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We propose a phenomenological model, built from results obtained by finite element numerical simulations, for the
transmission and reflection of acoustic waves by a two-dimensional array of cylindrical cavities in a soft elastic medium.
We show that the acoustic properties of a cylindrical cavity can be described by two geometrical parameters: its aspect
ratio (AR), and the radius of the sphere of equivalent volume. Cylinders with AR close to one are acoustically similar
to spheres, whereas flat cylinders exhibit a lower resonance frequency and an increased damping, due to their ability to
emit shear waves. We provide an example of how our new phenomenological analytical model can help to design thin
coatings that can turn strong acoustic reflectors into good absorbers.

I. INTRODUCTION

Soft elastic media exhibit interesting acoustic properties
when they are perforated. It comes from the strong monopolar
acoustic response of a cavity when it is embedded in a medium
that easily deforms. There is an extensive literature on the
acoustic transmission through perforated panels,1–8 mainly
focused on the ability of these structures to absorb acoustic
energy on a thickness shorter than the wavelength. The shape
of the cavities is an important issue. On the one hand, simple
shapes, such as spheres or infinite cylinders, offer the advan-
tage of being theoretically simpler to model, leading to ana-
lytical expressions for the transmission and reflection by an
array of cavities.9,10 On the other hand, other shapes, such as
cylinders or disks, lead to more tedious calculations but are
closer to real applications, and sometimes exhibit better per-
formance. As an intermediate case, let us cite the ellipsoid,
which allows to investigate the case of elongated shapes with
analytical calculations.11–13 Elongated cavities are of particu-
lar interest because, for a given volume, they can be thinner
and thus be embedded in thinner structures. Recently, Calvo
et al.14 showed experimentally that flat cylindrical cavities
were a promising option for reaching low frequency absorp-
tion with a thin layer of elastomer. Sharma et al.15 derived a
model that is suitable for these experiments, considering the
flat cylinders as two-dimensional disks. In this article, we ex-
plore the transition between spherical cavities and cylinders
of increasing aspect ratio (AR), from AR= 1 for “sphere-like”
cylinders, to AR= 24 for “pancake-like” ones.

Our aim is to derive an analytical model that is effective for
both spherical and cylindrical cavities. Such a model could be
a useful tool for the optimization of acoustic super-absorbers,
as guideline to initiate numerical simulations. Finite-element
methods (FEM) remain of course the most powerful way to
evaluate the performance of a perforated panel, in particu-
lar because they allow to explore exotic shapes for the cav-
ities. Their main drawback is to be time-consuming, which
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limits the number of configurations one can explore in an
optimization process. Note, however, that a recent trend of
using axisymmetric unit cell for FEM has proven to lead to
very efficient calculations16, opening the way for new designs
with wine glass-shaped cavities for example.8 Nevertheless,
despite all the merits of FEM, an analytical model is always
useful, as it can be used as a quick first guess to initiate a
systematic numerical optimization, and also because it often
provides a physical insight on the mechanism responsible for
the better performance of a given configuration.

In this article, we follow a phenomenological approach to
investigate the problem of the shape of cavities. In section II,
we start by the ideal case of spherical cavities, and illustrate
how having an analytical model is useful for optimization pur-
poses, i.e. for selecting the best cavities radius and concentra-
tion in order to maximize the acoustic absorption at a given
frequency. Section III is devoted to numerical simulations
with a single cavity. The idea is to determine how a cylindri-
cal cavity scatters a longitudinal wave, depending on its aspect
ratio. We show that this scattering behavior shares similarities
with the one of a sphere, and we propose a phenomenological
scattering function, which depends on the volume and aspect
ratio of the cavity. An important result is the evidence of a new
source of damping that does not exist for spheres: flat cylin-
ders are showed to convert part of the incoming longitudinal
wave energy into shear waves. The next step, in section IV,
is to use the established phenomenological function for calcu-
lating the response of an array of cavities. We show that our
phenomenological model gives reasonable predictions when
compared to numerical simulations and experiments. We fi-
nally discuss how the new source of damping for cylinders
can be exploited to design thinner acoustic absorbers, while
widening their frequency bandwidth.

II. ANALYTICAL MODEL FOR AN ARRAY OF
SPHERICAL CAVITIES

Let us consider an array of identical spherical voids in an
elastomer, as depicted in figure 1a. We note a the radius of
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FIG. 1. Schematics of the two configurations considered. (a) The
metascreen: a single array of spherical cavities in an elastomer. (b)
A metascreen of thickness e placed, in water, on a perfect reflector.

the holes, and d the distance between two neighbors. When a
plane wave pexp[i(kx−ωt)] impinges on this metascreen at
normal incidence, part of its energy is reflected back, part is
absorbed, and another part is transmitted. It was shown that,
provided that the array is not too concentrated (d/a > 5), the
transmission and reflection coefficients could be evaluated by
the following analytical expressions:9

t = 1+ r, (1)

r =
iKa(

ω0
ω

)2− I− i(δ +Ka)
, (2)

with

K =
2π

kd2 , (3a)

ω0 =

√
4G
ρa2 , (3b)

I = 1−Kasin
(

kd√
π

)
' 1−2

√
π

a
d

for kd� 1 (3c)

δ = 4η/(ρa2
ω), (3d)

where k is the wavenumber of longitudinal waves in the elas-
tomer, ρ the density of the elastomer, and G, η its shear mod-
ulus and viscosity. Equations (1) and (2) predict that r and t
are frequency dependent, with a maximum of reflection (and
minimum of transmission) for ω = ω0/

√
I, i.e. close to the

resonance of a single cavity. The width of this peak of reflec-
tion is controlled by two damping terms: δ for visous losses,
and Ka for super-radiation. At its maximum of amplitude, the
reflection coefficient is given by the simple formula

r =− Ka
δ +Ka

. (4)

As expected for a soft baffle, the reflection coefficient is neg-
ative. Interestingly, its value depends on the distance d be-
tween the cavities. Indeed, the reflection can take any values
between 0, when Ka is low (large d), and −1, when Ka is
large (small d). This dependence can be used to optimize the
energy absorption of the metascreen.17 The case depicted in
Fig. 1b is of particular interest: a metacreen of thickness e
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FIG. 2. Amplitude of reflection rtot for a metascreen on a perfect
reflector. For spherical cavities of radius a = 4.5mm with a spacing
d = 125mm, the reflection is minimal at 2.15kHz, as predicted by
the model (solid line) and confirmed by the numerical simulations
(black dots). For cylindrical cavities of same volume but different
aspect ratios (AR), the reflection is slightly modified for AR=1 (black
squares), and significantly shifted to lower frequencies for AR=10
(red squares).

placed, in water, on the surface of a perfect rigid reflector. If
the elastomer is impedance-matched with water, the multiple
reflection paths are easy to compute and lead to a total reflec-
tion given by

rtot = r+
t2 exp(ike)

1− r exp(ike)
(5a)

' 1+3r
1− r

for ke� 1. (5b)

Equation (5b) tells us that the perfect reflector can be turned
into a perfect absorber if the layer of cavities is designed in
such a way that its reflection coefficient is r = −1/3. Ac-
cording to Eq. (4), this can be achieved if δ = 2Ka, i.e. for
d2 = πρa3v/η , where v is the speed of sound in the elastomer.

As an example of optimization, let us imagine that we
want to minimize the reflection at 2.15kHz with an elastomer
whose shear modulus is G = 1MPa, viscosity η = 33Pa.s,
speed of sound v= 1350m/s, and density ρ = 1100kg/m3. We
first need to choose the radius of the holes to adapt their reso-
nance frequency. Following Eq. (3b), it leads to a = 4.5mm.
Then, the distance between the holes must be chosen to sat-
isfy the δ = 2Ka criterion, which gives d = 125mm. Fig. 2
compares analytical expression (5b) to a numerical simula-
tion (black dots in the figure), with e = 35mm. As predicted,
there is a minimum of reflection at 2.15kHz, which corre-
sponds to an acoustic wavelength 20 times larger than the
thickness of the coating. This result illustrates the interest
of having an analytical expression for the acoustic response
of the metascreen: knowing the physical parameters of the
elastomer at hand, it is easy to determine the best geometrical
parameters to optimize the performance at a given frequency.

However, when the holes are not spherical (which is of-
ten the case in practical applications), the analytical solution
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FIG. 3. Schematic (not to scale) of the computational domain for
determining the scattering function of a cavity. The displacement
field is axisymmetric about the z axis and antisymmetric about z =
0. A perfectly matched layer (PML) is used to simulate an infinite
domain, and the far-field wave emitted by the cavity is measured at
distance L.

is a priori not available. Luckily, like for air bubbles in liq-
uids,18,19 the acoustics of a cavity in an elastomer is mainly
governed by its volume1, provided that the cavity is not too
elongated. Hence, if one considers a cylindrical cavity with
radius R and height H, all the previous equations can be ap-
plied by considering the sphere of equivalent radius:

a = (3R2H/4)1/3. (6)

As shown in Fig. 2, this approximation is good as long as the
aspect ratio of the cylinder (AR= 2R/H) is close to one. For
AR= 1 (black squares in Fig. 2), the reflection coefficient re-
mains close to the analytical prediction. For flatter cylinders,
however, one observes a significant deviation. It means that,
unsurprisingly, the aspect ratio of the cylinder plays a role in
its acoustic response.

III. SCATTERING BY A CYLINDRICAL CAVITY

To investigate the effect of the aspect ratio, we performed
numerical simulations with a single cylinder in a soft elas-
tic medium. We used the same configuration as Calvo et
al.14, with a geometry depicted in Fig. 3. A pressure load
pexp[−iωt] is applied on the surface of the cavity and we
record the pressure field at distance L. It allows us to deter-
mine the scattering function of the cavity, assuming that it ra-
diates a spherical wave p( fscat/L)exp[i(kL−ωt)].

Figure 4 shows the magnitude of the scattering function
obtained for different types of cavities: a sphere of radius
a = 4.5mm, and cylinders of the same volume but different
aspect ratios. A distance of L = 140mm was taken for evalu-
ating the scattered field. For the sphere, the expected law

fscat =
a

(ω0/ω)2−1− i(δ + ka)
(7)

is recovered, as shown by the black symbols in Fig. 4. For the
cylinders, the response deviates from the sphere’s one when
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FIG. 4. Amplitude of scattering functions for a sphere (black) and
for cylinders with three different aspect ratio: 1 (blue), 5 (red) and
15 (purple). Here the equivalent radius is a= 4.5mm. Symbols show
the results from the numerical simulations. Solid lines correspond to
Eq. (7) for the sphere (no fitting parameters) and Eq. (8) for the cylin-
ders, with parameters obtained by the fitting procedure described in
the text.

AR increases. In particular, the frequency of the maximum of
scattering decreases when the cylinder is flattened, which is
consistent with the behavior already noticed in Fig. 2. One can
also notice that the height of the maximum and the width of
the resonance are both affected by the aspect ratio. However,
even though it changes, the general shape of the scattering
function remains that of a lorentzian response function. Hence
the idea of looking for a law similar to (7):

fscat =
Aa

(Bω0/ω)2−1− i(Cδ +Dka)
, (8)

where a is given by Eq. (6), and A, B, C and D are four non-
dimensional parameters accounting for the shape of the cylin-
der. A characterizes the scattering power of the inclusion, B is
related to the shift of the resonance frequency, C is a viscous
factor, while D is a scattering factor.

To determine the four parameters, we re-write Eq. (8) in the
following form

Re
[

a
fscat

]
=

(Bω0/ω)2−1
A

, (9)

−Im
[

a
fscat

]
ω

ω1
=

4C
A

+
D
A

ω2

ω1ω2
, (10)

where ω1 = η/(ρa2) and ω2 = v/a. Thus, a linear fitting of
Re(a/ fscat) as a function of (ω0/ω)2 gives us access to A and
B. Another linear fitting of −Im(a/ fscat)ω/ω1 as a function
of ω2/ω1ω2 leads to C and D. We show in Fig. 4 how this
procedure allows us to use Eq. (8) to capture correctly the
numerical results.

By doing linear fittings on data coming from different sim-
ulations, we can investigate how parameters A, B, C and D
vary with AR. Our hypothesis is that AR is the main param-
eter to determine the acoustic behavior of a cylinder. To test
this hypothesis, we modified the properties of the matrix in the
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FIG. 5. Parameters A, B, C and D as functions of AR, for simulations with different shear moduli and viscosities. Symbols indicate the
viscosity (downside triangles for low η , upside triangles for high η), and their grey level indicates the shear modulus (dark for high G, white
for low G). A reasonable collapse of the data for different G and η is obtained for A, B and D. For C, there is clearly a strong influence of G
and η . For convenience, results for the spherical cavity are displayed at AR= 0 (no results are shown for elongated cylinders, with AR< 1).

simulation. For example, starting from our reference values of
G = 1MPa and η = 33Pa.s for the rheology, we applied mul-
tiplication factors (noted G̃ and η̃ in Fig. 5’s legend) of 2 or 3.
As shown, in Fig. 5, for A, B and D we obtain reasonable col-
lapses of all the curves plotted as functions of AR for different
rheological parameters. It confirms that, within the range of
parameters we explored, AR gives a good indication of how a
cylinder will be acoustically different from the sphere of same
volume. In particular, we find that B is a decreasing function
of AR, which is in line with the observed decrease of the res-
onance frequency when a cylinder is flattened (Fig. 4).

For C, however, the collapse is not satisfactory, which is
a sign that another phenomenon is at play in the response of
the cylinder. Moreover, one would expect C to be identical
to B2 because, in Eq. (8), the sum of the terms (Bω0/ω)2 =
4B2/(ρa2ω2)×G and−iCδ =−4iC/(ρa2ω2)×ηω must be
proportional to the complex shear modulus G− iωη . It means
that Cδ in Eq. (8) should be replaced by B2δ +ω3/ω , where
ω3 is a new angular frequency. We can evaluate it by subtract-
ing B2 to C: ω3 = (C−B2)4η/(ρa2). As shown in Fig 6, it
gives a much better collapse of the different curves. The ori-
gin of this new damping term, which does not exist when the
cavity is spherical, can be identified by looking at the displace-
ment fields obtained in the numerical simulation. Fig. 7 shows
examples of the fields for a AR=1 cylinder (left), and for a
AR=5 one (right). In both cases, the pressure fields (color) are
quite uniform, which is expected given the large wavelength
(λ = 84cm). The displacement fields, on the other hand, are

0 5 10 15 20 25

AR

0

1000

2000

3000

4000

5000

6000

3
 (

1
/s

)

FIG. 6. Instead of parameter C, which does not lead to a good col-
lapse of the data (see Fig. 5), we plot ω3 = (C−B2)4η/(ρa2) as a
function of AR. It leads to a better collapse, with still a noticeable
influence of G: the darker the symbols, the higher ω3 in the large AR
limit.

very different. For the AR=5 case, the cavity visibly emits a
wave, in the π/4 direction. The wavelength being of the order
of 2cm, this wave can be identified as a shear wave. Note that
this phenomenon was already observed by Calvo et al.14, and
that this new source of damping was taken into account for 2D
disks by Sharma et al.15
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FIG. 7. Pressure (color) and displacement (arrows) fields, at 1.6
kHz, for AR=1 (left) and AR=5 (right) cylinders. On the right,
the displacement field displays a 2cm wavelength, compatible with
the emission of a shear wave in the elastomer (shear velocity is
cs = 30m/s for the soft medium used in the simulations).

In Fig. 6 we can notice that there is still an influence of G:
for AR> 10, ω3 increases with G. We find that it follows a
scaling law close to ω3 ∼ G1/4. Besides, when we change the
size of the cavity, we find that ω3 ∼ 1/a. Finally, we propose
the following empirical law for the scattering function of a
cylindrical cavity:

fscat =
Aa(

B ω0
ω

)2−1− i(B2δ +β
G1/4

aω
+Dka)

, (11)

with

A = 1+0.029(AR−1), (12a)
B = 1/(1+0.079AR), (12b)

D = 1+
√

AR/5, (12c)

β =
AR3

40+AR3.2 m.Pa−1/4/s. (12d)

Expressions (12) for A, B, D and β were chosen to give the
correct trend for the AR-dependence, as shown by the red
plots in Fig. 8. This figure proposes a general view of all
the numerical simulations we performed, with results at dif-
ferent viscosities (η̃ = 1, 2 or 3), shear moduli (G̃ = 1, 2 or
3) and cavity sizes (a = 4.5mm, in light grey, and a = 9mm,
in dark grey). For B, all the data collapse well and (12b) is
accurate within 5% of relative error for AR< 10, and 20% for
10 <AR< 24. The collapses are not as good for A, D and
β . However, the phenomenological laws are found to remain
accurate within 30% for all the configurations that were sim-
ulated.

It is important to note that there is no physical grounds for
Eqs. (11)-(12). They must be seen as convenient expressions
for estimating the scattering function of a cylindrical cavity
(defined by its equivalent radius a and aspect ratio AR) in a
soft medium.

IV. REFLECTION BY AN ARRAY OF CYLINDRICAL
CAVITIES

To go from the single scatterer to the array of scatterers,
we modify equations (1) and (2) following the same proce-
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FIG. 8. Comparison between the phenomenological laws (12), in
red, and the values obtained by fitting the results of the simulations,
in grey. Top graph (a) shows the results for A, B and D, bottom
one (b) for β . For the data from numerical simulations, two sizes of
cylinder were investigated: a = 4.5mm (light grey) and a = 9mm
(dark grey).

dure that allowed us to go from Eq. (7) to (11), i.e. by intro-
ducing an effective scattering radius (A), an effective resonant
frequency (B), a new shear damping (β ) and an effective ra-
diative damping (D). It leads to

rcyl =
iKAa(

B ω0
ω

)2− J− i(B2δ +β
G1/4

aω
+DKa)

, (13)

tcyl = 1+ rcyl, (14)

with J = 1−KaDsin(kd/
√

π). As shown in Fig. 9, these new
expressions allow us to capture the amplitudes of reflection
found in Fig. 2 for metascreens with AR=1 and AR=10 on a
perfect reflector. As an indicator of the role played by the ge-
ometry of the cylinders, we monitored how the minimum of
reflection was changing with AR. The inset of Fig. 9 reports
the frequency ( fmin) and the value (rmin) of this minimum for
values of AR ranging from 1 to 24. We see that our phe-
nomenological formula predicts reasonably well the effect of
AR.

Phenomenological laws (12) were established by analyzing
numerical data obtained at a particular zone in the space of pa-
rameters. In other words, we cannot be sure that they will be
accurate if the physical parameters are very different. For in-
stance, for much larger cavities in a significantly more viscous
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FIG. 9. Amplitude of the total reflection for metascreens with cylin-
drical cavities on a perfect reflector. Results of the numerical sim-
ulations (symbols, like in Fig. 2) are compared to analytical law
|(1+3rcyl)/(1−rcyl)|, with phenomenological equation (13) for rcyl
(solid lines). Inset: comparison between the simulations and the phe-
nomenological law for the frequency and amplitude of the minimum
of reflection as a function of AR.

elastomer, it might be necessary to establish new phenomeno-
logical laws. However, as a test of robustness, we compared
our model to experimental results available in the literature.
Calvo et al.14 measured the transmission through an array of
cylinders with H = 5 µm and R = 60 µm (AR = 24), separated
by d = 300 µm, imbedded in a e = 700 µm thick elastomer.
Fig. 10 shows that their results (symbols) are well described
by our phenomenological law (solid line). Note that multi-
ple reflections within the slab of elastomer need to be taken
into account, and that we took the rheological law given by
Sharma et al.15 for the elastomer.
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tion (14) (lines) for the transmission through an array of cylindrical
cavities with AR=1 (black) and AR=24 (red). Experimental data are
reproduced from Fig. 6 in Calvo et al.14

As the phenomenological model is able to predict the in-
fluence of the cylinders aspect ratio, we can investigate how
this additional parameter can be used for the design of thin

absorbers. Let us come back to the case we considered in sec-
tion II and see how we can minimize the reflection at 2.15kHz
with cylinders. From our numerical results on scattering by
cylinders, there are two new aspects compared to the spheri-
cal case. First, cylinders resonate at a lower frequency, which
means that smaller cavities can be used. Secondly, cylinders
show an additional source of loss: they can emit shear waves.
This can be useful because losses increase the broadness of the
absorption. Let us select an aspect ratio of AR = 10 for exam-
ple, for which shear wave losses are close to their maximum
according to Fig. 8b. With such an AR, Eq. (12b) predicts
a resonance frequency divided by a factor 1.8, which means
that the radius of 4.5mm for the sphere can be decreased to
an equivalent radius of a = 2.5mm for the AR = 10 cylin-
der. The next step is to find the optimal distance between the
cavities. The criterion is sill to obtain r =−1/3. But the sim-
ple relationship δ = 2Ka for the spherical case now becomes
B2δ +βG1/4/(aω) = Ka(3A−D), which is less straightfor-
ward. In practice, it is easier to directly plot the total reflec-
tion rtot predicted by the phenomenological model for differ-
ent values of a and d, and select the couple of parameters that
gives the best result. We find that a = 2.7mm and d = 75mm
lead to the total reflection plotted in red in figure 11. Nu-
merical simulations (symbols) confirm the prediction of the
model. Compared with the previous optimization for spheres
(recalled in black in Fig. 11), the cylinders lead to a better
performance in terms of frequency bandwidth, with a a thin-
ner structure (see drawings in Fig. 11).
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FIG. 11. Illustration of the use of the phenomenological law for op-
timizing a super-absorber with cylindrical cavities. The model pre-
dicts better performance with a thinner structure when the ability of
cylinders to emit shear waves is exploited. In black, the results for
spherical cavities (like in figure 2) with a = 4.5mm, d = 125mm and
e = 35mm. In red, for cylindrical cavities with AR = 10, a = 2.7mm
(i.e. H = 1mm and R = 10.2mm), d = 75mm and e = 20mm. Sym-
bols show results of the numerical simulations, lines correspond to
the prediction of the model.
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V. CONCLUSION

By investigating the acoustic scattering of a longitudinal
wave by a cylindrical cavity, we proposed a phenomenological
extension of a model we previously developed for the trans-
mission and reflection by an array of spherical cavities in a
soft elastic solid. The effect of the shape of the cylinder, of
radius R and height H, can be accounted for by two geomet-
rical parameters: the radius of the sphere of equivalent vol-
ume a = (3R2H/4)1/3, and the aspect ratio AR= 2R/H. Flat
cylinders are found to be appealing in the perspective of low
frequency absorption: (1) they resonate at a lower frequency
than their spherical equivalent, (2) they can convert part of the
incoming longitudinal wave energy into shear wave energy.
These two new characteristics can be used for the design of
thinner acoustic absorbers, which are efficient on a broader
frequency range. Our phenomenological model can be a con-
venient tool for quickly selecting the best geometry (volume,
aspect ratio of the cylinders, and spacing between them) for
obtaining good performance at a desired frequency. However,
it should be used with caution because it has been established
from a limited number of simulations, within a given range of
physical parameters. Deviations may occur if one considers
geometries, frequencies, or elastomer properties that are very
different from the cases investigated here.

As a final note, let us remark that if flat cylinders are
promising from the perspective of acoustic performance, they
may be a problem for the robustness of an absorber regarding
static pressure. Indeed, in underwater applications, the per-
forated soft panel is subject to a high static pressure, which
can deform the cavities.20–22 In this case, there is a risk that
cylinders that are too flat collapse, thus losing their acoustical
properties.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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