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Abstract. The Inventory Routing Problem (IRP) is an integration of
two operational problems: inventory management and routing. The Time-
Dependent Travel-Time Constrained (TD-TC-IRP) is a new proposed
variant of the IRP where the travelling time between two locations de-
pend on the time of departure throughout the day and the length of
a trip is time-constrained. The real-world discontinuous time-dependent
data that we use will be modelled by a piece-wise linear continuous func-
tion. A mathematical formulation for the TD-TC-IRP is proposed, to
emulate such transformation. Numerical experiments are conducted, to
validate the mathematical formulation, on a new benchmark combining
benchmarks from the IRP and time-dependent routing problems litera-
ture.

Keywords: inventory routing problem - time-dependent routing - travel-
time constrained routing - piece-wise travelling time function

1 Introduction

Vendor Managed Inventory (VMI) is a logistic system where the inventories of
the clients are controlled by the supplier. The supplier is thus able to globally op-
timise the replenishment plan while the client does not need to dedicate specific
resources for inventory management [5]. In this context, the Inventory Routing
Problem (IRP) emerges. It integrates inventory management and routing prob-
lems in order to decide, over a time horizon, when, how much and following
which route the clients are replenished.

The IRP has attracted a lot of scholars’ interests during the last decades. In
order for the IRP to be representative of real-life situations, new variants are
proposed in the literature, such as the IRP with time-windows, transshipment,
travel-time constrained or the parameters are considered as uncertain, such as
the clients’ demand or the travelling time. Other scholars focused on proposing
new efficient solving approaches due to the NP-hardness of the problem [2]. A
common point of all these works is that the travelling time between locations
is always considered constant. However, in urban logistics and last mile distri-
bution, the time it takes to travel from one location to another can vary a lot
during the day due to traffic congestion. Thus, we identify the need of considering
time-dependent data for the routing component.
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Time-dependent routing problems consider that the travelling time from one
location does not depend only on the destination but on the time of departure
as well. The literature of time-dependent routing problems, such as Travelling
Salesman Problem (TSP), Vehicle Routing Problem (VRP) or Arc Routing Prob-
lem (ARP), is quite rich [11]. However, from the literature and to the best of
our knowledge, it has never been considered for the IRP although the inventory
aspect can have an important impact on the structure of time-dependent IRP
solutions.

In this article, we present a new variant of the IRP, the Time-Dependent
Travel-Time Constrained IRP (TD-TC-IRP), where the travelling times are
time-dependent and the total duration of the trips are constrained. The real-
world discontinuous time-dependent data that we use will be modelled by a
piece-wise linear continuous function. The mathematical formulation for the
TD-TC-IRP that is proposed emulates this transformation. The numerical ex-
periments are conducted on a new benchmark that combines two benchmarks
of the IRP and TD-TSP literature, to investigate the advantages of considering
time-dependent travelling time functions over basic ones.

The article is organised as follows: Section 2 presents a brief literature re-
view of the IRP and time-dependent routing problems. Section 3 presents math-
ematical formulations of the IRP and TD-TC-IRP and discusses the differences
between them; a discussion is proposed on the piece-wise continuity of the time-
dependent function. Section 4 shows and discusses the results of the numerical
experiments while section 5 concludes and gives perspectives for future research.

2 Literature Review

The IRP is set in a network where a supplier delivers goods to its clients, over
a time horizon. The objective of the IRP is to decide for each period, whether
a client is served, with which quantity, and a route for the vehicles, while min-
imising the total cost (transportation and inventory costs). However, since the
actors and parameters of the IRP are multiple, this definition is hardly represen-
tative of all real-life situations. Therefore, many variants of the IRP exist: most
consider one vehicle only. Furthermore, the IRP is known to be an NP-hard
problem [2]. Consequently, scholars dedicated their work to find the most suit-
able solution approaches for these variants. In the following, a collection of the
most common variants of the IRP are presented. For a more detailed literature
review, interested readers can refer to [18,1,4,7]

IRP with time-windows: Due to constraints related to urban deliveries such
as rush hours or availability of parking slots, and to scheduling problems
such as workers availability, the clients may require to be visited in a certain
time interval. The IRP with time-windows is proposed in this context. A
review of the IRP with time-windows literature is presented in [8].

IRP with transshipment: In order to design a network that is efficient in an
economical sense, but also ecological, reducing the number of vehicles used
to replenish the clients as well as reducing the total travelled distance is
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necessary. [6] introduced the IRP with transshipment in this context, where
the replenishment is not only done from the supplier to a client but can also
be done from a client to another client.

Cyclic IRP: The irregularities brought by scheduling on a large time horizon
inspired the cyclic IRP. The scheduling is done in a smaller time interval
and is reproduced over and over. A work in this context is presented in [3].

Multi-echelon IRP: For a globally optimised network, the IRP can be studied
in a multi-echelon environment where multiple layers of the supply chain are
included: a supplier, retailers and clients. [10] tackled this problem recently.

Travel-Time Constrained IRP Due to legal limitations of the work hours
per day, or the perishability of the products, the travel-time constrained
IRP emerges. [14] are the last to tackle this problem.

All the variants presented above consider that the travelling time from one
location to another is constant throughout the day. Since traffic volatility can be
a concern in real-life instances, a time-dependent variant is needed to account
for it. Given the fact that time-dependent IRP literature is nonexistent, we turn
to pure routing problems to better understand how this parameter is included.

The objective of time-dependent routing problems is to design the best routes
in a graph where the duration or cost of travelling an arc can vary according
to the time it is travelled. Interest over this area has spiked during the last
decades. In [11], the authors propose an extensive review of time-dependent
routing problems in the literature. They show that the time-dependent aspect is
only considered for pure transportation problems such as: Time-Dependent TSP
(TD-TSP), Time-Dependent VRP (TD-VRP) and Time-Dependent ARP (TD-
ARP). They also show that the time-dependent problems are hard to solve in
comparison to their basic counterpart, thus the need for new efficient approaches
to solve them. The study concludes by stating that although the literature for
time-dependent routing problem is consequent, it is relatively recent and there
is still room for improvements. Perspectives for future research are given. In the
following, we cite a collection of works published after this review by [11].

In [15], the authors model the TD-TSP as a constraint programming (CP)
problem and propose a new global constraint called the “Time-Dependent no-
Overlap” that extends the no-Overlap constraint. The results show that includ-
ing this new constraint outperforms the CP models of the literature. In [21],
the TSP with time-dependent service times is presented. In this version, the
service time depends on the time a node is visited. The authors of [9] tackle
the problem of minimising the expected emissions of CO5 for a time-dependent
vehicle routing problem. The emission function depends in this case not only on
the travelling time between two nodes but on the load of the vehicle as well.
The results show that the improvement on emissions are proportionally larger
than the deterioration of the tour length. In [19], a new ILP formulation for
the TD-TSP is presented. Two tailored branch-and-cut algorithms are proposed
with pre-processing rules, initial heuristics and valid inequalities. The proposed
approaches are able to prove the optimality of more than 300 new instances of
the literature and improve the number of nodes explored and the computational
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times. The authors of [16] propose a partially time-expanded network formula-
tion that, instead of generating a time-expanded network in a static, a priori,
fashion, does so in a dynamic and iterative manner. They propose an algorithm
based on the dynamic discretisation discovery framework. The results show that
the algorithm outperforms those of the literature and that it is robust with re-
spect to all instance parameters, particularly the degree of travel time variability.
In [12], the authors manage real-time perturbations on time-dependent functions
in the context of a vehicle routing problem with time-windows. When pertur-
bations occur and the delivery route is no longer feasible, due to time-windows
violations or the violation of the horizon length, the time-dependent functions
are updated and a re-optimisation with new-objectives is conducted. Most re-
cently, [20] propose a new real-life benchmark for routing problems based on the
traffic conditions of the city of Lyon, using a dynamic microscopic simulator of
traffic flow. The purpose of their study is to show the impact of space granu-
larity, i.e. the number of sensors deployed to monitor the traffic flow, and time
granularity, i.e. the number and length of time steps, on the quality of the solu-
tions for pick-up and delivery optimal tours. They conclude that when there is
a full space coverage, exploiting time-dependent travelling time functions leads
to better tours and that the smaller the time step, the better the tour gets.

The literature of the time-dependent routing problems provides benchmarks
and ideas on how to model and solve efficiently time-dependent problems that
are exploited throughout this paper.

3 IRP vs. Time-Dependent IRP (TD-IRP)

In this section, we discuss the difference between the IRP and the TD-IRP. A
mathematical formulation for the IRP is presented, a time-dependent travelling
time function and its properties presented and discussed and a mathematical
formulation for the TD-IRP proposed.

3.1 Mathematical formulation of the IRP

Let G = (V, A) be a graph where vertex 0 € V represents the supplier, V' =
V\{0} the set of clients and A a set of arcs. H = {1,2, ..., |H|} is the scheduling
time horizon and H’' = {0} U H the horizon including the period 0 which rep-
resents the initial state. p € H’ represents the index of the period. Each client
i € V' has a demand DY for period p € H, an initial inventory I? and a maxi-
mum inventory level I}"**. The supplier has an unlimited inventory capacity, an
initial inventory I{, RP products available at each period p € H and a vehicle
with a maximal capacity C. Keeping one item in inventory for a period incurs a
holding cost h; for each actor 7 € V. Finally 7;; represents the duration of travel
through arc (i,j) € A and c is the cost of one unit of time travelled.

Variables: let z}; be a binary variable that equals to 1 if arc (4, j) € A is travelled
in period p, 0 otherwise. y¥ a binary variable that is equal to 1 if client ¢ € V'
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IRP
min obj™F =¢cx 3 Yo T Xxp Ay >0 hy x I
(i,j)EAPEH i€V peH’
st 1P ="' Y P+ R VpeH (1)
ey’
I3 ="'’ - DP VieV ,VpeH (2)
I’ < e VieV ,VpeH (3)
A A VieV ,VpeH (4)
q° < P x Imex VieV ,VpeH (5)
- <Cxyb VpeH (6)
Soat, =yf VieV,VpeH (7)
JEV!
ool =y VieV,VpeH (8)
JEV’
> o2l <71 VS CA tEH (9)

(i,5)€5
a?, € {0,1} V(i,j)e A,VpeH (10)
y? e {0,1} VieV ,VpeH (11)
q >0 VieV ,VpeH (12)
Ir >0 Viev ,VpeH (13)

is visited in period p, 0 otherwise. I € R represents the inventory level of actor
i € V at the end of period p € H' and ¢¥ € R the quantity sent from the supplier
to client ¢ € V'.

The objective computes the total holding cost for each client ¢+ € V and
time period p € H' and the total travelling cost for p € H. Constraints (1) are
flow conservation constraints that compute the inventory level of the supplier at
each period p € H from its previous inventory level, the quantity produced at
p and the quantities sent to the clients at p. Similarly, constraints (2) state the
flow conservation constraints regarding the clients. They compute the inventory
level of each client ¢ € V' for each period p € H from its previous inventory
level, the quantity received from the supplier and its demand for period p. The
inventory capacity is enforced through several constraints: Constraints (3) state
that the inventory level of client ¢ € V' at any period p € H must be lower
than I™** and constraints (4) state that a replenishment of this client at period
p € H cannot exceed its maximal inventory level. Constraints (5) link variables
y? with ¢, stating that a client ¢ € V' which receives a quantity at period
p € H, is necessarily visited at p. I™* is used here as an upper bound for ¢.
Constraints (6) works similarly for the supplier, stating that the quantity leaving
supplier 0 at period p € H is limited by the vehicle capacity C. Constraints (7)
and constraints (8) are flow conservation constraints for the routing component
for each i € V' and respectively state that if a client is visited, one arc arrives
to it and another leaves from it. Constraints (9) eliminates sub-tours, where .
is a set of sub-tours. Finally, constraints (10) to (13) enforce integrality and
non-negativity conditions on the variables.
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Fig. 1: A travelling time function between two locations where M = 120

3.2 Time-dependent travelling time function

The main difference between the IRP and the TD-IRP resides in its routing com-
ponent. Let 7 be the length of a period p € H. t € T represent the granularity
in time for a period p € H. For example, H can represent the days and 7T the
hours of the day. In IRP, for all ¢ € T, the travelling time between a location
i and j is constant and is equal to 7;;. However, for the TD-IRP, the travelling
time 7/, is no longer constant but depends on the time ¢ when the vehicle leaves
from 1.

Producing time-dependent functions for routing problems is a field that many
scholars took interest in. A variety of functions exist in the literature for the
Time-Dependent Travelling Salesman Problem (TD-TSP): some are artificial
while others are based on real traffic data. Rather than reviewing the time-
dependent functions in the literature, we refer to [20] who propose a compact re-
view of the functions available in the literature and their limitations and present
a new one based on the traffic conditions of the city of Lyon, using a dynamic
microscopic simulator of traffic flow. It consists of constant piece-wise travel-
ling time functions 7 for each couple of locations with a number of time steps
M| ={1,12,30,60,120} and lengths (respectively) L = {720, 60, 24,12, 6} min-
utes, where |T| = M| x L. An example of a constant piece-wise travelling time
function between two locations with | M| = 120 time-steps and L = 6 minutes is
presented in Figure 1. In this case, the travelling time between any two locations
and for each time-step is computed as the shortest path and is given in seconds.
These travelling time functions will be used as the travelling time functions of
the TD-IRP in the remaining of the paper.

A problem is faced when handling constant piece-wise travelling time func-
tions is that the First In First Out (FIFO) property is not always satisfied.

3.3 First In First Out (FIFO) property
A travelling time function 7 that enforces the FIFO property is such that:

t+ Titjl» >t+7) V(i,j) € A Vt,t' € T where t’ >t
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In other words, a travelling time function that enforces the FIFO property en-
sures that if leaving ¢ to j at ¢, it is impossible to arrive later than when leaving ¢
to j at ¢’ when #’ is later than ¢. The advantage of a travelling time function that
enforces the FIFO property is that it is more realistic than one that does not.
However, for constant piece-wise functions, the FIFO property is not satisfied
forallte 7.

In the case of a piece-wise function, the length of a period 7 is split into | M|
discrete time steps of duration L (|7] = |M| x L). Let m € M be the index of a
time-step. Each time step m € M is identified in a time interval denoted by %,,
Let t,, = [tmin; ¢min, [ where t22" represents the beginning of interval ¢,,. Finally,

let 7/ be the travelling time of traversing arc (i,j) € A when ¢ € t,,. It is worth

noting that in a constant piece-wise function, for all ¢ € t,,: Tfj =T

When there is an increasing discontinuity between time-step m and its suc-
cessor m+1, i.e. 7,7 < TmH the FIFO property is always satisfied in a piece-wise

function since for all t' €ty and t € tp,: ¥ >t and Tm+1 > 7 Therefore

t'+ Tfj' >t 4+ Tfj. However, when a decreasing dlscontlnulty occurs, an interval
exists in t,, for which the FIFO property is not satisfied. This non-FIFO interval
is denoted by t£1F9 where tZTFO C t,,. We will demonstrate this through an
example of a constant piece-wise travelling time function, where M = 3 and
L = 5, presented in Figure 2. We also show how to define the interval t£1#0
and transform the travelling time function 7, into one that enforces the FIFO

property.

Following the non-FIFO travelling time function 7 presented in Figure 2, if we
leave i for j at taeparture = 0, We arrive to j at tarrival = tdeparture + 7} m=1 — ()42 =
2, Whereas when we leave 7 at tdeparture 4, we arrive to j at t/ ., = departure+
77 =" = 447 = 11. The FIFO property is satisfied in this case for all ¢ € ¢,,—1 and
t' € t,,=2 since it is an increasing discontinuity. Now, if we leave ¢ at fqeparture =
4, we arrive to j at farrival = tdeparture + T m=2 — 4 47 = 11. Whereas if we leave
1 at tdcparturC = 8, we arrive to j at tamval tdcpmturC + 7" =3 =844 =12. The
FIFO property is also satisfied. On the other hand, if we leave i at tgeparture = 6,
we arrive to j at farrival = tdeparture + T, m:2 = 6 + 7 = 13 whereas if we leave
iat thoparure = 8, We arrive to j at tamval = theparture T 71) > = 8 +4 =12,
In this case, the FIFO property is no longer satisfied since we arrive earlier by
departing later. The interval t£/#© for which the function no longer satisfies the

FIFO property is defined as /770 = ]max {tmi“ min — TmH } ; ,‘f‘;}rll[

m ) Ym—+1

In the case of the example, t£7F0 =] max{4,8 — (7 — 4)}; 8[ 15; 8[.

Now that the interval t£77© is identified, we need to transform this function
into one that satisfies the FIFO property. Several ways to transform a non-FIFO
function into a FIFO one exist; we use the one by [13] that simulates waiting

times. Indeed, if for all ¢ € t£1F0  instead of leaving right away we wait for the
min

moment ¢4, the FIFO property is always satisfied. In order to do this, the
constant piece-wise function 7 is transformed into a linear piece-wise function
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Non-FIFO travelling FIFO travelling
time function W time function
1
8 o~
; -«—" —>
3
Tij 7 T

Travelling time
-~ o

Time steps
Fig. 2: FIFO travelling function transformation procedure

such as
t

7!, = min {T;”FLL'J,minf(t)} vt e T,V(i,j) € A

J feF

F is a set of linear functions f that are added for every decreasing discontinu-
ity. The full procedure for the FIFO transformation is described in algorithm 1.
3.4 Limits of the FIFO travelling time function

Let ¥ Dbe a binary variable that is equal to 1 if the vehicle leaves i € V to
j €V at time step m € M and 0 otherwise, when the travelling time function

is constant piece-wise (non-FIFO). For an instance where |V| = 5, |H| = 3,
M| = 120 and L = 360, the number of variables z7;,, denoted by #uz};,, is
equal to #al;, . = (V] = 1)? x [H] x IM| = 4% x 3 x 120 = 5,760 variables.

Since the FIFO function is a linear step-wise function, knowing the time step
in which location i is left is no longer sufficient. It is necessary to know the exact

Algorithm 1: FIFO transformation

1: input: a constant piece-wise travelling time function 7, an arc (4,5) € A and an
empty set of linear functions F
2: forme M ={1,2,...,|M| -1} do

3: if 77 > 77" then

t:?li?»l min min
4: create a linear function f such that f(¢t) = {_t 7 At VE< bmi1
5: add f to F
6: end if
7: end for
8: return 7 and F
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moment, in seconds. Therefore, discretising the length of the period into seconds
is needed. Let xfjt be a binary variable that is equal to 1 if the vehicle leaves
1€Vtoj€Vatsecondt € T and 0 otherwise, when the travelling time function
is linear piece-wise (FIFO). The problem faced in this case is the number of the
binary variables. Indeed, for the same instance, the number of variables 7,
denoted by #x%;, is equal to (|V| —1)® x [H| x M| x L = 4% x 3 x 120 x 360 =
2,073,600 variables. Optimising with such a number of variables, even though
they can be reduced by cleaning the graph, is a tedious task. However, since
the objective of our IRP is to minimise the cost of travelling but not the arrival
time, and since the FIFO function simulates waiting at nodes, it is possible to
produce solutions that satisfy the FIFO property with a non-FIFO function by
allowing waiting at nodes. This prevents using a huge number of variables.

Let us consider an example presented in Figure 3 where [V| = 3, M| = 3 and
L = 5 and for each arc (i§), a travelling time function is presented. Let us assume
that an optimal solution is to visit locations 1,2,3 in the order 1 -2 — 3 — 1
and that the vehicle must leave location 1 at the beginning of the period, i.e.
at t = 0. Therefore, we need to determine at what time the vehicle leaves 2
for 3 and at what time it leaves 3 for 1. Three cases are displayed: (i) non-
FIFO travelling time function with no waiting allowed, (ii) FIFO travelling time
function with no waiting allowed and (iii) non-FIFO travelling time function
with waiting allowed. For (i) and (iii), the solution with minimum cost is to
depart from 1 at m = 1, from 2 at m = 1 and from 3 at m = 2. For (ii) more
than one optimal solution exist: leaving 1 at ¢t = 0, leaving 2 at t € {0,1,2, 3,4}
and leaving 3 at ¢t € {5,6,7,8,9}. For (i) and (ii), these solutions are infeasible
since no waiting at nodes is allowed. The optimal feasible solution is to leave 1
atm=12atm=1and 3at m =2 for (i) and leave L at t =0, 2 at t = 1
and 3 at t = 2 for (ii). The problem in this case is that although the vehicle
leaves 3 at the same moment, it arrives later in the solution of (i) than in the
solution of (ii). Therefore, the FIFO property is not satisfied. However, leaving
latm=1,2at m=1and 3 at m = 2 is feasible for (iii). In this case, the
arrival time in (ii) is equal to the arrival time in (iii), which means that the
FIFO property is satisfied. We can conclude from this example that we are able
to produce solutions that enforce the FIFO property while using a non-FIFO
travelling time function by allowing waiting at nodes.

3.5 Mathematical formulation of the TD-IRP

Let us start by defining a time-dependent path, using the definition by [17].

Definition 1. Let P =< vy, ..., Up—1, Vg, Vkt1, ---, Up > where v, € V' and vy =
vy, = 0 the supplier. Let T =< mq,...;Mpk_1, Mk, Mkt1, ..., Un—1 > be a set of
departure times. A time-dependent path [P,T] is a combination of P and T
where T represents the departure times of v, € P\{vy}.

Let t,, and s,, be, respectively, the earliest departure time and the service
time of location vy € P where:
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Non-FIFO travelling FIFO travelling time
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Fig. 3: Example 1: non-FIFO waiting not allowed vs. FIFO waiting not allowed
vs. FIFO waiting allowed

0+ 54, v =0
— by, = Ltvk{lj

max{ty,, , + To,_ Lwox + Sup, TR0 VE € P\{v,,v1}

k
— [P,T] is infeasible <= Ju, € P : t,, ¢ [tmm¢min |
Using this definition, infeasible paths can be detected and eliminated follow-
ing the mathematical formulation presented below.
The objective of the TD-IRP extends the objective of the IRP by incorpo-
rating the time dimension in the travelling cost. The model is extended with

constraints (14) to (17). Constraints (14) link the variables 7}, to variables

xfj stating that if an arc (i.j) € A, it is travelled in one time step only. Con-
TD-IRP
min obj TP = xS S Y A xal, + > > hix I}
(i,j)EAPpEH meM i€V peH’
s.t. (1) to (13)
meZM T =z} V(i,j) € A, VpeH (14)
> ilcgjo =yl VpeH (15)
jev’
> xﬁkkarhmk <|P|-2 VP, Te[PT],peH (16)
vr €EP\{vn} mpeT
im € {0,1} V(i,5) € A,meM,VpeH (17)
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Fig. 4: Example 2: non-FIFO waiting not allowed vs. FIFO waiting not allowed
vs. FIFO waiting allowed

straints (15) state that if a tour is scheduled, it starts from the supplier at the
beginning of the period. Constraints (16) eliminate the infeasible time-dependent
paths [P, T|. Finally, constraints (17) enforce the integrality of variables ¥

igm*

3.6 Time-travel constrained TD-IRP

Let us take a look at another example presented in Figure 4, which is an alter-
native version of the example in Figure 3. We reconsider the same three cases:
(i) non-FIFO travelling time function with no waiting allowed, (ii) FIFO trav-
elling time function with no waiting allowed and (iii) non-FIFO travelling time
function with waiting allowed.

For (i) and (ii) the optimal feasible solutions are the same: departing from
latt =0, from 2 at t =1 and from 3 at ¢ = 2. For (iii), an optimal solution
is to depart from 1 at t = 0, from 2 at ¢t = 1 and from 3 at ¢ = 10. All these
solutions enforce the FIFO property. However, the solution of (iii) does not only
use waiting times to mimic the FIFO algorithm but uses it to improve the cost
of solution by waiting even more. The problem with this kind of solutions is that
they are not satisfactory in real life. Therefore, in order to avoid such solutions, it
is necessary to constrain the total duration of travelling, hence the TD-TC-IRP.

Since in an IRP, the longest tour would visit all the clients of the network,
we compute an upper bound of the solution of a TD-TSP for V with the FIFO
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travelling time function. We refer to this upper bound as 7™V for the value in
seconds and |M™¥| for the one in time steps. This upper bound will serve as
a limit for the length of the tour. Therefore, T = max{7,7""} and M| =
max{|M]|, |M"®¥|}. Since the original length of the period T is very large in
comparison to the computed upper bounds of the TD-TSP, the TD-IRP becomes
a TD-TC-IRP. Moreover, the model becomes smaller and easier to solve due to
a smaller number of variables.

4 Results & discussion

All experiments are conducted on a CPU Intel Xeon E5-1620 v3 @3.5Ghz with
64GB RAM using a branch-and-cut procedure with an execution time limit of
3600 seconds. The sub-tour elimination constraints as well as the time-dependent
infeasible paths constraints are added dynamically using Gurobi 9.0.2 as a solver
with the lazyConstraints parameter and the default number threads. As stated
before, in order to make the TD-IRP a TD-TC-IRP, we compute upper bounds
for the TD-TSP. To that purpose, a simple Iterated Local Search (ILS) algorithm
is used. All algorithms are implemented with Java.

The benchmark used for these experiments is the result of a combination
between the most commonly used benchmark of the IRP presented in [2] and
the benchmark of the TD-TSP presented in [20] and discussed in subsection 3.2.
The combination is made by replacing the euclidean coordinates in [2] with
constant travel time functions between each 2 locations from [20]. We tested
instances with a number of clients |V| € {5,10, 15,20, 25,30} and a number of
periods |H| = 3. For each value of |V|, 10 different instances are available. Each
instance is combined with 6 different travelling time functions depending on the
number of time steps |[M| = {1, 12, 30,60, 120}. The case |M| = 1 is the basic
IRP.

In order to see the impact of optimising with time-dependent travelling time
functions, we solve the basic problem and the time-dependent problems. More-
over, we also solve the time-dependent problem using the partial solution given
by the solution of the basic IRP. The partial solution here means that all the
values of variables 7}, g7, y; and I are fixed to the one found when solving the
basic IRP, leaving variables J;fjm to be determined.

Table 1 presents the results of these experiments. Columns z, g and CPU(s)
present, respectively, the objective value, the gap and the execution time, in av-
erage, of the basic IRP. Columns 2z, gm and CPUp,(s) represent, respectively,
the objective value, the gap and the execution time, in average, of the TD-IRP.
Finally, column g represents the gap between the solutions found using the basic
solutions with time-dependent functions z to the time-dependent solutions zxq
where g = 2M=2

We can see from Table 1 that the gaps § between the basic solution when
applied to a time-dependent travelling time-function and the time-dependent
solution are fairly small, as the largest gap is 5% for |V| = 30 and |[M]| = 120.
The reasons can be summarised in three points:
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Departure time from the supplier: In this paper, we consider that the depar-
ture time from the supplier is always the beginning of the period, i.e. ¢ = 0.
Although for the constant case this parameter does not have an impact, since
the travelling times are constant over the entire length of the period, it can have
a big importance for the time-dependent case. The cost of the tour can heavily
decrease if leaving later avoids travelling during time intervals where the traffic
is congested.

Number of clients: For |V| = {5,10, 15,20} the number of clients does not seem
influential as the gaps g are quite similar. This is due to the speed with which
we can visit all the clients and get back to the supplier. As seen from Figure 1,
the travelling time function is not volatile in the first time-steps, and since it
does not take a long time to visit up to 20 clients, all of the clients can be visited
while avoiding congestion periods. However, for |V| = {25,30} although the gaps
does not show a big difference since the instances are not solved to optimality
due to their hardness, we expect that the gaps will be bigger when optimality
is achieved (Instances where |V| = 30 and |[M| = 120 give a glimpse of this
intuition). Indeed, when the number of clients is bigger, visiting all the clients
requires more time and therefore it is not possible to entirely avoid congestion
periods. This is where optimising with time-dependent travelling time functions
becomes useful.

Structure of time-dependent solutions: We observed that optimal time-dependent
solutions are not very different from basic solutions, as the difference only re-

Table 1: Results

V] | M| z g% CPU(s) zm gm% CPUM(s) g%
1 2182.21 0.00 0.01
12 1964.21 0.00 0.00 1959.81 0 .01 0.22
5 30 1832.41 0.00 0.00 1832.21 0.00 0.01 0.01
60 1734.61 0.00 0.00 1729.21 0.00 0.04 0.31
120 1594.21 0.00 0.00 1575.16 0.00 0.09 1.21
1 3628.56 0.00 0.04
12 3373.66 0.00 0.00 3344.28 0.00 0.04 0.88
10 30 3234.86 0.00 0.01 3189.87 0.00 0.47 1.41
60 3059.26 0.00 0.02 3024.49 0.00 0.70 1.15
120 2844.16 0.00 0.05 2790.79 0.00 2.15 1.15
1 4592.76 0.00 0.26
12 4292.66 0.00 0.01 4278.56 0 0.55 0.33
15 30 4152.46 0.00 0.04 4132.36 0.00 3.61 0.49
60 3943.76 0.00 0.20 3898.75 0.00 12.88 1.15
120 3666.96 0.00 0.58 3598.49 0.00 58.09 1
1 5943.82 0.00 0.22
12 5561.62 0.00 0.02 5540.02 0.00 1.33 0.39
20 30 5384.82 0.00 0.15 5314.13 0.00 24.70 1.33
60 5147.72 0.00 0.78 5058.48 0.00 132.04 1.76
120 4863.22 0.00 11.64 4778.23 0.94 997.54 1.78
1 6838.12 0.00 0.27
12 6506.12 0.00 0.05 6477.61 0.00 10.54 0.44
25 30 6293.72 0.00 0.45 6256.21 0.00 591.80 0.60
60 6063.92 0.00 2.67 6018.49 1.67 1689.16 0.75
120 5769.52 0.06 747.36 5760.07 5.73 3600.06 0.76
1 8428.37 0.00 0.52
12 8061.97 0.00 0.19 8020.23 0.82 1247.00 0.52
30 7806.37 0.00 4.53 7773.43 0.87 2183.56 0.42

30 60 7543.67  0.00 434.07  7522.99  3.69 3135.61  0.27
120 7184.87 0,57 1964.32  6839.65  10.08 3600.08  5.05
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sides in the values of variables J;fj and xfjm. This means that the same clients
are visited for each period with the same quantities. The only difference is in the
sequence in which the clients are visited. Therefore, since the gap in the cost is
only seen in the transportation cost, its impact is not of a big importance as the
inventory cost remains the same.

Note that the results presented in Table 1 can be heavily impacted by the
upper-bounds of the TD-TSP. If the TD-TSP is solved to optimality, then the
waiting times will be used only to mimic the FIFO transformation algorithm.
However, since in our case the TD-TSP upper bounds are generated using an ILS
algorithms, the performance of the algorithm has an impact on the TD-TC-IRP
solutions. Indeed, the better the ILS performs, the shorter |7 is, and vice-versa.

5 Conclusions & perspectives

In this paper, we propose a new variant of the IRP, the TD-TC-IRP. In this vari-
ant, the travelling time between two locations is not constant throughout the
day but depends on the time the arc is travelled and the length of a trip is con-
strained. A constant piece-wise time-dependent travelling time function of the
TD-TSP literature is presented. We show that such functions do not necessarily
satisfy the FIFO property and present a way on how to transform it to a linear
piece-wise function that does. The limits of using a linear piece-wise function for
optimisation purposes are discussed. To cater for this, a mathematical formula-
tion for the TD-TC-IRP using a constant piece-wise function by allowing waiting
at nodes, in order to always satisfy the FIFO property, is proposed. Numerical
experiments are conducted on a new proposed benchmark where benchmarks
from the literature of the IRP and the TD-TSP are combined using a branch-
and-cut procedure. The results show that solving the TD-TC-IRP is harder than
its basic counterpart. Moreover, it also shows that the solutions of the basic IRP
performs almost as well as time-dependent solutions in a time-dependent envi-
ronment. However, this last point can be the result of parameters such as the
departure time from the supplier and the number of clients visited.

A future work would be to enhance the solving method by proposing new
valid inequalities or new reformulations for the TD-IRP. Faster algorithms will
help with two points: solving larger instances and considering the departure
time from the supplier as a decision variable and no longer the beginning of the
period. Another perspective is to consider a dynamic service time which will not
be constant anymore but depends on the replenishment quantity.
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