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PROBABILISTIC PROPERTIES AND PARAMETRIC INFERENCE OF

SMALL VARIANCE NONLINEAR SELF-STABILIZING STOCHASTIC

DIFFERENTIAL EQUATIONS.

VALENTINE GENON-CATALOT(1) AND CATHERINE LARÉDO2

Abstract. We consider a process (Xt) solution of a one-dimensional nonlinear self-
stabilizing stochastic differential equation, with classical drift term V (α, x) depending on
an unknown parameter α, self-stabilizing term Φ(β, x) depending on another unknown
parameter β and small noise amplitude ε. Self-Stabilization is the effect of including a
mean-field interaction in addition to the state-dependent drift. Adding this term leads
to a nonlinear or Mac Kean-Vlasov Markov process with transitions depending on the
distribution of Xt. We study the probabilistic properties of (Xt) as ε tends to 0 and
exhibit a Gaussian approximating process for (Xt). Next, we study the estimation of
(α, β) from a continuous observation of (Xt, t ∈ [0, T ]). We build explicit estimators using
an approximate log-likelihood function obtained from the exact log-likelihood function of
a proxi-model. We prove that, for fixed T , as ε tends to 0, α can be consistently estimated
with rate ε−1 but not β. Then, considering n i.i.d. sample paths (Xi

t , i = 1, . . . , n), we
build consistent and asymptotically Gaussian estimators of (α, β) with rates

√
nε−1 for

α and
√
n for β. Finally, we prove that the statistical experiments generated by (Xt)

and the proxi-model are asymptotically equivalent in the sense of the Le Cam ∆-distance
both for the continuous observation of one path and for n i.i.d. paths under the condition√
nε→ 0, which justifies our statistical method.

Keywords and phrases: Nonlinear diffusion processes, Mac-Kean-Vlasov stochastic differ-
ential equation, Small noise, Asymptotic properties, Parametric inference, Approximate
likelihood.

AMS Classification. 60J60, 60J99, 62F12, 62M05

1. Introduction

In this paper we study a dynamical system subject to three sources of forcing. First,
there is a potential which describes the geometry of the state space of the dynamical
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system. Second, small random pertubations occur on this dynamical system via Brown-
ian motion with small noise. Third, there is an additional source of forcing called self-
stabilization. Assuming a large population of identical dynamical systems subject to the
same evolution rules, this last term characterizes their influence. They act on the individ-
ual through an attractive potential averaged over the whole population and results in an
additional term in the underlying potential drift.

More precisely, we consider the one-dimensional process

(1) dXt = V (α,Xt)dt− b(θ, t, ε,Xt)dt+ εdWt, X0 = η ∼ µ,

(2) b(θ, t, ε, x) =

∫
R

Φ(β, x− y)uθ,ε,µt (dy),

where (Wt) is a Wiener process, η is random variable independent of (Wt) with distribu-

tion µ, uθ,ε,µt (dy) is the distribution of Xt = Xθ,ε,µ
t , V : R × R → R , Φ : R × R → R

are deterministic Borel functions and θ = (α, β) ∈ Θ = Θα × Θβ ⊂ R2 is an unknown

parameter. A solution of (1) is the couple (Xt, u
θ,ε,µ
t (dy))t≥0 composed of the stochastic

process (Xt) and the family of distributions (uθ,ε,µt ). The function x→ b(θ, t, ε, x) depends

on θ, t, ε and the initial distribution through uθ,ε,µt . When defined, the process (Xt) is a
time-inhomogeneous Markov process known as self-stabilizing diffusion or nonlinear sto-
chastic differential equation.

The integral term involves the process marginal law uθ,ε,µt . It models the interaction
between Xt and a fixed point x in the state space by means of an interaction function
Φ(β, .). The interaction between the various dynamical systems is of Mean Field type, this
effective additional drift term being a measure of the average force exerted by independent
copies of itself through the potential Φ(β, .). This model was first described by Mac Kean
(1966). These equations arise in the modeling of granular media by interacting particle
systems (see Benedetto et al. 1997 for the issues in Physics; Snitzman,1991 for a survey).
They could also occur when modeling Epidemic Dynamics with two levels of mixing (see
Ball et al., 1997; Ball and Sirl, 2020 and Forien and Pardoux , 2020).

The aim of this paper is to study both the asymptotic properties of the process (Xt)
solution of (1) as ε tends to 0 and the estimation of θ from a continuous observation of
(Xt, t ∈ [0, T ])) on the fixed time interval [0, T ] or from n independent paths ((Xi

t , t ∈
[0, T ]), i = 1, . . . , n). From now on, we assume that ε ≤ 1.

Our plan is as follows. We recall in Section 2 the existing results for these processes
and detail in particular the conditions ensuring existence and unicity of a strong solution
of (1) and illustrate these equations on an explicit example. In Section 3, we extend the
bounds existing for small pertubations of dynamical systems (see e.g. Azencott, 1982,
Freidlin and Wentsell, 2012) to these nonlinear diffusion processes and prove the existence
of a time-dependent Gaussian process approximating the paths of (Xt) as ε → 0. We
prove the existence of accurate bounds for the remainder terms which are crucial for the
inference. Section 4 is devoted to the estimation of the parameters present in the potential
term V (α, .) and in the interaction term Φ(β, .) based on a continuous observation of
(Xt) on [0, T ] with T fixed. We build explicit estimators using an approximate likelihood
function obtained from the exact likelihood of a proxi-model consisting in a time dependent
diffusion process derived from the results of Section 3. We obtain that only α can be
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estimated. We build consistent and asymptotically Gaussian estimators at rate ε−1 of
α for β known or unknown. Next, we study the case where we observe n independent
trajectories ((Xi

t , 0 ≤ t ≤ T ), i = 1, . . . , n). This is reminiscent of the situation of particle
systems (see Sznitman (1991)), where, for an infinite number of interacting particles, a
result of Propagation of chaos is proved for the limit, which corresponds to asymptotically
independent self-stabilizing diffusions.

We build consistent and asymptotically Gaussian estimators of (α, β) with different
rates of convergence: we prove that α is estimated at rate

√
n/ε and β at rate

√
n as ε

tends to 0 and n tends to infinity in such a way that ε
√
n tends to 0. Finally, asymptotic

equivalence of the experiments generated by (Xt) and the proxi-model in the sense of the
Le Cam distance is proved in Section 5. Asymptotic equivalence also holds in the case of
n i.i.d. trajectories. Concluding remarks and perspectives are given in Section 7. Proofs
are gathered in the Appendix.

2. Recap on nonlinear diffusion processes and preliminary results

2.1. Preliminaries. Let us first present heuristically the situation where these equations
are obtained. They first appear for modeling interacting particle systems.
Consider a system of N equations of N interacting dynamical systems. Then, equations
such as (1) occur as limits of the interacting dynamical systems, as the number N of
systems in a set of identical ones tends to infinity. Indeed, consider an interaction function
Φ(β, .) and let Φ(β, x− y) model the force of interaction between to points x and y in the
state space. Suppose that we are given N dynamical systems, with dynamics described
by the stochastic differential equation

dXi,N
t = V (α,Xi,N

t )dt− 1

N

N∑
j=1

Φ(β,Xi,N
t −X

j,N
t )dt+εdBi

t, Xi,N
0 = Xi

0 with 1 ≤ i ≤ N.

Here the Bi are independent Brownian motions and (Xi
0) are independent identically

distributed random variables, independent of (Bi, i = 1 . . . , N). The self-stabilizing effect
originates in the global action of the system on a particular one in the limit N →∞. Under

suitable assumptions, the empirical measures 1
N

∑N
j=1 δXj,N

t
converge to some law uα,β,εt

for each time t and noise intensity ε, and each dynamical system converges in probability
to the solution of

dXt = V (α,Xt)dt−
∫

Φ(β,Xt − x)uα,β,εt (dx)dt+ εdWt.

Moreover, asymptotic independence of the different dynamical systems is obtained in the
sense of the McKean-Vlasov limit (Propagation of Chaos, see Sznitman, 1991 for a review).

2.2. First assumptions. To ensure existence and unicity of a strong solution to (1) for
all θ = (α, β) ∈ Θ ⊂ R× R, we consider the following assumptions taken from Herrmann
et al. (2008).

• [H0] For all α, β, the functions x→ V (α, x) and x→ Φ(β, x) are locally Lipschitz.
• [H1] For all β, the function x → Φ(β, x) is odd, increasing and grows at most

polynomially: there exist K(β) > 0 and r(β) ∈ N such that

|Φ(β, x)− Φ(β, y)| ≤ |x− y|(K(β) + |x|r(β) + |y|r(β)), x, y ∈ R.
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• [H2] For all α, the function x → V (α, x) is continuously differentiable and there
exist KV (α) > 0 and R0(α) > 0 such that

∂V

∂x
(α, x) ≤ −KV (α), for |x| ≥ R0(α).

Assumption [H2] ensures that there exists L(α) > 0 such that

(3) ∀x ∈ R,
∂V

∂x
(α, x) ≤ L(α).

Under [H0]-[H1]-[H2], according to Theorem 2.13 in Herrmann et al.(2008), if E(η8q2) <
+∞ where q = [(r(β)/2) + 1], then, for all θ, there exists a drift term b(θ, t, ε, x) =

bµ(θ, t, ε, x) such that (1) admits a unique strong solution (Xt = Xθ,ε,µ
t ) satisfying b(θ, t, ε, x) =∫

R Φ(β, x − y)uθ,ε,µt (dy) and X is the unique strong solution of (1). Moreover, for all

p ∈ {1, . . . , 4q2}, whenever E(η2p) < +∞, supt≥0 E(X2p
t ) < +∞. In particular, if η is

deterministic, for all p ∈ N, supt≥0 E(X2p
t ) < +∞.

Before dealing with the general case, we illustrate the small variance properties on an
explicit example.

2.3. An explicit example. Consider the model where:

(4) V (α, x) = −αx with α > 0; Φ(β, x) = βx with β > 0.

We consider successively the case where X0 = η is random and the case X0 = x0 deter-
ministic.
Case X0 random: The value r(β) of Assumption [H1] is r(β) = 1. Therefore, according
to Herrmann et al. (2008), if η satisfies E(η8) < +∞, Equation (1) has a unique strong
solution. As b(θ, t, ε, x) = β(x− Eθ(Xt)), Equation (1) writes:

dXt = −αXtdt− β(Xt − Eθ(Xt))dt+ εdWt, X0 = η.

with η independent of (Wt). Obviously, EθXt = EθX0 − α
∫ t

0 EθXsds.
Hence Eθ(Xt) := mθ(t, ε) = mθ(t) = mθ(0) exp (−αt). Therefore, we obtain:

(5) dXt = −(α+ β)Xtdt+ βmθ(0) exp (−αt))dt+ εdWt, X0 = η.

This is a time-inhomogeneous Ornstein-Uhlenbeck process. Solving (5) yields
(6)

Xt = (X0 −mθ(0))e−(α+β)t +mθ(0)e−αt + εgt(θ) with gt(θ) = e−(α+β)t

∫ t

0
e(α+β)s)dWs.

The process (Xt) has a unique invariant distribution, the Gaussian law N (0, ε2/2(α +
β)). As ε → 0, Xt converges to xt(θ) = (X0 −mθ(0)) exp (−(α+ β)t) + mθ(0) exp (−αt)
uniformly on [0, T ], solution of the ordinary differential equation (ODE) corresponding to
ε = 0 in (5).

dxt = −(α+ β)xtdt+ βmθ(0) exp (−αt)dt, x0 = X0.

Case X0 = x0 deterministic: In this case mθ(0) = x0, mθ(t) = x0e
−αt,

(7) xt(α) = x0e
−αt; Xt = x0e

−αt + εgt(θ) with gt(θ) = e−(α+β)t

∫ t

0
e(α+β)s)dWs.
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The process converges uniformly on [0, T ] to xt(α). Note that β is no longer present in
the limit.

3. Properties on a fixed time interval.

Let us consider now the general case. We first study the convergence of the process as
ε tends to 0 and prove bounds for its moments which are uniform on a fixed time interval
[0, T ] under [H0]-[H2] and

• [H3-k] The functions x→ V (α, x) and x→ Φ(β, x) have continuous partial deriva-
tives up to order k and these derivatives have polynomial growth: for all α, β, and
all i, i ≤ k, there exist constants k(α) > 0, k(β) > 0, γ(α) ≥ 0, γ(β) ≥ 0, such that

∀x ∈ R, |∂
iV

∂xi
(α, x)| ≤ k(α)(1 + |x|γ(α)), |∂

iΦ

∂xi
(β, x)| ≤ k(β)(1 + |x|γ(β)).

Consider the equation corresponding to ε = 0 in (1)

(8) dxt(θ) = V (α, xt(θ))dt− b(θ, t, 0, xt(θ))dt x0(θ) = η, where

(9) b(θ, t, 0, x) =

∫
Φ(β, x− y)uθ,0t (dy), and uθ,0t (dy) is the distribution of xt(θ),

and uθ,0t (dy) = uθ,0,µt (dy). Clearly, Equation (8) is a nonlinear differential equation of the

same type as (1) without noise. Thus, it has a unique solution process (xt(θ), u
θ,0
t (dy), t ≥

0). Note that xt(θ) is deterministic if x0(θ) = x0 is deterministic.

Proposition 3.1. Assume [H0]-[H2] and [H3-2]. Let xt(θ) denote the solution of (8).
Then,

∀p ≥ 1, Eθ(Xt − xt(θ))2p ≤ ε2pC2p(t)e
2pL(α)t,

where C2(t) = t, C2p(t) is a continuous nondecreasing function of t and L(α) is defined in
(3).

Remark 3.1. The previous proposition extends Lemma 3.1 of Hermann et al (2008) where
only the case η = x0 deterministic and p = 1 is considered.

When η = x0 is deterministic, there is no source of randomness in equation (8) and

xt(θ) is deterministic. Therefore, uθ,0t (dy) is the Dirac mass at xt(θ) and this implies

b(θ, t, 0, xt(θ)) =

∫
Φ(β, xt(θ)− y)uθ,0t (dy) = Φ(β, xt(θ)− xt(θ)) = 0.

Therefore, the solution of (8), xt(θ) = xt(α), does no longer depend on β and becomes

(10) dxt(α) = V (α, xt(α))dt, x0(α) = x0.

In this case, we can prove the stronger result.

Corollary 3.1. Assume [H0]-[H2], [H3-2], X0 = x0 deterministic. Then, if xt(α) satisfies
(10),

(11) sup
t≤T

ε−2|Eθ(Xt − xt(α))| = O(1).

Moreover, in the special case where V (α, x) = −αx, Eθ(Xt) = xt(α).
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From now on, we assume

[H4] The initial condition of (Xt) is non random : X0 = x0 deterministic.

As for classical stochastic differential equation with small variance, (Xt) possesses a Gauss-
ian diffusion approximation. The expansion relies on regularity properties of b(θ, t, ε, x)
with respect to ε and x at (θ, t, 0, x).

Lemma 3.1. Assume [H0]-[H2], [H3-2] and [H4].Then
(i) For all θ, t ≥ 0, (ε, x)→ b(θ, t, ε, x) is continuously differentiable on [0,+∞)× R.
(ii) limε→0 b(θ, t, ε, x) = Φ(β, x− xt(α)).

(iii) At ε = 0, ∂b
∂ε(θ, t, 0, x) = 0 and ∂b

∂x(θ, t, 0, x) = ∂φ
∂x (β, x− xt(α)).

Analogously to the expansions obtained in Azencott (1982), Freidlin and Wenzell (2012)
for small pertubations of dynamical systems, the following holds.

Theorem 3.1. Assume [H0]-[H2], [H3-3] and [H4]. Then,

(12) Xt = xt(α) + εgt(θ) + ε2Rε(t),

where xt(α) satisfies (10), (gt(θ)) is the Ornstein-Uhlenbeck process (recall that ∂Φ
∂x (β, 0) ≥

0)

(13) dgt(θ) =

(
∂V

∂x
(α, xt(α))− ∂Φ

∂x
(β, 0)

)
gt(θ) + dWt, g0(θ) = 0,

and Rε(t) defined in (12) satisfies

sup
t∈[0,T ],ε>0

Eθ|Rε(t)| = O(1) and for all p ≥ 1, sup
t∈[0,T ],ε>0

Eθ
(
(Rε(t)− EθRε(t))2p

)
= O(1).

Let us define the two functions,

(14) a(θ, t) =
∂V

∂x
(α, xt(α))− ∂Φ

∂x
(β, 0); A(θ, t) =

∫ t

0
a(θ, u)du.

Remark 3.2. Under [H0]-[H2], [H3-3] and [H4], Equation (13) can be solved. Using (14),
we get

(15) gt(θ) =

∫ t

0
exp (

∫ t

s
a(θ, u)du)dWs = eA(θ,t)

∫ t

0
e−A(θ,s)dWs.

The proof of Theorem 3.1 provides an explicit expression of Rε(t) that will be used for
bounding it further, together with bounds detailed in the following corollary which are
crucial for the statistical study. Let

(16) D(θ, t, ε, x) = b(θ, t, ε, x)− Φ(β, x− xt(α)).

Corollary 3.2. Assume [H0]-[H2], [H3-3] and [H4]. Then D(θ, t, ε,Xt)satisfies

(17) sup
t∈[0,T ],ε>0

ε−2 |EθD(θ, t, ε,Xt)| = O(1),

(18) ∀p ≥ 1, sup
t∈[0,T ],ε>0

ε−6pEθ
(
(D(θ, t, ε,Xt)− EθD(θ, t, ε,Xt))

2p
)

= O(1).
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Remark 3.3. Consider Example (7). The process (Xt) is equal to its Gaussian approxi-
mation, i.e. the remainder term Rε(t) of Theorem 3.1 is null. Moreover, D(θ, t, ε, x) ≡ 0.

4. Parametric inference as ε tends to 0.

As it is usual in statistics, we consider the canonical space associated with the observa-
tion of (Xt)t∈[0,T ], (Ω,F , (Ft, t ∈ [0, T ]),Pθ), where Ω = C([0, T ]) is the space of continuous
real-valued functions defined on [0, T ] endowed with the Borel σ-field associated with the
uniform convergence on [0, T ], (Xt, t ∈ [0, T ]) is the canonical process (Xt(ω) = ω(t)),
(Ft, t ∈ [0, T ]) is the canonical filtration and Pθ is the distribution of (1) on C([0, T ]).

We assume that X0 = x0 is deterministic and known, so that (Xt) converges uniformly
on [0,T] to (xt(α)), solution of (10). Let us consider the problem of estimating (α, β)
from a continuous observation (Xt, t ∈ [0, T ]). In classical stochastic differential equations
with small diffusion coefficient, all drift parameters have rate ε−1. Here, the situation is
different since we observe that the parameter β is no longer present in the limiting ODE
(10). We show that α can be consistently estimated as ε tends to 0, but not β.

4.1. Approximate likelihood. The exact log-likelihood of (Xt, t ∈ [0, T ]) contains the
term b(θ, t, ε,Xt) which is not explicit. This is why we proceed differently. We have proved
in the previous section that, for small ε, D(θ, t, ε,Xt) = b(θ, t, ε,Xt)−Φ(β,Xt − xt(α)) is
small (see Corollary 3.2). Therefore, we consider the process (ξt)

(19) dξt = [V (α, ξt)− Φ(β, ξt − xt(α))]dt+ εdWt, ξ0 = x0.

This process has already been used by Herrmann et al.(2008) for proving large deviations
results. It is close to (Xt) for small ε. The euristics is that b(θ, t, ε, x) =

∫
Φ(β, x −

y)uθ,εt (dy) is close to Φ(β, x − xt(α)) as the distribution of Xt, u
θ,ε
t (dy), converges to the

Dirac mass at xt(α).
So, we define the following approximate likelihood or contrast where we replace the true
drift function by its approximation for small ε,

(20) Λε,T (θ) =
1

ε2

∫ T

0
H(θ, s,Xs)dXs −

1

2ε2

∫ T

0
H2(θ, s,Xs)ds, with

(21) H(θ, s, x) = V (α, x)− Φ(β, x− xs(α)).

This contrast is thus explicit and will lead to explicit estimators. The method consisting in
plugging the observed process in the likelihood of a proxi-model has been used in many sit-
uations, for instance in the case of discretization of diffusions (likelihood of the associated
Euler scheme (see e.g. Kessler, 1997, 2000; Kessler et al. 2012, Chapter 1; Genon-Catalot
and Larédo, 2014), or in the case of small variance diffusions (see Genon-Catalot,1990;
Gloter and Sørensen, 2009; Guy et al., 2014; Larédo, 2020, Part IV in Britton and Par-
doux).

For the statistical study, additional assumptions are needed.

• [S0] The parameter sets Θα,Θβ are compact intervals. The true value of the

parameter, denoted by θ0 = (α0, β0), belongs to Θ̊α × Θ̊β.
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• [S1] There exist two open sets Uα, Uβ with Θα ⊂ Uα, Θβ ⊂ Uβ such that all the

derivatives (α, x)→ ∂i+jV

∂xi∂αj
(α, x), (β, x)→ ∂i+jΦ

∂xi∂βj
(β, x) exist, are continuous

respectively on Uα × R (resp. Uβ × R) and have polynomial growth with respect
to x.

Note that it is not necessary to assume the existence of derivatives of any order but this
simplifies the exposition.
Let us first investigate the asymptotic behaviour of the first and second derivatives of
Λε,T (θ) with respect to the parameters. Using Definitions (20), (21), the following holds.

Proposition 4.1. Assume that [H0]-[H2], [H4] and [S1] hold. Then, as ε→ 0, under Pθ,

ε
∂Λε,T
∂α

(θ) →L =

∫ T

0

[
∂V

∂α
(α, xs(α)) +

∂Φ

∂x
(β, 0)

∂xs
∂α

(α)

]
dWs,

ε2∂
2Λε,T
∂α2

(θ) →P = −
∫ T

0

[
∂V

∂α
(α, xs(α)) +

∂Φ

∂x
(β, 0)

∂xs
∂α

(α)

]2

ds.

This result indicates that α should be consistently estimated with rate ε−1.

Proposition 4.2. Assume [H0]-[H2], [H4] and [S1]. Then, as ε→ 0, under Pθ,
∂Λε,T
∂β

(θ) →Pθ −
∂2Φ

∂β∂x
(β, 0)

∫ T

0
gs(θ))dWs,

∂2Λε,T
∂β2

(θ) →Pθ −
(
∂2Φ

∂β∂x
(β, 0)

)2 ∫ T

0
g2
s(θ)ds−

∂3Φ

∂β2∂x
(β, 0)

∫ T

0
gs(θ)dWs,

where gs(θ) is defined in (13) or (15).

Contrary to α, there is no rate of convergence to estimate β in the sense that, as ε → 0,

−∂2Λε,T
∂β2 (θ) converges to a fixed random variable so that the approximate Fisher informa-

tion associated with β does not tend to infinity. Therefore, we cannot estimate β as ε→ 0
with fixed T .

4.2. Estimation of α with known β. Assume that β = β0 is known and define the
estimator

(22) α̂ε(β0) = arg max
α∈Θα

Λε,T (α, β0).

Lemma 4.1. Assume [H0]-[H2], [H4] and [S1]. Then, for all α, α0, β0, under Pθ0, as
ε→ 0,

ε2 (Λε,T (α, β0)− Λε,T (α0, β0))→ K(α, α0;β0), where

K(α, α0;β0) = −1

2

∫ T

0
[V (α, xs(α0))− V (α0, xs(α0))− Φ(β0, xs(α0)− xs(α))]2 ds.

Hence, K(α, α0;β0) ≤ 0 and, if {∀s ∈ [0, T ], xs(α) = xs(α0)⇒ α = α0}, then,

{K(α, α0;β0) = 0} ⇒ {α = α0}.

Consequently, we consider the following additional identifiability assumption:

• [S2] {∀s ∈ [0, T ], xs(α) = xs(α0)} ⇒ {α = α0}.
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Corollary 4.1. Assume [H0]-[H2], [H4] and [S0]-[S2]. Then, α̂ε(β0) is consistent and
under Pθ0,

ε−1(α̂ε(β0)− α0)→D N (0,
1

IT (θ0)
), with

IT (θ0) =

∫ T

0

[
∂V

∂α
(α0, xs(α0)) +

∂Φ

∂x
(β0, 0)

∂xs
∂α

(α0)

]2

ds.

By standard tools relying the compactness of the parameter set ([S0]), under [S2],
we can prove that the estimator α̂ε(β0) is consistent. Then, we have that, under Pθ0 ,

ε−1(α̂ε(β0)− α0) ' −ε∂Λε,T
∂α (α0, β0)/ε2 ∂

2Λε,T
∂α2 (α0, β0). The proof is achieved using Propo-

sition 4.1 and the consistency result.

Example (7)(continued). Since (Xt) is equal to its Gaussian approximation, Λε,T (θ) =
`ε,T (θ) is the exact log-likelihood and

`ε,T (θ) =
1

ε2

(∫ T

0
[−(α+ β)Xs + βx0e

−αs)]dXs −
1

2

∫ T

0
[−(α+ β)Xs + βx0e

−αs)]2ds

)
.

Since β = β0 is known, Condition [S2] is: ∀t ≤ T, x0(e−α0t − e−αt) = 0. It implies either
that x0 = 0 or that, if x0 6= 0, α = α0. We deduce that [S2] holds for x0 6= 0.

Some computations show that, as ε tends to 0, under Pθ,

ε2∂
2`ε,T
∂α2

(θ)→P −
∫ T

0
x2

0e
−2αs(1 + βs)2ds, ε

∂`ε,T
∂α

(θ)→D −
∫ T

0
x0e
−αs(1 + βs)dWs.

∂2`ε,T
∂β2

(θ) = −
∫ T

0
g2
θ(s)ds,

∂`ε,T
∂β

(θ) =

∫ T

0
gθ(s)dWs.

We obtain with this exact log-likelihood the result that, if x0 6= 0, there is a rate of

convergence ε−1 for α and no rate for β as
∂2`ε,T
∂β2 (θ) and

∂`ε,T
∂β (θ) are fixed random variables.

Moreover,

(23) ε−1(α̂ε(β0)−α0)→D N (0, I−1
T (α0, β0)) where IT (α, β) =

∫ T

0
x2

0e
−2αs(1 + βs)2ds.

4.3. Estimation of α with β unknown. Consider now the estimation of α when β in
equation (1) is unknown. The approximate likelihood (20) can no longer be used. We
propose a conditional least squares contrast:

(24) Uε,T (α) =
1

ε2

∫ T

0
V (α,Xs)dXs −

1

2ε2

∫ T

0
V 2(α,Xs)ds.

Lemma 4.2. Assume [H0]-[H2], [H4] and [S1]. Then, under P(α0,β),

ε2 (Uε,T (α)− Uε,T (α0))→ −1

2

∫ T

0
(V (α, xs(α0))− V (α0, xs(α0)))2ds.

Hence the identifiability assumption associated with Uε,T (α) is

• [S3] For all α, α0, {V (α, xt(α0)) = V (α0, xt(α0)) ∀t ∈ [0, T ]} ⇒ {α = α0}.



10 VALENTINE GENON-CATALOT AND CATHERINE LARÉDO

Note that [S3] is stronger than [S2] in the sense that if [S3] holds, [S2] is satisfied.
Define now the associated estimator

(25) α̃ε = arg max
α∈Θα

Uε,T (α).

The proof that, under [S3], the estimator α̃ε is consistent follows standard tools and is
omitted.
For the asymptotic normality of α̃ε, we need the following result.

Proposition 4.3. Assume [H0]-[H2], [H4] and [S1], [S2]. Then, under Pθ, as ε → 0,
using definition (13) for gt(θ),

ε
∂Uε,T
∂α

(α) →P

∫ T

0

∂V

∂α
(α, xs(α))dWs −

∂Φ

∂x
(β, 0)

∫ T

0

∂V

∂α
(α, xs(α))gs(θ)ds,(26)

ε2∂
2Uε,T
∂α2

(α) →P −
∫ T

0
(
∂V

∂α
(α, xs(α)))2ds.

Remark 4.1. Using (14), (15) and interchanging integrals yields that the limit (26) can

be written as
∫ T

0 f(θ, s)dWs with

(27) f(θ, s) =
∂V

∂α
(α, xs(α))− ∂Φ

∂x
(β, 0)e−A(θ,s)

∫ T

s

∂V

∂α
(α, xu(α))eA(θ,u)du.

With standard tools, this leads to the following corollary.

Corollary 4.2. Assume [H0]-[H2], [H4] and [S0], [S1], [S3]. Then, α̃ε is consistent and
under P(α0,β0),

(28) ε−1(α̃ε − α0)→D N (0,
1

JT (α0, β0)
), with JT (θ) =

(∫ T
0 (∂V∂α (α, xs(α)))2ds

)2

∫ T
0 f2(θ, s)ds

.

Example (continued). Consider the case of β unknown in Example (7). Then,

f(θ, s) = − x0
1+ β

2α

e−αs(1 + β
2αe
−(2α+β)(T−s)), and ε−1(α̃ε − α0)→D N (0, J−1

T (α0, β0)) with

JT (α, β) =
x2

0(1 + β
α)2(

∫ T
0 e−2αtdt)2∫ T

0 e−2αs(1 + β
2αe
−(2α+β)(T−s))2ds

.

The comparison of IT (θ) defined in (23) and JT (θ) is intricate for T fixed, but simpler for

large T . We have that IT (θ) =
x2

0

2α
(1 +

β

α
+

β2

2α2
) +

1

T
O(1) and JT (θ) =

x2
0

2α
(1 +

β

2α
)2 +

1

T
O(1).

Hence, we obtained the expected result : For all θ, IT (θ) > JT (θ) for large T .

5. Continuous observation of n paths (Xi
t , 0 ≤ t ≤ T, i = 1, . . . , n)

Assume now that the observations consist of n paths (Xi
t , 0 ≤ t ≤ T ), which are

independent, identically distributed.

(29) dXi
t = V (α,Xi

t)dt− bi(θ, t, ε,Xi
t)dt+ εdW i

t , Xi
0 = x0
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bi(θ, t, ε, x) =

∫
R

Φ(β, x− y)uθ,ε,µt,i (dy),

where (W i
t ) are independent Wiener processes and uθ,ε,µt,i is the distribution of Xi

t . Now,

these distributions are identical so that we have for i = 1, . . . , n, uθ,ε,µt,i = uθ,ε,µt and

(30) bi(θ, t, ε, x) = b(θ, t, ε, x) =

∫
R

Φ(β, x− y)uθ,ε,µt (dy),

5.1. Convergence rates. The approximate loglikelihood is now, using H(.) defined in
(21),

(31) Λnε,T (θ) =
1

ε2

n∑
i=1

(∫ T

0
H(θ, s,Xi

s)dX
i
s −

1

2

∫ T

0
H2(θ, s,Xi

s)ds

)
.

The following holds.

Proposition 5.1. Assume that [H0]-[H2], [H4], [S1]. Then, as ε→ 0, n→∞ in such a
way that nε2 → 0, under Pθ,
ε√
n

∂Λnε,T
∂α

(θ) →L
∫ T

0

∂H

∂α
(θ, s, xs(α))dWs =

∫ T

0

[
∂V

∂α
(α, xs(α)) +

∂Φ

∂x
(β, 0)

∂xs
∂α

(α)

]
dWs,

ε2

n

∂2Λnε,T
∂α2

(θ) →P −
∫ T

0

(
∂H

∂α
(θ, s, xs(α))

)2

ds = −
∫ T

0

[
∂V

∂α
(α, xs(α)) +

∂Φ

∂x
(β, 0)

∂xs
∂α

(α)

]2

ds,

where W is a Brownian motion.

This result indicates that α should be consistently estimated with rate
√
n
ε .

Consider now
∂Λnε,T
∂β (θ). Define, using (14) and (15),

(32) σ2
T (θ) :=

∫ T

0
Eθg2

t (θ)dt =

∫ T

0
dt

∫ t

0
e2[A(θ,t)−A(θ,s)]ds.

Proposition 5.2. Assume [H0]-[H2], [H4], [S1].Then, as ε → 0, n → ∞ in such a way

that nε2 → 0, under Pθ, provided that ∂2Φ
∂β∂x(β, 0) 6= 0,

1√
n

∂Λnε,T
∂β

(θ) →L − ∂2Φ

∂β∂x
(β, 0)ZT in distribution with ZT ∼ N (0, σ2

T (θ)),

1

n

∂2Λnε,T
∂β2

(θ) →Pθ −
(
∂2Φ

∂β∂x
(β, 0)

)2

σ2
T (θ).

We may now study the joint estimation of (α, β). Set

(33) Dε,T =

(
ε√
n

0

0 1√
n

)
, Jε,T (θ) = −

∂2Λnε,T
∂α2 (θ)

∂2Λnε,T
∂β∂α (θ)

∂2Λnε,T
∂β∂α (θ)

∂2Λnε,T
∂β2 (θ)


We have

Dε,TJε,T (θ)Dε,T = −

(
ε2

n
∂2Λε,T
∂α2 (θ) ε

n
∂2Λε,T
∂β∂α (θ)

ε
n
∂2Λε,T
∂β∂α (θ) 1

n
∂2Λε,T
∂β2 (θ)

)
.

In view of Proposition 5.2, we can state the following corollary.
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Corollary 5.1. Assume [H0]-[H2], [H4], [S1] and that ∂2Φ
∂β∂x(β, 0) 6= 0. Then, if ε → 0,

n→ +∞ with nε2 → 0, under Pθ,
ε√
n

∂Λnε,T
∂α (θ)

1√
n

∂Λnε,T
∂β (θ)

→L N2(0,J (θ)) with

(34) J (θ) =

∫ T0 [∂V∂α (α, xs(α)) + ∂Φ
∂x (β, 0)∂xs∂α (α, s))]2ds 0

0
(
∂2Φ
∂β∂x(β, 0)

)2
σ2
T (θ)

 .

Moreover, the matrix Dε,TJε,T (θ)Dε,T = J (θ) + oP (1).

As a consequence of Propositions 5.1, 5.2 and Corollary 5.1, we see that α and β should

be estimated at different rates of convergence,
√
n
ε for α,

√
n for β.

Example 7 (continued). Consider again the special case V (α, x) = −αx, Φ(β, x) = βx.
Then, for the exact likelihood of this model, as ε→ 0, n→ +∞ under Pθ,

ε√
n

∂`nε,T
∂α (θ)

1√
n

∂`nε,T
∂β (θ)

→L N2

(
0,

(
x2

0

∫ T
0 (1 + sβ)2e−2αsds 0

0 2(α+β)T+e−2(α+β)T−1
4(α+β)2

))
.

5.2. Asymptotic properties of estimators. Consider the approximate likelihood Λnε,T
defined in (31),(21) and let (α̂ε,n, β̂ε,n) the maximum pseudo-likelihood estimator defined
as any solution of

(35) (α̂ε,n, β̂ε,n) = arg max
(α,β)∈(Θα×Θβ)

Λnε,T (α, β).

Consider the additional assumption:

• [S4] Identifiability assumption for β: {∂Φ
∂x (β, 0) = ∂Φ

∂x (β0, 0)⇒ β = β0}.
Define the two functions:

Λ1(α, α0, β) = −1

2

∫ T

0
(V (α, xs(α0))− V (α0, xs(α0))− Φ(β, xs(α0)− xs(α)))2 ds,

Λ2(α0, β, β0) = −1

2

(
∂Φ

∂x
(β, 0)− ∂Φ

∂x
(β0, 0)

)2

σ2
T (θ0).

Lemma 5.1. Assume [H1], [H2], [H4] and [S1]. Then, the following holds, under Pθ0
(i) ε2

n (Λnε,T (α, β)−Λε,T (α0, β))→ Λ1(α, α0, β) uniformly with respect to (α, β) ∈ Θα×Θβ.

(ii) 1
n(Λnε,T (α0, β)− Λnε,T (α0, β0))→ Λ2(α0, β, β0) uniformly with respect to β ∈ Θβ.

Theorem 5.1. Assume [H0]-[H2], [H4] and [S0]-[S2] and that ε → 0, n → +∞ in such
a way that nε2 → 0. Then, using (35), under Pθ0,



SMALL VARIANCE NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS 13

(i) (α̂ε,n, β̂ε,n) converges in Pθ0-probability to (α0, β0).

(ii) Assume moreover that ∂2Φ
∂β∂x(β, 0) 6= 0, then,(√

n
ε (α̂ε,n − α0)√
n(β̂ε,n − β0)

)
→L N2(0,J −1(θ0)), where J (θ) is defined in (34).

This is an inference problem with different rates of convergence. The proof of (i) requires
several steps detailed in the appendix. The proof of (ii) follows from Lemma 5.1, (i) and
Corollary 5.1.

6. An asymptotic equivalence of experiments property.

We have derived the parametric inference from (ξt) instead of (Xt) and a natural ques-
tion that arises is whether we have lost information in this approach. We rely on the Le
Cam theory to answer this question (see e.g. Le Cam,1986, Le Cam and Yang, 2000).

Using the notations introduced in Section 4, let Pε,Tθ denote the distribution of (Xt)

satisfying (1) with X0 = x0 on (Ω,F , (Ft, t ∈ [0, T ])), and Qε,T
θ the distribution of (ξt)

satisfying (19) with ξ0 = x0. Let Θ = Θα×Θβ and consider the two statistical experiments

Eε,T = (Ω,F , (Pε,Tθ )θ∈Θ) and Gε,T = (Ω,F , (Qε,T
θ )θ∈Θ).

Let ∆(Eε,T ,Gε,T ) be their Le Cam deficiency distance. As the experiments are defined on
the same probability space, we have an upper bound for ∆:

∆(Eε,T ,Gε,T ) ≤ ∆0(Eε,T ,Gε,T ) = supθ∈Θ||Pε,Tθ −Q
ε,T
θ ||TV , with ||.||TV total variation distance.

To study ∆0(Eε,T ,Gε,T ), we rely on the Pinsker inequality (see e.g. Tsybakov, 2009) for
the total variation distance between two probability measures:

||P−Q||TV ≤
√
K(P,Q)/2,

where K(P,Q) is the Kullback- Leibler divergence of P with respect to Q. We can compute
this quantity by means of the Girsanov formula. Set p(θ, s,Xs) = V (α,Xs)−b(θ, ε, s,Xs).
Then, using definition (21),

dPε,Tθ
dQε,T

θ

= exp(
1

ε2

∫ T

0
(p(θ, s,Xs)−H(θ, s,Xs))dXs−

1

2ε2

∫ T

0
(p2(θ, s,Xs)−H2(θ, s,Xs)ds).

Under Qε,T
θ , dXs−H(θ, s,Xs) = εdWs and p(θ, s,Xs)−H(θ, s,Xs) = D(θ, s, ε,Xs) := Ds

using (16). Hence, we get that,

K(Pε,Tθ ,Qε,T
θ ) =

1

2ε2
EPε,Tθ

∫ T

0
(p(θ, s,Xs)−H(θ, s,Xs))

2ds =
1

2ε2
EPε,Tθ

∫ T

0
D2
sds.

Now, we have

ε−2EPε,Tθ

∫ T

0
D2
sds ≤

2

ε2

(∫ T

0
EPε,Tθ

((Ds − EPε,Tθ
Ds)

2)ds+

∫ T

0
(EPε,Tθ

Ds)
2ds

)
.

Using Corollary 3.2 yields that under Pε,Tθ ,

K(Pε,Tθ ,Qε,T
θ ) ≤ ε2 C(θ).
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It remains to prove that supθ∈ΘC(θ) < +∞. For this, we strengthen some assumptions.

Proposition 6.1. Assume that:

• ∃L > 0, ∀α ∈ Θα, ∀x, ∂V
∂x (α, x) ≤ L(α) ≤ L.

• ∃K > 0, k ≥ 0 ∀α ∈ Θα, ∀β ∈ Θβ, ∀x, |∂
2V
∂x2

(α, x)|+ |∂3Φ
∂x3

(β, x)| ≤ K(1 + |x|k).
• ∃B > 0, ∀β ∈ Θβ,

∂Φ
∂x (β, 0) ≤ B.

Then, there exists a constant C > 0 such that

sup
θ∈Θ

K(Pε,Tθ ,Qε,T
θ ) ≤ ε2 C.

Note that, the parameter set Θ being compact, the above assumptions are not stringent.
Hence, the Le Cam deficiency distance ∆(Eε,T ,Gε,T ) between the two experiments con-
verges to 0 as ε→ 0.
In the case on n independent trajectories, consider the statistical experiments

Eε,T,n = (Ωn,F⊗n, ((Pε,Tθ )
⊗n

)θ∈Θ) and Gε,T,n = (Ωn,F⊗n, ((Qε,T
θ )⊗n)θ∈Θ).

Then,

K((Pε,Tθ )⊗n, (Qε,T
θ )⊗n) = nK(Pε,Tθ ,Qε,T

θ ).

Under the condition nε2 = o(1), the Le Cam deficiency distance between the product
experiments tends to 0.

7. Concluding remarks

In this paper, we consider the process (Xt) given by (1), i.e. a one-dimensional nonlinear
self-stabilizing stochastic differential equation, with classical drift term V (α, x) depending
on an unknown parameter α, self-stabilizing term Φ(β, x) depending on another unknown
parameter β and small noise amplitude ε. Extending and going further the results of Her-
mann et al. (2008), we study the probabilistic properties of (Xt) as ε tends to 0 concerning
the convergence of (Xt) to the solution of the ordinary differential equation corresponding
to ε = 0 in (1). In particular, we exhibit an approximating Gaussian process for (Xt) and
study with accuracy the remainder terms of the approximation. The statistical inference
strongly relies on these bounds.
Next, we consider the estimation of (α, β) from a continuous observation of (Xt, t ∈ [0, T ]).
To our knowledge, it is the first paper tackling the problem of statistical inference of such
models. We propose an approximate log-likelihood function which is obtained from the ex-
act log-likelihood function of a proxi-model (ξt), solution of a classical time-inhomogeneous
diffusion process. We prove that, for fixed T , as ε tends to 0, α but not β can be con-
sistently estimated with rate ε−1 and study in this framework the asymptotic properties
of estimators of α for β known or unknown. This approximate likelihood is justified by
the fact that we prove that the statistical experiments generated by (Xt) and (ξt) are
asymptotically equivalent in the Le Cam ∆-distance sense.
Next, we consider n i.i.d. processes distributed as (1) and study the estimation of (α, β)
from continuous observations of (Xi

t , t ∈ [0, T ], i = 1, . . . , n). This kind of observations
is consistent with the underlying idea of interacting particles systems and propagation of
chaos. From the statistical point of view, we obtain a two-rate model where α is estimated
at rate

√
n/ε while β is estimated at rate

√
n.



SMALL VARIANCE NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS 15

Several natural extensions are relevant in this set-up. We have considered the case of
unidimensional parameters α, β. The results should be still valid for multidimensional
parameters.
It will be also interesting to study the case of multidimensional non-linear self-stabilizing
stochastic differential equations which may also include a non constant diffusion coefficient.
Finally, this work should be extended to a discretized observation of the sample path either
under high frequency or low frequency setting.

8. Appendix

8.1. Proofs of Section 3.
Proof of Proposition 3.1. Let Zt = Xt − xt(θ). We have, by Ito’s formula,

Z2
t = 2ε

∫ t

0
ZsdWs + 2

∫ t

0
Zs[V (α,Xs)− V (α, xs(θ)]ds

−2

∫ t

0
Zs

∫
Φ(β,Xs − y)uθ,εs (dy)ds+ 2

∫ t

0
Zs

∫
Φ(β, xs(θ)− y)uθ,0s (dy)ds+ ε2t,

where uθ,εs (dy) = uθ,ε,µs (dy). Denote by Ex0 the conditional expectation Eθ(.|η = x0) and
let νx0s denote the conditional distribution of Xs−xs(θ) given η = x0. By the assumptions
on Φ(β, .) and using that, given η = x0, xt(θ) is deterministic,

2Ex0(Zsb(θ, s,Xs)) = 2Ex0 (Zsb(θ, s, Zs + xs(θ))) = 2Ex0(Zs

∫
Φ(β,Xs − y)dPXs(y))

= 2Ex0(Zs

∫
Φ(β, Zs − z′)dPZs(z′))

= 2

∫ ∫
zΦ(β, z − z′)νx0s (dz)νx0s (dz′) =

∫ ∫
(z − z′)Φ(β, z − z′)νx0s (dz)νx0s (dz′) ≥ 0.

For the last identity, we use the assumption that x→ Φ(β, x) is odd, which yields∫ ∫
−z′Φ(β, z − z′)νx0s (dz)νx0s (dz′) =

∫ ∫
z′Φ(β, z′ − z)νx0s (dz)νx0s (dz′)

=

∫ ∫
zΦ(β, z − z′)νx0s (dz)νx0s (dz′).

Next consider the fourth term of Z2
t , noting that given X0 = x0, uθ,0s (dy) = δxs(θ)(dy),

Ex0
(
Zs

∫
Φ(β, xs(θ)− y)uθ,0s (dy)

)
= Ex0(ZsΦ(β, 0)) = 0.

It follows that, using (3),

Eθ(Z2
t ) ≤ 2

∫ t

0
Eθ(Zs[V (α,Xs)− V (α, xs(θ))])ds+ ε2t ≤ 2L(α)

∫ t

0
EθZ2

sds+ ε2t.

By the Gronwall lemma, we conclude that Eθ(Z2
t ) ≤ ε2te2L(α)t.

We can proceed analogously to study Eθ(Z2p
t ). By induction, assume that, for k =

2, . . . , p − 1, EθZ2k
t ≤ C2k(t)ε

2k exp (2kL(α)t), where C2k(t) is a non-decreasing function
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and C2(t) = t. Then,

Z2p
t = 2p

∫ t

0
Z2p−1
s {εdWs + [V (α,Xs)− V (α, xs(α)]ds}

− 2p

∫ t

0
Z2p−1
s b(θ, s, ε,Xs)ds+ 2p

∫ t

0
Z2p−1
s b(θ, s, 0, xs(θ))ds+ ε2p(2p− 1)

∫ t

0
Z2p−2
s ds.

Analogously, by the same conditional device, we can write:

2pEx0
∫ t

0
Z2p−1
s b(θ, s, ε,Xs)ds = 2p

∫ t

0

∫ ∫
z2p−1Φ(β, z − z′)νx0s (dz)νx0s (dz′)ds

= p

∫ t

0

∫ ∫
(z2p−1 − (z′)2p−1)Φ(β, z − z′)νx0s (dz)νx0s (dz′)ds ≥ 0.

And,

Ex0
(
Z2p−1
s

∫
Φ(β, xs(θ)− y)uθ,0s (dy)

)
= Ex0Z2p−1

s Φ(β, 0) = 0.

This yields,

Eθ(Z2p
t ) ≤ 2pL(α)

∫ t

0
Eθ(Z2p

s )ds+ ε2p(2p− 1)

∫ t

0
EθZ2p−2

s ds.

We apply the Gronwall lemma, and after sone elementary computations get:

Eθ(Z2p
t ) ≤ ε2p exp (2pL(α)t)C2p(t) with C2p(t) = p(2p− 1)C2p−2(t).

�

Proof of Corollary 3.1. We have,

Eθ(Xt − xt(α)) =

∫ t

0
Eθ (V (α,Xs)− V (α, xs(α))) ds−

∫ t

0
Eθb(θ, s, ε,Xs)ds.

Let (Xs) be an independent copy of (Xs). Then,

(36) Eθb(θ, s, ε,Xs) = Eθ
∫

Φ(β,Xs − y)uθ,εs (dy) = Eθ(Φ(β,Xs −Xs)) = 0,

since Φ(β, .) is odd and since the distribution of Xs −Xs is symmetric.
Now, a Taylor expansion at xs(α) yields

Eθ(V (α,Xs)− V (α, xs(α)) = Eθ(Xs − xs(α))
∂V

∂x
(α, xs(α)) +Rs, with

Rs =

∫ 1

0
(1− u)Eθ

(
(Xs − xs(α))2∂

2V

∂x2
(α, xs(α) + u(Xs − xs(α)))

)
du.

Therefore,

EθXt − xt(α) =

∫ t

0
(EθXs − xs(α))

∂V

∂x
(α, xs(α))ds+

∫ t

0
Rsds.

Now, f(t) = EθXt−xt(α) satisfies f ′(t) = ∂V
∂x (α, xt(α))f(t)+Rt, f(0) = 0. Consequently,

(37) f(t) =

∫ t

0
Rs exp (

∫ t

s

∂V

∂x
(α, xu(α))du)ds.



SMALL VARIANCE NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS 17

Using Proposition 3.1 with p = 1 and C2(s) = s, we get that, if |∂2V
∂x2

(α, x)| is bounded by

L2(α), |Rs| ≤ L2(α)ε2s exp (2L(α)s). Using the explicit expression of f(t), we conclude,

|EθXt − xt(α)| ≤ ε2L2(α)t2e2L(α)t.

If |∂2V
∂x2

(α, x)| ≤ k(α)(1 + |x|γ(α)) (Assumption [H3-2]), then

(38) |Rs)| . Eθ
(

(Xs − xs(α))2(1 + |xs(α)|γ(α) + |Xs − xs(α)|γ(α))
)
. ε2K(s),

where K(s) is uniformly bounded on [0, T ], . means ≤ up to a constant, so that (11)
follows.

If V (α, x) = −αx, then EθXt = x0−α
∫ t

0 EθXsds, thus EθXt = x0 exp (−αt) = xt(α). �

Proof of Lemma 3.1. Only the behaviour at ε = 0 is to be studied. Applying the Taylor

formula and integrating w.r.t. uθ,εt (dy), D(θ, t, ε, x) defined in (16) writes:

D(θ, t, ε, x) =

∫
(Φ(β, x− y)− Φ(β, x− xt(α)))uθ,εt (dy) = Eθ(xt(α)−Xt)

∂Φ

∂x
(β, x−xt(α))+R1(t, x),

with R1(t, x) =

∫
(xt(α)−y)2

(∫ 1

0
(1− u)

∂2Φ

∂x2
(β, x− xt(α) + u(xt(α)− y))du

)
uθ,εt (dy).

Under Assumption [H3-2], |∂2Φ
∂x2

(β, x)| ≤ k(β)(1 + |x|γ(β)). Therefore by Proposition 3.1,

|R1(t, x)| . Eθ
(

(xt(α)−Xt)
2(1 + |x− xt(α)|γ(β)) + |Xt − xt(α)|γ(β)

)
. ε2.

By Corollary 3.1, Eθ(xt(α)−Xt)
∂Φ

∂x
(β, x− xt(α)) = O(ε2) and D(θ, t, ε, x)→ 0 as ε→ 0.

Thus, extending b(θ, t, ε, x) by continuity at ε = 0 yields b(θ, t, 0, x) = Φ(β, x − xt(α)).
Moreover, b(θ, t, ε, x) is differentiable w.r.t. ε at ε = 0 with ∂b

∂ε(θ, t, ε, x)|ε=0 = 0.
For the differentiability of b(θ, t, ε, x) with respect to x at (θ, t, 0, x), we proceed as above.

∂b

∂x
(θ, t, ε, x) =

∫
∂Φ

∂x
(β, x− y)uθ,εt (dy) =

∂Φ

∂x
(β, x− xt(α)) +R2(t, x) with

R2(t, x) =
∫

(∂Φ
∂x (β, x−y)− ∂Φ

∂x (β, x−xt(α)))uθ,εt (dy). Therefore, under Assumption [H3-2],

R2(t, x) =
∫

(xt(α) − y)
(∫ 1

0 (1− u)∂
2Φ
∂x2

(β, x− xt(α) + u(xt(α)− y))du
)
uθ,εt (dy) → 0 as ε

tends to 0 by Corollary 3.1. This yields that ∂b
∂x(θ, t, ε, x) = ∂Φ

∂x (β, x− xt(α)).

Note that, for ε = 0, x = xt(α), ∂b
∂x(θ, t, 0, xt(α)) = ∂Φ

∂x (β, 0). �

Proof of Theorem 3.1 . By (12), we have Rε(t) = ε−2(Xt − xt(α)− εgt(θ)). Set

(39) B(θ, t, ε, x) = V (α, x)− b(θ, t, ε, x).

Lemma 3.1 yields that B(θ, t, 0, xt(α)) = V (α, xt(α)), and using a(θ, t) defined in (15),

(40)
∂B

∂x
(θ, t, 0, xt(α)) =

∂V

∂x
(α, xt(α))− ∂Φ

∂x
(β, 0) = a(θ, t).
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Therefore using (13),

dRε(t) =
1

ε2

(
B(θ, t, ε,Xt)dt−B(t, 0, xt(α))dt+ εdWt − ε(

∂B

∂x
(θ, t, 0, xt(α))gt(θ)dt+ dWt)

)
=

1

ε2

[
(Xt − xt(α)− εgt(θ))

∂B

∂x
(θ, t, 0, xt(α))

]
dt+ ν(θ, t, ε,Xt)

= a(θ, t)Rεtdt+ ν(θ, t, ε,Xt)dt, Rε(0) = 0, where

ν(θ, t, ε,Xt) =
1

ε2

(
B(t, ε,Xt)−B(t, 0, xt(α))− (Xt − xt(α))

∂B

∂x
(t, 0, xt(α))

)
= T1(t)+T2(t).

with

T1(t) = ε−2

(
V (α,Xt)− V (α, xt(α))− (Xt − xt(α))

∂V

∂x
(α, xt(α))

)
(41)

T2(t) = −ε−2

(∫
Φ(β,Xt − y)uθt (dy)− ∂Φ

∂x
(β, 0)(Xt − xt(α))

)
.(42)

The equation satisfied by Rε(t) can be solved and we get, using (40) and (15),

(43) Rε(t) =

∫ t

0
ν(θ, s, ε,Xs) exp (

∫ t

s
a(θ, u)du)ds.

Inequality (3) yields that a(θ, t) ≤ L(α) − ∂Φ
∂x (β, 0) ≤ L(α). Therefore bounds for Rε(t)

derive from the bounds satisfied by ν(θ, t, ε,Xt).
Let us first study T1(t). A Taylor expansion at point xt(α) yields, using Assumption
[H3-2],

T1(t) = ε−2(Xt − xt(α))2

∫ 1

0

∂2V

∂x2
(α, xt(α) + u(Xt − xt(α)))du(44)

|T1(t)| ≤ k(α)ε−2(Xt − xt(α))2(1 + |xt(α)|γ(α) + |Xt − xt(α)|γ(α)).

Hence, by Proposition 3.1, for all p ≥ 1, Eθ|T1(t)|2p = O(1) uniformly on t ∈ [0, T ], ε > 0.
Let us study T2(t) defined in (42) and consider first its expectation. Equation (36) yields

(45) EθT2(t) = ε−2∂Φ

∂x
(β, 0)(EθXt − xt(α)).

Applying Corollary 3.1 yields that |EθT2(t)| = O(1).

Coming back to T2(t), a Taylor expansion at point 0 yields, noting that ∂2Φ
∂x2

(β, 0) = 0,

Φ(β,Xt − y)− ∂Φ

∂x
(β, 0)(Xt − xt(α)) =

∂Φ

∂x
(β, 0)(xt(α)− y) + ρ1(Xt, y),

where

(46) ρ1(Xt, y) =
1

2
(Xt − y)3

∫ 1

0
(1− u)2∂

3Φ

∂x3
(β, u(Xt − y))du.

Therefore we can write, for Xt an independent copy of Xt,

Eθ
∫
ρ1(Xt, y)uθ,εt (dy) =

1

2
Eθ
(

(Xt −Xt)
3

∫ 1

0
(1− u)2∂

3Φ

∂x3
(β, u(Xt −Xt))du

)
.
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Under [H3-3], x→ x3 ∂3Φ
∂x3

(β, ux) is well defined and odd so that

(47) Eθ
∫
ρ1(Xt, y)uθ,εt (dy) = Eθ(ρ1(Xt, Xt)) = 0.

This implies that T2(t)− EθT2(t) = ε−2
∫
ρ1(Xt, y))uθ,εt (dy). Therefore,

Eθ(T2(t)− EθT2(t))2p = ε−4pEθ(ρ1(Xt, X̄t)
2p).

Now, by [H3-3] and (46)

Eθ(ρ1(Xt, X̄t)
2p) = 2−2pEθ

(
(Xt −Xt)

6p(

∫ 1

0
(1− u)2∂

3Φ

∂x3
(β, u(Xt −Xt))du)2p

)
≤ CEθ

(
|Xt −Xt|6p(1 + |Xt −Xt|c))2p

)
.

By splitting Xt − Xt into Xt − xt(α) + xt(α)) − Xt we get that Eθ(ρ1(Xt, X̄t)
2p) ≤

CEθ
(
(Xt − xt(α))6p

)
. Applying Proposition 3.1 yields that, uniformly on [0, T ], ε > 0,

Eθ (T2(t)− EθT2(t))2p ≤ ε6pO(1).

Finally,(43) yields that, using the bounds obtained for ν(θ, s, ε,Xs) = T1(s) + T2(s),

|EθRε(t)| ≤
∫ t

0
|Eθν(θ, s, ε,Xs)|eL(α)(t−s)ds = O(1) and

Eθ(Rε(t)− EθRε(t))2p .
∫ t

0
Eθ
(
(ν(θ, s, ε,Xs)− Eθν(θ, s, ε,Xs))

2p
)
e2pL(α)(t−s)ds = O(1).

�

Proof of Corollary 3.2. Using (16), D(θ, t, ε,Xt) =
∫

(Φ(β,Xt − y) − Φ(β,Xt −
xt(α)))uθ,εt (dy). Similarly to the study of T2(t), a Taylor expansion of Φ(β, .) yields, using
(46),

Φ(β,Xt − y)− Φ(β,Xt − xt(α)) =
∂Φ

∂x
(β, 0)(xt(α)− y) + ρ1(Xt, y)− ρ2(Xt), with

(48) ρ2(Xt) =
1

2
(Xt − xt(α))3

∫ 1

0
(1− u)2∂

3Φ

∂x3
(β, u(Xt − xt(α)))du.

Therefore, D(θ, t, ε,Xt) = ∂Φ
∂x (β, 0)(xt(α) − EθXt) +

∫
ρ1(Xt, y)uθ,εt (dy) − ρ2(Xt). Using

(47),

EθD(θ, t, ε,Xt) =
∂Φ

∂x
(β, 0)(xt(α)− EθXt)− Eθρ2(Xt).

By Proposition 3.1, Eθ|ρ2(Xt)| . ε3O(1). Applying Corollary 3.1 yields (17).
Moreover, as for the upper bound of T2(t), Eθ|ρ1(Xt, X̄t)|2p . Eθ|Xt −Xt|6p . ε6p.
By Proposition 3.1, uniformly on [0, T ], Eθ|ρ2(Xt)|2p . Eθ|Xt − xt(α)|6p ≤ ε6pO(1).
Joining these two inequalities, we get (18). �
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8.2. Proofs of Section 4. Recall that H(θ, s, x) = V (α, x)− Φ(β, x− xs(α)). Thus,

∂H

∂α
(θ, s,Xs) =

∂V

∂α
(α,Xs) +

∂Φ

∂x
(β,Xs − xs(α))

∂xs
∂α

(α, s),

∂H

∂β
(θ, s,Xs) = −∂Φ

∂β
(β,Xs − xs(α))

∂2H

∂α2
(θ, s,Xs) =

∂2V

∂α2
(α,Xs) +

∂Φ

∂x
(β,Xs − xs(α))

∂2xs
∂α2

(α, s)− ∂2Φ

∂x2
(β,Xs − xs(α))

(
∂xs
∂α

(α, s)

)2

∂2H

∂β2
(θ, s,Xs) = −∂

2Φ

∂β2
(β,Xs − xs(α)),

∂2H

∂α∂β
(θ, s,Xs) =

∂2Φ

∂x∂β
(β,Xs − xs(α))

∂xs
∂α

(α, s).

We rely on two lemmas: Lemma 8.1 is for dealing with
∂Λε,T
∂α (θ),

∂2Λε,T
∂α2 (θ) (Proposition

4.1), Lemma 8.2 is for
∂Λε,T
∂β (θ),

∂2Λε,T
∂β2 (θ) (Proposition 4.2). These Lemmas are also be

useful for Section 5.
In proofs, we set for simplicity where there is no ambiguity,

Dt = D(θ, t, ε,Xt) = b(θ, t, ε,Xt)− Φ(β,Xt − xt(α)).

Lemma 8.1. Assume [H0]-[H2] an [S1]. For F (θ, s,Xs) = ∂V
∂α (α,Xs),

∂2V
∂α2 (α,Xs),

∂Φ
∂x (β,Xs − xs(α)), ∂

2Φ
∂x2

(β,Xs − xs(α)), we have:

(49) sup
s≤T

Eθ(F (θ, s,Xs)− F (θ, s, xs(α)))2p ≤ ε2pCF (θ, T ),

(50) sup
s≤T

Eθ |F (θ, s,Xs)D(θ, s, ε,Xs)| ≤ ε2C ′F (θ, T ),

where C(θ, T ), C ′(θ, T ) do not depend on ε.

Proof of Lemma 8.1. Consider first F = ∂V
∂α . By the Taylor formula,

∂V

∂α
(α,Xs)−

∂V

∂α
(α, xs(α)) = (Xs − xs(α))

∫ 1

0

∂2V

∂α∂x
(α, xs(α) + u(Xs − xs(α))du.

Using that ∂2V
∂α∂x(α, .) has polynomial growth, we get that , for some constant c,

|∂V
∂α

(α,Xs)−
∂V

∂α
(α, xs(α))| . |Xs − xs(α))|(1 + |xs(α)|c + |Xs − xs(α)|c).

By Proposition 3.1,

sup
s≤T

Eθ(
∂V

∂α
(α,Xs)−

∂V

∂α
(α, xs(α))2p ≤ ε2pC(α, T ).

We proceed analogously for ∂2V
∂α2 (α,Xs). For ∂Φ

∂x (β,Xs − xs(α)), we write

∂Φ

∂x
(β,Xs − xs(α))− ∂Φ

∂x
(β, 0) = (Xs − xs(α))

∫ 1

0

∂2φ

∂x2
(α, u(Xs − xs(α))du.

Therefore, we conclude analogouly that (49) holds for ∂Φ
∂x (β,Xs− xs(α)) and ∂2Φ

∂x2
(β,Xs−

xs(α)).
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To prove (50), we write, F (θ, s,Xs)Ds =
∑4

k=1Ak(s), where

A1(s) = F (θ, s, xs(α))(Ds − EθDs), A2(s) = F (θ, s, xs(α))EθDs,

A3(s) = (F (θ, s,Xs)− F (θ, s, xs(α)))(Ds − EθDs),

A4(s) = (F (θ, s,Xs)− F (θ, s, xs(α)))EθDs.

We now use Corollary 3.2, to obtain:

sup
s≤T

Eθ|A1(s)| ≤ sup
s≤T
|F (θ, s, xs(α))| sup

s≤T
(Eθ(Ds − EθDs)

2)1/2 ≤ ε3O(1),

sup
s≤T
|A2(s)| ≤ ε2O(1).

Now,

Eθ|A3(s)| ≤
[
Eθ(F (θ, s,Xs)− F (θ, s, xs(α)))2Eθ(Ds − EθDs)

2
]1/2

.

Therefore, by the first part of the Lemma and Corollary 3.2,

sup
s≤T

Eθ|A3(s)| ≤ ε× ε3O(1), sup
s≤T

Eθ|A4(s)| ≤ ε× ε2O(1).

Hence,

ε−1 sup
s≤T

Eθ|F (θ, s,Xs)Ds| ≤ εO(1).

�
Proof of Proposition 4.1. Considering the regularity assumptions on V,Φ, we can
derive under the stochastic and the ordinary integral. Replacing dXs by its expression in
(1), we get (see (20) and (21)):

ε
∂Λε,T
∂α

(θ) =
1

ε

(∫ T

0

∂H

∂α
(θ, s,Xs)dXs −

∫ T

0
H(θ, s,Xs)

∂H

∂α
(θ, s,Xs)ds

)
,

=

∫ T

0

∂H

∂α
(θ, s,Xs)dWs −

1

ε

(∫ T

0

∂H

∂α
(θ, s,Xs)Dsds

)
.(51)

By Lemma 8.1, ∫ T

0
[
∂H

∂α
(θ, s,Xs)−

∂H

∂α
(θ, s, xs(α))]2ds→Pθ 0,

and

(52)
1

ε

(∫ T

0

∂H

∂α
(θ, s,Xs)Dsds

)
→Pθ 0.

Hence, the first limit of Proposition 4.1. Now,

ε2∂
2Λε,T
∂α2

(θ) =

∫ T

0

∂2H

∂α2
(θ, s,Xs)dXs −

∫ T

0
H(θ, s,Xs)

∂2H

∂α2
(θ, s,Xs)ds−

∫ T

0
(
∂H

∂α
(θ, s,Xs))

2ds,

= ε

∫ T

0

∂2H

∂α2
(θ, s,Xs)dWs −

∫ T

0

∂2H

∂α2
(θ, s,Xs)Dsds−

∫ T

0

(
∂H

∂α
(θ, s,Xs)

)2

ds.(53)
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We have, as ε tends to 0,∫ T

0

∂H2

∂α2
(θ, s,Xs)dWs →Pθ

∫ T

0

∂H2

∂α2
(θ, s, xs(α))dWs,∫ T

0

(
∂H

∂α
(θ, s,Xs)

)2

ds →Pθ

∫ T

0

(
∂H

∂α
(θ, s, xs)(α)

)2

ds,

and
∫ T

0
∂2H
∂α2 (θ, s,Xs)Dsds = oP (1). Thus, the second limit of Proposition 4.1.

�

Lemma 8.2. Assume [H0]-[H2] an [S1]. For F (θ, s,Xs) = ∂Φ
∂β (β,Xs−xs(α)), ∂

2Φ
∂β2 (β,Xs−

xs(α)), we have:

(54) sup
s≤T

Eθ |F (θ, s,Xs)D(θ, s, ε,Xs)| ≤ ε3C ′′(θ, T ).

where C ′′(θ, T ) does not depend on ε.

Proof of Lemma 8.2. Noting that x→ ∂Φ
∂β (β, x) is an odd function yields:

(55)
∂Φ

∂β
(β, x) = x

∂2Φ

∂β∂x
(β, 0) + x2

∫ 1

0
(1− u)

∂3Φ

∂β∂x2
(β, ux)du.

Thus, we split into four terms as above,

∂Φ

∂β
(β,Xs − xs(α))Ds =

4∑
i=1

Bi(s)

where

B1(s) =
∂2Φ

∂β∂x
(β, 0)(Xs − xs(α))(Ds − EθDs), B2(s) =

∂2Φ

∂β∂x
(β, 0)(Xs − xs(α))EθDs,

B3(s) = (Xs − xs(α))2

∫ 1

0
(1− u)

∂3Φ

∂β∂x2
(β, u(Xs − xs(α))du (Ds − EθDs),

B4(s) = (Xs − xs(α))2

∫ 1

0
(1− u)

∂3Φ

∂β∂x2
(β, u(Xs − xs(α))du EθDs.

We have

Eθ|B1(s)| ≤ | ∂
2Φ

∂β∂x
(β, 0)|

[
Eθ(Ds − EθDs)

2Eθ(Xs − xs(α))2
]1/2

.

By Proposition 3.1 and Corollary 3.2, we get

sups≤TEθ|B1(s)| . ε× ε3O(1) and sups≤TEθ|B2(s)| . ε× ε2O(1).

Using that x→ ∂3Φ
∂β∂x2

(β, x) has polynomial growth, we obtain, proceeding as for the first
two terms,

sups≤TEθ|B3(s)| . ε2 × ε3O(1) and sups≤TEθ|B4(s)| . ε2 × ε2O(1).

Finally, the term B2 is the main one and we get ε−2sups≤TEθ|∂Φ
∂β (β,Xs − xs(α))Ds .

εO(1).

We proceed in the same way for ∂2Φ
∂β2 (β,Xs − xs(α)) as ∂2Φ

∂β2 (β, .) is odd. �
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Proof of Proposition 4.2 Analogously, we can write:

∂Λε,T
∂β

(θ) =
1

ε2

∫ T

0

∂H

∂β
(θ, s,Xs)dXs −

1

2ε2

∫ T

0
H(θ, s,Xs)

∂H

∂β
(θ, s,Xs)ds

= −1

ε

∫ T

0

∂Φ

∂β
(β,Xs − xs(α))dWs +

1

ε2

∫ T

0

∂Φ

∂β
(β,Xs − xs(α))Dsds.(56)

By Lemma 8.2, the second term above tends to 0. Substituting x by Xs − xs(α)) =
εgθ(s) + ε2Rε(s) in (55) yields using Theorem 3.1 and Lemma 8.1

1

ε

∫ T

0

∂Φ

∂β
(β,Xs − xs(α))dWs =

∂2Φ

∂β∂x
(β, 0)

(∫ T

0
(gθ(s) + εRε(s))dWs

)
+ ε

∫ T

0

(Xs − xs(α))2

ε2

∫ 1

0
(1− u)

∂3Φ

∂β∂x2
(β, u(Xs − xs(α)))du dWs

=
∂2Φ

∂β∂x
(β, 0)

(∫ T

0
gθ(s)dWs

)
+OP (ε).

So we get the first limit of Proposition 4.2. Now

∂2Λε,T
∂β2

(θ) =
1

ε2

∫ T

0

∂2H

∂β2
(θ, s,Xs)dXs −

1

ε2

∫ T

0
H(θ, s,Xs)

∂2H

∂β2
(θ, s,Xs)ds

− 1

ε2

∫ T

0

(
∂H

∂β
(θ, s,Xs)

)2

ds

= −1

ε

∫ T

0

∂2Φ

∂β2
(β,Xs − xs(α))dWs +

1

ε2

∫ T

0

∂2Φ

∂β2
(β,Xs − xs(α))Dsds

− 1

ε2

∫ T

0

(
∂Φ

∂β
(β,Xs − xs(α))

)2

ds.(57)

By Lemma 8.2, we have 1
ε2

∫ T
0

∂2Φ
∂β2 (β,Xs − xs(α))Dsds→Pθ 0. Using that

(58)
∂2Φ

∂β2
(β, x) = x

∂3Φ

∂β2∂x
(β, 0) + x2

∫ 1

0
du(1− u)

∂4Φ

∂β2∂x2
(β, u(Xs − xs(α)),

we can prove by tools previously used that

−1

ε

∫ T

0

∂2Φ

∂β2
(β,Xs − xs(α))dWs →Pθ −

∂3Φ

∂β2∂x
(β, 0)

∫ T

0
gs(θ)dWs,

− 1

ε2

∫ T

0

(
∂Φ

∂β
(β,Xs − xs(α))

)2

ds →Pθ −
(
∂2Φ

∂β∂x
(β, 0)

)2 ∫ T

0
g2
s(θ)ds.

Thus, the second limit of Proposition 4.2 is obtained.
�
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Proof of Lemma 4.1. We have, under Pθ0 , using (21), (16), ε2Λε,T (α, β0) = A1(α, β0) +
A2(α, β0) +A3(α, β0) with

A1(α, β0) =

∫ T

0
H(α, β0, s,Xs)H(α0, s, β0, Xs)ds−

1

2

∫ T

0
H2(α, β0, s,Xs)ds,

A2(α, β0) = −
∫ T

0
H(α, β0, s,Xs)D(α0, β0, s, ε,Xs)ds, A3(α, β0) = ε

∫ T

0
H(α, β0, s,Xs)dWs.

By Theorem 3.1,
∫ T

0 H(α, β0, s,Xs)dWs →Pθ0

∫ T
0 H(α, β0, s, xs(α0))dWs, which is a bounded

random variable. Hence A3(α, β0) converges in probability to 0.
Using now Proposition 3.1, D(α0, β0, s, ε,Xs) → D(α0, β0, s, 0, xs(α0)) = 0 uniformly on

[0, T ] and
∫ T

0 H2(α, β0, s,Xs)ds converges to
∫ T

0 H2(α, β0, s, xs(θ0))ds. Hence,

A2
2(α, β0) ≤

∫ T

0
H2(α, β0, s,Xs)ds

∫ T

0
D2(α0, β0, s, ε,Xs)ds→ 0.

Finally, A1(α, β0) = −1
2

∫ T
0 (H(α, β0, s,Xs)−H(α0, β0, s,Xs))

2ds+1
2

∫ T
0 H(α0, β0, s,Xs)

2ds.
By Theorem 3.1,

A1(α, β0)−A1(α0, β0)→ −1

2

∫ T

0
(H(α, β0, s, xs(α0))−H(α0, β0, s, xs(α0))2ds = K(α, α0;β0).

Under [S1], (α, β)→ K(α, α0;β) is continuous non positive. Assume now thatK(α, α0;β0) =
0. Then, for all β0 ∈ Θβ, V (α, xs(α0))−Φ(β0, xs(α0)−xs(α))−V (α0, xs(α0)) = 0. Then,

∀β0 ∈ Θβ, V (α, xs(α0))− V (α0, xs(α0)) = Φ(β0, xs(α0)− xs(α)).

Therefore, for all s ∈ [0, T ], the function β0 → Φ(β0, xs(α0) − xs(α)) is constant. As a
function of x,Φ is increasing. So, this is possible only if xs(α0)− xs(α) is constant. Using
now that x0(α)−x0(α0) = 0 yields the result and Assumption [S2] for the identifiability. �

Proof of Lemma 4.2. We have, under Pθ0 , ε2Uε,T (α) = B1(α, α0) + B2(α, θ0) + B3(α)
with

B1(α, α0) =

∫ T

0
V (α,Xs)V (α0, Xs)ds−

1

2

∫ T

0
V 2(α,Xs)ds,

B2(α, θ0) = −
∫ T

0
V (α,Xs)b(θ0, s, ε,Xs)ds, B3(α) = ε

∫ T

0
V (α,Xs)dWs.

As aboveB3(α) converges in probability to 0 andB1(α, α0)−B1(α0, α0)→ −1
2

∫ T
0 (V (α, xs(α0))−

V (α0, xs(α0)))2ds.
For B2(α, θ0), we use that, for all s, b(θ, s, ε, x) → Φ(β, x − xs(α)) as ε → 0. Hence

b(θ0, s, ε,Xs)→ 0 and B2(α, θ0) = oP (1). �
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Proof of Proposition 4.3. Let us first study ε
∂Uε,T
∂α (α). We have

ε
∂Uε,T
∂α

(α) =
1

ε

∫ T

0

∂V

∂α
(α,Xs)dXs −

1

ε

∫ T

0

∂V

∂α
(α,Xs)V (α,Xs)ds

=

∫ T

0

∂V

∂α
(α,Xs)dWs −

1

ε

∫ T

0

∂V

∂α
(α,Xs)b(θ, s, ε,Xs)ds = A1(T ) +A2(T ).

First

A1(T ) =

∫ T

0

∂V

∂α
(α, xs(α))dWs+

∫ T

0
(
∂V

∂α
(α,Xs)dWs−

∂V

∂α
(α, xs(α)))dWs = A11(T )+A12(T ).

By Theorem 3.1, < A12 >T→ 0. Next, we have, using (16),

A2(T ) = −1

ε

∫ T

0

∂V

∂α
(α,Xs)[D(θ, ε, s,Xs) + Φ(β,Xs − xs(α))]ds = A21(T ) +A22(T ).

By Lemma 8.1, A21(T ) = εO(1).
Let us study

A22(T ) = −1

ε

∫ T

0

∂V

∂α
(α,Xs)Φ(β,Xs − xs(α))ds = C2(T ) + C ′2(T ), with

C2(T ) = −1

ε

∫ T

0
(
∂V

∂α
(α,Xs)−

∂V

∂α
(α, xs(α)))Φ(β,Xs − xs(α))ds,

C ′2(T ) = −1

ε

∫ T

0

∂V

∂α
(α, xs(α))Φ(β,Xs − xs(α))ds.

As above, C2(T ) converges to 0. For C ′2(T ), we use the Taylor expansion of Φ(β, x) at

0, i.e. Φ(β, x) = x∂Φ
∂x (β, 0) + x3

∫ 1
0

1
2(1 − u)2 ∂3Φ

∂x3
(β, ux). Substituting Xt − xt(α) by its

expression in Theorem 3.1, and using the notations defined in (12), in C ′2(T ) , we get,

C ′2(T ) = −
∫ T

0

∂V

∂α
(α, xs(α))gs(θ)

∂Φ

∂x
(β, 0)ds+ R̃ε(T )

with

R̃ε(T ) = −ε
∫ T

0

∂V

∂α
(α, xs(α))Rε(s)

∂Φ

∂x
(β, 0)ds

− 1

2ε

∫ T

0

∂V

∂α
(α, xs(α))(Xs − xs(α))3

∫ 1

0

1

2
(1− u)2∂

3Φ

∂x3
(β, u(Xs − xs(α)))duds.

By Theorem 3.1, supt∈[0,T ]Eθ|Rε(t)| = O(1) and by Proposition 3.1, Eθ(Xt − xt(α))2p =

ε2pO(1).
Joining these results achieves the proof of the first part of the proposition.

Consider now ε2 ∂
2Uε,T
∂α2 (α) = C1 + C2 + C3 with

C1 = ε

∫ T

0

∂2V

∂α2
(α,Xs)dWs, C2 =

∫ T

0

∂2V

∂α2
(α,Xs)b(θ, ε, s,Xs)ds, C3 = −

∫ T

0
(
∂V

∂α
(α,Xs))

2ds.
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First Eθ(C2
1 ) = ε2

∫ T
0 (∂

2V
∂α2 (α,Xs))ds→ 0. Then, using (16), C2 = C21 + C22 with

C21 =

∫ T

0

∂2V

∂α2
(α,Xs)D(θ, s,Xs), C22 =

∫ T

0

∂2V

∂α2
(α,Xs))Φ(β,Xs − xs(α))ds.

Using Lemma 8.1, we obtain that C21 tends to 0. For C22, we write

(C22)2 ≤
∫ T

0
(
∂2V

∂α2
(α,Xs))

2ds

∫ T

0
Φ(β,Xs − xs(α))2ds = ε2OP (1).

Finally, an application of Lemma 8.1 yields that C3 → −
∫ T

0 (∂V∂α (α, xs(α)))2ds.
This achieves the proof of the proposition. �

8.3. Proofs of Section 5. Now, we deal with the observations of n i.i.d. sample paths.

Proof of Proposition 5.1. We have (see (51))

ε√
n

∂Λnε,T
∂α

(θ) =
1

ε2

n∑
i=1

(∫ T

0

∂H

∂α
(θ, s,Xi

s)dX
i
s −

∫ T

0
H(θ, s,Xi

s)
∂H

∂α
(θ, s,Xi

s)ds

)
,

=
1√
n

n∑
i=1

∫ T

0

∂H

∂α
(θ, s,Xi

s)dW
i
s −

1

ε
√
n

∫ T

0

∂H

∂α
(θ, s,Xi

s)D
i
sds,

where Di
s = D(θ, s, ε,Xi

s). By Lemma 8.1, (50),

1

ε
√
n

∣∣∣∣∣Eθ
n∑
i=1

∫ T

0

∂H

∂α
(θ, s,Xi

s)D
i
sds

∣∣∣∣∣ ≤
√
n

ε
sup
s≤T

Eθ|
∂H

∂α
(θ, s,Xs)Ds| × T . ε

√
nO(1),

which tends to 0 by the condition ε
√
n = o(1). For the first term,

1√
n

n∑
i=1

∫ T

0

∂H

∂α
(θ, s,Xi

s)dW
i
s =

∫ T

0

∂H

∂α
(θ, s, xs(α)

1√
n

n∑
i=1

dW i
s

+
1√
n

n∑
i=1

∫ T

0
(
∂H

∂α
(θ, s,Xi

s)−
∂H

∂α
(θ, s, xs(α))dW i

s .

Now,
∫ T

0
∂H
∂α (θ, s, xs(α) 1√

n

∑n
i=1 dW

i
s is distributed as

∫ T
0

∂H
∂α (θ, s, xs(α)dWs and

Eθ
1

n

n∑
i=1

∫ T

0
(
∂H

∂α
(θ, s,Xi

s)−
∂H

∂α
(θ, s, xs(α))2ds = Eθ

∫ T

0
(
∂H

∂α
(θ, s,Xs)−

∂H

∂α
(θ, s, xs(α))2ds

tends to 0 by Lemma 8.1, (49). Thus, setting B
(n)
s = 1√

n

∑n
i=1 dW

i
s ,

(59)
ε√
n

∂Λnε,T
∂α

(θ) =

∫ T

0

∂H

∂α
(θ, s, xs(α)dB(n)

s + oP (1).
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The first limit of Proposition 5.1 is obtained. Now, using (53),

ε2

n

∂2Λnε,T
∂α2

(θ) =
ε√
n
× 1√

n

n∑
i=1

∫ T

0

∂2H

∂α2
(θ, s,Xi

s)dW
i
s −

1

n

n∑
i=1

∫ T

0

∂2H

∂α2
(θ, s,Xi

s)D
i
sds

− 1

n

n∑
i=1

∫ T

0

(
∂H

∂α
(θ, s,Xi

s)

)2

ds.

We can prove in the same way as above that

1√
n

n∑
i=1

∫ T

0

∂2H

∂α2
(θ, s,Xi

s)dW
i
s →L

∫ T

0

∂2H

∂α2
(θ, s, xs(α))dWs,

and that

− 1

n

n∑
i=1

∫ T

0

(
∂H

∂α
(θ, s,Xi

s)

)2

ds→ −
∫ T

0
(
∂H

∂α
(θ, s, xs(α)))2ds.

Using again Lemma 8.1, we get that 1
n

∑n
i=1

∫ T
0

∂2H
∂α2 (θ, s,Xi

s)D
i
sds tends to 0. Hence, the

second limit of Proposition 5.1. �

Proof of Proposition 5.2. Using (56), we get

1√
n

∂Λnε,T
∂β

(θ) =
1√
nε2

n∑
i=1

(∫ T

0

∂H

∂β
(θ, s,Xi

s)dX
i
s −

∫ T

0
H(θ, s,Xs)

∂H

∂β
(θ, s,Xi

s)ds

)

= − 1√
nε

n∑
i=1

∫ T

0

∂Φ

∂β
(β,Xi

s − xs(α))dW i
s +

1√
nε2

n∑
i=1

∫ T

0

∂Φ

∂β
(β,Xi

s − xs(α))Di
sds.

First note that, by Lemma 8.2,

1√
nε2

Eθ

∣∣∣∣∣
n∑
i=1

∫ T

0

∂Φ

∂β
(β,Xi

s − xs(α))Di
sds

∣∣∣∣∣ ≤
√
n

ε2
Eθ
∫ T

0
|∂Φ

∂β
(β,Xs−xs(α))Ds|ds ≤ ε

√
nO(1).

Therefore, we look at the first term and use again the Taylor expansion (55) and the

development Xi
s = xs(α) + εgis(θ) + ε2Rε,is :

(60)
1√
nε

n∑
i=1

∫ T

0

∂Φ

∂β
(β,Xi

s−xs(α))dW i
s =

∂2Φ

∂β∂x
(β, 0)

1√
n

n∑
i=1

∫ T

0
gis(θ)dW

i
s+R

(1)
n,ε+R

(2)
n,ε

where (gis(θ)) is the Ornstein-Uhlenbeck process of the development of Xi,

R(1)
n,ε =

∂2Φ

∂β∂x
(β, 0)

ε√
n

n∑
i=1

∫ T

0
Rε,is dW

i
s

R(2)
n,ε =

ε√
n

n∑
i=1

∫ T

0
ε−2(Xi

s − xs(α))2

∫ 1

0
(1− u)

∂3Φ

∂β∂x2
(β, u(Xi

s − xs(α)dudW i
s .

Applying Lemma 8.1 and Lemma 8.2, we prove that the terms above are oP (1). Finally,
we have obtained:

(61)
1√
n

∂Λnε,T
∂β

(θ) =
∂2Φ

∂β∂x
(β, 0)

1√
n

n∑
i=1

∫ T

0
gis(θ)dW

i
s + oP (1).
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The martingaleMn
T =

∑n
i=1

∫ T
0 gis(θ)dW

i
s has quadratic variation 〈Mn〉T =

∑n
i=1

∫ T
0 (gis(θ))

2ds
satisfying

1

n
〈Mn〉T → Eθ

∫ T

0
(gs(θ))

2ds = σ2
T (θ).

By the central limit theorem for martingales, we deduce

1√
n
Mn
T →L N (0, σ2

T (θ)).

This achieves the first part of Proposition 5.2.
Now, we study (see (57))

1

n

∂2Λnε,T
∂β2

(θ) = − 1

nε

n∑
i=1

∫ T

0

∂2Φ

∂β2
(β,Xi

s − xs(α))dW i
s +

1

nε2

n∑
i=1

∫ T

0

∂2Φ

∂β2
(β,Xi

s − xs(α))Di
sds

− 1

nε2

n∑
i=1

∫ T

0

(
∂Φ

∂β
(β,Xi

s − xs(α))

)2

ds.

For the first term, we write:

1

nε

n∑
i=1

∫ T

0

∂2Φ

∂β2
(β,Xi

s − xs(α))dW i
s =

1√
n

1

ε
√
n

n∑
i=1

∫ T

0

∂2Φ

∂β2
(β,Xi

s − xs(α))dW i
s .

This term is analogous to (60) with ∂2Φ
∂β2 instead of ∂Φ

∂β but it is now multiplied by 1√
n

and

therefore is oP (1).

The second term, 1
nε2
∑n

i=1

∫ T
0

∂2Φ
∂β2 (β,Xi

s−xs(α))Di
sds, is proved to be oP (1) using Lemma

8.2.
Using as above the Taylor expansion the Taylor expansion (55) and the development

Xi
s = xs(α) + εgis(θ) + ε2Rε,is , we prove that

− 1

nε2

n∑
i=1

∫ T

0

(
∂Φ

∂β
(β,Xi

s − xs(α))

)2

ds = − 1

n

(
∂2Φ

∂β∂x
(β, 0)

)2 n∑
i=1

∫ T

0
(gis(θ))

2ds+ oP (1).

which tends to −( ∂2Φ
∂β∂x(β, 0))2σ2

T (θ). Thus we get the second part of Proposition 5.2 whose

proof is now complete. �

Proof of Corollary 5.1. ¿From (59) and (61), to get the joint convergence in distribution,
it remains to study

<

∫ T

0

∂H

∂α
(θ, s, xs(α))

1√
n

n∑
i=1

dW i
s ,

1√
n

n∑
i=1

∫ T

0
gis(θ)dW

i
s >=

1

n

n∑
i=1

∫ T

0

∂H

∂α
(θ, s, xs(α))gis(θ)ds.

This term converges to Eθ
∫ T

0
∂H
∂α (θ, s, xs(α))gs(θ)ds =

∫ T
0

∂H
∂α (θ, s, xs(α))Eθgs(θ)ds = 0.

Hence, the joint convergence in distribution is proved.
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Now, for the second part of the corollary, the only remaining term to study is:

ε

n

∂2Λε,T
∂α∂β

(θ) =
1

εn

n∑
i=1

(∫ T

0

∂2H

∂α∂β
(θ, s,Xi

s)dX
i
s −

∫ T

0
H(θ, s,Xi

s)
∂2H

∂α∂β
(θ, s,Xi

s)ds

)

− 1

εn

n∑
i=1

(∫ T

0

∂H

∂β
(θ, s,Xi

s)
∂H

∂α
(θ, s,Xi

s)ds

)

=
1

n

n∑
i=1

∫ T

0

∂2H

∂α∂β
(θ, s,Xi

s)dW
i
s −

1

εn

n∑
i=1

∫ T

0

∂2H

∂α∂β
(θ, s,Xi

s)D(θ, s, ε,Xi
s)ds

− 1

εn

n∑
i=1

(∫ T

0

∂H

∂β
(θ, s,Xi

s)
∂H

∂α
(θ, s,Xi

s)ds

)
where

∂2H

∂α∂β
(θ, s,Xs) =

∂2Φ

∂x∂β
(β,Xs − xs(α))

∂xs
∂α

(α, s),
∂H

∂β
(θ, s,Xs) = −∂Φ

∂β
(θ,Xs − xs(α)).

We can write:

1

n

n∑
i=1

∫ T

0

∂2H

∂α∂β
(θ, s,Xi

s)dW
i
s =

1√
n

∫ T

0

∂2H

∂α∂β
(θ, s, xs(α))

1√
n

n∑
i=1

dW i
s + oP (1) = oP (1).

We have:

∂2Φ

∂x∂β
(β,Xs − xs(α)) =

∂2Φ

∂x∂β
(β, 0) + (Xs − xs(α))

∫ 1

0

∂3Φ

∂x2∂β
(β, u(Xs − xs(α)))du

Therefore, the second term satisfies by Lemma 8.1 :

1

εn

n∑
i=1

(∫ T

0

∂2H

∂α∂β
(θ, s,Xi

s)D
i
sds

)
= εOP (1),

There remains the term for which we only give the main terms:

1

εn

n∑
i=1

(∫ T

0

∂H

∂β
(θ, s,Xi

s)
∂H

∂α
(θ, s,Xi

s)ds

)
=

1

εn

n∑
i=1

(∫ T

0
(Xi

s − xs(α))
∂2Φ

∂β∂x
(β, 0)

∂H

∂α
(θ, s,Xi

s)ds

)
+ op(1)

=
∂2Φ

∂β∂x
(β, 0)

1

n

n∑
i=1

∫ T

0
gis(θ)

∂H

∂α
(θ, s, xs(α))ds+ oP (1)

=
∂2Φ

∂β∂x
(β, 0)Eθ

(∫ T

0
gs(θ)

∂H

∂α
(θ, s, xs(α))ds

)
+ oP (1)

= 0 + oP (1).

The proof of Corollary 5.1 is now complete. �

Proof of Lemma 5.1. We have:

ε2

n
Λnε,T (α, β) =

1

n

n∑
i=1

(∫ T

0
H(α, β, s,Xi

s)dX
i
s −

1

2
H2(α, β, s,Xi

s)ds

)
.
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We replace

(62) dXi
s = εdW i

s +H(α0, β0, s,X
i
s)ds−D(α0, β0, s,X

i
s)ds

and this yields: ε2

n Λnε,T (θ) = T1 + T2 + T3 with

T1 = ε

[
1

n

n∑
i=1

∫ T

0
H(α, β, s, xs(α)))dW i

s +
1

n

n∑
i=1

∫ T

0

(
H(α, β, s,Xi

s)−H(α, β, s, xs(α)))
)
dW i

s

]

T2 = − 1

n

n∑
i=1

∫ T

0
H(α, β, s,Xi

s)D(α0, β0, s,X
i
s)ds

T3 =
1

n

n∑
i=1

∫ T

0

(
H(α, β, s,Xi

s)H(θ0, s,X
i
s)−

1

2
H2(α, β, s,Xi

s)

)
ds =

1

n

n∑
i=1

T i3

By the same tools as in Lemma 8.1, we check that T1 = oP (1), T2 = oP (1) and the main
term

T i3 =

∫ T

0

(
V (α,Xi

s)− Φ(β,Xi
s − xs(α))(V (α0, X

i
s)− Φ(β0, X

i
s − xs(α0))

)
ds

− 1

2

∫ T

0

(
V (α,Xi

s)− Φ(β,Xi
s − xs(α)

)2
ds

converges to∫ T
0 (V (α, xs(α0))− Φ(β, xs(α0)− xs(α))V (α0, xs(α0))) ds

− 1

2

∫ T

0
(V (α, xs(α0)− Φ(β, xs(α0)− xs(α)))2 ds

= −1

2

∫ T

0
(V (α, xs(α0))− Φ(β, xs(α0)− xs(α))− V (α0, xs(α0)))2 ds+

1

2

∫ T

0
(V (α0, xs(α0))2 ds.

Therefore,

ε2

n
Λnε,T (α0, β0)→ 1

2

∫ T

0
(V (α0, xs(α0))2 ds.

Hence, we have proved the convergence (i). The unformity of this convergence is obtained
without difficulty taking into account our regularity assumptions.
The convergence (ii) is more subtle. We directly write the difference: 1

n(Λnε,T (α0, β) −
Λnε,T (α0, β0)), replace dXi

s by its expression (62) and develop. In the difference, several
terms cancel and there remains:

1

n
(Λnε,T (α0, β)− Λnε,T (α0, β0)) = − 1

nε2

n∑
i=1

∫ T

0

(
Φ(β,Xi

s − xs(α0))− Φ(β0, X
i
s − xs(α0))

)2
ds

− 1

nε

n∑
i=1

∫ T

0

(
Φ(β,Xi

s − xs(α0))− Φ(β0, X
i
s − xs(α0))

)
dW i

s

+
1

nε2

n∑
i=1

∫ T

0

(
Φ(β,Xi

s − xs(α0))− Φ(β0, X
i
s − xs(α0))

)
D(θ0, s,X

i
s)ds
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The last term is proved to be oP (ε) by the same tools as Lemma 8.2. For the first two
terms, we write as done previously

Φ(β,Xi
s − xs(α0)) = (Xi

s − xs(α0))
∂Φ

∂x
(β, 0) + . . . = εgis(θ0)

∂Φ

∂x
(β, 0) + . . .

Φ(β0, X
i
s − xs(α0)) = (Xi

s − xs(α0))
∂Φ

∂x
(β0, 0) + . . . = εgis(θ0)

∂Φ

∂x
(β0, 0) + . . .

Skipping details which have been used repeatly, we obtain:

1

n
(Λnε,T (α0, β)− Λnε,T (α0, β0)) = − 1

2n

(
∂Φ

∂x
(β, 0)− ∂Φ

∂x
(β0, 0)

)2 n∑
i=1

∫ T

0
(gis(θ0))2ds

− 1

n

(
∂Φ

∂x
(β, 0)− ∂Φ

∂x
(β0, 0)

) n∑
i=1

∫ T

0
gis(θ0)dW i

s + oP (ε)

where the first term tends to −1
2

(
∂Φ
∂x (β, 0)− ∂Φ

∂x (β0, 0)
)2 Eθ ∫ T0 (gs(θ0))2ds = Λ2(α0, β, β0)

and the second term tends to 0. We have thus obtained the limit (ii). The uniformity can
be proved without difficulty although after some cumbersome developments. �

Proof of Theorem 5.1. Following Gloter and Sørensen (2009) and Sørensen and Uchida
(2003), the proof of consistency for a two-rate model goes in three steps:
step 1: Prove the consistency of α̂ε,n: the consistency follows directly from Lemma 5.1,
(i).

step 2: Prove that
√
n
ε (α̂ε,n − α0) is Pθ0 -tight.

As Pθ0(α̂ε,n ∈ Θα)→ 1, on the set (α̂ε,n ∈ θα), we can write:

0 =
∂Λnε,T
∂α

(α̂ε,n, β̂ε,n) = Vε,n + (α̂ε,n − α0)Nε,n

where

Vε,n =
∂Λnε,T
∂α

(α0, β̂ε,n), Nε,n =

∫ 1

0

∂2Λnε,T
∂α2

(α0 + u(α̂ε,n − α0), β̂ε,n)du

Therefore,
√
n

ε
(α̂ε,n − α0) = −

ε√
n
Vε,n

ε2

n Nε,n

.

We must prove that ε√
n
Vε,n and ε2

n Nε,n are tight. This can be done as for ε√
n

∂Λnε,T
∂α (α, β)

and ε2

n

∂2Λnε,T
∂α2 (α, β).

step 3: Prove that β̂ε,n is consistent. For this, it is enough to prove that, under Pθ0 ,

1

n
(Λnε,T (α̂ε,n, β)− Λnε,T (α̂ε,n, β0))→ Λ2(α0, β, β0)

uniformly in β. This follows from the previous steps and the same tools as in Lemma 5.1,
(ii). �



32 VALENTINE GENON-CATALOT AND CATHERINE LARÉDO

Proof of Proposition 6.1.
We just have to prove uniformity properties with respect to θ. First, note that, for all
p ≥ 1, the constant C2p(t) of Proposition 3.1 only depends on t and is a continuous non
decreasing function of t. By the assumption L(α) ≤ L, for all p ≥ 1,

(63) sup
θ∈Θ

sup
t∈[0,T ]

Eθ(Xt − xt(α))2p ≤ ε2pC2p(T )e2pLT .

For (ii), we look at f(θ, t) = EθXt−xt(α) which satisfies (37). Let c(α) = sup{|xs(α)|, s ≤
T}. Under (S1), c(α) ≤ c. Therefore, using (63), the term Rs which actually depends on
θ, ε present in (37) satisfies, |Rs| ≤ K(Eθ(Xs − xs(α))2(1 + Bk) + Eθ|Xs − xs(α)|2+k) ≤
ε2K(T ), where the constant K(T ) does not depend on θ. This implies that

(64) sup
θ∈Θ

sup
t∈[0,T ]

|f(θ, t)| = sup
θ∈Θ

sup
t∈[0,T ]

|EθXt − xt(α)| ≤ ε2K(T )TeLT .

Consider now D(θ, t, ε,Xt) (see (16)). Looking at the proof of Corollary 3.2, equations
(46)-(48) and (63), (64) allow to get that

sup
θ∈Θ

sup
t∈[0,T ]

|EθD(θ, t, ε,Xt)| ≤ ε2CT ,

sup
θ∈Θ

sup
t∈[0,T ]

|EθD(θ, t, ε,Xt)| ≤ ε2CT .

�
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