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Abstract

This paper presents a Linear Parameter-Varying (LPV) observer for an In-
duction Machine (IM) under sinusoidal DC-supply disturbances. The ob-
server estimates not only the IM state variables, but also the disturbances
considered as a part of the states. As the extended IM model depends on
the stator angular speed ωs and the rotor angular speed ωr, the proposed
observer is designed by convex optimization to induce a convergence of the
observer for a predetermined range of ωs and ωr. The estimated disturbances
can be used to compensate for the real disturbances. The simulation results
show the effectiveness of the observer, and experimental results on a labora-
tory test-bench have been obtained. The proposed method can be extended
to other type of motor drives.

Keywords: Electrical drive, Linear Parameter Varying (LPV) observer,
convex optimization, inverter voltage disturbance.

1. Introduction

Electrical drive is widely used in industrial applications such as renewable
energy generation, electrical vehicles or railway traction. The quality of the
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controlled currents or torque is primordial. An electrical machine is driven by
an inverter which is supplied by a DC voltage. This last can be obtained from
an alternative source through a power factor correction (PFC) rectifier for
example. In this case, the inherent ripple power at twice the line frequency
is injected into the DC side of the PFC. This can induce many harmonics
in the DC voltage. It is reported in [1] that the principal harmonic found
on the DC voltage is the second harmonic of the line voltage. This last can
be assimilated by a sinusoidal disturbance whose frequency is known. In
a controlled environment, the DC supply disturbances of the inverter can
induce disturbances of the control voltages and thus degrade the quality of
controlled currents and lead to ripples of the torque. This paper focuses
on the control disturbances for one given harmonic induced by the inverter
supply. When the control disturbances can be assimilated to a sinusoidal
waveforms with known frequencies, they can be considered as a part of the
states [2]. An observer can then be used to estimate and compensate for it.
Tebbani and coworkers [3] use a Kalman filter to reduce output low-frequency
ripples that appear on the control voltage in a train supply application. In [2],
active reduction of vibrations in synchronous motors by using a Luenberger
observer has been presented. This last is designed for a single operation
point, with the consequence that the stability can not be guaranteed for all
speed range. Since the performance of the observer depends on the stator
rotational speed ωs and the rotor rotational speed ωr of the machine, the
determination of the observer gain has always been a topic of interest.

Some results in the field of robust estimation have highlighted new possi-
bilities: Linear Parameter Varying (LPV) observer gains can be designed to
minimize a L2-gain (energy gain) or H∞ norm on the estimation error [4, 5].
This approach is alternative to the one based on minimizing the variance of
the estimation error, which is at the foundation of the stochastic approach
of the Kalman filter [6].

In this paper, we propose a stabilising LPV observer of an IM by taking
into account the sinusoidal waveform disturbances with known frequencies.
These disturbances can be modeled as a part of the states. The methodology
is applicable for other types of electrical motors such as synchronous motors.
A systematic method is presented to design the gains of the observer off-
line considering a given range for the stator and the rotor speed of the IM.
These gains are computed by convex optimization, and they guarantee the
convergence of the observer for all the speeds in the defined range. The
observer estimates not only the IM state variables, but also the harmonics
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coming from the control voltage disturbances, in order to make it possible to
perform an active compensation to reduce the effect of these disturbances.

The paper is organized as follows. Section 2 presents first the IM model,
then the disturbance modelling for one harmonic induced by the DC-voltage.
An extended LPV model is thus obtained which depends on the disturbance
frequency ωd, the angular frequency of the stator ωs and rotor ωr. The ob-
servability of the extended model is analyzed as well in the same section.
Section 3 contains the description of the systematic gain design method.
Section 4 presents the simulation results for the designed observer performed
with an industrial used induction, whereas Section 5 presents some experi-
mental results validated in a laboratory test bench.

2. Extended IM model including voltage disturbances

2.1. IM Modelling
By assuming that the saturation of the magnetic parts and the hysteresis

phenomenon are neglected, the dynamical model of the electrical part of an
induction motor in the rotating reference frame (d,q) can be written by means
of the following equations [7]:{

Ẋ = A (ωs, ωr)X +BU
y = CX

(1)

with X = [isd, isq, ϕrd, ϕrq]
T , U = [usd, usq]

T , Y = [isd, isq]
T ,

A (ωs, ωr) =


−
(
Rs
Lσ

+ L2
mRr
LσL2

r

)
ωs

LmRr
LσL2

r

Lmωr
LσLr

−ωs −
(
Rs
Lσ

+ L2
mRr
LσL2

r

)
Lmωr
LσLr

LmRr
LσL2

r
LmRr
Lr

0 −Rr
Lr

(ωs − ωr)
0 LmRr

Lr
−(ωs − ωr) −Rr

Lr

,

B =

[
1
Lσ

0 0 0

0 1
Lσ

0 0

]T
, C =

[
1 0 0 0
0 1 0 0

]
,

where (isd, isq) are the stator currents in the rotating (d, q) reference frame,
(ϕrd,ϕrq) are the rotor fluxes in the same reference, (usd,usq) are the stator
voltages, Rr is the rotor resistance, Rs is the stator resistance; Lr, Lm and
Lσ are respectively the rotor, magnetizing and leakage inductances, and ωs
and ωr are respectively the angular frequency of the stator currents and rotor
flux.
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2.2. Disturbance modelling

Generally an IM is driven by a three-phase inverter which is supplied by
a DC-voltage obtained by an AC/DC converter such as a PFC rectifier. Fig.
1 shows a basic PFC topology to generate the DC-voltage of the three-phase
inverter. The DC-voltage quality depends on the PFC topology and its con-
trol [8] which are out of scope of this paper. However, it can be considered
that the voltage contains many harmonics where their frequency can be iden-
tified but their amplitude can evolve with the load power. These harmonics
with unknown amplitude can be taken into account in a disturbance model
as follows.

Figure 1: PFC stage for a motor controller [9].

For the sake of simplicity, we take one harmonic with angular frequency of
ωd rad/s as example. It can be extended for other harmonics with the same
principle. As it will be shown in section 4.1, a sinusoidal waveform distur-
bance on DC supply of the inverter induce the control voltage disturbances
with the same frequency. The corresponding disturbances on the stator volt-
ages in the (d,q) reference frame are two sinusoidal waveform disturbances
with the same angular frequency. Without loss of generality, these distur-
bances are modeled as two sinusoidal waveforms dd = Dd0sin(ωdt+ φd) and
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dq = Dq0sin(ωdt + φq). These disturbances can be written in state-space
form:

Xd =


Dd0 sin(ωdt+ φd)
Dd0 cos(ωdt+ φd)
Dq0 sin(ωdt+ φq)
Dq0 cos(ωdt+ φq)



Ẋd =


0 ωd 0 0
−ωd 0 0 0

0 0 0 ωd
0 0 −ωd 0

Xd = Ad(ωd)Xd

(2)

The same principle can be used to add other disturbance harmonics in
the disturbance model.

2.3. Extended Model

By taking into account the disturbance model (2) in the IM model (2.1),
an augmented model of order 8 can be obtained as follows [2]:{

Ẋe = Ae (ωd, ωs, ωr)Xe +BeU
Y = CeXe

(3)

with
Xe = [X,Xd]

T

Ae =

[
A (ωs, ωr) BCd

04×4 Ad (ωd)

]
, Be =

[
B

04×2

]

Cd =

[
1 0 0 0
0 0 1 0

]

Ce =

[
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

]
.

This model is a LPV system depending on the stator and rotor speed of
the IM and on the identified disturbance frequency ωd. It can be noted that
the disturbance here is not to be taken as an unknown input, but rather as
a part of the state-space vector which will be estimated by a LPV observer.
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2.4. Observability analysis

A LPV observer will be developed in order to retrieve all the states of
Xe from the current measurements. Before designing an observer for the
system (3), it is necessary to study the system’s observability by using the
criterion developed by Kalman [10]. The observability of the LPV systems
may be evaluated by analyzing the rank condition of the observability matrix
according to ωd, ωs and ωr.

The observability matrix is expressed as:

Oe (ωd, ωs, ωr) =
[
Ce CeAe CeA

2
e . . . CeA

7
e

]T
(4)

The rank condition is satisfied if it is possible to find a submatrixO (ωd, ωs, ωr)
of size 8× 8 inside the observability matrix Oe (ωd, ωs, ωr) which has a non-
zero determinant. It turns out that the determinant of the upper block of
the observability matrix is given by:

det[O (ωd, ωs, ωr)] = −
(

1
Lσ

)4(
Lm
LσLr

)2
ωd

2

((
Rr
Lr

)2
+ ωr

2

)
(((

Rr
Lr

)2
+ ωd

2 − (ωr − ωs)2
)2

+ 4
(
Rr
Lr

)2
(ωr − ωs)2

)
(5)

This determinant is different from zero for any value of ωs and ωr if
ωd 6= 0. The system (3) is therefore observable when ωd 6= 0. When ωd = 0,
it means that the disturbance inputs are constants; it is then easy to observe
these disturbances as proposed in [2].

3. LPV Observer Design

The design of the observer can be done by numerical convex optimisation.
The method proposed here is inspired by the approach of [11] and [12], and
it is based on the concept of regional pole placement described in [13]; in this
sense, it is very different from the approach in [4, 5], which is based on H∞
performance.

The goal of this observer is to create a state dynamics for a variable X̂e

such that X̂e tends to Xe asymptotically. Assuming the parameters ωd, ωs,
and ωr to be known at all times, then the standard observer dynamics, for
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(3), are given by the equations{
˙̂
Xe = Ae (ωd, ωs, ωr)X̂e −K (ωd, ωs, ωr) (Y − Ŷ ) +BeU

Ŷ = CeX̂e

(6)

where K (ωd, ωs, ωr) is a parameter-dependent observer gain, to be deter-
mined. This is a LPV observer due to the dependence of the gain on the
parameters. Expressing the observer error E as X̂e − Xe, as a consequence
of (6) and (3) its dynamics are described by

Ė = (Ae (ωd, ωs, ωr)−K (ωd, ωs, ωr)Ce)E. (7)

The error dynamics are asymptotically stable (i.e. the error converges to zero)
if there exists a positive definite Lyapunov matrix P such that

P (Ae (ωd, ωs, ωr)−K (ωd, ωs, ωr)Ce)
+(Ae (ωd, ωs, ωr)−K (ωd, ωs, ωr)Ce)

>P < 0
(8)

for all ωs ∈ [ωs, ωs] and ωr ∈ [ωr, ωr], and for a constant ωd. The expres-
sion above can be used to find a stabilising observer gain K (ωd, ωs, ωr);
in this case, both P and K (ωd, ωs, ωr) are unknown and the inequality is
nonlinear in the decision variables. With a given constant ωd, assuming
that K (ωd, ωs, ωr) = K (ωs, ωr) is linear in the parameters, i.e. K (ωs, ωr) =
K0 + Kωsωs + Kωrωr, the change of variables L (ωs, ωr) = PK (ωs, ωr) =
PK0 + PKωsωs + PKωrωr allows reformulating (8) as

PAe (ωd, ωs, ωr)− L (ωs, ωr)Ce
+Ae (ωd, ωs, ωr)

> P − C>e L (ωs, ωr)
> < 0,

(9)

which is a parameter-dependent LMI (linear matrix inequality) [14]. The
dependence on the parameters is linear (also called polytopic), so it can be
removed by simply reformulating the inequality for all the extreme values of
the parameters. This means that a stabilising parameter-dependent observer
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gain K (ωs, ωr) can be found by solving

P > 0,

PAe (ωd, ωs, ωr)− L (ωs, ωr)Ce
+Ae (ωd, ωs, ωr)

> P − C>e L (ωs, ωr)
> < 0,

PAe
(
ωd, ωs, ωr

)
− L

(
ωs, ωr

)
Ce

+Ae
(
ωd, ωs, ωr

)>
P − C>e L

(
ωs, ωr

)>
< 0,

PAe
(
ωd, ωs, ωr

)
− L

(
ωs, ωr

)
Ce

+Ae
(
ωd, ωs, ωr

)>
P − C>e L

(
ωs, ωr

)>
< 0,

PAe
(
ωd, ωs, ωr

)
− L

(
ωs, ωr

)
Ce

+Ae
(
ωd, ωs, ωr

)>
P − C>e L

(
ωs, ωr

)>
< 0,

(10)

for P and L (ωs, ωr), and then K (ωs, ωr) = P−1L (ωs, ωr). LMIs can be
solved using appropriate software, in this case we have relied on Matlab’s
Mosek implementation [15], coded through Yalmip [16]. Note that the larger
the range of ωs and ωr, the less efficient the observer will be.

The LMI conditions in (10) only assure that the observer is stable, but it
is interesting to add additional constraints in order to impose certain limits
to the closed-loop dynamics. For example, just imposing the stability will
not put any constraints on how fast the convergence will happen, or how
damped or oscillating the observer dynamics will be. This can instead be
imposed if the closed loop poles are constrained into a region as in Fig. 2,
where 1) the minimum value of the real part of the poles (αmin) imposes
a minimum rate of convergence, 2) the maximum value (αmax) limits the
speed of the convergence (this is necessary as the closed-loop poles must be
slower than the Shannon frequency of the real-time control system, and also
preferably slower than the measurement noise), and 3) the sector condition
(depending on the slope β) assures a minimum damping level to the poles.
These conditions, as explained in [13], are assured by solving the following
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LMI problem:

P > 0,

PAe − LCe + A>e P − C>e L> + 2Pαmin 6 0,

PAe − LCe + A>e P − C>e L> + 2Pαmax > 0,[
β(A>e P − C>e L> + PAe − LCe) A>e P − C>e L> − PAe + LCe
−A>e P + C>L> + PAe − LCe β(A>e P − C>e L> + PAe − LCe)

]
6 0,

(11)
where the parametric dependence of the variables has been dropped for
brevity, i.e. read Ae (ωd, ωs, ωr) for Ae and L (ωd, ωs, ωr) for L. By assuming
again a linear expression of the observer gain as a function of the parame-
ters, i.e. K (ωd, ωs, ωr) = K (ωs, ωr), the problem is solved by running the
optimisation for the four vertices of the polytope (ωs, ωr), as done in (10) for
(9).

Real

Im
a
g

max min

Figure 2: Pole placement constraints.
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Table 1: Simulation Induction machine parameters.

Electrical parameters
Np number of pole pairs 2
Rr rotor resistance 1.179 Ω
Rs stator resistance 1 Ω
Lr rotor inductance 0.1197 H
Lm magnetizing inductance 0.1197 H
Lσ leakage inductance 27.6 mH

Nominal values
Pnom nominal power 1.8 kW
Inom nominal current 4 A
Vnom nominal voltage 326 V
ϕnom nominal flux 0.52 Wb
Ωnom nominal speed 1420 rpm
Te nom nominal torque 12.1 Nm

4. Simulation results

The proposed LPV observer has been first validated in simulations. The
machine used for simulation studies is an industrial 1.8 kW induction machine
whose parameters are presented in Tab. 1.

4.1. Simulation conditions

First the scheme presented in Fig. 3 is simulated with Matlab / Simulink
where the inverter averaged model is introduced. The behaviour of the PFC
rectifier is not simulated in detail since it takes more simulation time. Only
one harmonic with wd =50Hz of 30V amplitude as example is added on the
DC voltage in front of the inverter.

A classical field-oriented control [17] is considered. For a speed changed
between 0 and 800 rpm, Fig. 4 shows the difference between the control volt-
age usd (respectively usq) and the disturbed control voltage usdp (respectively
usqp) calculated from the voltages uap, ubp and ucp delivered by the inverter.
These differences noted dd, dq are two sinusoidal waveform disturbances with
the same frequency as that of the DC-supply disturbance. It confirms our
disturbance model in Section 2.

In order to accelerate the simulation time, the model of the inverter is
suppressed thereafter. The DC supply disturbances are taken into account
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Figure 3: Classical field-oriented control with supply disturbance

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t(s)

-1
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1
disturbance dd(V)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t(s)

-20

0

20
disturbance dq(V)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t(s)

0

500

1000
Speed (rpm)

Figure 4: Influence of inverter supply disturbance on the control voltage

in the simulation by adding sinusoidal waveform disturbances dd and dq to
control voltages usd and usq as shown in Fig. 5. Without loss of gen-
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erality, two sinusoidal waveform disturbances dd = Dd0sin(ωdt + φd) and
dq = Dq0 sin(ωdt + φq) have been introduced in the simulation for different
ωd.

The speed ranges for observer design are ωs ∈ [0, 320] rad/s and ωr ∈
[0, 320] rad/s. These worst-case ranges are willingly chosen for simulations.
For negative values of speed, a second gain can also be determined. αmin and
αmax are chosen as 0.5 rad/s and 50 rad/s respectively. The value of αmax
is way below the frequency of the noise, which we consider to be acting on
frequency of the order of the kHz.

Figure 5: Field-oriented control with observer

4.2. Open-loop state estimations

To verify the performance of the observer for different speeds, the motor
is controlled from 0 to 1500 rpm. The flux remains constant at its nominal
value. A load torque of Tl = 5 Nm is applied at t = 4 s. Two disturbances
are tested, one with low frequency (1Hz) to better view the disturbance
observation, the other with higher frequency (50Hz).

First, we take dd = Dd0 sin(ωdt + φd) and dq = Dq0 sin(ωdt + φq) with
ωd = 2π rad/s, Dd0 = Dq0 = 10 V, φd = 0 and φq = π

2
. From the measured

speed Ω and currents isd and isq, the observer estimates all the states of Xe,

including the disturbances d̂d and d̂q with their amplitude and phase shift.
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Figure 6: Comparison between the estimated states and the simulated ones for 1 Hz
disturbances

Figure 7: Observation error for 1Hz disturbances

Fig. 6 shows the comparison between the estimated currents, flux, dis-
turbances and the simulated ones. The estimated states converge quickly.
The speed evolution is presented in Fig. 6 (d). The observation errors are
small for all the range of speeds (Fig. 7). The load torque has no influence
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on the observation performance.
Second, we take ωd = 100π rad/s, Dd0 = Dq0 = 10 V, φd = 0 and φq = π

2
.

The comparison between the estimated extended states and the simulated
ones, and the observation errors, are shown respectively in Fig. 8 and Fig.
9. The observer converges quickly and the observation errors remain small.

More simulations with other disturbances for different ωd, Dd0, Dq0, φd
and φq give similar results. The estimation is quite accurate for all the states

including the disturbances d̂d and d̂q.

d�

q�

dI

qI

dd

qd

Figure 8: Comparison between the estimated states and the simulated ones for 50 Hz
disturbances

4.3. Disturbance compensations

From Fig. 8, it can be seen that the disturbances dd and dq cause os-
cillations in the currents isd and isq. These induce more losses and lead to
torque oscillations. If these disturbances are well estimated by the proposed
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Figure 9: Observation error for 50Hz disturbances

observer, it is possible to compensate these disturbances by adding the op-
posite terms of d̂d and d̂q to the main controller outputs.

Figure 10: Disturbance compensation scheme

Fig. 10 is implemented to verify the feasibility of the disturbance com-
pensation. A step response of the speed from 0 to 1000 rpm has been made
without torque load. The disturbances are always sinusoidal waveforms with
ωd = 100π rad/s, Dd0 = Dq0 = 10 V, φd = 0 and φq = π

2
. The disturbance

compensations are enabled at t = 2 s. The estimated and simulated currents
are shown in Fig. 11 (a) and the torque is presented in Fig. 11 (b). The esti-
mated errors are not plotted because they are similar to Fig. 9. The benefit
of using disturbance compensation can be observed through the difference
between the cases with and without disturbance compensation.

The parameters of a motor are never perfectly identified. Moreover, these
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parameters can evolve with temperature over time. It is interesting to study
the robustness of the observer. First, the same simulation as for Fig. 11 has
been made by adding 20% errors respectively on Rs and Rr. It can be seen
from Fig. 12 that still the disturbance compensation works well (after 2 s)
despite the static observation errors on dd and dq (Fig. 12 (c) and (d)).

Note that disturbance compensation must be made with care, notably
when the inductances are badly identified. When a 20% error is introduced on
Lr, not only are there estimation errors on the amplitude of the disturbances
(Fig. 13 (a) and (b)), but a phase shift also appears between dd and d̂d
(Fig. 13 (c)). It is clear that when the phase shift exists, a compensation
does not work well. So the disturbance compensations is not enabled in this
simulation. From Fig. 13 (c), it is possible to remark that the amplitude of
d̂d is smaller than that of dd contrary to Fig. 13 (d) where d̂q overestimates
dq.

Figure 11: Disturbances compensation at 3s with nominal parameters

5. Experimental results

The field-oriented control and the LPV observer have been implemented
on a dSPACE rapid control prototyping system using Simulink and the Real-
time workshop toolbox of MATLAB. A laboratory test-bench has been used
(Fig. 14). It is composed of one 13.6 W induction machine (EMsynergy)
whose parameters are presented in Tab. 2. The inverter is supply by a
24V DC voltage generator. A 1000-pulse incremental encoder is used. The
current are measured using three LEM current sensors. A permanent magnet
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Figure 12: Disturbance compensations with 20% errors on Rs and Rr

synchronous machine (PMSM) controlled by another dsPICDEM-MCLV-2 is
used as load torque generator.

First, the speed is controlled to 100 rpm under a sinusoidal waveform
disturbances on control voltage with ωd = 2π rad/s, Dd0 = Dq0 = 1 V, φd = 0
and φq = 0; 25% of nominal torque has been applied. Fig. 15 shows the
experimental results of the observed disturbances (red solid line) compared
to injected ones (blue dashdot line). It can be seen that the disturbance
dq is well estimated. There is a small static error for the disturbance dd
estimation. This is due probably to the motor’s parameters which are not
well identified. It can be remarked too that the estimated disturbances are
noisy since the measured currents are noisy contrary to simulation.

Then the speed reference is increased to 200 rpm. From Fig. 16, it can
be seen that the disturbance dq is always well estimated and the static error
of the disturbance dd estimation increase a little as the motor’s parameters
can evolve with temperature over time. As underlined in simulation, the
disturbance compensation works well despite the static observation errors
on dd and dq. We inject the estimated disturbances in the control voltage
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Figure 13: Disturbance estimations with 20% error on Lr

Table 2: Experimental Induction machine parameters.

Electrical parameters
Np number of pole pairs 2
Rr rotor resistance 1.05 Ω
Rs stator resistance 1.79 Ω
Lr rotor inductance 28 mH
Lm magnetizing inductance 30 mH
Lσ leakage inductance 6.81 mH

Nominal values
Pnom nominal power 13.6 W
Inom nominal current 2 A
Vnom nominal voltage 24 V
ϕnom nominal flux 0.03 Wb
Ωnom nominal speed 1121 rpm
Te nom nominal torque 0.116 Nm
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dsPICDEM-MCLV-2 boardIM PMSM

DC
Supply

Figure 14: Test-bench.

as on simulation. The torques with and without disturbance compensation
are compared in Fig. 17. It can be seen that the torque ripple has been
decreased with disturbance compensation. Note that a band pass filter can
be used eventually to reduce the static error on dd and dq and the noise effect
to improve the disturbance compensation performance.

The first experimental results on the laboratory test-bench validate the
proposed concept. Further tests will be performed on a larger machine as for
the previous simulations.

6. Conclusion

In this paper, a LPV observer has been designed for an induction ma-
chine subject to control voltage disturbances induced by inverter supply dis-
turbance. The disturbances are modeled as a part of the state-space vector
in an extended state-space model. The observer gain is determined off-line
by a numerical convex optimization. The observer is easy to implement, and
its on-line computational cost is smaller than that of an extended Kalman
filter. Thanks to this observer, it should be possible to compensate for the
disturbances without adding sensors and without changing the main con-
trol law. It can be used on the same time with other disturbance suppression
methods such as robust control. Simulation results show the feasibility of the
proposed observer and the disturbance compensation method. The exper-
imental results obtained on a laboratory test-bench confirm the simulation
report. Since there is current noise, the validation of our approach on the
laboratory test-bench corresponds to a realistic case study. The proposed
observer can be extended to other type of motor drives and can be used to
compensate other sinusoidal disturbances whose frequency is known, such as
acoustic noise of machine.
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Figure 15: Experimental results for speed of 100 rpm.

Future works will focus, on the one hand, on improving parameter iden-
tification of the used motor in order to perform more experimental test; on
the other hand, it will look at the possibility of improving the robustness of
the observer by more sophisticated convex design techniques. The possibility
of taking into account non-sinusoidal disturbances will be considered as well.
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