Y solves the differential equation dY ptq dt " f pY ptq `Zptqq. Using the one-sided Lipschitz condition (2) satisfied by f (Assumption 2), one obtains 1 d}Y ptq} 2 dt " xY ptq, f pY ptq `Zptqy ď xY ptq, f pY ptq `Zptqq ´f pZptqqy `}Y ptq}}f pZptqq} ď ´γ}Y ptq} 2 `}Y ptq}f pZptqq}.

5. 1 . 2 K ÿ k" 1 D 2

 1212 Auxiliary result: Kolmogorov equation. Let upt, xq " E x rϕpX t qs, for all t ě 0 and x P R d . Then u is the solution of the Kolmogorov equation B t upt, xq " Lupt, xq " Dupt, xq.f pxq `1 upt, xq.pσ k , σ k q

  d}X x 2 ptq ´Xx 1 ptq} 2 dt " xf pX x 2 ptqq ´f pX x 1 ptqq, X x 2 ptq ´Xx 1 ptqy ď ´γ}X x 2 ptq ´Xx 1 ptq} 2 , thus }X x 2 ptq ´Xx 1 ptq} ď e ´γt }x 2 ´x1 } for all t ě 0. One obtains for all t ě 0ˇˇErϕpX x 2 ptqqs ´ErϕpX x 1 ptqqs ˇˇď CN r pϕqE "`1 `}X x 1 ptq} r `}X x 2 ptq} ˘}X x 2 ptq ´Xx 1 ptq} ‰ ď CN r pϕq `1 `Pr p}x 1 }q `Pr p}x 2 }q ˘e´γt }x 2 ´x1 }.Choosing x 2 " x and integrating with respect to dµ ‹ px 2 q then yields |upt, xq| ď CN r pϕqe ´γt p1 `}x}P r p}x}qq, using the moment bound (4) for the exact solution.Next, the first-order derivative of upt, ¨q satisfiesDupt, xq.h " ErDϕpX x ptqq.η h ptqs,where one has dη h ptq dt " Df pX x ptqq.η h ptq , η h p0qh.d}η h ptq} 2 dt " xDf pX x ptqq, η h ptqy ď ´γ}η h ptq} 2 , thus Gronwall's lemma yields the inequality }η h ptq} ď e ´γt }h} for all t ě 0. One obtains |Dupt, xq.h| ď e ´γt }h}N r pϕqEr1 `}X x ptq} r s ď e ´γt }h}N r pϕq `1 `Pr p}x}q ˘, using the moment bound (4) for the exact solution.Finally, the second-order derivative of upt, ¨q satisfiesD 2 upt, xq.ph 1 , h 2 q " ErDϕpX x ptqq.ζ h 1 ,h 2 ptqs `ErD 2 ϕpX x ptqq.pη h 1 ptq, η h 2 ptqqs,where one has dζ h 1 ,h 2 ptq dt " Df pX x ptqq.ζ h 1 ,h 2 ptq `D2 f pX x ptqq.pη h 1 ptq, η h 2 ptqq , ζ h 1 ,h 2 p0q " 0.
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	1
	2

Using Gronwall's lemma and the moment bound (4) for the exact solution, one obtains Er}ζ h 1 ,h 2 ptq} 2 s ď Ce ´2γ 1 t }h 1 } 2 }h 2 } 2 `1 `P2q p}x}q ˘.

Finally, this gives the inequalities ˇˇD 2 upt, xq.ph 1 , h 2 q ˇˇď N r pϕq `Erp1 `}X x ptq} r q 2 s ˘1 2 `E}ζ h 1 ,h 2 ptq} 2 ˘1 2 `Nr pϕqErp1 `}X x ptq}q r qse ´2γt }h 1 }}h 2 } ď Ce ´γ1 t }h 1 }}h 2 }N r pϕqp1 `P2r p}x}qq.

Gathering the estimates then concludes the proof.

5.2. Weak error analysis. By a linearity argument, without loss of generality one assumes that N r pϕq ď 1.

Proof of Theorem 3.2. The weak error can be written as

ErϕpX N qs ´ż ϕdµ ‹ " Erup0, X N qs " Erup0, X N qs ´ErupN ∆t, X 0 qs `upN ∆t, x 0 q. Using Lemma 5.1, one has (14) ˇˇupN ∆t, x 0 q ˇˇď e ´γN ∆t N r pϕqQ r p}x 0 }q, for some polynomial function Q r .

Using successively a telescoping sum argument, Itô's formula and the fact that u solves the Kolmogorov equation, one obtains Erup0, X N qs ´ErupN ∆t, X 0 qs "

where t n " n∆t, and the auxiliary process `Xptq ˘is defined by [START_REF] Milstein | Computing ergodic limits for Langevin equations[END_REF] and satisfies Xpt n q " X n , with M n " α}f pX n q}.

Introduce the following decomposition:

Er `Dupt N ´t, Xptqq ´Dupt N ´t, X n q ˘.`f pX n q ´f p Xptqq ˘sdt.

First, using Lemma 5.1 and Theorem 3.1, one obtains

ď C∆tPpt N , }x 0 }q, where P is a polynomial function.

Note that the following result has been used above: Theorem 3.1 gives moment bounds for X n , with 0 ď n∆t ď t N , and it is straightforward to deduce moment bounds of the same type for Xptq, with 0 ď t ď T , i.e. sup 0ďtďT Er} Xptq} m s ď P m pT, }x 0 }q.

Second, applying Itô's formula and a conditional expectation argument gives for all t P rt n , t n`1 s ErDupt N ´t, X n q. `f pX n q ´f p Xptqq ˘sdt " ErDupt N ´t, X n q. `ż t tn Df p Xpsqq.

This yields

Using the Cauchy-Schwarz inequality and moment bounds for X n and Xpsq, one then obtains

where P is a polynomial function.

Finally, using a Taylor expansion, one has ˇˇErup0, X N qs ´ErupN ∆t, X 0 qs ď ∆tPpN ∆t, }x 0 }q.

Combining the inequalities ( 14) and (15) then concludes the proof of Theorem 3.2.
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