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Introduction

In this article, we consider the numerical solution of a linear inverse problem written as:

y = Ax (1)
where A : X → Y is a compact injective operator mapping two infinite dimensional separable Hilbert spaces X and Y. We assume that after discretization, the inverse problem is of the form:

y δ = B n f + (2)
where y δ ∈ R n , f ∈ R n is the true discrete solution, B n is the discrete approximation of the operator A and consists of independent and identically distributed (i.i.d) Gaussian errors with variance equal to σ 2 , ∼ N (0, σ 2 I n ) .

In order to obtain a stable solution, we consider a regularization functional with a regularization parameter α:

J α (f ) = B n f -y δ 2 2 2 + αR(f ) ( 3 
)
where R is the regularizer to add some prior information on the solution.

Traditional regularization approaches include Tikhonov or Sobolev regularization [1]. Different regularization terms have been investigated with various convexity and differentiability properties [2].The non-smooth regularizers enforcing sparsity in a suitable domain, e.g. Fourier, wavelet or gradient are very useful in image analysis problems [3,4] Spectral regularization methods use an appropriate filter on the eigenvalues of the operator that defines the problem . The most commonly used regularization algorithm is the truncated singular value decomposition [1,[START_REF] Tikhonov | Solution, of Ill-posed problems[END_REF]. The classical Tikhonov regularization can also been understood in the framework of filter regularization. Regularization methods based on filter functions can also be applied in learning, non parametric estimation and problems like those found financial optimization [START_REF] Lo Gerfo | Spectral algorithms for supervised learning[END_REF][START_REF] Blanchard | Optimal rates for regularization of statistical[END_REF]8].

In the following, we will focuss on Tikhonov regularization with R(f ) = f 2 2 but our results can be extended to filter regularization methods. The regularization parameter α has to be chosen carefully [9]. Several rules of choice of the regularization parameters have been investigated in the literature like the L-curve criteria [10] or some discrepancy principles[2, 1]. A Lepskii adaptative procedure has been studied in [11,[START_REF] Mathe | Regularization of some linear ill-posed problems with discretized random noisy data[END_REF][START_REF] Bauer | A Lepskij-type stopping rule for regularized Newton methods[END_REF].

Some risk estimators have been proposed to chose the regularization parameters in ill-posed problems. Rules based on the risk estimation with the Stein Unbiased Risk Estimator (SURE) have been investigated [START_REF] Stein | Estimation of the Mean of a multivariate normal distribution[END_REF][START_REF] Luisier | Unser Image denoising in mixed Poisson-Gaussian noise[END_REF][START_REF] Pesquet | A SURE approach for digital signal/image deconvolution problems[END_REF][START_REF] Ramani | Monte-Carlo Sure: a black box optimization of regularization parameters for general denoising algorithm[END_REF][START_REF] Ramani | Regularization parameter selection for nonlinear iterative image restoration and MRI reconstruction using GCV and Sure based methods[END_REF]. The idea is to select the regularization parameter that minimizes the SURE estimate of the Mean Square Error (MSE). The SURE was originally limited to the Gaussian case and to denoising problems. Some extensions have been studied for multivariate and exponential families [START_REF] Eldar | Generarlized SURE for exponential families applications to regularization[END_REF]. The case of denoising was extented to more general linear operators in Vonesch et al. [START_REF] Vonesch | Recursive risk estimation for nonlinear image deconvolution with a wavelet-domain sparsity constraint[END_REF]. For general linear inverse problems, some authors have considered a generalized version GSURE (Generalized Stein Unbiased Risk Estimator) where the risk is measured in the space of the unknown [START_REF] Deledalle | Unbiased risk estimation for sparse analysis regularization[END_REF][START_REF] Deledalle | Stein Unbiased Gradient estimator of the Risk (SUGAR) for multiple parameter selection[END_REF][START_REF] Deledalle | Estimation of Kullback-Leibler losses for noisy recovery problems with the exponential family[END_REF][START_REF] Giryes | The projected GSURE for automatic parameter tuning in iterative shrinkage methods[END_REF].

Yet, there is very few studies about the quality of these risk estimators and it not clear under which conditions the described procedure achieves the best possible reconstruction of the true solution. In papers like [START_REF] Deledalle | Stein Unbiased Gradient estimator of the Risk (SUGAR) for multiple parameter selection[END_REF][START_REF] Ramani | Regularization parameter selection for nonlinear iterative image restoration and MRI reconstruction using GCV and Sure based methods[END_REF][START_REF] Deledalle | Unbiased risk estimation for sparse analysis regularization[END_REF][START_REF] Vonesch | Recursive risk estimation for nonlinear image deconvolution with a wavelet-domain sparsity constraint[END_REF], the parameter choice rule with GSURE works well and the problems under consideration are not very ill-posed. Some study of the influence of the illposedness of the problem and of the degree of smoothness of the unkown solution are presented in Lucka et al. [START_REF] Lucka | Wubbeling Risk estimators for choosing regularization parameters in ill-posed problems-properties and limitations[END_REF] for Tikhonov regularization methods. Some asymptotic convergence results have been obtained as the dimension of the problem tends to infinity. Our motivation is thus to understandd if these estimators are appropriate for very ill-posed problems and to investigate how the quality of the estimators are modified as a function of the ill-posedness of the problem and as a function of the degree of smoothness of the solution.

In this work, we intend to show that a choice of the regularization parameter with the Generalized Sure method ensures the convergence of regularization methods based on filter functions for mildly ill-posed problems. Our method is based on source conditions that measure the smoothness of the solution. Rates of convergence can be calculated with a-priori information on the solution relative to some smoothness class. Moreover, the power decay of the singular values and the ill-posedness of the inverse problem are also taken into account. The outline of the paper is the following. In the second section, some useful notions are recalled about compact operators, projection methods, spectral projectors. We then present the Generalized SURE estimates. In the next section, we detail the regularization method and the smoothness class assumptions. Then, we estimate the risk as a function of the noise level and of the regularization parameter. We also show that the Tikhonov type regularization method based on filter functions with a regularization parameter chosen with GSURE is a convergent regularization scheme under some restrictive conditions about the ill-posedness of the inverse problem and the smoothness of the solution.

Preliminaries

Compact operators and finite rank approximations

In this work, we will restrict ourselves to linear compact injective operators A : X → Y between two Hilbert spaces X and Y . For a self-adjoint compact operators C, the spectral theorem [START_REF] Bissantz | Consistency and rates of convergence of nnlinear Tikhonov regularization with random noise[END_REF][START_REF] Bissantz | Convergence rates of general regularization mehthods for statistical inverse problems and applications[END_REF] shows that there is a complete orthonormal system of eigenvectors (u i ) i≥0 and eigenvalues (ρ i ) i≥0 such that, for f ∈ X:

Cf = ∞ i=0 ρ i < u i , f > u i (4)
Let Σ the counting measure on N, the former decomposition can be written in the multiplication form U Cf = ρU f , Σ-almost everywhere, with the unitary operator U :

X → l 2 (N) defined by U f (i) =< f, u i >, ρ : N → R such that ρ(i) = ρ i for i ∈ N.
The essential range of ρ is the spectrum σ(C) of the operator C.

In the following, the infinite dimensional problem is replaced by a finite dimensional discretized version. The operator A is approximated by a finite dimensional operator B n : R n → R n . We assume that this approximation is obtained by projection methods and that the discrete approximation of the operator can be written as B n = Q n AP n with finite projections and interpolation operators, P n : R n → X and Q n : Y → R n . The discretization errors for the operator A depends on the norms X = A(I -P n ) and

Y = (I -Q n )A .
The discretization errors must be included in the analysis of the SURE and GSURE method. The operator B t n B n is a finite rank selfadjoint operator with closed range. It is possible to consider an orthonormal basis of the range of this operator (e i ) 1≤i≤n .

B t n B n f = n i=1 ρ i (B n ) < e i , f > e i (5) 
where the ρ i (B n ) are the square of the singular values σ i (B n ) of the operator B n .

Singular values and degree of ill-posedness

The decay rate of the positive sequence {σ p (A)} p≥0 of singular values of the operator A towards 0 when p → ∞ measures the strength of ill-posedness of the inverse problem Af = y. This strength is often expressed by a single number η called the degree of ill-posedness. If the decrease of the square of singular values is described by a power law:

ρ p (A) ∼ p -η p ≥ 0 (6)
the inverse problem is mildly ill-posed [1]. With increasing η,the numerical difficulties grow. The faster the decay of the singular values, the more severe the ill-posedness of the problem. For exponentially ill-posed problems, there exists an exponent η such that, ρ p (A) ∼ exp(-p η ). We recall here some results about the approximate eigenvalues of compact operators [START_REF] Atkinson | Convergence rates for approximate eigenvalues of compact integral operators[END_REF][START_REF] Osborn | Spectral Approximation for Compact Operators[END_REF].

Proposition 2.1. . Let A : X → Y be a compact operator and B n : X → Y a sequence of operators approximating A. Let λ 0 be an eigenvalue of A of multiplicity m and index ν, and let (λ i n ) i∈I be the eigenvalues of B n within some small fixed neighborhood of λ 0 . Let us assume that: 1) A and B n are linear operators for all n 2) B n x → Ax as n → ∞ , for all x ∈ X 3) The family (B n ) n≥0 is collectively compact, i.e. {B n x, n ≥ 1 and x ≤ 1} has compact closure in X.

Then, the sum of the multiplicities of the eigenvalues λ i n equals the multiplicity of λ 0 and the elements of (λ i n ) i∈I all converge to λ 0 as n → ∞ . For some c > 0 and sufficiently large n

|λ 0 -λ| ≤ c max{ Aφ j -B n φ j 1/ν , 1 ≤ j ≤ m} (7) 
for all λ ∈ (λ i n ) i∈I , and for (φ j ) 1≤j≤m a basis for Ker(λ 0 -A) ν .

For projection methods as the ones considered for P n , the hypothesis of Proposition 2.2 are fulfilled [START_REF] Anselone | Collectively compact operator approximation theory and applications to integral equations[END_REF].

The norm of the approximation B n -A is bounded by the errors X and

Y : A -B n ≤ A -Q k A + Q k A(I -P k ) = X + Y (8) 
We will thus assume n is large and that the discretization errors X and Y are very small so that the square of the singular values of B n satisfies a similar rate of decay than the ones of A:

ρ p (B n ) ∼ p -η p ≥ 0 (9) 
Under this assumption, we can estimate the function R(β) defined as

R(β) = Σ({ρ ≥ β}). R(β) = Σ({ρ ≥ β}) = |{ρ j ≥ β}| (10) ∼ j≤β -η 1 ∼ β -η 0 dt ∼ β -η (11)

Spectral projectors

We detail in this section some useful results about spectral projectors. In the following, we will use the spectral family of the operator B t n B n [START_REF] Dautray | Mathematical Analysis and Numerical Methods for Science and Technology[END_REF]. We decompose the space R n into a direct sum of subspaces V k in which B * n B n is reduced to the multiplication by the eigenvalue ρ k of B * n B n :

R n = ⊕V k (12) 
We denote P k the orthogonal projection operator onto V k and we introduce, for all ρ ∈ R the space

G ρ = ⊕ ρ k ≤ρ V k (13) 
Let E ρ the orthogonal projection onto G ρ The discontinuities of the function ρ → E ρ are the eigenvalues ρ k . In the sense of distribution in R with values in the space of linear operators defined on R n , L(R n ), the derivative of E ρ can be identified as a measure dE ρ given by:

dE ρ = ρ k ≤ρ δ ρ k ⊗ P k ( 14 
)
where ⊗ is the tensorial product. Let φ p (t) a piecewise continuous function, the operator Φ p (B * B) is then defined by:

Φ p (B t B) = a 0 φ p (ρ)dE ρ ( 15 
)
where a is a constant with B * B ≤ a. Let e i be an eigenvector for the eigenvalue ρ i , we have:

dE ρ (e i ) = δ(ρ -ρ i ) ⊗ e i (16) 
d(E ρ (e i ), e i ) = d(E ρ (e i ), E ρ (e i )) = δ(ρ -ρ i ) ( 17 
) n i=1 α 0 ρd(E ρ (e i ), e i ) == n i=1 α 0 ρδ(ρ -ρ i ) = - α 0 ρdR(ρ) (18) 
where the second term is the Stieljes integral associated with the decreasing function

t → R(t) = Σ({ρ ≥ t}) (19) 

The SURE principle and its generalizations

In the following, we denote f α (y δ ) the reconstructed solution for the regularization parameter α and the noisy data y δ . In inverse problems and especially reconstruction problems, the mean squared error (MSE):

M SE(α) = f -f α (y δ ) 2 /n (20) 
is a very usual criteria to estimate the quality of the solution of the inverse problem. The following Stein lemma is the basis to obtain estimates of this mean square error [START_REF] Stein | Estimation of the Mean of a multivariate normal distribution[END_REF][START_REF] Blu | The SURE-LET approach to image denoising[END_REF]. for the standard denoising problem where one observes a realization y δ = (y δ i ) 1≤i≤n of an original signal f = (f i ) 1≤i≤n distorted by an additive white Gaussian noise of variance σ 2 , so that:

y = f + (21) Lemma 3.1. Let an additive white Gaussian noise = ( i ) 1≤i≤n , i.e. ∼ N (0, σ 2 I n ). Let F (y) = (f i (y δ ))
1≤i≤n be a n-dimensional vector function such that for all i=1...n, f i (y δ ) is weakly differentiable with respect to y δ i , bounded by some fast increasing function, |f i (y)| ≤ exp( y 2 /2β 2 ) with β > σ, then:

E[ t F (y δ )] = σ 2 E[divF (y δ )] ( 22 
)
where div is the divergence operator in the weak sense.

For Gaussian noise and and denoising problem with A = I, the Stein Unbiased Risk Estimate (SURE) is an unbiased estimate of the mean square error [START_REF] Stein | Estimation of the Mean of a multivariate normal distribution[END_REF][START_REF] Luisier | Unser Image denoising in mixed Poisson-Gaussian noise[END_REF][START_REF] Pesquet | A SURE approach for digital signal/image deconvolution problems[END_REF][START_REF] Ramani | Monte-Carlo Sure: a black box optimization of regularization parameters for general denoising algorithm[END_REF][START_REF] Ramani | Iterative weighted risk estimation for nonlinear image restoration with analysis priors[END_REF].

E[SU RE(α)] = E[M SE(α)] ( 23 
)
where E is the expectation with respect to the noise . It is given by:

SU RE(α) = y δ -f α (y δ ) 2 /n -σ 2 + 2σ 2 n -1 T r(J fα(y δ ) ) (24) 
where J fα(y δ ) is the Jacobian matrix of the reconstructed solution. The evaluation of the SU RE requires the knowledge of the noise variance. Similarly, for inverse problems with a direct operator A different from the identity an unbiased estimate of

M SE(α) = Af -Af α (y δ ) 2 /n (25) 
is given by:

SU RE(α) = y δ -Af α (y δ ) 2 /n -σ 2 + 2σ 2 n -1 T r(∇ y δ Af α (y δ )) (26) 
A generalized SURE has been proposed for exponential families [START_REF] Eldar | Generarlized SURE for exponential families applications to regularization[END_REF]. The SURE has been generalized for inverse problems involving a direct operator different from the identity by Vonesch et al [START_REF] Vonesch | Recursive risk estimation for nonlinear image deconvolution with a wavelet-domain sparsity constraint[END_REF]. Following [START_REF] Vonesch | Recursive risk estimation for nonlinear image deconvolution with a wavelet-domain sparsity constraint[END_REF], we denote B inv the stabilized approximation of the inverse of B n and g α (y) = B t inv f α (y). The risk given by Eq.20 is rewritten as:

M SE(α) = 1 n ( f 2 -2(y δ ) t g α (y δ )+2 t g α (y δ )-2([I-B inv B n ]x) t f α (y δ )+ f α (y δ ) 2 ) (27)
The first term is independent of α. The term t g α (y α ) can be estimated with the Stein equality under the conditions detailed in the former lemma [START_REF] Stein | Estimation of the Mean of a multivariate normal distribution[END_REF][START_REF] Blu | The SURE-LET approach to image denoising[END_REF].

E[ t g α (y δ )] = σ 2 E[divg α (y δ )] (28) 
Neglecting the third term, the following quantity, denoted as R(α), has been proposed to estimate the risk:

R(α) = 1 n ( f 2 -2(y δ ) t g α (y δ ) + 2σ 2 div(g α (y δ )) + f α (y δ ) 2 ) (29) = 1 n ( f 2 + f α (y δ ) 2 -2(y δ ) t B t inv f α (y δ ) + 2σ 2 div(g α (y δ ))) (30) 
In [START_REF] Ramani | Iterative weighted risk estimation for nonlinear image restoration with analysis priors[END_REF] a weighted mean square error (WMSE) measure has been proposed to test the accuracy of the reconstruction:

W M SE(α) = n -1 y δ -B n f α (y δ ) 2 W (31)
where W is a positive definite symmetric weighting matrix. The matrix W is chosen to counterbalance the effects of the direct operator

B n . With the choice W = B + n = B t n (B n B t n ) +
, where M + denotes the pseudo-inverse of M , and under the assumptions of the Stein lemma, the random variable Generalized Sure GSU RE(α) is an unbiased estimator of W M SE(α) [START_REF] Deledalle | Unbiased risk estimation for sparse analysis regularization[END_REF][START_REF] Deledalle | Stein Unbiased Gradient estimator of the Risk (SUGAR) for multiple parameter selection[END_REF][START_REF] Deledalle | Estimation of Kullback-Leibler losses for noisy recovery problems with the exponential family[END_REF][START_REF] Giryes | The projected GSURE for automatic parameter tuning in iterative shrinkage methods[END_REF]:

GSU RE(α) = n -1 y δ -B n f α (y δ ) 2 W -σ 2 n -1 tr((B n B t n ) + ) +2σ 2 n -1 tr((B n B t n ) + ∇ y δ B n f α (y δ )) (32) = n -1 f M L (y δ ) -f α (y δ ) 2 W -σ 2 n -1 tr((B n B t n ) + ) +2σ 2 n -1 tr((B n B t n ) + ∇ y δ B n f α (y δ )) (33) 
where f M L is the maximum likehood estimate and J fα(y δ ) is the Jacobian matrix of the reconstructed solution.

With the choice, W = B t inv B inv , GSU RE(α) can be rewritten:

GSU RE(α) = n -1 B inv (y δ -B n f α (y δ )) 2 -σ 2 n -1 tr(B t inv B inv ) +2σ 2 n -1 tr(B t inv B inv B n J fα(y δ ) ) (34) 
With f α (y δ ) = B inv y δ , we obtain:

GSU RE(α) = n -1 B inv (y δ -B n f α (y δ )) 2 -σ 2 n -1 tr(B t inv B inv ) +2σ 2 n -1 tr(B t inv B inv B n B inv ) (35) 
Some asymptotic properties of the risk estimators have been sudied in [START_REF] Lucka | Wubbeling Risk estimators for choosing regularization parameters in ill-posed problems-properties and limitations[END_REF] as n → ∞ based on a singular value decomposition of the direct operator but the smoothness of the solution in relation with the poperties of the operator have not been considered. We show in the following that chosing the regularization parameter α with the minimum of R(α) or GSU RE(α) given by Eq.35 leads to a convergent regularization method.

Regularization method and smoothness class

It is well-known that the convergence rate for regularized solutions of inverse problems depends on the type of regularization scheme but also on the smoothness class for the true solution. In this section, we detail the regularized estimators used to evaluate the estimators of the risk and the assumption on the smoothness of the ground truth.

Regularized estimators

In the following, we will use the notations of [START_REF] Mathe | Regularization of some linear ill-posed problems with discretized random noisy data[END_REF]. Let φ α : σ(A t A) → R is a filter function defined on the spectra σ(A t A) of the operator A t A approximating the function t → 1/t, and which is parametrized by a regularization parameter α. Based on this filter function, and on the singular value decompostion of the operator A t A, it is possible to construct regularized estimators with regularization methods of the form:

f α = Φ α (A t A)A t y δ (36) 
With the discretization of the operator A, the approximate solution is calculated as:

f α = Φ α (B t n B n )B t n y δ . ( 37 
)
The regularized inverse will be defined as

B inv = Φ α (B t n B n )B t n .
Classical assumption about the filter function φ α can be found in [START_REF] Nair | Regularization in Hilbert scales under general smoothing conditions[END_REF][START_REF] Tautenhahn | On a general regularization scheme for nonlinear illposed problems[END_REF]. We assume that there exist some positive constants C 1 ,C 2 such that:

lim α→0 φ α (t) = 1/t ( 38 
)
sup

t∈σ(A t A) |t 1/2 φ α (t)| ≤ C 1 / √ α 0 < α < A t A (39) 
sup

t∈σ(A t A) |1 -tφ α (t)| ≤ C 2 0 < α < A t A , ( 40 
) 0 ≤ φ α (t) ≤ 1/α ∀t ∈ σ(A t A) (41) 
In the following, we will use the notation A 1 A 2 if there are two positive constants c 1 and c 2 such that:

c 1 A 2 ≤ A 1 ≤ c 2 A 2 (42) 
We also assume that:

sup t≥0 |(1 -tφ α (t))Λ(t)| Λ(α) 0 < α < A t A (43) 
for the index functions associated to the smoothness class, i.e Λ(α) is not only an upper bound of sup t≥0 |(1 -tφ α (t))Λ(t)| but also a sharp estimate of this term. Several regularization methods can be described with these type of filter functions. For Tikhonov regularization φ α (t) = (α+t) -1 , for iterated Tikhonov regularization, φ α (t) = (1 -(α/(t + α)) m )/t, for spectral cut-off φ α (t) = 1/t for t ≥ α, and φ α (t) = 0 for t ≤ α.

Smoothness classes

The convergence rate for the reconstruction methods is determined by some a priori assumption on the exact solution. Following [START_REF] Bissantz | Consistency and rates of convergence of nnlinear Tikhonov regularization with random noise[END_REF], we will measure the smoothness of the function f relative to the smoothing properties of A with a source condtion. We assume there exists w ∈ X, and T > 0 such that:

f = Λ(A t A)w w ≤ T (44) 
with Λ : σ(A t A) → [0, ∞[ a continuous, strictly increasing index function with Λ(0) = 0. The error estimates are different under different assumptions on the index function. For exponentially ill-posed problems and infinitely smoothing operators, a logarithmic souce conditions is used, Λ(t) = (-lnt) -ν with ν > 0 [START_REF] Hohage | Regularization of exponentially ill-posed problems[END_REF]. A common assumption is Λ(t) = t ν with ν > 0 for finitely smoothing operators. In this work, we consider this type of mildly ill-posed problem. For this smoothness class and exact data y, using Eq.40, we see that the error for non noisy data is bounded by [START_REF] Mathe | Regularization of some linear ill-posed problems with discretized random noisy data[END_REF] :

Φ α (A t A)A t y -f ≤ ρ sup t∈σ(A * A) |(φ α ((t)t -1)Λ(t)| ≤ CΛ(α) (45) 
From that we can infer, that there is a positive constant C 1 such that:

| Λ(A t A)w 2 -Φ α (A t A)A t AΛ(A t A)w 2 | ≤ C 1 Λ(α) (46)

Estimate of the risk R and of GSURE

In this section, we will estimate successively the risk R and the GSU RE.

Estimate of the risk R

In order to rewritte the risk R, we first separate the estimate of f α for the non noisy data and the term originating from the noise. We set

f 1 α = Φ α (B t n B n )B t n B n f and f 2 α = Φ α (B t n B n )B t n B n , with f α = f 1 α + f 2 α . With B inv = Φ α (B t n B n )B t n
, the second term of R(α) can be written as:

(y δ ) t B t inv f α (y δ ) = (B n f + ) t B n Φ α (B t n B n )[Φ α (B t n B n )B t n (B n f + )] =< f 1 α , f 1 α > + < f 2 α , f 2 α > +2 < f 1 α , f 2 α > (47)
R(α) can thus be rewritten as:

R(α) = 1 n ( f 2 -f α (y δ ) 2 + 2σ 2 div(g α (y δ ))) (48) = 1 n ( f 2 -f 1 α (y δ ) 2 -f 2 α (y δ ) 2 -2 < f 1 α (y δ ), f 2 α (y δ ) > +2σ 2 div(g α (y δ ))
Estimation of f 2 -f 1 α (y δ ) 2 Following Mathe et al. [START_REF] Mathe | Regularization of some linear ill-posed problems with discretized random noisy data[END_REF][START_REF] Mathe | Moduli of continuity for operator valued functions[END_REF][START_REF] Mathe | Geometry of linear ill-posed problems in variable Hilbert scales[END_REF] , for f in the smoothness class defined by Λ, we can bound the noise free term:

f -Φ α (B t n B n )B t n QAf = f -Φ α (B t n B n )B t n B n f + Φ α (B t n B n )B t n (B n -Q n A)f ≤ C 1 Λ(α) + C 2 (I -Φ α (B t n B n )B t n B n )(Λ(A * A) -Λ(B * n B n ) + C 3 √ α (B n -Q n A)f (49) ≤ C 1 Λ(α) + C 2 (Λ(A t A) -Λ(B t n B n ) + C 3 √ α (B n -Q n A)f (50)
where we have used Eq.38 and Eq.41.

The bound on the error free term depends on the class of the index function Λ. We restrict in this work to functions Λ : t → t µ with 0 < µ ≤ 1. This type of index function is operator monotone and satisfies the following bound [START_REF] Mathe | Regularization of some linear ill-posed problems with discretized random noisy data[END_REF][START_REF] Mathe | Moduli of continuity for operator valued functions[END_REF][START_REF] Mathe | Geometry of linear ill-posed problems in variable Hilbert scales[END_REF]:

Λ(A t A) -Λ(B t B) ≤ Λ( A t A -B t B ) (51) 
Different estimates of the error can be obtained for different classes of index functions. If the index function Λ belongs to the class F 0 with:

F 0 = {φ, φ 2 is concave} (52)
then the following bound on the error holds true [START_REF] Mathe | Regularization of some linear ill-posed problems with discretized random noisy data[END_REF][START_REF] Mathe | Moduli of continuity for operator valued functions[END_REF][START_REF] Mathe | Geometry of linear ill-posed problems in variable Hilbert scales[END_REF]:

f -φ α (B t n B n )B t n Q n Af ≤ C 1 (Λ(α) + Λ( 2 X ) + C 2 Λ( 2 Y ) + C 3 Λ( 2 Y ) √ α (53) 
Similar bounds can be found for different index functions. For the class F 1/2 defined by:

F 1/2 = {φ, φ ≤ c √ t for some c > 0} (54) 
it can be shown that:

f -φ α (B * n B n )B * n Q n Af ≤ C 1 (Λ(α)+Λ( 2 X ))+C 2 Λ( 2 Y )+C 3 Y +C 4 2 Y √ α (55) 
For the class

F 1 = {φ, φ = ψθ, ψ ∈ F 0 , θ Lipschitz} (56) 
the error bound is given by:

f -φ α (B * B)B * QAf ≤ C 1 (Λ(α)+θ(α)ψ( 2 X )+θ(α) Y )+C 2 ( 2 X +2α Y )+C 3 Y +C 4 2 Y √ α ) (57) 
As explained in [START_REF] Mathe | Regularization of some linear ill-posed problems with discretized random noisy data[END_REF][START_REF] Mathe | Moduli of continuity for operator valued functions[END_REF][START_REF] Mathe | Geometry of linear ill-posed problems in variable Hilbert scales[END_REF], it is possible to chose a high discretization level

X and Y such that the dominant term in the error is Λ(α). We will make this assumption in the following. To conclude, with Eq.43 we obtain that there is a positive constant C such that:

f 2 -f 1 α (y δ ) 2 CΛ(α) (58) 
Estimation of 2σ 2 div(g α (y δ )) With

f α (y δ ) = Φ α (B t n B n )B t n (y δ ) = B inv y δ (59) and g α (y δ ) = B t inv f α (y δ ), B t inv = B n Φ α (B t n B n ) t = B n Φ α (B t n B n ) we obtain div(g α (y)) = T r[B n Φ α (B t n B n ) t Φ α (B t n B n )B t n ] (60) = 1≤i≤n Φ α (B t n B n )B t n e i 2 (61) 
Using the spectral projectors, and for φ α the filter function for the Tikhonov regularization, we get:

Φ α (B * n B n )B * n e i 2 = ∞ 0 φ 2 α (ρ)ρd E ρ (e i ) 2 = ∞ 0 ρ (ρ + α) 2 d E ρ (e i ) 2
(62)

We will split this integral in Eq.62 into two terms. For 0 < ρ < α, we have 1/4 ≤ 1 (1+ρ/α) 2 ≤ 1 and thus:

I 1 = i ρ<α ρ (ρ + α) 2 d E ρ (e i ) 2 = 1 α 2 i ρ<α ρ (1 + ρ/α) 2 d E ρ (e i ) 2 1 α 2 i ρ<α ρd E ρ (e i ) 2 (63) 1 α 2 i ρ<α ρδ(ρ -ρ i ) (64)
We can reformulate it with the Stieljes integral:

I 1 - 1 α 2 ρ<α 0 βdR(β) (65) 
Let us assume that R is smooth with R(β) ∼ β -η , we obtain;

I 1 1 α 2 (α) 1-η α -1-η
The same result can be obtained assuming Eq.41 is satisfied and for more general filter functions.

For ρ > α, 1/4 ≤ 1 (1+α/ρ) 2 ≤ 1 and thus the second term can be written:

I 2 = i ρ>α ρ (ρ + α) 2 d E ρ (e i ) 2
(66)

∼ i ρ>α 1 ρ(1 + (α/ρ)) 2 d E ρ (e i ) 2 (67) (68) 
Similarly, the term I 2 can be written as:

I 2 - ρ>α 1 β dR(β) α -1-η (69) 
To conclude, we obtain:

2σ 2 div(g α (y δ )) σ 2 α -1-η (70) Estimation of < f 1 α , f 2 α > We can also estimate the scalar product < f 1 α , f 2 α > < f 1 α , f 2 α >=< Φ α (B t n B n )B t n B n f, Φ α (B t n B n )B t n > (71) =< Φ α (B t n B n )B t n B n Λ(A t A)w, Φ α (B t n B n )B t n > (72) = φ α (ρ) 2 Λ(ρ)ρ 3/2 d < E ρ w, > (73) 
The random measure d < E ρ w, > can be written

dE ρ w = n i=1 δ(ρ -ρ i )⊗ < e i , w > e i ( 74 
) d < E ρ w, >= n i=1 δ(ρ -ρ i )⊗ < e i , w >< e i , > (75) 
< f 1 α , f 2 α > is the linear combination of gaussian variables and it is a Gaussian variable with E[< f 1 α , f 2 α >] = 0 and:

V ar(< f 1 α , f 2 α >) = σ 2 φ α (ρ) 2 Λ(ρ)ρ 3/2 n i=1 δ(ρ -ρ i ) < e i , w > σ 2
With a simple concentration inequality like the Chebyshev's inequality, the probability is very small that < f

1 α , f 2 α > is much larger that is expected value E[< f 1 α , f 2 α >] = 0. Estimation of f 2 α 2
Similarly, we have:

f 2 α 2 = φ α (ρ) 2 ρ 2 d < E ρ , E ρ > (76)
The component (< e i , >) 1≤i≤n are i.i.d Gaussian with the law N (0, σ 2 ).

E ρ = λ i ≤ρ < e i , > e i (77) 
and

E ρ 2 = λn≤ρ | < e n , > | 2 (78)
This function is an increasing right continuous function and defines a random Stieljes measure.

E ρ i -E ρ i-1 =< e i , > e i ( 79 
)
and thus, we obtain the random measure:

dE ρ = n i=1 δ(ρ -ρ i )⊗ < e i , > e i ( 80 
)
where ⊗ is the tensorial product of distributions

d < E ρ , E ρ >= n i=1 δ(ρ -ρ i )| < e i , > | 2 (81)
The average measure dm is given by:

dm(ρ) = n i=1 δ(ρ -ρ i )σ 2 = -σ 2 dR(ρ) (82) 
The integral defining E[ f 2

α 2 ] can be splitted in two terms I 1 and I 2 :

I 1 = E[ α 0 φ α (ρ) 2 ρ 2 d < E ρ , E ρ >] (83) = σ 2 α 0 φ α (ρ) 2 ρ 2 n i=1 δ(ρ -ρ i ) - σ 2 α 2 α 0 ρ 2 dR(ρ) σ 2 α -η (84) 
I 2 = E[ ∞ α φ α (ρ) 2 ρ 2 d < E ρ , E ρ >] σ 2 ∞ α n i=1 δ(ρ -ρ i ) (85) σ 2 ∞ α dΣ(ρ) (86) 
-σ 2 ∞ α dR(ρ) σ 2 α -η (87) 
To conclude, we obtain:

E[ f 2 α 2 ] σ 2 α -η (88) 
Using Eq.58 , Eq.70 , Eq.88:

E[R(α)] ∼ 1 n (α µ + C 1 σ 2 α -1-η + C 2 σ 2 α -η ) (89) 
The third term being negligible as α → 0, the mininimization of R(α) gives α ∼ σ 2/(1+η+µ ) and the average risk scales as R(α) ∼ σ 2µ/(1+η+µ ).

Estimation of GSURE

We start from Eq.35 to estimate GSU RE:

T r(B inv B t inv ) = T r[B n Φ α B t n B n ) t Φ α (B t n B n )B t n ] (90) = 1≤i≤n Φ α (B t n B n )B t n e i 2 (91) α -1-η (92) 
with Eq.70.

With the spectral projectors, the power law of operators are well-defined and we have:

I = T r(B inv B t inv B n B inv ) = T r[(B n B t n ) 2 Φ α (B t n B n ) 3 [ (93) = 1≤i≤n Φ 3/2 α (B t n B n )B n B t n e i 2 (94) = i ∞ 0 ρ 2 φ 3 α (ρ)d E ρ (e i ) 2 (95) 
We split the integral into two parts:

1 1 = i α 0 ρ 2 φ 3 α (ρ)d E ρ (e i ) 2 - 1 α 3 α 0 ρ 2 dR(ρ) - 1 α 3 α 2-η α -1-η 1 2 = i ∞ α ρ 2 φ 3 α (ρ)d E ρ (e i ) 2 i ∞ α 1 ρ d E ρ (e i ) 2 (96) 
- ∞ α 1 ρ dR(ρ) α -1-η (97) 
It follows:

T r(B inv B t inv B n B inv ) α -1-η (98) 
Using the decomposition f α = f 1 α + f 2 α , we obtain as α → 0 and for a high discretization level:

f α -B inv B n f α f 1 α -B inv B n f 1 α = (I -B inv B n )f 1 α (99) = (I -Φ α (B t n B n )B t n B n )Φ α (B t n B n )B t n B n f Λ(α) (100) 
with Eq.43.

Using Eq.92 , Eq.98 , Eq.100, GSURE can be estimated as:

GSU RE(α) ∼ 1 n (α 2µ + C 1 σ 2 α -1-η ) (101) 
The mininimization of GSU RE gives α ∼ σ 2/(1+η+2µ) and GSU RE ∼ σ 4µ/(1+η+2µ) .

Discussion

The convergence of the Tikhonov regularization method is obtained for α → 0, and σ 2 α → 0[2]. The choice α ∼ σ 2/(1+η+2µ) obtained with the minimization of GSURE or R ensures thus the convergence of the Tikhonov regularization for a regularization parameter chosen with these estimators.

It is interesting to compare the convergence rate obtained with the minimization of R(α) or GSU RE(α) with the optimal convergence rates for projection methods. Let S be a given reconstruction method, the worst case error at f for a Gaussian noise with variance σ 2 is then given by:

e(f, S, σ 2 ) = sup f -S(y δ ) (102) 
The best possible accuracy is defined by the minimization over all the numerical numerical methods:

e(f, σ 2 ) = inf S:Y →X e(f, S, σ 2 ) (103) 
We are interested by the asymptotic behavior of e(f, σ 2 ) as σ → 0. The optimal order of approximation, for exact solutions satisfying the source condition of Eq.44 has been studied in Mathe et al. [START_REF] Mathe | Geometry of linear ill-posed problems in variable Hilbert scales[END_REF] for projections methods. Proposition 6.1. Let Λ an index function such that Θ(t) = √ tΛ(t) is strictly increasing, with Θ(t) → 0 as t → 0, such that there is a positive constant c for which Λ(2t) ≤ cΛ(t), for 0 < t < a, and such that t → Λ 2 ((Θ 2 ) -1 ) is concave, then the best possible accuracy is of the order of Λ(Θ -1 (σ 2 )).

The former conditions are satisfied for Λ(t) = t µ considered in this work. For finite projections methods, the best possible accuracy is thus of the order of Λ(Θ -1 (σ 2 )) where Θ(t) = √ tΛ(t). For index functions of the type Λ(t) = t µ , we obtain that the best possible accuracy is of order σ 2µ/(1+2µ) . Since 2µ/(1 + η + 2µ) < 2µ/(1 + 2µ), we can conclude that a regularization parameter chosen with the GSURE or R is not optimal. As η increases, the ill-posedness increases and the efficiency of the method of choice of the parameter decreases. If the condition number of B n increases, smaller singular values are added and it is expected that the GSURE is less efficient.

Numerical Experiments

In order to illustrate the former results, we consider the following linear inverse problem which has been studied in detail in [START_REF] Lucka | Wubbeling Risk estimators for choosing regularization parameters in ill-posed problems-properties and limitations[END_REF]. The linear convolution operator A is mapping a function f : [-1/2, 1/2] → R to a function y : [-1/2, 1/2[→ R with a compacted supported kernel with a parameter 0 < l < 1/2 defined as:

k l = 1 N l exp(-1 1-t 2 /l 2 ) if |t| < l 0 if l ≤ |t| ≤ 1/2 (104)
with

N l = l -l exp(-1 1-t 2 /l 2 )dt. The function f used is the peak f 1 = δ(t -b 1 ) with b 1 = 1 √ 26 -0.5 or the smooth function f 2 (t) = exp(-t 2 4
). For a discretization level n for the domain and the range of the operator A, we denote

E n i = [ i-1 n -1 2 , i n -1 2 ] for 1 ≤ i ≤ n, and 
ψ n i (t) = √ n1 E n i (t)
the associated orthonormal basis. Some Gaussian noise with standard deviation σ was added to the data y. From the singular value decomposition of the convolution operator, the GSURE can be easily estimated [START_REF] Lucka | Wubbeling Risk estimators for choosing regularization parameters in ill-posed problems-properties and limitations[END_REF]. Let (γ i ) be the singular values of the operator A, for the noise level σ and a regularization parameter α, we can compute:

GSU RE(α) = n i=1 ( 1 γ i - γ i γ 2 i + α ) 2 (y δ ) 2 -σ 2 n i=1 1 γ 2 i + 2σ 2 n i=1 1 γ 2 i + α (105) 
The optimal parameter α opt,GSU RE is obtained as:

α opt,GSU RE = argmin α≥0 GSU RE(α) (106) 
In [START_REF] Deledalle | Stein Unbiased Gradient estimator of the Risk (SUGAR) for multiple parameter selection[END_REF], the authors have shown that GSURE is differentiable in a weak sense, and have performed quasi-Newton optimization based on the firstorder information given by an unbiased estimator of the gradient of the risk. Here, we have evaluated the risk for different values of the regularization parameter α and plotted its evolution to determine the optimal value of α. The minimum of GSURE can be found efficiently and the computational cost is not two high for a scalar real-valued parameter.

The discretized operator and functions are written as follows:

A i,j =< ψ n i , Aψ n j > n E n i E n j k l (s -t)dsdt (107) < ψ n i , x >= √ n E n i f (t)dt (108) 
The parameters n and l control the ill-posedness of the inverse problem.

The ill-posedness and the condition number increase with higher n values and lower l values. For examples, the parameters n = 128, l = 0.1, with a condition number 4.3 e+4, corresponds to a very ill-posed problem and the choice n = 32, l = 0.02 to a less ill-posed problem,with condition number 1.75. In order to illustrate the efficiency of the GSURE we have evaluated the optimal parameter for the GSURE and for the l 2 error f -f α (y δ ) 2 for the former inverse problem with different ill-posedness degrees related to the discretization level n and to the value of l, with different smoothness of the solution and with different noise levels σ. The GSU RE and the error have been evaluated on a fine logarithmical grid , where log(α) is increased linearly with a step size 0.01 between a lower bound α min and α min + 10. Typical curves for the error and GSURE are displayed in Figure 1 and2.

N e = 10000 samples of the noise have been drawn. Typical joint distributions for the optimum values of α for the reconstruction error and the GSURE are displayed on Figure 3, 4 and 5. The Figure 3 corresponds to values of n and l for a moderately ill-posed problem and the peak f 1 and Figure 4 to values of these parameters for a very ill-posed problem and the same function. Figure 5 displays the results obtained for a very ill-posed problem and a smooth function f 2 .

As displayed on Figure 3, for n and l values corresponding to a low condition number, the regularization parameters obtained with the minimization of the error or with GSURE are in good agreement and a peak is obtained on the diagonal of the plot. As shown on Figure 4, for a very ill-posed problem and a non smooth solution, the optimal value of α derived from the minimization of GSURE leads to large l 2 errors and the optimal values of the regularization parameter for the minimal l 2 is much larger. It can be seen on Figure 5 that for a smooth function f 2 and a very ill-posed problem the deviation between the two parameters obtained with GSURE of the l 2 errors is also large. These results illustrate the former results and suggest that GSURE is a good estimate of the optimal regularization parameter. Yet, it is not optimal for very ill-conditioned problems and it underestimates the regularization parameters in this case. 

Conclusion

We have estimated the risk R or GSU RE for regularization methods based on filter functions such as the Tikhonov regularization. The results are obtained with spectral projectors and are based on some restrictive conditions about the ill-posedness of the inverse problem and the smoothness of the solution.

We have shown that the choice of the regularization parameter for regularization with filter functions based on the minimization of the risk R or of the GSU RE estimate gives a convergent regularization method for mildly ill-posed problems. This result is obtained under the assumption that the discretization errors can be neglected. Yet, the best possible accuracy is not achieved and the regularization method is not optimal for the smoothness class defined by the exponent µ. With growing µ, the spaces of functions satisfying the source condition contains smoother elements and the quality of the regularization with the parameter chosen with the GSURE principle increases but the method is still not optimal. Moreover, GSURE is not optimal for very ill-conditioned problems. 

Acknowledgment

This work was supported by the LABEX PRIMES (ANR-11-LABX-0063) of Université de Lyon, within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

[1] H.W.Engl, M.Hanke and A.Neubauer, Regularization of inverse problems, Kluwer, (1996).

[2] O.Scherzer, M.Grassmair, H.Grossauer, M.Haltmaier and F.Lenzen, Variational methods in imaging, Springer, Verlag, (2008).

[3] S.Mallat, A wavelet tour of signal processing, Elsevier (2009).

[4] L.I.Rudin, S.Osher and E.Fatemi Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992) 259-268 . inverse learning problems, Foundations of Computational Mathematics., 18 (2016) 971-1013 .

[8] F.Dai, H.Zhu, F.H.Wen Two nonparametric approaches to mean absolute deviation portfolio selection problem, Journal of Industrial Management Optimization (2019) doi:10.3934/jimo.2019054.

[9] F.Bauer and M.A.Lukas, Comparing parameter choice methods ofr 

Figure 1 :

 1 Figure 1: Typical evolution of the l 2 error term for the parameters n=32, l=0.01 and σ = 0.1.

Figure 2 :

 2 Figure 2: Typical evolution of the GSURE for the parameters n=128, l=0.1 and σ = 0.1.

Figure 3 :Figure 4 :

 34 Figure 3: Typical joint distribution of the parameters alpha obtained with GSURE and the minimal l 2 norm for the function f 1 and for the parameters (a) n=32, l=0.05 and σ = 0.01 (b) n=48, l=0.1 and σ = 0.05 (c) n=48, l=0.05 and σ = 0.05 (d) n=32, l=0.1 and σ = 0.05.

Figure 5 :

 5 Figure 5: Typical joint distribution of the parameters α obtained with GSURE and the minimal l 2 norm for the function f 2 and for the parameters (a) n=128, l=0.02 and σ = 0.1 (b) n=128, l=0.01 and σ = 0.1 (c) n=192, l=0.02 and σ = 0.1 (d) n=192, l=0.01 and σ = 0.1.