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Abstract

The code NICE (Newton direct and Inverse Computation for Equilibrium)
enables to solve numerically several problems of plasma free-boundary equi-
librium computations in a tokamak: plasma free-boundary only reconstruc-
tion and magnetic measurements interpolation, full free-boundary equilib-
rium reconstruction from magnetic measurements and possibly internal mea-
surements (interferometry, classical linear approximation polarimetry or Stokes
model polarimety, Motional Stark Effect and pressure), direct and inverse,
static and quasi-static free-boundary equilibrium computations.

NICE unifies and upgrades 3 former codes VacTH [1], EQUINOX [2] and
CEDRES++ [3]. The strength of NICE is to gather in a single finite element
framework different equilibrium computation modes. It makes intensive use
of Newton method and Sequential Quadratic Programming method to solve
non linear problems.

NICE is used routinely for WEST tokamak operation. It is also adapted
to the IMAS (ITER Modelling and Analysis Suite) format which makes it
usable on many different fusion tokamak reactors.

In this document we give a general overview of the numerical methods
implemented in NICE as well as a number of computation examples.
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1. Introduction

The aim of this paper is to provide a reference document on the dif-
ferent operation modes and numerical methods implemented in the code
NICE. NICE stands for Newton direct and Inverse Computation for Equilib-
rium. Its development started in 2017 with the original goal of developing an
equilibrium reconstruction code able to use polarimetry Stokes vector mea-
surements. It demanded the computation of derivatives of certain quantities
which did not easily fit in the equilibrium reconstruction code EQUINOX [2]
developed by the author and others. This led to the development and im-
plementation of the optimal control algorithm, presented in this document,
with a first step presented in [4], which can naturally deal with the non-linear
Stokes equations. Moreover it soon appeared appealing to unify in a single
performant C++ code the different functionalities from 3 older codes, VacTH
[1], EQUINOX [2] and CEDRES++ [3] which share many common features.
These goals are now achieved and on the way, improvements to the original
methods and new functionalities were added.

Several problems of equilibrium computation can be addressed by NICE
and are detailed in this document:

� plasma boundary only reconstruction from magnetic measurements
(Section 3). The reference paper for this mode is [1]. In addition to the
method proposed in this reference the use of an original regularization
term which proved to be efficient is proposed in this document.

� full equilibrium reconstruction from magnetic measurements and possi-
bly internal measurements (Section 4). NICE uses Sequential Quadratic
Programming (SQP) algorithms to solve partial differential equation
(PDE) constrained optimization problems and in particular the inverse
problem of equilibrium reconstruction. The default algorithm used in
NICE is a quasi SQP with reduced Hessian algorithm (which we denote
QSQP in this document). Its implementation demands the computa-
tion of derivatives of quantities with respect to the state and control
variables and enables to use polarimetry Stokes vector measurements
[4, 5]. The code also incorporates the original optimization algorithm
from EQUINOX [2] which appears to be an approximation of the de-
fault QSQP algorithm used in NICE. A sensitivity method for error
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bar computations on every reconstructed equilibrium quantities is also
implemented and detailed in Section 4.3.2.

� direct and inverse, static and quasi-static free-boundary equilibrium
computations (Section 5). The reference papers for these implemented
modes are [3] and [6]. The term direct refers to the resolution of the
equilibrium equation whereas the term inverse refers to the inverse
problem consisting in finding the currents in the poloidal field (PF)
coils which give a desired plasma shape in the static case or the voltages
in the suppliers which give a desired evolution of the plasma shape in
the quasi-static case. The difference between static and quasi-static is
explained in Section 2.1

The strengh of NICE is to gather in a single unified framework different
functionalities or equilibrium computation modes. It makes intensive use of
Newton method and SQP method to solve non linear problems.

NICE is used routinely for the WEST tokamak operation [7]. NICE is
adapted to the IMAS (ITER Modelling and Analysis Suite [8, 9]) format
which makes it usable on many different tokamaks [10]. Many of the numeri-
cal examples provided in this document are obtained using data in the IMAS
format.

The document is organized as follows. Section 2 provides a brief descrip-
tion of the equilibrium equations used (Section 2.1), of their finite element
discretization (Section 2.2) and of the iterative Newton and QSQP algorithm
used (Section 2.3). This section enables to set matrix notations which are
very close to what is used in the code itself. Section 3 describes the plasma
boundary only reconstruction mode of NICE. This first mode does not rely
on finite element discretization but uses a decomposition of the poloidal flux
in toroidal harmonics. All other computation modes of NICE use finite ele-
ments. Section 4 presents the equilibrium reconstruction mode and Section
5 the direct and inverse equilibrium computation modes. For each mode
numerical examples are provided.

2. Tokamak free-boundary plasma equilibrium

This section presents the general equations which are dealt with in NICE.
The finite element discretization is also presented which enables us to set the
notations for different matrix and vector operators which are used in the
different modes of NICE. Then we present in a generic framework the QSQP
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algorithm which will then be applied to the inverse problems of the next
sections.

2.1. Modelization

The equations which govern the equilibrium of a plasma. in the presence of a
magnetic field in a tokamak are on the one hand Maxwell’s equations satisfied
in the whole of space (including the plasma):

∇ ·B = 0, ∇× (
B

µ
) = j, (1)

and on the other hand the equilibrium equation for the plasma itself

∇p = j×B, (2)

where B is the magnetic field, µ is the magnetic permeability, p is the kinetic
pressure and j is the current density.

These equations are sufficient for the static modelization of the plasma
equilibrium. In this modelization the current densities in the PF coils are
given. In case of quasi-static plasma evolution modelization these equations
are augmented with Faraday’s law and Ohm’s law in the PF coils and passive
structures. The current density in these structures is then computed as a
function of the input voltages in the PF circuits and/or of the time derivative
of the poloidal flux (defined below) as shown in Eqs. (11) and (12) below.
We refer to standard text books (e.g. [11, 12, 13, 14, 15]) and to [2, 3] for
details of the derivation and only state the needed equations in what follows.

Introducing a cylindrical coordinate system (er, eφ, ez) (r = 0 is the major
axis of the tokamak torus) and assuming axial symmetry equations (1) and
(2) reduce to the following equation for the poloidal flux ψ(r, z) in the poloidal
plane Ω∞ = (0,∞)× (−∞,∞):

−∆∗ψ = jφ, (3)

where jφ is the toroidal component of j, and the second order elliptic differ-
ential operator ∆∗ is defined by

∆∗ψ := ∂r

(
1

µ(ψ)r
∂rψ

)
+ ∂z

(
1

µ(ψ)r
∂zψ

)
:= ∇ ·

(
1

µ(ψ)r
∇ψ
)
. (4)

Here ∇ is the 2D operator in the (r, z)-plane and µ(ψ) is the magnetic per-
meability. It is equal to the constant permeability of vacuum µ0 everywhere
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except in the possibly existing iron parts of the tokamak (see Fig. 1) where
it is a given function of ψ, µ(ψ) = µf (|∇ψ|2r−2).

The magnetic field can be decomposed in poloidal and toroidal compo-
nents

B = Bp + Bφ, Bp =
1

r
[∇ψ × eφ], Bφ = Bφeφ =

f

r
eφ, (5)

where f is the diamagnetic function. Equation (5) shows that the magnetic
surfaces are generated by the rotation of the iso-flux lines around the axis of
the torus.

The toroidal component of the current density. jφ is zero everywhere outside
the plasma domain and the poloidal field coils (and possibly the passive
structures). The different sub-domains of the poloidal plane of a schematic
tokamak (see Figure 1) as well as the corresponding expression for jφ are
described below:

-Ωf is the domain of ferromagnetic iron structures where the permeability
µ is not constant.

-ΩL is the domain accessible to the plasma. Its boundary is the limiter
ΓL.

-Ωp is the plasma domain where equations (2) and (1) imply that p and f
are constant on each magnetic surface i.e. p = p(ψ) and f = f(ψ). One then
deduces the so-called Grad-Shafranov equilibrium equation in the plasma
[16, 17, 18]

−∆∗ψ = rp′(ψ) +
1

µ0r
(ff ′)(ψ). (6)

The right-hand side of (6) is the toroidal component jφ of the plasma current
density.

The plasma domain depends on ψ and is unknown, Ωp = Ωp(ψ). We
have to deal with a free-boundary problem. This domain is defined by its
boundary which is the outermost closed ψ iso-contour contained within the
limiter region ΩL. The plasma can either be limited if this iso-contour is
tangent to the limiter ΓL or defined by the presence of an X-point (as in
Figure 1). In the latter case the plasma domain is bounded by the magnetic
separatrix. Functions p′ and ff ′ are zero outside Ωp.

The current density is non-linear in ψ due to the non-linear functions p′

and ff ′ and the definition of the plasma domain Ωp(ψ). While Ωp(ψ) is fully
determined for a given ψ, the two functions p′ and ff ′ are not determined
in this modelization. It is the goal of the inverse equilibrium reconstruction
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Figure 1: Schematic representation of the poloidal plane of a tokamak. Ferromagnetic iron
structures (Ωf) are represented in gray, PF coils (Ωci) in orange and a passive structure
(Ωps) in blue. The limiter contour (ΓL, purple contour) inside which the plasma (Ωp)
lies is also shown. Cross-circles represent magnetic probes and a fictitious measurement
contour Γ is drawn with a green dashed line.

6



problem to determine them. For now let us consider that we are given two
functions A(x) and B(x) defined on [0, 1] such that in the plasma domain
Ωp(ψ)

jφ = λ(
r

r0

A(ψN) +
r0

r
B(ψN)). (7)

Here r0 is the characteristic major radius of the tokamak vacuum chamber
and λ is a scaling coefficient. The normalized poloidal flux ψN(r, z) is

ψN(r, z) =
ψ(r, z)− ψa(ψ)

ψb(ψ)− ψa(ψ)
. (8)

with ψa and ψb being the flux values at the magnetic axis and at the boundary
of the plasma:

ψa(ψ) := ψ(ra(ψ), za(ψ)),

ψb(ψ) := ψ(rb(ψ), zb(ψ)),
(9)

with (ra(ψ), za(ψ)) the magnetic axis where ∇ψ = 0 and ψ has a local
extremum in ΩL, and (rb(ψ), zb(ψ)) the coordinates of the point that deter-
mines the plasma boundary. The point (rb, zb) is either an X-point of ψ or
the contact point with the limiter ΓL.

-Domains Ωci represent the poloidal field coils carrying currents

jφ =
Ii
Si
, (10)

where Si is the section area of the coil and Ii is the current flowing in the coil.
In the static modelization Ii is a constant whereas in the quasi-static case it
relates to voltages vj(t) in the suppliers and to self and mutual induction

Ii(t) =
Ns∑
j=1

Sijvj(t) +
Nc∑
j=1

Rij
1

Sj

∫
Ωcj

∂ψ

∂t
drdz, 1 ≤ i ≤ Nc (11)

via electric circuit equations (see [3] Appendix A and [6] Appendix B). Here
Ns is the number of suppliers, Nc is the number of coils, matrix S has
dimension Nc × Ns and matrix R has dimension Nc × Nc. In the simplest
case where each circuit is composed of one coil and one voltage supplier, S

and R are diagonal with Sii =
ni
Ri

and Rii = −2πn2
i

Ri

, ni being the number

of turns and Ri the resistance.
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-Domain Ωps represents passive structures. The expression for jφ in these
domains depends on the modelization considered. For static equilibrium jφ =
0 is usually considered whereas for quasi-static evolution of the equilibrium

jφ = −σ
r

∂ψ

∂t
(12)

where σ is the conductivity of the passive structure.

Equilibrium equation (3). can either be considered in the whole poloidal
plane Ω∞ with ψ = 0 as boundary condition at infinity and on the r = 0
axis, or on a restricted bounded domain (whose boundary can be viewed
as a measurement contour Γ and is illustrated by the green dashed line on
Figure 1). Both type of problems are addressed in NICE, the first one for
the direct and inverse static and quasi-static modes and the second one for
the equilibrium reconstruction mode.

2.2. FEM discretized operators and derivatives

For the equilibrium reconstruction mode as well as the direct and inverse
modes of NICE equation (3) is discretized using a P1 finite element method
based on a triangular mesh [19, 12, 3]. In this Section we provide some details
on the discretized operators common to different modes of NICE as well as on
the computation of their derivatives which are used in the Newton and SQP
algorithms implemented for the resolution of non-linear direct and inverse
problems. More operators specific to a given mode are presented later in the
document.

There are two possible choices for the spatial domain to be triangulated.
It can either be a restricted domain enclosed in the measurement contour Γ
or a sufficiently large semi-circle centered at the origin and containing the
whole geometry of the tokamak. The first case is called the bounded domain
case (see Figure 2) and the second the ABB domain case (see Figures 3 and
4). ABB stands for Albanase, Blum, de Barbieri [20] who first introduced
the boundary integral method on the semi-circle used to take into account
conditions at infinity. We refer to [3] for its precise expression and to [21,
Chapter 2.4] for details on its derivation. Alternative approaches for the
incorporation of boundary conditions at infinity were more recently presented
in [22].

Let us denote by λi(r, z) the N Lagrangian basis functions associated to
the inner vertices of the mesh and by λd,i the Nb ones associated to boundary
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Figure 2: Example mesh for WEST tokamak in the bounded domain case. In red is the
region inside the limiter.
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Figure 3: The ABB domain for WEST tokamak.
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Figure 4: Zoom on an example mesh in the ABB domain case for WEST tokamak. Dif-
ferent parts of the machine appear in different colors (iron structure, PF coils, vacuum
vessel, limiter).

vertices where Dirichlet conditions are applied (r = 0 in the ABB case or Γ
in the bounded domain case).

Approximating the poloidal flux by ψh =
N∑
i=1

ψiλi(r, z) +

Nb∑
i=1

ψd,iλd,i(r, z)

and testing equation (3) against every inner basis function leads to the defi-
nition of the following matrices and vectors:

state variable. ψ denotes the vector of N finite elements coefficients ψi

elliptic operator. split into a linear and a non linear part (if iron is present),
Aψ +Aµ(ψ). Matrix A is of size N ×N and coefficients

Aij =

∫
Ω−Ωf

1

µ0r
∇λi∇λjdrdz

involving the scalar product of the gradients of basis functions i and j. Vector
Aµ(ψ) of dimension N has coefficients

Aµ,i(ψ) =

∫
Ωf

1

µ(ψh)r
∇λi∇ψhdrdz
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The integrals are computed as sums of integrals over the triangles T of the
mesh on each of which the barycentric quadrature rule is used for the integral
approximation. The Jacobian Aµ,ψ(ψ) is computed as

[Aµ,ψ]ij =

∫
Ωf

∇λi∇λj
µ(ψh)r

−
2µ′f (|∇ψh|2r−2)

µ2
f (|∇ψh|2r−2)r3

(∇λi∇ψh)(∇λj∇ψh)drdz

boundary conditions. Dirichlet boundary conditions, a vector ψd of size Nb

number of vertices on the boundary, are applied using matrix Ad of size
N ×Nb with coefficients

Ad,ij =

∫
Ω

1

µ0r
∇λi∇λd,jdrdz

This matrix is only used in the bounded domain case since for the ABB
domain case, ψd = 0.

In the ABB domain case the boundary integral method on the semi-circle
leads to the definition of a matrix C of size N ×N (see [3]).

plasma current density. J(ψ, λ,uA,uB) vector of size N and coefficient

J(ψ, λ,uA,uB)i =

∫
Ωp(ψh)

λ(
r

r0

A(ψN) +
r0

r
B(ψN))λidrdz

Functions A and B are decomposed in a basis of functions φi defined on [0, 1].
In NICE piecewise linear and cubic splines functions are implemented.

A(x) =

NA∑
i=1

uAiφi(x), B(x) =

NB∑
i=1

uBiφi(x),

and uA, uB denote the vectors of degrees of freedom of A and B in the chosen
decomposition basis. In the direct and inverse modes of NICE functions A
and B can also have a parametric representation of the type

A(x) = β(1− xα)γ, B(x) = (1− β)(1− xα)γ

The mesh does not resolve the boundary of plasma domain Ωp(ψh) and a
quadrature rule needs to be specified for integrals over intersections of mesh
triangles with the plasma domain T ∩Ωp(ψh). Barycenter quadrature is used
but the quadrature point and weight depend non linearly on ψh. This needs
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to be taken into account in the computation of the Jacobian Jψ(ψ, λ,uA,uB).
This differentiation is not straightforward and technical details are given in
[3]. The computation of Jacobians JuA(ψ, λ,uA,uB) and JuB(ψ, λ,uA,uB)
which are needed for equilibrium reconstruction on the other hand does not
rise any particular difficulty.

Finally we will use the notation

Jp(ψ,uA,uB) =

∫
Ωp(ψh)

(
r

r0

A(ψN) +
r0

r
B(ψN))drdz (13)

such that the total plasma current is computed as

Ip = λJp(ψ,uA,uB)

PF coils. matrix L of size N × Nc and vector uI of size Nc holding the
currents Ii of the Nc coils contained in the domain under consideration (all
coils in the ABB domain case but not in the bounded domain case), with
coefficients

Lij =
1

Sj

∫
Ωcj

λidrdz

such that the PF coils term in the static case is LuI and in the quasi-static

evolution case is LSv +LRLT
dψ

dt
with v the vector of the Ns voltages

passive structures. matrix Jps of size N × N , associated to the inductive
terms in the passive structures with coefficients

[Jps]ij = −
Nps∑
k=1

∫
Ωpsk

σk
r
λiλjdrdz

where Nps is the number of passive structure and σk their conductivity.

2.3. Newton and PDE-constrained optimization algorithms

With the matrix and vector operators defined in the previous section
different direct and inverse problems can be formulated in NICE and are
detailed in the remaining sections of this document. Here we present the
main algorithms using a generic formulation. We will define different model
equations e, state y and control u variables as well as cost functions J(y,u).
They will differ from one mode to the other in the code but the resolution
algorithms are the same.

13



The direct problem formulation. is:

find y such that e(y,u) = 0,

where u is here a constant parameter.

The inverse problem formulation. is:

min
y,u

J(y,u) under the constraint e(y,u) = 0,

Throughout this document several explicit formulations are given for e
and J . As a starter and to make it more concrete let us consider the static
equilibrium problem in the ABB domain detailed in Section 5. The sate
variable is y := ψ, the control variable is u := uI the currents in the coils
and p′ and ff ′ are given (thus uA, uB and λ are fixed parameters). The
direct model in ABB domain is

e(y,u) := (A+C)ψ + Aµ(ψ)− J(ψ, λ,uA,uB)−LuI = 0

and the cost function is

J(y,u) =
1

2
||Ky||2 +

1

2
||Ru||2

with a quadratic misfit term, imposing a levelset of the poloidal flux to go
through a set of desired points, and a regularization term (see Section 5).

In NICE direct problems are solved thanks to Newton’s method. If we
denote the Newton increment by ∆y = −e−1

y (yn,u)e(yn,u) this iterative
algorithm reads:

yn+1 = yn + ∆y

Inverse problems are solved thanks to a quasi-SQP method with reduced
Hessian (QSQP). SQP methods are well documented [23, 24] and a clear
summary is found in [6, Appendix A]. An SQP method can be seen as a
Newton method to solve the non-linear system given by the fisrt order op-
timality condition for the Lagrangian of the PDE-constrained optimization
problem

L(y,u,p) = J(y,u) + (p, e(y,u)) (14)

where vector p of size N is the adjoint variable or Lagrange multiplier for the
constraint of the model. This first method also known as Newton-Lagrange
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method is implemented in NICE and was used in [4] for equilibrium recon-
struction. It was also already used in [3] for the static inverse problem (pre-
sented below in Section 5). The drawback of this method is that it demands
the resolution of linear systems of size (2N +Nu), where N is the dimension
of the state and adjoint variables and Nu the dimension of the control. When
N is large this can become time consumming and an excellent alternative is
the SQP formulation with reduced Hessian which is intensively used in NICE
and was already used in [6] for the quasi-static inverse problem (see Section
5.2). It is the following two-step iterative algorithm.

quasi SQP with reduced Hessian algorithm (QSQP):.

1. control variable update step

M (un+1 − un) = −m (15)

2. state variable update step

yn+1 = yn + ∆y + S(un+1 − un) (16)

where
∆y = −e−1

y (yn,un)e(yn,un), (17)

S = −e−1
y (yn,un)eu(yn,un), (18)

M = Juu(yn,un) + STJyu(yn,un) + Juy(yn,un)S + STJyy(yn,un)S (19)

and

m = JTu (yn,un) +STJTy (yn,un) +Juy(yn,un)∆y+STJyy(yn,un)∆y (20)

At each iteration this algorithm demands the resolution of Nu + 1 linear
systems (17)-(18) of size N involving the same matrix ey(yn,un) with dif-
ferent righ-hand sides which can be done very efficiently and of one smaller
linear system of size Nu in (15).

One can notice that second order derivatives appear only for the cost
function and not for the model equation in (19) and (20). This is due to the
fact that on the one hand the model equation in our applications is affine
in the control variable, u, therefore has 0 second order derivative, and on
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the other hand we want to avoid the expensive computation of other sec-
ond order derivatives of J(ψ, λ,uA,uB) and neglect them. Neglecting these
second order derivatives of the model equation also allows to avoid having
to compute the adjoint state variable. Moreover in some cases where in the
cost function the observation operator is non-linear we also neglect some of
the second order derivatives terms in Jyu, Juy and Jyy (see equilibrium re-
construction with internal measurements in Section 4.2). NICE uses a quasi
SQP algorithm and not an exact SQP algorithm. The excellent convergence
properties of the code allow us to think that these modifications are not an
issue for the applications specific to tokamaks dealt with in NICE.

It should also be noted that if one neglects the first order derivative Jψ
term in the computation of model derivative ey this algorithm applied to
the equilibrium reconstruction problem of Section 4 is exactly the original
algorithm from the code EQUINOX. In the original EQUINOX paper [2] it
is described as a fixed-point method to solve the model equation in ψ for
which the control variable u is updated at each iteration. It appears clearly
that this method is another (more approximated) quasi SQP with reduced
Hessian method. In our experience however this method does not always
demonstrates the same quality and speed of convergence as the one used in
NICE which involves more derivative terms.

2.4. Cost functions notation

Throughout this document cost functions of the following type appear

J(ψ,u) =
1

2
||M(ψ,u)−m||2 +

1

2
||Ru||2 (21)

The first term is the data misfit term and the second the regularization term.
Each measurement data mi is a given quantity which goes together with

a given absolute measurement error, abserr, and an relative measurement
error, relerr, and we form the quantity σi = max(abserr, relerr|mi|). All
vectorial quantities related to measurements which appear in cost functions
are normalized quantities. The vector m of measurements has components
mi = mi/σi and the observation operator M(ψ,u) computes from the model
the equivalent of these normalized measured quantities. In NICE absolute
and relative errors can either be provided together with the used data set
(for example these quantities should be provided in IMAS) or set by the user
through input code parameters.
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Regularization terms are needed due to the ill-posedness of the inverse
problems under consideration and they guarantee smoothness of the identi-
fied quantities. Regularization and penalization parameters are included in
R matrices and are provided by the user through input code parameters.

3. NICE magnetic measurements interpolation and plasma bound-
ary reconstruction mode

The goal of this section is to present the magnetic measurements inter-
polation and plasma boundary reconstruction mode of NICE.

3.1. Method

Toroidal harmonics are used to represent the poloidal flux in an annular
domain surrounding the plasma. In such a domain ψ satisfies

−∆∗ψ = 0

and can be expanded in a series of toroidal harmonics (see [1] and references
therein).

This method allows a fast fit to magnetic measurements and the poloidal
field function can then be used to compute the plasma boundary. It allows
also to compute precisely the poloidal flux and its gradient on any contour
surrounding the plasma and thus on Γ the measurements contour in NICE
bounded domain case (green dashed line in Figure 1). These Cauchy condi-
tions on Γ, (g = ψ, h = ∂nψ), can then be used in a second step to reconstruct
the full non-linear free-boundary Grad-Shafranov equilibrium problem inside
the domain Ω limited by Γ. This is presented in the following Section 4.

Below we propose to use a simple additional regularization term which
was not originally present in [1]. This regularization operates directly on the
toroidal harmonics expansion in order to obtain a smooth representation of
flux even faraway from the measurements contour Γ inside the domain Ω.

The toroidal coordinates system [25, 26] or bipolar coordinates system (if
we ignore the angular toroidal variable) (ζ, η) ∈ IR+

∗ × [0, 2π] about the pole
Fp = (rp, zp) is related to the cylindrical coordinates system (r, z) by

r =
rp sinh ζ

cosh ζ − cos η
and z − zp =

rp sin η

cosh ζ − cos η

We assume that Fp lies inside the plasma domain where the homogeneous
equation, −∆∗ψ = 0, is not satisfied.
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Following [1] the poloidal flux in the vacuum surrounding the plasma is
written as ψ = ψC + ψth. The term ψC is the given contribution of the

poloidal field coils Ck with current density jCk =
Ik
Sk

evaluated thanks to the

free space Green function:

ψC(x) =
∑
k

∫
Ck

jCkG(y, x)dy

The toroidal harmonics expansion is represented by ψth, sum of two terms
ψex and ψin, corresponding respectively to external and internal harmonics:

ψth = ψex + ψin,

ψex =
rp sinh ζ√

cosh ζ − cos η
×

[

nea∑
n=0

aenQ
1
n−1/2(cosh ζ) cos(nη) +

neb∑
n=1

benQ
1
n−1/2(cosh ζ) sin(nη)],

ψin =
rp sinh ζ√

cosh ζ − cos η
×

[

nia∑
n=0

ainP
1
n−1/2(cosh ζ) cos(nη) +

nib∑
n=1

binP
1
n−1/2(cosh ζ) sin(nη)],

(22)
where P 1

n−1/2 and Q1
n−1/2 are the associated Legendre functions of first and

second kind, of degree one and half integer order [27], also called toroidal
harmonics when evaluated at point cosh ζ. Functions P 1

n−1/2 have a singu-
larity when ζ → ∞ that is to say at point Fp. On the contrary functions
Q1
n−1/2 are singular when ζ → 0 that is to say on the axis r = 0.

We denote by u the vector of the unknown expansion coefficients

u = (ae0, . . . , a
e
nea
, be1, . . . , b

e
neb
, ai0, . . . , a

i
nia
, bi1, . . . , b

i
nib

).

The optimal set of coefficients uopt can be computed from the minimiza-
tion of the least-square cost function

J0(u) =
1

2
||Mu−m||2 (23)

where m is the vector of (normalized) flux loops and Bprobes measurements
corrected from their known ψC contribution, and Mu the equivalent quanti-
ties computed from the toroidal harmonics expansion of Eq. (22). Here the
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rectangular matrix M depends on the choice of the pole of the coordinates
system.

J0 is quadratic in u and is minimized simply by solving the associated
normal equation, MTMu −MTm = 0, to find the unique optimal set of
coefficients uopt.

Assuming enough toroidal harmonics are used the resulting representation
of the poloidal field is always precise on Γ the measurements contour but
might become highly disturbed when moving towards the pole Fp which
is a singular point for the internal harmonics. Hence let us introduce the
regularized functional

J(u) = J0(u) +R(u) (24)

where the regularization term R involves the second order tangential
derivative of ψ along a particular circle C surrounding the pole Fp,

R(u) =
ε

2

∫
C

|d
2ψth(u)

ds2
|2ds

and is quadratic in u.
The following remark leads to an obvious choice for the circle C. In

toroidal coordinates the curves of constant ζ are non-intersecting circles of
different radii

(r − rp coth ζ)2 + (z − zp)2 =
r2
p

sinh2 ζ

that surround the pole but are not concentric. The ζ = 0 curve corresponds
to the z-axis (r = 0). As the magnitude of ζ increases, the radius of the
circles decreases and their centers approach the pole Fp. We choose the
circle C to be the circle of a constant ζ0 value. This choice considerably
simplifies the computation of the second order tangential derivative since
it is only required to compute derivatives with respect to η to obtain the
expression of the regularization term.

The curvilinear abscissa along the constant-ζ0 circle is given by

s(η) =

∫ η

−π

rp
cosh ζ0 − cos t

dt

The second order tangential derivative along the circle of ψ seen as a function
of s is

d2ψth
ds2

=
∂2ψth
∂η2

(η, ζ0)(
dη

ds
)2 +

∂ψth
∂η

(η, ζ0)
d2η

ds2

19



with
dη

ds
=

cosh ζ0 − cos η

rp
and

d2η

ds2
=

(cosh ζ0 − cos η) sin η

r2
p

and we obtain the expression of the regularization term∫
Cζ0

|d
2ψth
ds2
|2ds =

∫ π

−π
[
∂2ψth
∂η2

(η, ζ0)(
cosh ζ0 − cos η

rp
)2

+
∂ψth
∂η

(η, ζ0)
(cosh ζ0 − cos η) sin η

r2
p

]2[
rp

cosh ζ0 − cos η
]dη

(25)
The ψth derivatives with respect to η can be easily explicitly computed from
Eq. (22) and the integral computed using a standard quadrature method.

Let us conclude this section with the complete algorithm implemented in
NICE.

Algorithm.

1. Initialization: prepare filaments description of PF coils, provide code
parameters for number of toroidal harmonics, regularization parameters,
test parameter d (see point 4 below), points defining contour Γ, number
Np of required plasma boundary points

2. Choose the pole of the coordinates system Fp. Default initial guess is
Fp = (r0, 0).
Assemble and minimize cost function (24) to find uopt.

3. Compute the current center Fc = (rc, zc) defined as moments of the
plasma current density [28, 29] which can be precisely computed as inte-
grals on the limiter contour ΓL at every point of which the flux and the
poloidal magnetic field can be evaluated thanks to the representation
ψ = ψth(uopt) + ψC ,

Ip =

∫
ΓL

1

µ0

Bsds (26)

zcIp =

∫
ΓL

1

µ0

(−r log rBn + zBs)ds (27)

r2
cIp =

∫
ΓL

1

µ0

(2rzBn + r2Bs)ds (28)

where Bs (resp. Bn) denotes the poloidal field tangent (resp. normal)
to the integration contour ΓL.
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4. If ||Fc − Fp|| > d set Fp := Fc, re-assemble and minimize cost function
(24) again, since matrixM in (23) depends on the pole of the coordinates
system, to find a new uopt.

5. Output Cauchy conditions (ψ, ∂nψ) on measurement contour Γ and/or
compute plasma boundary with the following algorithm:

� find Pb the point defining the plasma boundary ψb value. Either a
limiter point or an X-point found thanks to a quasi Newton method
for ∇ψ = 0

� starting from the [Fc, Pb) ray define Np − 1 rays [Fc, Pk) with a
rotation of ∆θ = 2π/(Np − 1) between each of them. Use Newton
method along each ray to find the plasma boundary point where
ψ(r, z)− ψb = 0

3.2. Numerical examples

This mode of NICE also known as VacTH is routinely used at WEST
for plasma shape identification and control during a shot [7]. Here is pro-
vided a typical example of plasma boundary reconstruction for a WEST-like
equilibrium. The poloidal flux is computed using 24 toroidal harmonics for
ψth (15 external harmonics with nea = neb = 7 and 9 internal harmonics with
nia = nib = 4) and 24 filaments of currents modelizing the given current den-
sity in the PF coils for ψC . Figure 5 shows the fit to Bprobes measurements
with a resulting root mean square error of 2mT.

The ζ value defining the regularization circle is chosen such that the radius
of this circle is a(rlimiterMax− rlimiterMin) where a = 0.1 is a code parameter.
Another code parameter provides the value of regularization parameter which
is here set to ε = 0.001. A 60 points plasma boundary is computed by the
method described above and is shown on Figure 6.

The algorithm is not machine dependent and was successfully applied to
other tokamaks such as JET, TCV, AUG or also ISTTOK [30]. Figure 7
shows a JET-like equilibrium example and Figure 8 a TCV-like equilibrium
example.

4. NICE equilibrium reconstruction mode

The goal of this section is to introduce the algorithm implemented in
NICE for equilibrium reconstruction. Basic measurements used for equi-
librium reconstruction are magnetic measurements but NICE can also use
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Figure 5: Measured and computed Bprobes values for a WEST-like plasma boundary
reconstruction.

interferometry, polarimetry, motional Stark effect (MSE) and pressure mea-
surements. These are introduced in Section 4.2 and we start by using mag-
netics only for simplicity.

4.1. Problem formulation on a bounded domain with magnetic measurements

Here magnetic measurements are in fact Cauchy data (ψ, ∂ψ
∂n

) provided on
the measurement contour Γ. These data are usually computed from a first
call to NICE magnetics interpolation mode described in Section 3 but can
also be provided by another code specific to a Tokamak which computes the
poloidal flux outside the plasma such as XLOC at JET [31, 32].

Using the matrix notations of Sections 2.2, 2.3 and 2.4 Dirichlet data
provide the ψd vector used in the resolution of the boundary value problem
whereas Neumann data are considered as measurements and used in a cost
function to be minimized to reconstruct the equilibrium. NICE uses Nb

values of ∂ψ
∂n

given at the middle point of each segment of the mesh forming
the Γ contour.

We denote by m the vector of these (normalized) measurements and the
equivalent quantities, Hψ +Hdψd computed from the FEM representation
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Figure 6: Poloidal flux ψ = ψth(uopt) + ψC computed by a fit of toroidal harmonics
to magnetic measurements for a WEST-like equilibrium. The measurement contour Γ is
shown in black, Bprobes are black circles and flux loops black squares. The limiter contour
is the dashed black line. The plasma boundary with a low Xpoint is the thick red contour
whereas the regularization circle is the thin red line surrounding the pole of the coordinate
system.
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Figure 7: Poloidal flux ψ = ψth(uopt) + ψC computed by a fit of toroidal harmonics to
magnetic measurements for a JET-like equilibrium. The measurement contour Γ is shown
in black, Bprobes are black circles and flux loops black squares. The limiter contour is
the dashed black line. The plasma boundary with a low Xpoint is the thick red contour
whereas the regularization circle is the thin red line surrounding the pole of the coordinate
system.
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Figure 8: Poloidal flux ψ = ψth(uopt) + ψC computed by a fit of toroidal harmonics to
magnetic measurements for a TCV-like equilibrium. The measurement contour Γ is shown
in black, Bprobes are black circles and flux loops black squares. The limiter contour is the
dashed black line. The plasma boundary with an upper Xpoint is the thick red contour
whereas the regularization circle is the thin red line surrounding the pole of the coordinate
system.
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of the poloidal flux thanks to the Nm×N matrix H and the Nm×Nb matrix
Hd.

The cost function, which depends on y := ψ and u := (uA,uB) the
degrees of freedom of functions A and B, we consider is the following

J(y,u) :=
1

2
||Hψ +Hdψd −m||2 +

1

2
||RAuA||2 +

1

2
||RBuB||2 (29)

The first term on the right hand-side is the misfit term and the two others
are regularization terms. They are the discrete expressions for

εA
2

∫ 1

0

(A′′(x))2dx+
αA
2
|A(1)|2

and
εB
2

∫ 1

0

(B′′(x))2dx+
αB
2
|B(1)|2

Parameters ε enable to tune the smoothness of the identified functions whereas
parameters α tune the penalization to zero of their value on the plasma
boundary.

The free-boundary equilibrium model equation is

e(y,u) := Aψ +Adψd − J(ψ, λ,uA,uB)−LuI = 0 (30)

and the equilibrium reconstruction problem is formulated as the folowing
PDE-constrained optimization problem:

min
y,u

J(y,u) such that e(y,u) = 0 (31)

This problem is solved thanks to the QSQP algorithm given in Section 2.3.
A first initialization step is used to set λ in the current density term given the
total plasma current Ip which is either given with magnetic measurements
or comes out from the toroidal harmonics procedure. Given initial guess ψ0,
u0
A and u0

B, λ is chosen to satisfy

Ip − λJp(ψ0,u0
A,u

0
B) = 0 (32)

Using the notation of Section 2.3, the ingredients needed for the QSQP
algorithm in equations (15), (16), (17), (18), (19) and (20) are
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∆y = −(A− Jψ(ψn, λ,unA,u
n
B))−1(Aψn +Adψd− J(ψn, λ,unA,u

n
B)−LuI).

(33)
S = −(A− Jψ(ψn, λ,unA,u

n
B))−1(Ju(ψn, λ,unA,u

n
B)). (34)

JTy = HT (Hψ +Hdψd −m), JTu =

[
RT
ARAuA

RT
BRBuB

]
(35)

Jyy = HTH , Juu =

[
RT
ARA 0
0 RT

BRB

]
, Jyu = 0, Juy = 0 (36)

4.2. Internal measurements

In addition to magnetics NICE can use internal measurements for equi-
librium reconstruction.

4.2.1. Interferometry and polarimetry

Classical polarimetry. Polarimetry measurements in first approximation give
the Faraday rotation of the angle of an infrared radiation crossing the section
of the plasma along different lines of sight, Li:

αiobs ≈
∫
Li
cNeBp.tdl

where c is a constant, Ne is the electron density in the plasma and t is
the unit vector tangent to the line of sight. In order to be able to use
polarimetric measurements the electron density Ne has to be known. It is
therefore also being identified thanks to interferometric measurements which
give the density line integrals over each of the NL line of sights

N i
e,obs ≈

∫
Li
Nedl

In NICE the electron density, assumed constant on magnetic surfaces, is
represented as

Ne(ψN) = λNeC(ψN,uC)

where λNe is a scaling parameter and function C is either decomposed in a
basis of piecewise linear or cubic spline functions

C(x,uC) =

NC∑
i=1

uC,iφi(x)
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or given as a parametric function [33]

C(x,uC) = (M −m)(1− αhz)E(z) +m

where E(z) =
e−z

e−z + ez
, z =

x− x0

h
and the vector of degrees of freedom is

uC = (x0, h, α,m,M).
The interferometry observation operator W(ψ,uC) is a vector of size NL

computed from the FEM discretiezation as

W(ψ,uC)i =

∫
Li
λNeC(ψN(ψh),uC)dl

and for polarimetry we define Z(ψ,uC) in a similar way by

Z(ψ,uC)i =

∫
Li
cλNeC(ψN(ψh),uC)Bp(ψh).tdl

Here again we have omitted normalization by the assumed observation error.
Integrals along the lines of sight are approximated using the trapezoidal
quadrature rule.

The vector of state variable is still y := ψ whereas the one of all control
variables is now u = (uA,uB,uC) and we can now define the cost function

J(y,u) =
1

2
||Hψ +Hdψd −m||2

+
1

2
||W(ψ,uC)−mNe||2 +

1

2
||Z(ψ,uC)−mFar||2

+
1

2
||RAuA||2 +

1

2
||RBuB||2 +

1

2
||RCuC||2

(37)

which has to be minimized under the constraint of the equilibrium model
(30).

In order to use the SQP algorithm we need to compute derivatives Wψ(ψ,uC)
WuC(ψ,uC) Zψ(ψ,uC) and ZuC(ψ,uC). In NICE we compute the exact
derivatives of the discrete operators. This is done on the fly in the same loop
as the one used for the assembly of vectors W(ψ,uC) and Z(ψ,uC).

The computation of ∆y and S in (33) and (34) are unchanged. Concern-
ing the gradients of the cost function we have

JTy (y,u) = HT (Hψ +Hdψd −m) + Wψ(ψ,uC)
T (W(ψ,uC)−mNe)

+ Zψ(ψ,uC)
T (Z(ψ,uC)−mFar)

(38)
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JTu =

 RT
ARAuA

RT
BRBuB

RT
CRCuC + WT

uC
(W −mNe) + ZTuC

(Z−mFar)

 (39)

Concerning the second order derivative terms we avoid a complete compu-
tation by only considering terms involving products of first order derivatives
and form the following quantities

Jyy = HTH + WT
ψWψ + ZTψZψ (40)

Juu =

RT
ARA 0 0
0 RT

BRB 0
0 0 RT

CRC + WT
uC
WuC + ZTuC

ZuC

 (41)

Jyu =
[
0 0 WT

ψWuC + ZTψZuC

]
, Juy =

 0
0

WT
uC
Wψ + ZTuC

Zψ

 (42)

Stokes model for polarimetry. The project of performing equilibrium recon-
struction using interferometry and Stokes model for polarimetry is at the
origin of the development of NICE. It was first presented in [4] where a
Newton-Lagrange SQP algorithm is used in the ABB domain case for ITER.
In this section we briefly restate the discretization method implemented for
Stokes model and describe the more recent QSQP method used for the in-
verse equilibrium reconstruction problem. The method presented here was
used in [34] with real measurements at JET.

Stokes model consists in a system of differential equations for the the
Stokes vector s of dimension 3 to be solved along each line of sight. The
system is linear in s but coefficients depend on the electron density and on
the magnetic field. Each of the NL line of sight Li is discretized in N i points
and a Crank-Nicolson scheme is implemented for the integration of the Stokes
model. This can be written

M i(ψ,uB,uC)S
i − Si0 = 0

where M i is a 3N i × 3N i band diagonal matrix, Si = (si,1, . . . , si,N
i
) is the

vector of all Stokes vector states along the line of sight and Si0 = (si0, 0, . . . , 0)
represents the initial conditions.
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The measured quantity can be assumed to be the Stokes vector at the end
of the line of sight after integration through the plasma and the observation
operator is given a matrix Ei of size 3× 3N i such that EiSi = si,N

i
.

Defining the block diagonal matrices

M = diag(M 1, . . . ,MNL)

and
E = diag(E1, . . . ,ENL),

and collecting the Stokes vector states for all line of sights in a vector

S = (S1, . . . ,SNL)

one can define a direct model e(y,u) = 0 for the state variable y = (ψ,S)
and control parameters u = (uA,uB,uC) by

e(y,u) :=

[
Aψ +Adψd − J(ψ, λ;uA,uB)−LuI

M (ψ,uB,uC)S− S0

]
= 0 (43)

as well as the following cost function for equilibrium reconstruction using
magnetics, interferometry and Stokes model polarimetry,

J(y,u) =
1

2
||Hψ +Hdψd −m||2 +

1

2
||W(ψ,uC)−mNe||2

+
1

2
||ES−ms||2 +

1

2
||RAuA||2 +

1

2
||RBuB||2 +

1

2
||RCuC||2

(44)

which is minimized under the constraint of the model (equation 43).
The Jacobians needed in Eqn. (17) and (18) of the QSQP algorithm are

ey(y,u) =

[
A− Jψ(ψ, λ;uA,uB) 0
Dψ[M (ψ,uB,uC)S] M(ψ,uB,uC)

]
(45)

and

eu(y,u) =

[
−JuA(ψ, λ;uA,uB) −JuB(ψ, λ;uA,uB) 0

0 DuB [M(ψ,uB,uC)S] DuC [M (ψ,uB,uC)S]

]
(46)

Concerning the gradients of the cost function we have

JTy (y,u) =

[
HT (Hψ +Hdψd −m) + Wψ(ψ,uC)

T (W(ψ,uC)−mNe)
ET (ES−ms)

]
(47)
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JTu =

 RT
ARAuA

RT
BRBuB

RT
CRCuC + WT

uC
(W −mNe)

 (48)

Concerning the second order derivative terms we avoid a complete compu-
tation by only considering terms involving products of first order derivatives
and form the following quantities

Jyy =

[
HTH + WT

ψWψ 0

0 ETE

]
(49)

Juu =

RT
ARA 0 0
0 RT

BRB 0
0 0 RT

CRC + WT
uC
WuC

 (50)

Jyu =

[
0 0 WT

ψWuC

0 0 0

]
, Juy =

 0 0
0 0

WT
uC
Wψ 0

 (51)

Finally let us mention that in [5] dependence on electron temperature
is considered in the Stokes model and the numerical experiments are per-
formed for the identification of the Te profile together with p′, ff ′ and the
Ne profiles. As for other profiles the Te profile is decomposed in a function
basis with control parameters uD. With the notations of this Section this
mainly consists in augmenting the control vector to u = (uA,uB,uC,uD) and
adding a dependence of the Stokes model to Te that is to say using a matrix
M (ψ,uB,uC,uD).

4.2.2. Motional Start effect

Motional Stark effect (MSE) measurements are angular measurements
depending on the magnetic field inside the plasma domain. They are given
at NMSE points pi = (ri, zi) as

mi
MSE = tan γi =

ai0Bz(p
i) + ai1Br(p

i) + ai2Bφ(pi)

ai3Bz(pi) + ai4Br(pi) + ai5Bφ(pi)

where the a coefficients are given constants. In NICE the MSE observation
operator M(ψ,uB) is the vector of components

M(ψ,uB)i =
ai0Bz(ψh(p

i)) + ai1Br(ψh(p
i)) + ai2Sf (ψN(ψh(p

i)))/ri

ai3Bz(ψh(pi)) + ai4Br(ψh(pi)) + ai5Sf (ψN(ψh(p
i)))/ri
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where we have noted Sf (ψN) = f(ψ) which depends on uB since it is obtained
from integration of B as follows

Sf (ψN) = [(B0r0)2 − 2(ψb − ψa)λµ0r0

∫ 1

ψN

B(x)dx]1/2 (52)

B0 is the vacuum toroidal field at r = r0.
During assembling of vector M(ψ,uB) first order derivatives, Mψ(ψ,uB)

and MuB(ψ,uB) are also computed. We can now formulate the cost function
used for equilibrium reconstruction from magnetic and MSE measurement

J(y,u) =
1

2
||Hψ +Hdψd −m||2 +

1

2
||M(ψ,uB)−mMSE||2

+
1

2
||RAuA||2 +

1

2
||RBuB||2

(53)

which has to be minimized under the constraint of the equilibrium model
(30).

The computation of ∆y and S in (33) and (34) are unchanged. Concern-
ing the gradients of the cost function we have

JTy (y,u) = HT (Hψ +Hdψd −m) + Mψ(ψ,uB)T (M(ψ,uB)−mMSE)
(54)

JTu =

[
RT
ARAuA

RT
BRBuB + MT

uB
(M−mMSE)

]
(55)

Very similar to what is done using interfero-polarimetry the following ap-
proximated second order derivative quantities are considered to form matrix
M and vector m of the SQP algorithm

Jyy = HTH + MT
ψMψ (56)

Juu =

[
RT
ARA 0
0 RT

BRB + MT
uB
MuB

]
(57)

Jyu =
[
0 MT

ψMuB

]
, Juy =

[
0

MT
uB
Mψ

]
(58)
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4.2.3. Pressure

The way pressure measurements can be obtained combining different di-
agnostics is out of the scope of this paper but when available they can be used
for equilibrium reconstruction in NICE. Pressure measurements can be given
as function of space, that is to say Np values pi given at points pi = (ri, zi).
They can also be given as a function ψN that is to say Np values pi given
for Np values ψiN. In either case it leads to the construction of a pressure
observation operator P(ψ,uA) with components

P(ψ,uA)i = −(ψb − ψa)
λ

r0

∫ 1

ψiN

A(x)dx

where ψiN is either a fixed given quantity or computed as ψN(ψh(p
i)) which

leads to differences in the computation of derivatives Pψ(ψ,uA) and PuA(ψ,uA)
done during the assembling. We can now formulate the cost function used
for equilibrium reconstruction from magnetic and pressure measurements

J(y,u) =
1

2
||Hψ +Hdψd −m||2 +

1

2
||P(ψ,uA)−mp||2

+
1

2
||RAuA||2 +

1

2
||RBuB||2

(59)

which has to be minimized under the constraint of the equilibrium model
(30).

The computation of ∆y and S in (33) and (34) are unchanged. Concern-
ing the gradients of the cost function we have

JTy (y,u) = HT (Hψ +Hdψd −m) + Pψ(ψ,uA)T (P(ψ,uA)−mp) (60)

JTu =

[
RT
ARAuA + PT

uA
(P−mp)

RT
BRBuB

]
(61)

Similar to what is done for interfero-polarimetry and MSE the follow-
ing approximated second order derivative quantities are considered to form
matrix M and vector m of the SQP algorithm

Jyy = HTH + PT
ψPψ (62)

Juu =

[
RT
ARA + PT

uA
PuA 0

0 RT
BRB

]
(63)
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Jyu =
[
PT
ψPuA 0

]
, Juy =

[
PT

uA
Pψ

0

]
(64)

4.3. Outputs and uncertainty quantification

4.3.1. Equilibrium outputs, flux surface averages and geometric coefficients

Numerous outputs can be extracted from the equilibrium poloidal flux
map computed. These include purely geometric information on the plasma
shape (plasma boundary, geometric axis, elongation . . . ), global parameters
(such as total plasma current Ip, poloidal beta βp, internal inductance li,
. . . ), 1D profiles of quantities constant on flux isolines in the plasma and 2D
maps (ψ itself but also Br, Bz, jp, . . . ). All these outputs are standardized
and follow the IMAS conventions. We are not going to detail all of them in
this paper. Let us however give some details on the computation of some of
the important 1D profiles in the plasma.

For ψN ∈ [0, 1], Sf (ψN) = f(ψ) is computed by integration of B as shown
in (52). Let us define a discretization of the unit interval [0, 1] by S+1 values
ψ0

N = 0, . . . , ψSN = 1. These points are taken as abscissa for all computed
1D profiles. For each ψsN the contour line ΓψsN is extracted from the finite
element representation of the solution as a list of Ns segments between ml

s,1 =
(rls,1, z

l
s,1) and ml

s,2 = (rls,2, z
l
s,2) with length |Lls|, for l = 1 to Ns.

The toroidal flux coordinate is defined as ρ(ψN) =
√
φ(ψN)/πB0 where

φ(ψN) =
∫

ΩψN

f(ψh(r,z))
r

drdz and ΩψN is the domain bounded by the line of

flux ΓψN
. This contour is not resolved by the mesh and the quantities φs and

ρs are computed from the discrete ψh for all ψsN using the same barycentric
quadrature rule as for the integrated plasma current density J in Section 2.2:

φs =
∑
T

Sf (ψN(bT (ψh)))

rT (ψh)
|T ∩ ΩψsN

|. (65)

The profiles ψs and ρs being known one can compute (∂ψ
∂ρ

)s = ψ′s using finite
differences.

In the same way the volume profile is computed as

V ols = 2π
∑
T

rT (ψh)|T ∩ ΩψsN
| (66)

and (∂V ol
∂ρ

)s = V ol′s using finite differences.
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Following [12] the average of a quantity A over magnetic surfaces can be
computed as

〈A〉s = (

∫
Γψs

N

Ar

|∇ψh|
dl)/(

∫
Γψs

N

r

|∇ψh|
dl). (67)

A number of 1D profiles, also called geometric coefficients, are computed as
such averages, e.g. 〈1/r2〉 or 〈|∇ρ|2/r2〉 . The integrals over flux contour
lines involved are approximated as follows:∫

Γψs
N

Ar

|∇ψh|
dl ≈

Ns∑
l=1

1

2

(
rls,1A(ml

s,1)

|∇ψh|T ls |
+
rls,2A(ml

s,2)

|∇ψh|T ls |

)
|Lls|. (68)

where T ls is the triangle which is intersected by the segment between ml
s,1 and

ml
s,2 and ml

s,· = (rls,·, z
l
s,·) . |∇ψh|T ls | is constant in the triangle and computed

from the 3 values at the nodes of T ls.

4.3.2. Sensitivity method for error bars computation

At convergence of the SQP iterations an optimal u is found and the
constraint given by the model is satisfied. Hence y = y(u) and one can define
the reduced cost function Ĵ(u) = J(y(u),u). A good approximation to the
Hessian of the reduced cost function is SQP algorithm matrix, Ĵuu ≈ M .
This matrix would be the exact Hessian if we hadn’t neglected some of the
second order derivatives terms.

Its diagonal elements are the inverse of the squared a posteriori standard
deviations on the components of u also called error bars. Moreover the
error bar of any scalar quantity g depending on u (such as the reconstructed
functions A(ψN) or B(ψN) at a given ψN for example) is computed as

σ2
g = ∇ug

TM−1∇ug

This enables the computation of the error bar on any output quantity at low
numerical cost. If g(u) is in the form g(u) = G(y(u),u) we use

∇ug = yTu∇yG+∇uG

where the Jacobian yu = S is already known from SQP algorithm.
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4.4. Final remarks on equilibrium reconstruction

The equilibrium reconstruction problem can be formulated on the ABB
domain. With this formulation magnetic Bprobes and flux loops measure-
ments are directly used without having to perform a first interpolation step
on the measurement contour as with the formulation on a bounded domain.
However there are two drawbacks to this method. First of all it is compu-
tationally more demanding since the mesh is necessarily much larger, and
secondly it does not work well for tokamaks with ferromagnetic structures
since the modelization of the magnetic permeability is certainly not very
precise. Nevertheless the method works well for iron-free tokamaks and a
numerical example is provided in Section 5.3. This method is closer to the
algorithms implemented in codes like EFIT [35], EQUAL [36], CLISTE [37]
or LIUQE [38], which however do not make use of derivative with respect to
the state variable as is done here in the QSQP algorithm.

The cost function to be minimized is very similar to (29)

J(ψ,u) =
1

2
||HBψ −mB||2 +

1

2
||HFψ −mF ||2

+
1

2
||RAuA||2 +

1

2
||RBuB||2

(69)

Here mB (resp. mF ) are the Bprobes measurements (resp. the flux loops
measurements) and HB (resp. HF ) the associated linear observation oper-
ators mapping the FEM representation of the poloidal flux to the measure-
ments.

For an iron-free tokamak the model equation constraint reads

(A+C)ψ − J(ψ, λ,uA,uB)−LuI = 0 (70)

The QSQP algorithm follows as in the preceding sections.
Clearly the different measurements of the previous sections (magnetics,

interferometry, polarimetry, MSE, pressure) can be used all together. In
NICE this is controled by code parameters and the user can decide to use
any combination of measurements. Finally one can also perform a magnetics
only reconstruction and then use the obtained flux map to reconstruct in a
second step the electron density profile using interferometry measurements
only.
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Figure 9: Poloidal flux map for a TCV-like equilibrium reconstruction with magnetic
measurements. The plasma boundary is shown in red. The limiter contour is the doted
line.

4.5. Numerical examples

TCV-like equilibrium reconstruction with magnetics only. This first example
shows results from a TCV-like equilibrium reconstrucion using magnetics
only. Figure 9 shows the computation domain and the obtained flux map.
Cauchy measurements on the domain boundary are computed with the first
mode of NICE described in Section 3 using toroidal harmonics of order 5,
then the QSQP algorithm of section 4.1 is run. Functions A and B are
decomposed in a basis of 6 cubic splines each. The regularization parameters

are εA = εB = 0.1. The relative residual, relresid =
||(y,u)n+1 − (y,u)n||

||(y,u)n||
,

rapidly converges to the tolerance value set to 10−10. Figure 10 shows the
identified p′ and ff ′ profiles as well as the obtained averaged current density
and safety factor. Computed error bars on these profiles are also shown.

WEST-like equilibrium reconstruction with magnetics and interfero-polarimetry.
This second example shows results for a WEST-like equilibrium reconstrucion
using magnetics and interfero-polarimetry measurements. Figure 11 shows
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Figure 10: TCV-like equilibrium reconstruction with magnetics. Reconstructed p′, ff ′,
jtor = (p′+ < 1/r2 > (1/µ0)ff ′)/ < 1/r > and safety factor q profiles, and associated
computed error bars.
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Figure 11: Poloidal flux map for a WEST-like equilibrium reconstruction with magnetics
and interfero-polarimetry. The plasma boundary is shown in red. The limiter contour is
the doted line and the dashed lines are the interfero-polarimetry chords

the computation domain and the obtained flux map. Cauchy measurements
on the domain boundary are computed with the first mode of NICE described
in Section 3 using external harmonics of order 7 and inner of order 4, then
the QSQP algorithm of section 4.2.1 is run. Functions A and B are decom-
posed in a basis of 7 cubic splines each whereas C uses 8. The regularization
parameters are εA = εB = 0.1. The regularization parameter εC varies ra-
dially from 1 on the magnetic axis to 10−2 at the plasma boundary. Values
of A and B at the plasma boundary are forced to 0 with large penalization
parameters whereas C is left free. The relative residual rapidly converges to
the tolerance value set to 10−10. Figure 12 shows the identified p′ and ff ′

profiles as well as the obtained averaged current density and safety factor.
Computed error bars on these profiles are also shown. Figure 13 shows the
identified electron density profile with error bars as well as the interferometry
and polarimetry data. Because of invalid measurements 8 chords out of 10
are used for interferometry while 7 are used for polarimetry.

39



Figure 12: WEST-like equilibrium reconstruction with magnetics and interfero-
polarimetry. Reconstructed p′, ff ′, jtor = (p′+ < 1/r2 > (1/µ0)ff ′)/ < 1/r > and
safety factor q profiles, and associated computed error bars.
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Figure 13: WEST-like equilibrium reconstruction with magnetics and interfero-
polarimetry. Reconstructed electron density Ne and associated computed error bars.
Computed and measured interferometry and Faraday angle data.
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JET-like equilibrium reconstruction with magnetics and pressure. This third
example shows results for a JET-like equilibrium reconstrucion using mag-
netics and pressure measurements. Pressure measurements are calculated
from High Resolution Thomson Scattering diagnostic with the assumption
ni = ne and Ti = Te, and data mapped onto flux surface coordinates. Fig-
ure 14 shows the computation domain and the obtained flux map. Cauchy
measurements on the domain boundary are computed with the first mode of
NICE described in Section 3 using external harmonics of order 5 and inner
of order 3, then the QSQP algorithm of section 4.2.3 is run. Function A is
decomposed in a basis of 14 cubic splines and the regularization parameter
εA varies radially from 10−1 on the magnetic axis to 10−3 near the plasma
boundary where the function is left free. Function B is decomposed in a
basis of 12 cubic splines and the regularization parameter is εA = 10−1 and
B(1) is forced to 0 with a large penalization parameter. The relative residual
rapidly converges to the tolerance value set to 10−10. Figure 15 shows the
identified p′ and ff ′ profiles as well as the obtained averaged current density
and safety factor. Computed error bars on these profiles are also shown.
Figure 16 shows the identified pressure profile with error bars as well as the
pressure data.

5. NICE direct and inverse equilibrium computation modes

5.1. Static equilibrium computation

Two types of direct static equilibrium computation can be performed with
NICE, Ip-free (in which the total plasma current is not imposed) or Ip-fixed
computations (in which the total plasma current is imposed to a given value).
Although it is possible to perform this type of computation in the bounded
domain case it is most usually performed in the ABB domain case where all
poloidal field coils are included. In both types of computation the currents
in these coils are given, that is u := uI the control variable for the inverse
problem to come, is a given fixed parameter.

In Ip-free computations the current density functions p′ and ff ′ are given,
that is λ, uA and uB are given and fixed. The state variable is y := ψ and
the model equation is

e(y,u) := (A+C)ψ + Aµ(ψ)− J(ψ, λ;uA,uB)−LuI = 0. (71)

In Ip-fixed computations the current density functions are given up to the
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Figure 14: Poloidal flux map for a JET-like equilibrium reconstruction with magnetics
and pressure measurements. The plasma boundary is shown in red. The limiter contour
is the doted line.
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Figure 15: JET-like equilibrium reconstruction with magnetics and pressure. Recon-
structed p′, ff ′, jtor = (p′+ < 1/r2 > (1/µ0)ff ′)/ < 1/r > and safety factor q profiles,
and associated computed error bars.
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Figure 16: JET-like equilibrium reconstruction with magnetics and pressure. Recon-
structed pressure p and associated computed error bars. Computed and measured pressure
data.
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scaling factor λ. The state variable is augmented with λ, y := (ψ, λ) and
the model equation augmented with an equation imposing a given Ip value

e(y,u) :=

[
(A+C)ψ + Aµ(ψ)− J(ψ, λ;uA,uB)−LuI

Ip − λJp(ψ,uA,uB)

]
= 0. (72)

The direct static Ip-free or Ip-fixed computation consists in finding y such
that e(y,u) = 0 using Newton’s method.

The associated inverse problem is to find the currents in the coils, hence
u such that the plasma has a desired shape and position. A number Np+1 of
points xi = (ri, zi) defining the desired plasma boundary are provided. They
are either given from another simulation or provided from the parametric
representation taken from [21, Chap. 4, p84]. A typical cost function is

J(y,u) =
1

2
||Kψ||2 +

1

2
||RuI ||2 (73)

where ||Kψ||2 =

Np∑
i=1

(ψh(xi) − ψh(x0))2 is the misfit term imposing an

isoflux line to go through the given desired points and the second term is a
penalization term in which the diagonal matrix R holds weights Rii = 1/σ2

i .
As for the equilibrium reconstruction problem the inverse problem

min
y,u

J(y,u) such that e(y,u) = 0

is solved thanks to the QSQP method. The needed ingredients are

ey(y,u) = A+C + Aµ,ψ(ψ)− Jψ(ψ, λ;uA,uB), eu(y,u) = −L (74)

JTy (y,u) = KTKψ, JTu (y,u) = RTRuI (75)

Jyy(y,u) = KTK, Juu(y,u) = RTR, Jyu = Juy = 0 (76)

for the Ip-free case and

ey(y,u) =

[
A+C + Aµ,ψ(ψ)− Jψ(ψ, λ;uA,uB) −Jλ(ψ, λ;uA,uB)

−λJp,ψ(ψ,uA,uB) −Jp(ψ,uA,uB)

]
(77)
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eu(y,u) =

[
−L
0

]
(78)

JTy (y,u) =

[
KTKψ

0

]
, JTu (y,u) = RTRuI (79)

Jyy(y,u) =

[
KTK 0

0 0

]
, Juu(y,u) = RTR, Jyu = Juy = 0 (80)

for the Ip-fixed case.

5.2. Quasi-static equilibrium evolution computation

In order to compute the quasi-static equilibrium evolution on time interval
[0, T ] an implicit Euler scheme with time step ∆t is used starting from an
initial condition y0. The computation of the equilibrium at tk from the one
at tk−1 is done by solving the following problem:

find yk such that ek(yk,yk−1,uV ) = 0

where

ek(yk,yk−1,uV ) :=(A+C)ψk + Aµ(ψk)− J(ψk, λk,ukA,u
k
B)

−E(ψk −ψk−1)−GkuV
(81)

with yk := ψk in the Ip-free case.
Matrices E and Gk are defined as

E :=
1

∆t
(Jps +LRLT )

and
Gk := LSBk.

For the the Ip-fixed case we have

ek(yk,yk−1,uV ) :=

(A+C)ψk + Aµ(ψk)− J(ψk, λk,ukA,u
k
B) . . .

· · · −E(ψk −ψk−1)−GkuV
Ikp − λkJp(ψk,ukA,u

k
B)

 (82)

with yk := (ψk;λk).
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Similar to Section 5.1, in Ip-free computations the current density func-
tions p′ and ff ′ are given that is λk, ukA and ukB are given at each time step.
In Ip-fixed computations the current density functions are given up to the
scaling factor λ which is computed at each time given a prescribed value of
the plasma current Ikp .

The voltage vi(t) of each of the Nv power supplies is a given function of
time decomposed in a basis of Nbv piecewise linear or spline functions

vi(t) =

Nbv∑
j=1

ui,jφj(t)

Noting uV the vector of size NvNbv of all decomposition coefficients ui,j for
all power supllies, the Nv × NvNbv matrix B(t) is such that B(t)uV = v(t)
the vector of all voltages.

As for the static case inverse problems can be defined for the quasi-static
evolution case. It consists in finding the voltages, hence controling u =
uV , such that the plasma shape follows a prescribed evolution. In order to
stick with the notations of this document one can define a state variable
concatenating the states at each time step y := (y1, . . .yNT ) and a model

e(y,u) :=

 e1(y1,y0,uV )
. . .

eNT (yNT ,yNT−1,uV )


The simplest cost function which can be defined is the following

J(y,u) =
1

2

NT∑
k=1

Nd∑
i=1

wk(ψ
k
h(xki )− ψkh(xk0))2 +

1

2
w

NT∑
k=1

Nv∑
i=1

([BkuV ]i)
2

with a misfit term to a desired plasma boundary at each time step and a
penalization term on voltages. This can be rewritten

J(y,u) =
1

2
||Kψ||2 +

1

2
||RuV ||2

and the QSQP algorithm to solve the PDE-constrained optimization problem
follows. Other types of penalization terms are also implemented in NICE:
penalization on the maximum and minimum voltage values and penalization
on induced currents in passive strutures. we refer to [6] for a study of this
type of inverse problems for the design of tokamak scenarios.
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5.3. Numerical examples

JT60-SA equilibrium reconstruction in ABB domain with synthetic magnetics
generated from a static inverse. In this first example we perform an equilib-
rium reconstruction with synthetic magnetic data for JT60-SA tokamak in
ABB domain. In a first step, the Ip-fixed static inverse mode of NICE is run
to compute the currents in the PF coils giving a desired plasma boundary
shape provided as a list of input points. The 12 reference currents in (73) are
uI0 = 0 and the penalization weights are chosen as σi = 108. A parametric
representation for A and B is given. The relative residual rapidly converges
to 10−10.

This provides a reference equilibrium with known p′ and ff ′ functions.
From the computed flux map we compute the equivalent of magnetics mea-
surements. A 1% noise is added to these measurements. Then in a second
step we run the equilibrium reconstruction mode of NICE in ABB domain
that is to say without using the toroidal harmonics step. Functions A and
B are to be identified in a basis of 11 cubic splines each. The regularization
parameters are εA = εB = 10−2. The computed poloidal flux map is shown
on Figure 17. Figure 18 shows the reference and identified p′ and ff ′ profiles
as well as the averaged current density and safety factor. Computed error
bars on these profiles are also shown.

ITER vertical displacement event. In this second example an initial ITER
plasma is computed thanks to the Ip-fixed static inverse mode of NICE in a
first step. It is shown on Figure 19. The desired plasma shape is provided
thanks to a parametric representation.

Then in a second step the Ip-fixed quasi-static evolution mode is run.
All voltages are set to zero and the time step is ∆t = 10−3s. At each time
step the Newton relative residual converges in few iterations to the tolerance
value of 10−10. A vertical displacement event occurs after approximately 1s.
The evolution of the plasma is shown on Figure 20 and the final poloidal flux
map at t = 1.5s is shown on Figure 21.

ITER quasi-static evolution inverse mode. In this third example we use the
quasi-static evolution inverse mode of NICE to compute the voltages which
drive an ITER limiter plasma upwards. The different desired plasma bound-
aries as time increases are shown on Figure 22 together with the initial
poloidal flux map. The comutation is in Ip-fixed mode and function A and
B are given by a parametric representation. Each of the 12 voltages time
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Figure 17: JT60-SA equilibrium reconstruction with synthetic magnetics. Poloidal flux
map in ABB domain.

dependent functions to be identified are decomposed in a basis of 11 piece-
wise linear functions. The weights in the regularization term are chosen as
σi = 10−5, 11 time steps of 0.1s are considered. The size of the control vector
u is 132. The mesh size is 12574 giving a state variable vector y of size
138314. The QSQP algorithm converges to the tolerance value of 10−10 in 10
iterations. Figure 23 shows the poloidal flux map at final time with a good
match between desired and computed plasma boundaries. Figure 24 shows
the voltages computed by the QSQP algorithm.

6. Conclusion

This document provides a general overview of the numerical methods
implemented in the different effective modes of the code NICE. The code
is available on the svn repository of the EUROFUSION gateway. It is still
evolving and new features a regularly added. Currently the possibility of
using higher order C1 finite elements is under development. Other future
developments will also deal with the use of the 1D resistive diffusion equation
either in a coupling with the quasi-static evolution mode or as an additional
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Figure 18: JT60-SA equilibrium reconstruction with synthetic magnetics. Reconstructed
p′, ff ′, jtor = (p′+ < 1/r2 > (1/µ0)ff ′)/ < 1/r > and safety factor q profiles, and asso-
ciated computed error bars. The reference equilibrium are in black and the reconstructed
ones in blue.
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Figure 19: Initial poloidal flux map in ITER geometry.

Figure 20: Evolution of the plasma boundary during a VDE in ITER geometry for t = 1,
1.1, 1.2, 1.3, 1.4 and 1.5s
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Figure 21: Final poloidal flux map in ITER geometry at t = 1.5s.

Figure 22: Initial poloidal flux map in ITER geometry and successive desired plasma
boundaries for the time evolution.
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Figure 23: Final poloidal flux map in ITER geometry. Matching computed and desired
plasma boundary are shown.

Figure 24: Computed voltages driving the desired plasma boundary evolution.
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constraint in successive equilibrium reconstructions.
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