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Super resolution in medical imaging

Super resolution (SR) refers to methods aiming at increasing the spatial resolution of digital images. It led to the development of many algorithms to process images [START_REF] Nasrollahi | Super-resolution: a comprehensive survey[END_REF], such as natural images [START_REF] Dong | Learning a deep convolutional network for image super-resolution[END_REF], satellite images [START_REF] Luo | Video satellite imagery super resolution via convolutional neural networks[END_REF], or medical 5 imaging [START_REF] Pham | Brain MRI super-resolution using deep 3D convolutional networks[END_REF] for instance. SR algorithms can be classified according to the number of input and output images involved in the process. In this paper, we focus on single-image SR referring to methods where one high resolution (HR) image has to be recov-Deep learning (DL) methods are attracting a lot of attention nowadays in image processing. In particular, DL for medical imaging has achieved amazing progresses in fields such as image reconstruction [START_REF] Jin | Deep convolutional neural network for inverse problems in imaging[END_REF], denoising [START_REF] Yang | Low-dose CT image denoising 1090 using a generative adversarial network with wasserstein distance and perceptual loss[END_REF], super resolution [START_REF] Pham | Brain MRI super-resolution using deep 3D convolutional networks[END_REF], segmentation [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF], computed-assistant diag-20 nosis [START_REF] Litjens | A survey on deep learning in medical image analysis[END_REF]. Dong et al. [START_REF] Dong | Learning a deep convolutional network for image super-resolution[END_REF] first proposed to use deep learning method to solve super resolution problems on natural image sets. Since then, the application of DL methods for natural images SR has been widely investigated [START_REF] Kim | Accurate image superresolution using very deep convolutional networks[END_REF][START_REF] Kim | Deeply-recursive convolutional network for image super-resolution[END_REF][START_REF] Tai | Image super-resolution via deep recur-1110 sive residual network[END_REF][START_REF] Shi | Real-time single image and 1115 video super-resolution using an efficient sub-pixel convolutional neural network[END_REF][START_REF] Dong | Accelerating the super-resolution 1120 convolutional neural network[END_REF]. More recently, DL methods have also [START_REF]Deep learning of constrained autoencoders for enhanced understanding of data[END_REF] been proposed for SR problems in medical images. Compared with natural image SR, medical image SR needs additional priors information for particular applications. hance the structures of interest and to preserve sensitive information. Moreover, the datasets of medical images are relatively small and hard to collect, especially for clinical high and low resolution image pairs.

In this paper, our aim is to review DL methods for SR [START_REF]Improved training of wasserstein gans[END_REF] problems of medical imaging. After a brief introduction to DL approaches, we show different SR DL approaches on natural image sets. The applications of DL in medical images SR problems will be presented afterward. Challenges including how to deal with data paucity and how to 40 integrate priors will be discussed at the end of the article.

A brief introduction of deep learning

Recently, deep learning approaches proved to be very promising in image processing with tasks such as segmentation [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF], classification [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF], denoising [START_REF] Zhang | Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising[END_REF] or solving in-45 verse problems [START_REF] Mccann | A review of convolutional neural networks for inverse problems in imaging[END_REF]. Deep learning approaches have two principal advantages which distinguish them from other approaches: much developed parallel calculation and powerful representation ability.

1. Parallel calculation has been much developed in deep 50 learning framework, such as Tensorflow [START_REF] Abadi | Tensorflow: A system for large-scale machine learning[END_REF], MXNet [START_REF] Chen | Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems[END_REF], Caffe [START_REF] Jia | Caffe: Convolutional architecture for fast feature embedding[END_REF]. The user can directly benefit from high speed parallel computation without knowing GPU architecture and low-level GPU programming. 2. DL allows to learn high-level features of the data. A 55 large quantity of parameters within DL networks is used to reveal implicit information.Yet, the efficiency of deep learning approach is related to the amount of data. A large amount of data could boost the performance of deep learning, on the contrary, a limited 60 number of data limits its performance.

Network units

The DL network is a multi layers neuron network. Its first layer is named as input layer, the last layer is named as output layer. The intermediate layers are named as hidden layers. Fig. 1 illustrates a classic 5 layers DL neuron network. Each neuron in the network consists of linear transformation followed by a point-wise activation function.

Linear transformation

In multilayer perceptron, every neuron at layer l is connected to all the neurons at layer l+1 with weight θ l j,i ∈ R, i and j correspond to the neuron index at layer l and layer l+1, weight matrix θ l ∈ R c l+1 ×c l , where c l and c l+1 denote the number of channels at layer l and layer l + 1. If the output of layer l is L l ∈ R c l ×m×n (here we ignore batch size factor), where m and n are the height and width of image features, the activation function at layer l is σ l , the output of layer l + 1 is L l+1 , written as

L l+1 = σ l (θ l L l ) (1) 
The linear operation between θ l and L l is a matrix multiplication, the height and width of image features do not change. When the linear operation is a convolution, θ l j,i becomes a convolutional filter, the network turns to be a convolutional neural network (CNN). 

Activation functions

Activation functions are essential for the network since they introduce nonlinear factors to the network. Fig. 2 depicts some typical activation functions. Rectified Linear Unit is illustrated in Fig. 2(a). It linearly rectifies the nonnegative values and removed negative parts. PReLu (Parametric Rectified Linear Unit) is developed from ReLU activation, as shown in Fig. 2(b). It rectifies the negative and nonnegative values with different degree. PReLU is defined as

P Relu(x) = x, if x ≥ 0 ax, otherwise.
where a is adapted during the training process. The sigmoid function is used for 2-label classification tasks. Fig. 2(c) displays its curve and it is defined as:

sigmoid(x) = 1 1 + e -x (2) 
It can be seen that when x < -10, the output of sigmoid function is close to 0, when x > 10, its output is near 1.

CNN 80

Among the deep learning networks, many architectures have been proposed: multilayer perceptron, basic CNN, recurrent neural networks, recursive network, stacked denoising auto-encoders, generative adversarial networks and so forth [START_REF] Lecun | Deep learning[END_REF].
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In this work, we focus on CNN, a workhorse of deep learning, particularly for image processing. When dealing with an inverse problem with CNN, the inverse operator in the inverse problem is approximated by a sequence of filtering operations alternating with nonlinear operations.
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The convolution operation allows network to detect the same feature in different regions of image. One CNN layer detects local features of image, while multi-layer CNN allows to increase the perception field and to synthesize the features extracted at previous layers. Moreover, CNN re-95 duces the number of weights by sharing them between network's neurons, which results in a considerable memory reduction.

Optimization of the network

The parameters in the network, such as the weights 100 of filters, or parameters in the activation functions, are optimized by minimizing a loss function, which conventionally measures the distance between the network estimation and ground truth. The loss function varies with task types. Regularization terms can be integrated in the loss function to reduce over-fitting risk or inject priors. The value of the loss function can be computed via forward propagation, and the gradients of the loss function with respect to parameters in the network are determined via back-propagation [START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF]. Stochastic gradient descent method accelerates back propagation by processing data in small batch [START_REF] Lecun | Deep learning[END_REF]. The parameters are optimized by successive forward and backward pass in the network.

The fitting capacity of a network is described by the 'bias', equals to the expectation of error on the training set. The generalization capacity is evaluated by the 'variance', evaluated on the test set. With the increase of the network size, the bias tends to decrease while the variance tends to increase, which can be interpreted as the network evolves from underfitting toward overfitting. It is generally admitted that, in a network, a trade off must be found between the bias and the variance in order to prevent overfitting along with a small generalization error.

Many factors influence the performance of the network: the network architecture, the training set, the optimization procedure. The architecture of the network varies with the type of task. A large dataset in which the data follows the same distribution boosts the performance of the network. A good optimization procedure can increase the efficiency of training process, or/and improve the accuracy of estimation.

Regularization techniques

Deep neural networks can learn complicated relations between the inputs and outputs and the capacity of the model is related to its architecture which has to be big enough. With limited training data, a large model with a high capacity may lead to overfitting and a poor generalization. In order to regularize overfitting, it is possible to reduce the capacity of the network by changing its architecture. Two widely used examples are dropout and batch normalization. With dropout, some neurons are randomly switched off during the training process, inducing a noisy input to the subsequent layers [START_REF]Dropout: a simple way to prevent neural network from overfitting[END_REF]. Dropout can be seen as a way of doing an equally-weighted averaging of exponentially many models with shared weights. The batch normalization layers have been used to reduce the internal covariate shift and accelerate the traning process [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF], which is a way to induce noise to subsequent layers. This technique is widely used by super resolution models [START_REF] Ledig | Photorealistic single image super-resolution using a generative adversarial network[END_REF][START_REF] Tai | Image super-resolution via deep recur-1110 sive residual network[END_REF] Another method to reduce the network capacity is the regularization of the loss function. Some strategies relies on weight decay [START_REF]Deep learning of constrained autoencoders for enhanced understanding of data[END_REF][START_REF]Weight decay can improve generalization[END_REF] , pruning of the network [START_REF]Pruning convolutional neural networks for resource efficient inference[END_REF], L 1 and L 2 regularizations on the weights [START_REF]Adam induces implicit weight sparsity in rectifier neural network[END_REF][START_REF]On implicit filter level sparsity in convolutional neural networks[END_REF]. Decorrelation techniques can also improve the generalizatbility of the network [START_REF]Regularizing deep neural networks by enhancing diversity in feature extraction[END_REF], [START_REF]Reducing overfitting in deep networks by decorrelation representations[END_REF]. In order to avoid overfitting, it is also possible to artifically increase the amount of training data (random crop, rotation, flipping, ...) and to modify the training input to reduce the overadapation. As far as super resolution is concerned, many super resolutiion methods use very deep networks with a large number of parameters, with a high risk of overfitting. Data augmentation is a very efficient approach for super resolution [START_REF]Suppressing model overfitting for 1180 image super-resolution network[END_REF]. Data synthesis approach with a learned degradation operator may also improve the super resolution results.

Generative Adversarial Networks
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Generative Adversarial Networks (GAN) are based on a game approach with a generator and a discriminator network. Recently numerous works have developed more effective GAN models that outperforms traditional CNN networks. A detailed discussion on GAN can be found in 170 [START_REF] Goodfellow | Generative adversarial nets[END_REF]. The generator tries to generate fake images to fool the discriminator, while the discriminator aims at distinguishing the generated results from real data. At the end of the adversarial training, the generator produce outputs consistent with the distribution of the real data, and the 175 discriminator can not distinguish the generated data and the real data. Wassertein gan , WGAN, [START_REF] Wasserstein Gan | [END_REF] is based on the minimization of an approximation of the Wasserstein distance and regularizes the discriminator by weight clipping. Other regularization scheme have been proposed like 180 gradient clipping and spectral normalization. Other regularizations for the discriminator have been investigated based on gradient clipping [START_REF]Improved training of wasserstein gans[END_REF] and spectral normalization [START_REF] Miyato | Spectral normalization for gen-1190 erative adversarial networks[END_REF] 3. Deep learning in super resolution Existing techniques include interpolation-based methods, frequency-domain methods [START_REF]Super-resolution: a comprehensive survey[END_REF] or methods based on regularization [START_REF]Fast and robust multiframe super 1195 resolution[END_REF][START_REF]Maximum a posterio video superresolution using a new multichannel image prior[END_REF]. As detailed in the following, deep learning approaches have much improve the performances 200 of the single-image super-resolution methods. There are very few deep learning methods applied to multiple-image super resolution. In [START_REF]Deep learning for multiple-image supe-resolution[END_REF], the authors use a deep residual network to improve the results of an evolutionary model for super resolution of multiple satellite images. In the 205 following, we will focuss on single-image super-resolution.

Formulation of the single-image SR problem

Let g ∈ Y denote a low-resolution image and f ∈ X a high-resolution image. The super resolution forward problem can be written as

g = A f (3) 
where A : X → Y includes blurring, noise and down sampling operation. Given a training dataset (g i , fi ), our goal is to learn A + which predicts values f = A + g so that f ≈ f . F is a user-selected loss function used to optimize the parameters in the network. Generally speaking, a parametric approximate inverse operator A + θ : Y → X is learned by solving:

arg min θ∈Θ F ( fi , A + θ (g i )) + G(θ) (4) 
where Θ is the set of possible parameters and G(θ) a regularization function.

The application of deep learning in super resolution has been broadly discussed in the literature [START_REF] Dong | Learning a deep convolutional network for image super-resolution[END_REF][START_REF] Kim | Accurate image superresolution using very deep convolutional networks[END_REF][START_REF] Kim | Deeply-recursive convolutional network for image super-resolution[END_REF][START_REF] Ledig | Photorealistic single image super-resolution using a generative adversarial network[END_REF][START_REF] Shi | Real-time single image and 1115 video super-resolution using an efficient sub-pixel convolutional neural network[END_REF][START_REF] Lai | Deep laplacian pyramid networks for fast and accurate super resolution[END_REF][START_REF] Zhang | Residual dense network for image super-resolution[END_REF][START_REF] Lim | Enhanced deep residual networks for single image super-resolution[END_REF][START_REF] Tai | Image super-resolution via deep recur-1110 sive residual network[END_REF]. Since it's not possible to present exhaustively all the networks for SR, we select a set of these methods which outlines the development of DL in SR issues. These methods are presented in the next section, and a comparison of their performance will be given afterwards.

Evaluation metrics and loss functions

The loss functions are used as reconstruction evaluation metrics and for the model optimization. The peak signal-to-noise ratio (PSNR) is the most widely used reconstruction quality measurements metrics for super resolutio. Let L be the maximum pixel value, N the number of pixels, I the ground truth image and Î the reconstruction, the PSNR is defined as:

P SN R = 10.log 10 ( L 2 1 N N i=1 (I(i) -Î(i)) 2 ) ( 5 
)
The PSNR is related to the mean square error (MSE), or L 2 loss function, and gives informations about the differences at the pixel level. The L 1 loss is more robust against outliers [START_REF] Lim | Enhanced deep residual networks for single image super-resolution[END_REF]. A neural network trained with this loss may converge faster and produce better results [START_REF]Loss functions for neural networks 1215 for image processing[END_REF]. These losses often give poor performance to represent the reconstruction quality very accurately in real images. Therefore, other functions are used to obtain higher-quality results.

The structural similarity index is also a widlely used image quality index adapted to the human visual system .

It measures the structural similarity between images based on luminance, contrast and structures [START_REF]Image quality assessment form error visibility to structural similarity[END_REF][START_REF]A statistical evaluation of recent full reference image quality assessment algorithms[END_REF].

The poor perceptual quality of super resolution images obtained by optimizing the mean square error has lead to objective functions based on MSE in a transformed space.

The perceptual loss is based on the features produced by deep architecture. In [START_REF]Perceptual losses for real-time style transfer and super resolution[END_REF], the super resolution network is optimized by minimizing the MSE in the feature space produced by a pre-trained network VGG-16. The feature loss encourage the output image to be perceptually similar to the true image instead of forcing the pixels to match exactly [START_REF] Scholkopf | Enhanced deep residual networks for single image super-resolution[END_REF][START_REF] Ledig | Photorealistic single image super-resolution using a generative adversarial network[END_REF][START_REF]Esrgan: enhanced super-resolution generative adversarial networks[END_REF]. The networks VGG [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] and ResNet [START_REF]Deep residual learning for image recognition[END_REF] are widely used pre-trained CNN. A texture loss corresponding to correlations between different feature channels was proposed in [START_REF] Scholkopf | Enhanced deep residual networks for single image super-resolution[END_REF] to create more realistic textures.

For super-resolution, the adversarial losses are used to train gans. The training of the discriminator and of the generator are performed alternatively. In [START_REF] Ledig | Photorealistic single image super-resolution using a generative adversarial network[END_REF], the following losses based on cross entropy are used for the generator, L generator , and the discriminator, L discriminator re-255 spectively :

L generator = -logD( Î) (6) 
L discriminator = -logD(I) -log(1 -D( Î)) ( 7 
)
where Î is the generated image and I the ground truth image. In order to obtain more stable training process and better results, [START_REF]Unsupervised superresolution using cycle-in-cycle generative adversarial networks[END_REF][START_REF]G-ganisr gradual generative adversarial net for image super resolution[END_REF] use adversarial losses based on least squares.
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The various losses presented above are often combined but the choice of the weighting coefficients remains a problem. 

Residual-based methods

Kim et al. later proposed a very deep residual network for Super Resolution (VDSR) [START_REF] Kim | Accurate image superresolution using very deep convolutional networks[END_REF]. VDSR has very deep architecture (20 layers) and each layer consists of small filters. The skip connection from the input image to the output estimation, as shown in Fig. 4(a), forces the convolution filters to learn the residual between the estimation and the ground truth images. This is also the reason why it is named as residual network. The gradient clipping strat-285 egy allows to train the network with high learning rate, thus accelerates the convergence speed despite the huge size of the architecture. The principle of gradient clipping is to truncate the individual gradient so that all the gradients are constrained in a predefined range [START_REF] Kim | Accurate image superresolution using very deep convolutional networks[END_REF]. The authors 290 found that increasing the depth of the networks improves the accuracy of the results. Deeply Recursive Convolutional Network (DRCN) [10] uses a recursive structure so that the length of the network is increased while the number of parameters is reduced.

295

The recursive structure uses the same simple filters repetitively to extract image features. As shown in Fig. 4(b), the green dashed rectangular is a recursive block. All the convolutions marked in green within this recursive block share the same parameters. All the intermediate outputs from 300 recursive block and the input of the network are then fed into a convolution layer to generate output predictions. In Fig. 4(b), there are 4 output predictions. The final estimation is determined by a linear combination of the output predictions, and it is optimized by a squared mean loss.
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One limit to the performance of general recursive networks is that the gradient can explode or vanish, which induces instability and reduces the learning ability of the network. Since the network is optimized with back propagation, all the parameters are updated with the gradi-310 ent chain. With the multiplicative rule of gradient chain, the gradient of parameters may explode or vanish. The authors of [START_REF] Kim | Deeply-recursive convolutional network for image super-resolution[END_REF] tackled this problem with two strategies: recursive supervision and skip connection. Recursive su-pervision means that all the intermediate outputs from 315 recursive block participate in the determination of output predictions, and each output prediction is supervised by a mean squared loss. The differences between the output predictions smooth the gradient of parameters. Moreover, the skip connection between the input of the network and 320 the outputs of the recursive block makes that the network needs less recursion layers, thus it alleviates the gradient explosion and vanishing problem, according to [START_REF] Kim | Deeply-recursive convolutional network for image super-resolution[END_REF]. The recursive supervision is a remedy for vanishing gradient, and the skip connection avoids gradient exploding. These 325 ideas are similar to the ones on which VDSR is based. DRCN indeed reduces the number of parameters, nevertheless, the memory to save intermediate outputs can not be ignored.

Similarly to the DRCN, the Deep Recursive Residual 330 Network (DRRN) [START_REF] Tai | Image super-resolution via deep recur-1110 sive residual network[END_REF] applies recursive learning. But contrary to DRCN, the recursive unit in DRRN is a modified resnet unit, as shown in Fig. 4(c). The green dashed block denotes a modified resnet which consists of two convolution layers, and each convolution layer is a stack of batch nor-335 malization, ReLU activation function followed by a weight layer (convolution filters). The batch normalization outputs batches with zero mean value and standard deviation equal to 1. It helps to increase the learning rate and makes the network more robust to the initialization [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF]. The red 340 dashed block is the recursive block of the network. Within the recursive block, the convolution layers marked in the same colors share the same parameters. The skip connections in the architecture avoids the problem of gradient vanishing and explosion, moreover, it allows the network 345 to learn complex functions. DRRN can be parametrized by B and U , where B is the number of the recursive blocks, U denotes the number of the recursive units within one recursive block. In Fig. 4(c), the network contains 1 recursive block, and this recursive block has 2 residual units 350 (B = 1, U = 2). In fact, the increase of recursive block quantity increases the number of parameters in the network, while the increase of residual unit quantity does not change the amount of parameters but increases the depth of the network. The authors in [START_REF] Tai | Image super-resolution via deep recur-1110 sive residual network[END_REF] noted that even though 355 the DRRN networks are parameterized by B and U , the networks' efficiencies are comparable if their depths are similar.

New methods for the up-sampling operation

There are different ways to upscale images. Zhang et 360 al.

[54] used a convolution layer, at the beginning of the network, to interpolate low resolution images with bicubic method, i.e. the parameters at this layer are fixed. Alternatively, the up-sampling operation is performed with a convolution layer at the beginning of the network [START_REF] Lin | Endoscopic depth measurement and super-spectral-resolution imaging[END_REF],

images at the beginning of the network may increase the burden of calculation and slow down the efficiency of the network.

Accelerated SRCNN [START_REF] Dong | Accelerating the super-resolution 1120 convolutional neural network[END_REF](FSRCNN), as depicted in 5, is an extension of SRCNN. Compared with SRCNN, the non-linear mapping function in FSRCNN is more flexible and robust. Moreover, two additional layers have been introduced to reduce the number of parameters while keeping the performance of the network. FSRCNN achieves real-time processing speed. Differing from ESPCN, FSR-380 CNN applies deconvolution layer with stride of r for upsamping operation. It's noteworthy that the "deconvolution" here is a transposed convolution: low resolution features are spred into high resolution dimension with interval r, then convolve with the filters at the deconvolution Shi et al. in [START_REF] Shi | Real-time single image and 1115 video super-resolution using an efficient sub-pixel convolutional neural network[END_REF] proposed Efficient Sub-Pixel Convolutional neural Network(ESPCN) where the input is the original low resolution images. ESPCN proceeds upsampling operation at the sub-pixel convolution layer.

The stride of sub-pixel convolution is 1/r, where r is the up-sampling factor. The stride can be interpreted as the step size of convolution. The sub-pixel convolution increases features scale by rearranging the pixels learned in the former layer.

However, the shuffle operation in the sub-pixel convolution results in checkerboard artifacts. Shi et al. in a working notes proposed a modified sub-pixel convolution which is free from checkerboard artifacts: the upscale filters are initialized by imitating nearest neighbor interpo-400 lation methods, then the parameters are updated during the training process [START_REF] Aitken | Checkerboard artifact free sub-pixel convolution: A note on sub-pixel convolution, resize convolution and convolution resize[END_REF].

Conventional CNN learns shift-invariant filter, while in [START_REF] Ren | Shepard convolutional neural networks[END_REF], the authors introduced Shepard layer to perform upsampling (or inpainting) operation in a shift-variant way.

The input of this layer are interpolated to super resolution scale, but the interpolated values are 0. A mask is used to control the influence of filters.

ESPCN [START_REF] Shi | Real-time single image and 1115 video super-resolution using an efficient sub-pixel convolutional neural network[END_REF] and FSRCNN [START_REF] Dong | Accelerating the super-resolution 1120 convolutional neural network[END_REF] are two pioneer works which integrate the upsampling operation within the network so that interpolation is not necessary. This is a big progress for the development of deep learning in super resolution problems. Researchers extended these two ideas in their work [START_REF] Lim | Enhanced deep residual networks for single image super-resolution[END_REF][START_REF] Lai | Deep laplacian pyramid networks for fast and accurate super resolution[END_REF][START_REF] Zhang | Residual dense network for image super-resolution[END_REF] to further improve the efficiency of deep learning based methods for super resolution prob-415 lems. The methods proposed in [START_REF] Lim | Enhanced deep residual networks for single image super-resolution[END_REF][START_REF] Lai | Deep laplacian pyramid networks for fast and accurate super resolution[END_REF][START_REF] Zhang | Residual dense network for image super-resolution[END_REF] will be briefly introduced in the next section.

Resnet integrating new up-sampling ways

The Enhanced Deep Residual Networks (EDSR) [START_REF] Lim | Enhanced deep residual networks for single image super-resolution[END_REF] aims to use residual block to enhance the structural in- normalization and introduced a constant scaling layer (the green layer marked with 'Mult' in Fig. 6). They explained 425 that the suppression of batch normalization reduces memory consumption and keeps the range flexibility of features.

A constant scaling layer is proposed in [START_REF] Szegedy | Inception-1260 v4, inception-resnet and the impact of residual connections on learning[END_REF]. [START_REF] Lai | Deep laplacian pyramid networks for fast and accurate super resolution[END_REF] for super resolution problems. The main idea is to gradually upscale features. Its ar-440 chitecture has two branches: one for feature extraction, the other serves for reconstruction, as presented in Fig. 7. In feature extraction branch, convolution layers marked in red abstract features' characters, deconvolution (transposed convolution) layers marked in blue upscale features. Figure 8: Illustration of SRGAN [START_REF] Ledig | Photorealistic single image super-resolution using a generative adversarial network[END_REF]. k represents the size of filter, n as the number of feature maps, s as the stride for each convolutional layer.

Densely connected network

The residual network or resnet unit plays an important role in the recent advanced deep learning network designed to solve super resolution problems. It can be 460 seen that the skip connection has a significant impact on deep neural networks. Huang et al. introduced the densely connected CNN (denseNet) in [START_REF] Huang | Densely connected convolutional networks[END_REF] to solve object recognition problems, where more skip connections have been introduced compared with residual network or ResNets. The 1 × 1 convolution layer is used to reduce the dimensionality. The residual method forces the filters to learn residual part information. For instance, in VDSR, the long skip connection conveys low frequency information to the output so that the convolution layers in the network are forced to learn high frequency information. Therefore, the learning task is simplified. The dense block boosts the ability of the network to describe complex functions. The residual dense block takes the advantages of both Residual block and Dense block, thus is expected to give a better 500 performance.

Moreover, if we say the residual dense block is a micro network structure, Zhang et al. in [START_REF] Zhang | Residual dense network for image super-resolution[END_REF] projects this structure into a macro scale. Fig. 12 shows the entire architecture of RDN where the residual dense structure is SRDenseNet and RDN. First, in the scale of block unit: RDN has a long skip connection similar to residual block which SRDenseNet does not have. Second, the connections between block units: SRDenseNet does not have con-510 nections among the blocks while in RDN, the blocks are densely connected, following the architecture of denseNet. Third, in the scale of global structure: in SRDenseNet, the low and high level features are concatenated together before passing though the bottleneck; but in RDN, only the 515 high level features are densely connected, then combined with low level features via residual structure.

New convolution operations

Improved convolution operations have been proposed to improve the super resolution results. The dilated con-520 volution operation support exponential expansion of the receptive field with the same filter size. A large receptive field can be obtained with shalllow networks. The exploitation of contextual information is very efficient and it facilitates the generation of realistic details for super-525 resolutions. These new convolution operations have been used in [START_REF]Image super-resolution via deep dilated convolutional networks[END_REF][START_REF] Zareapoor | Image super ressolution by dilated dense progressive network[END_REF] and they achieve a much better performance.

Generative adversarial networks for super resolution 530

With GAN models the generator creates super resolution images that a discriminator has to distinguish as a real high resolution image or as an artifically super resolved one. If the discriminator can not see the difference between the estimated super resolution image and the high 535 resolution image, this estimation is assumed to be a good approximation of the high resolution image. The discriminator thus constrains the estimation to follow some predefined distribution. With GAN models the PSNR values are degraded but the perceptual quality is generally im-540 proved. Several super resolution methods based on GANs have been investigated [START_REF] Ledig | Photorealistic single image super-resolution using a generative adversarial network[END_REF], [START_REF]Srfeat: single image super-1275 resolution with feature discrimination[END_REF]. SRGAN [START_REF] Ledig | Photorealistic single image super-resolution using a generative adversarial network[END_REF] uses a multicomponent loss function with several parts, (1) a MSE loss that promotes pixels similarity, (2) a perceptual similarity distance based on deep network features (VGG net-545 work), (3) a standard GAN loss. VGG is a very deep CNN, it uses small filters to capture image features at different scales. With the increase of the layer's depth, the size of features decreases and the number of channels increases. Compared with mean square error distance, dis-550 tance of features given by VGG network is less sensible to the changes at pixel level. This framework promotes super resolved images with a good perceptural qualtiy and close to the manifold of natural images.

SRFeat is another GAN super-resolution model with 555 feature discrimination [START_REF]Srfeat: single image super-1275 resolution with feature discrimination[END_REF]. In this work, an additional discriminator is used to help the generator to generate high-frequency structural features rather than noisy artifacts. In the context of GANs, the work of Sajjad etal . follows a similar approach except with a different archi-560 tecture [START_REF] Scholkopf | Enhanced deep residual networks for single image super-resolution[END_REF]. Very recently, by leveraging the basic GAN framework, Yuan et al. [START_REF]Unsupervised superresolution using cycle-in-cycle generative adversarial networks[END_REF] proposed an unsupervised super resolution algorithm with cycle gans [START_REF]Unsupervised superresolution using cycle-in-cycle generative adversarial networks[END_REF].

It is well-known that the training process of GANs is a challenging task. To overcome this issue and stabilize 565 the training, [START_REF]G-ganisr gradual generative adversarial net for image super resolution[END_REF] propose a GAN network based on least square loss function with a gradual learning process from small upsampling factors to large upsampling factors. The output of each layer is gradually improved in the next layer.
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The ESRGAN [START_REF]Esrgan: enhanced super-resolution generative adversarial networks[END_REF] is based on the SRGAN but incorporates dense blocks with residual connections between the input and the output of each block (residual in residual dense block) without batch normalization to facilitate training with a deeper network. A global residual con-575 nection is used to enforce residual learning. An enhanced discriminator is also employed in the model. A improved perceptual loss is introduced by using the VGG features.

Comparison of the performances of the different networks 580

Tab.1 compares the performance of different architectures in terms of PSNR. All the results are collected from the original papers. The Set5 [START_REF] Bevilacqua | Low-complexity single-image super-resolution based on nonnegative neighbor embedding[END_REF] and Set14 [START_REF] Zeyde | On single image scale-up using 1280 sparse-representations[END_REF] are two commonly used test sets for super resolution natural image benchmarks, including 5 and 14 images respectively. The RDN+ outperforms all the other methods in the table. The sign '+' denotes that the results are improved with self-similarity strategy [START_REF] Lim | Enhanced deep residual networks for single image super-resolution[END_REF]. As we know, during the 590 training stage, data augmentation increases the amount of training data, thus boosts the network performance. Self-similarity has the similar principle, but it is employed during the reconstruction stage. It assumes that the network is invariable to the geometrical transformation of the 595 input data. For example, a test sample has 8 augmented inputs after geometric transformation (including identity). These 8 samples will be fed into the network and generate 8 estimations. The final result is the average of these 8 estimations after the corresponding inverse geometric trans-600 formation. It's noteworthy that the invariability of geometrical transformation is a strong condition. It should be noted that such a comparison is only partially reliable sincd each network is trained in a different way 30.90 27.73 FSRCNN [START_REF] Dong | Accelerating the super-resolution 1120 convolutional neural network[END_REF] 30.55 27.50 EDSR [START_REF] Lim | Enhanced deep residual networks for single image super-resolution[END_REF] 32.46 28.80 EDSR+ [START_REF] Lim | Enhanced deep residual networks for single image super-resolution[END_REF] 32.62 28.94 LapSRN [START_REF] Lai | Deep laplacian pyramid networks for fast and accurate super resolution[END_REF] 31.33 28.06 SRGAN [START_REF] Ledig | Photorealistic single image super-resolution using a generative adversarial network[END_REF] 29.40 26.02 SRDenseNet [START_REF] Tong | Image super-resolution using dense skip connections[END_REF] 32,02 28,50 RDN [START_REF] Zhang | Residual dense network for image super-resolution[END_REF] 32.47 28.81 RDN+ [START_REF] Zhang | Residual dense network for image super-resolution[END_REF] 32. 61 28.92 The different algorithms are generally evaluated on the 605 peak signal-to-noise ratio (PSNR) and the structural similarity index [START_REF]Image quality assessment form error visibility to structural similarity[END_REF]. The PSNR and SSIM are better for the ESRGAN [START_REF]Esrgan: enhanced super-resolution generative adversarial networks[END_REF], but a comparison is difficult since many factors as network complexity, depth of the networks, number of parameters are modified. Methods with late upsam-610 pling have a lower computational cost that methods that performs the upsampling earlier [START_REF] Dong | Accelerating the super-resolution 1120 convolutional neural network[END_REF][START_REF] Shi | Real-time single image and 1115 video super-resolution using an efficient sub-pixel convolutional neural network[END_REF][START_REF] Lim | Enhanced deep residual networks for single image super-resolution[END_REF]. Almost all recent super resolution methods obtain improved perfor-mance by adding more weights and layers [START_REF] Lim | Enhanced deep residual networks for single image super-resolution[END_REF][START_REF] Tai | Image super-resolution via deep recur-1110 sive residual network[END_REF]. It is generally found that the network depth contribute to a 615 better PSNR and image quality [START_REF] Lim | Enhanced deep residual networks for single image super-resolution[END_REF]. [START_REF] Kim | Deeply-recursive convolutional network for image super-resolution[END_REF][START_REF] Tai | Image super-resolution via deep recur-1110 sive residual network[END_REF] , [START_REF] Zhang | Residual dense network for image super-resolution[END_REF].

Though FSRCNN is a significant improvement in speed over SRCNN, recent studies with densely connected networks showed that more sophisticated network structures with skip connections and layer reusing benefit not only 620 performance and speed, but also reduces training time. Several types of skip connections are encountereed in deep networks, global connections, local connections, recursive connections and dense connections They have improved drastically SR results. VDSR [START_REF] Kim | Accurate image superresolution using very deep convolutional networks[END_REF] was based on global resid-625 ual learning and improved much the SRCNN [START_REF] Dong | Accelerating the super-resolution 1120 convolutional neural network[END_REF]. The effectiveness of recursive connections was shown in [START_REF] Kim | Deeply-recursive convolutional network for image super-resolution[END_REF][START_REF] Tai | Image super-resolution via deep recur-1110 sive residual network[END_REF]. Local residual connections were used in [START_REF] Lim | Enhanced deep residual networks for single image super-resolution[END_REF]. Similarly ES-RGAN [START_REF]Esrgan: enhanced super-resolution generative adversarial networks[END_REF], and [START_REF] Zhang | Residual dense network for image super-resolution[END_REF], use dense and global connections As noticed in [START_REF] Ledig | Photorealistic single image super-resolution using a generative adversarial network[END_REF], the L 2 or L 1 loss are not optimal.
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Taking into account only the intensity differences can not reflect the perceptual quality. In this context, recent GAN models have obtained state-of the art super resolution results [START_REF]G-ganisr gradual generative adversarial net for image super resolution[END_REF], [START_REF]Esrgan: enhanced super-resolution generative adversarial networks[END_REF].

In this section, we introduced some deep learning net-
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works for super resolution problems on natural image sets. The network evolved from the SRCNN to residuel based network. The progress in the way of up-sampling led to the development of the residual based architecture, and the network proposed today tends to be densely connected. 

Applications of deep learning in medical imaging super resolution problems

In medical image processing, various factors may have an impact on the spatial resolution of and image depending on the modality. The literature on deep learning methods 645 in medical images super resolution is recent, yet there is already a strong interest on this topic of applications for various imaging modalities, such as CT, MRI, retinal vascular fundus image [START_REF] Mahapatra | Image superresolution using progressive generative adversarial networks for medical image analysis[END_REF][START_REF] Mahapatra | Retinal vasculature segmentation using local saliency maps and generative adversarial networks for image super resolution[END_REF] (online dataset: http://www. eyepacs.com), electron microscopy [START_REF] Heinrich | Deep learning for isotropic super-resolution from non-isotropic 3D electron microscopy[END_REF] and endoscopy [START_REF] Lin | Endoscopic depth measurement and super-spectral-resolution imaging[END_REF]. 

CT images

The spatial resolution of in vivo CT image scanning is limited because of the scan time, body motion, or dose limit and DL techniques can be very useful to improve it.

Umehara et al. investigated the application of SRCNN 655 on CT chest images [START_REF] Umehara | Application of super-resolution convolutional neural network for enhancing image resolution in chest CT[END_REF]. The HR images were experimental images from The Cancer Imaging Archive (TCIA), LR images were simulated based on HR images. They showed that SRCNN outperforms traditional linear interpolation methods.

Park et al. [START_REF] Park | Computed tomography super-resolution using deep con-1300 volutional neural network[END_REF] came up with a modified U-net to solve super resolution and denoising problems for 2D brain CT images. HR images were obtained from PET CT, LR images were generated by taking the average of 3D high resolution slices. The proposed network architecture is for image segmentation [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF]. U-net displays a 'U' shape, the downward path shrinks feature size while increasing channel number, the upward path increases feature size and concatenates the corresponding features extracted on the contraction path. Compared with original U-net, the modified U-net architecture in [START_REF] Park | Computed tomography super-resolution using deep con-1300 volutional neural network[END_REF] has additional batch normalization, which speeds up convergence and efficiently avoid local minima due to improper initialization.

Mansoor et al. have investigated the application of SRGAN [START_REF] Ledig | Photorealistic single image super-resolution using a generative adversarial network[END_REF] for two imaging modalities (CT and MRI) in [START_REF] Mansoor | Adversarial approach to diagnostic quality volumetric image enhancement[END_REF]. They applied VGG-like network to abstract the features, thus avoiding to enhance the similarity based on pixel-level. The basic mechanism is similar to the SRGAN introduced in the last section. The network was trained with 2D slices in three planes. This research work would be even more interesting if a comparison with 2D and 3D was given. In their training set, the LR images were generated by down sampling the high resolution images smoothed with a Gaussian kernel.

You et al. proposed a GAN-CIRCLE to solve CT super resolution problems [START_REF] You | CT super-resolution gan constrained by the identical, residual, and cycle learning ensemble (gan-circle)[END_REF]. As mentioned in the paper, one potential risk of GAN is that the generator may give an estimation following a good distribution which does not match the input image. Authors in [START_REF] You | CT super-resolution gan constrained by the identical, residual, and cycle learning ensemble (gan-circle)[END_REF] proposed a circle structure which ensures that, apart from probability distribution, the output image is corresponding to the input image. Concretely, two GAN networks are linked together and form a circle. Given an input signal x, the output y of the forward GAN network will go through the backward GAN structure and provide an estimation x which is close to the original input signal x. Similarly for the inverse order. Moreover, the total variation regularization has been added to the loss. Furthermore, if a high resolution image is fed into the forward generator, the output is assumed to be similar to its input. This assumption may enhance the robustness of the network. The dataset in this work was composed of a tibia dataset and an abdominal dataset. Like in most the previously discussed works, the LR images were simulated from experimental HR images. [START_REF] You | CT super-resolution gan constrained by the identical, residual, and cycle learning ensemble (gan-circle)[END_REF]. x is the noisy LR input, y is the HR image, G is the generator of forward Gan, from LR towards HR, F is the generator of the backward GAN, from HR towards LR. Dx and Dy are discriminators of backward and forward discriminators. Lsup, L adv , L idt and L jst are four losses in the entire work, where Lsup corresponds to generator loss supervised, L adv is the adversarial loss, L idt is a loss forcing F (x) to be close to x, G(y) close to y. The lose L jst integrates total variation regularization to reduce noise on the results.

MRI images

The spatial resolution of MRI images may be degraded due to the constraints such as image scan time, body motion, patients' comfort considerations, hardware configurations. The applications of deep learning for MRI SR prob-710 lems mainly involves brain [START_REF] Pham | Brain MRI super-resolution using deep 3D convolutional networks[END_REF][START_REF] Chen | Efficient and accurate mri super-resolution using a generative adversarial network and 3D multi-level densely connected network[END_REF][START_REF] Chen | Brain mri super resolution using 3D deep densely connected neural networks[END_REF][START_REF] Shi | Superresolution reconstruction of mr image with a novel residual learning network algorithm[END_REF][START_REF] Zhao | Channel splitting network for single mr image super-resolution[END_REF][START_REF] Sanchez | Brain mri super-resolution using 3D generative adversarial networks[END_REF][START_REF] Zeng | Simultaneous single-and multi-contrast super-resolution for brain mri images based on a convolutional neural network[END_REF][START_REF] Liu | Fusing multi-scale information in convolution network for mr image super-resolution reconstruction[END_REF] and cardiac images [START_REF] Oktay | Anatomically constrained neural networks (acnns): application to cardiac image enhancement and segmentation[END_REF][START_REF] Oktay | Multi-input cardiac image super-resolution using convolutional neural networks[END_REF][START_REF] Giannakidis | Superresolution reconstruction of late gadolinium enhancement cardiovascular magnetic resonance images using a residual convolutional neural network[END_REF]. In these researches, low resolution images can be experimental images [START_REF] Shi | Superresolution reconstruction of mr image with a novel residual learning network algorithm[END_REF][START_REF] Oktay | Anatomically constrained neural networks (acnns): application to cardiac image enhancement and segmentation[END_REF][START_REF] Liu | Fusing multi-scale information in convolution network for mr image super-resolution reconstruction[END_REF] or simulation images [START_REF] Pham | Brain MRI super-resolution using deep 3D convolutional networks[END_REF][START_REF] Chen | Efficient and accurate mri super-resolution using a generative adversarial network and 3D multi-level densely connected network[END_REF][START_REF] Chen | Brain mri super resolution using 3D deep densely connected neural networks[END_REF][START_REF] Shi | Superresolution reconstruction of mr image with a novel residual learning network algorithm[END_REF][START_REF] Zhao | Channel splitting network for single mr image super-resolution[END_REF][START_REF] Sanchez | Brain mri super-resolution using 3D generative adversarial networks[END_REF][START_REF] Zeng | Simultaneous single-and multi-contrast super-resolution for brain mri images based on a convolutional neural network[END_REF][START_REF] Liu | Fusing multi-scale information in convolution network for mr image super-resolution reconstruction[END_REF][START_REF] Oktay | Multi-input cardiac image super-resolution using convolutional neural networks[END_REF]. Precisely, simulated low resolution images can be generated 715 via k-space truncation or down-sampling high resolution images with or without Gaussian blurring. We summarize online MRI images sets in the following list: 

2D MRI images

Zeng et al. [START_REF] Zeng | Simultaneous single-and multi-contrast super-resolution for brain mri images based on a convolutional neural network[END_REF] worked on a method estimating singlecontrast and multi-contrast MRI images simultaneously. Single-contrast sub-network solves super resolution problem of low resolution T2 images, the multi-contrast subnetwork estimates multi-contrast T2 images based on the reference T1 images and T2 super resolution images. HR images are MRI brain images, LR images are simulation data.

Shi et al. [START_REF] Shi | Superresolution reconstruction of mr image with a novel residual learning network algorithm[END_REF] used local residual block and global residual network to extend SRCNN to solve a 2D MRI SR problem. The investigated datasets include the first three datasets in the dataset list.

Zhao et al. [START_REF] Zhao | Channel splitting network for single mr image super-resolution[END_REF] extended a SRCNN architecture for 2D MRI brain images. The network consists of three main sub-networks: feature extraction sub-network, non-linear mapping sub-network and reconstruction. The non-linear mapping sub-network is composed of a set of cascaded Channel splitting blocks (CSB). Each block follows mergeand-run (MAR) strategy, it splits features into 2 branches, precisely, one for densenet, the other for residual learning. MAR has been proposed with different structures, but the general idea is to split features at one channel into two branches so that the features at the same channel can be processed differently, for instance, using different convolutional filter size or different structures to extract features. In this paper, the authors proposed to use two branches with different network structures, they argued that this splitting channel structure is beneficial from the advantages of both residual learning and densenet learning: the former one enhances the reuse of features and stabilize the network, the latter one explores new characters of features. Alternatively speaking, the residual learning branch learns residual information (high frequency information), while the densenet learning branch extracts features' characters directly. A fusion layer is added at the end of CSB, which merges the features generated from the two branches together. Additionally, there is a skip connection from the input of the block to the output of the block, authors stated that such multi-level residual network favors the stabilization of the network and slightly improve the performance of the network. Since it is hard to keep the network stable for MR images (limited image quality), the multi-scale residual network is even more meaningful. The work is performed with IXI dataset (5th dataset in the dataset list).

Liu et al. put forward a multi-scale fusion convolution network (MFCN) [START_REF] Liu | Fusing multi-scale information in convolution network for mr image super-resolution reconstruction[END_REF]. The network has several multi-scale fusion units (MFU). Each MFU corresponds to an estimation obtained with filters at a specified scale. A set of MFU helps to reconstruct super resolution images with different scale features. The '+' operation in the fusion layer forces each MFU to scale their magnitude respectively. The network was tested on both simulation and real LR image sets.

Oktay et al. came up with T-L network [START_REF] Oktay | Anatomically constrained neural networks (acnns): application to cardiac image enhancement and segmentation[END_REF], which was and improve the accuracy of estimation at pixel level. The block "Segmentation" and "Super Res" in Fig. 16 enhance the similarity between the estimation and the reference at pixel-level, the correspondent loss is "X-Entropy Loss L x " for segmentation, "Smooth L 1 loss" for super resolution 800 problem. The shape prior is integrated via a perceptual loss. The idea is to non-linearly transform the estimation and the reference into a low dimension space and to penalize the dissimilarity between them. In SRGAN, the perceptual loss is considered in the feature space de- [START_REF] Oktay | Multi-input cardiac image super-resolution using convolutional neural networks[END_REF]. The LR images were generated from HR MRI images. The proposed network was similar to VDSR. They proposed to 820 use a deconvolution layer to replace the interpolation operation at the beginning of the network. Multi-input allows to use image information along different directions. Zhao et al. extended EDSR [START_REF] Lim | Enhanced deep residual networks for single image super-resolution[END_REF] in MRI brain super resolution reconstruction [START_REF] Zhao | Self superresolution for magnetic resonance images using deep networks[END_REF]. In their original database, the images 825 in axial plane is at high resolution, but the saggital and coronal plan are at low resolution scale. They artificially degraded the high resolution image in axial plane to generate low resolution images in axial plane. Afterward, they trained EDSR with the paired low and high resolution im-830 ages which are in axial plane. Then the low resolution image in sagittal and coronal plane will be reconstructed via the trained EDSR model. This approach assumes that the degradation kernel is isotropic in three dimensions, which is crucial for the quality of reconstruction.

Based on this work, Zhao et al. proposed an antialiasing self super resolution method [START_REF] Zhao | A deep learning based anti-aliasing self super-resolution algorithm for mri[END_REF]. Two EDSR networks are trained in this method, one for self super resolution (SSR) task, the other for self anti-aliasing (SAA) task. In the training set, the slices at xy-plan of 3D volumes were regarded as HR images, both LR and aliased LR images were simulated based on HR images. In the reconstruction stage, the network solving SAA was applied to the slices at xz-plan, then the network solving SSR was applied to the slices at yz-plan. A data augmentation (rotation) strategy was applied during training and reconstruction stages. Both artificial and experimental images were tested. The obtained results indicated that a combination of SAA and SSR outperformed the one only based on SSR. As the authors highlighted, no external training data was needed in this approach. By exploring the HR information from 2D slices at a specific direction and transferring the learnt knowledge to the slices at other directions, this work presented a new way to determine 3D SR volume via 2D slices.

Sanchez et al. in [START_REF] Sanchez | Brain mri super-resolution using 3D generative adversarial networks[END_REF] applied GAN network to solve 855 SR problem of 3D MRI brain image. Different up-sampling methods have been compared, including nearest neighbor interpolation followed by convolution (NNC), sub-pixel convolution (SPC) [START_REF] Shi | Real-time single image and 1115 video super-resolution using an efficient sub-pixel convolutional neural network[END_REF] and modified sub-pixel convolution (MSPC) [START_REF] Aitken | Checkerboard artifact free sub-pixel convolution: A note on sub-pixel convolution, resize convolution and convolution resize[END_REF]. Their results indicated that the NNC has similar to the denseNet presented in Section 3.4.5. The LR images were simulated from experimental MRI images. They concluded that the 3D neural networks were better than their 2D counterparts, and the proposed method outperformed 3D FSRCNN. Yet, very few details were given. cause of weight sharing; less overfitting due to the reuse of features. Chen et al. extended this work to multi-level DCSRN-GAN in [START_REF] Chen | Efficient and accurate mri super-resolution using a generative adversarial network and 3D multi-level densely connected network[END_REF]: the single DSCRN block in [START_REF] Chen | Brain mri super resolution using 3D deep densely connected neural networks[END_REF] was replaced with a set of shallow DCSRN blocks. The multilevel DSCRN is integrated into GAN as generator.

880 Some existing studies directly use directly the 2D network structure and apply it slice by slice. However, to fully solve the ill-posed super resolution problem, a 3D model is more preferable as it can directly extract 3D structural information. The recent studies [START_REF] Pham | Brain MRI super-resolution using deep 3D convolutional networks[END_REF], [START_REF] Chen | Brain mri super resolution using 3D deep densely connected neural networks[END_REF], [START_REF] Sanchez | Brain mri super-resolution using 3D generative adversarial networks[END_REF] [START_REF] Mahapatra | Retinal vasculature segmentation using local saliency maps and generative adversarial networks for image super resolution[END_REF] for SR in retinal vascular images. The LR images in the dataset are simulation images. The salient map was estimated based on image curvature map, element distribution (pixel entropy). The curvature map contained gra-900 dient and second order derivative information of features, the probability used for pixel entropy was estimated via the histogram within a small window. The salient map permits to minimize a weighted mean squared error between the estimation and the ground truth. Moreover, it 905 is also regarded as a prior information. The global architecture of [START_REF] Mahapatra | Retinal vasculature segmentation using local saliency maps and generative adversarial networks for image super resolution[END_REF] follows GAN framework.

Since the hyper-parameters (weight and window size) used in salient maps are very crucial but may vary for different samples, the performance of the proposed network 910 was not consistent in the entire dataset. Mahapatra et al. applied successive GAN to get rid of empirically selected hyper-parameters in the salient maps [START_REF] Mahapatra | Image superresolution using progressive generative adversarial networks for medical image analysis[END_REF]. At least two GAN networks were cascaded in the architecture, each of them upscales images with factor 2. The previous GAN 915 provides inputs to the sequel GAN. A triplet loss has been considered in the loss function, which aims to minimizing the distance between the estimation of the last GAN and the target while maximizing the difference between the estimation of the last GAN and its input. In this work, LR 920 images are simulation images.

Lin et al. solved a super-spectral resolution problem in endoscopic depth measurement [START_REF] Lin | Endoscopic depth measurement and super-spectral-resolution imaging[END_REF]. Both HR and LR images were experimental images. A network solving SR problems was applied along the spectral dimension (model 925 1), then the parameters in model 1 were frozen and the follow-up network which is used to merge RGB and sparse spectral signals (model 2) was trained. Afterwards, all the parameters in model 1 and 2 were updated till convergence. This work shows an example about how to in-super resolution algorithms developped for RGB images can very often be applied to medical images acquired with different modalities. Yet, the hyperspectral images have a very low spatial resolution. The classical deep learning 935 methods can not generate pixel-level dense multispectral images with a good robstness. It is necessary to integrate the information from dense RGB images to increase the spatial resolution of hyperspecrtral images.

The influence of DL technique in medical images tends 940 to be wide and deep. The applications of DL methods for SR problems in medical images, presented in this section, are not exhaustive.

Discussion

Deep learning methods have a vast field of application 945 in medical image processing tasks [START_REF] Litjens | A survey on deep learning in medical image analysis[END_REF], such as classification, detection, segmentation, registration. With the development of DL methods for SR, researchers in medical image have first proposed applications, then also new architectures which permit to integrate priors to boost the 950 performance of the network and facilitate the follow-up analysis and research. However, lack of high quality references and particular image priors or constraints are two main bottlenecks to generalize deep learning SR methods in medical imaging.
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HR ground truth images are difficult to obtain, in clinical imaging due to the various limitations. Meanwhile, the choice of the appropriate priors is also important and may be specific to a given modality. In the following, we summarize some methods for data augmentation and different 960 ways to inject particular priors.

Data paucity

Data augmentation is used to increase the dataset. Conventional data augmentation consists of flipping, rotation, symmetric, translation, scaling images, adding addi-965 tive noise, changing brightness, adapting contrast, gammatransformation, modifying colors and so on.

Besides these operations, researchers considered to use DL networks to perform data augmentation. Zhang et al. applied transfer learning [START_REF] Zhang | Deep learning-and transfer learning-based su-1245 per resolution reconstruction from single medical image[END_REF] to increase the dataset.
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They use scale-invariant feature transform (SIFT) to extract characteristic features over the available medical image set, then search the similar features among the natural image set. The matching subregions will be added into the dataset.

975

Lemley et al. came up with "smart augmentation" [START_REF] Lemley | Smart augmentation learning an optimal data augmentation strategy[END_REF] to solve the data paucity problem: a network is employed to generate new images based on 2 or more samples in the dataset. When images are classified with different labels, several networks can be trained so that each class has a 980 different way to synthesize its new images. Shin et al. put forward to use GAN to synthesize medical images for segmentation tasks in [START_REF] Shin | Medical image synthesis for data augmentation and anonymization using generative adversarial networks[END_REF].

Cubuk et al. attempted to learn an effective strategu to augment data automatically [START_REF] Cubuk | Autoaugment: Learning augmentation policies from data[END_REF]. The proposed method 985 uses a controller to predict 5 sub-policies. The controller is a recurrent neuron network, and each sub-strategy has two basic operations for data augmentation, such as translation or rotation. Every candidate strategy includes a set of sub-strategu which are characterized by 2 parameters: 990 probability to apply the strategy and the magnitude used in the strategy. The controller will be trained to choose sub-stategy for a given database based on reward signals. A child model is trained with data augmented with the selected sub-strategy, and its final performance over a val-995 idation set is regarded as reward signals to optimize the controller. Readers can refer to [START_REF] Cubuk | Autoaugment: Learning augmentation policies from data[END_REF][START_REF] Zoph | Learning transferable architectures for scalable image recognition[END_REF] for more details.

Data augmentation is a powerful tool facing small dataset. It's noteworthy that the way of data augmentation should be strictly consistent with medical applications. For ex-1000 ample, when the color of tissue is very sensitive for the diagnosis conclusion, data augmentation based on color may degrade the performance of the tested approach.

Adding prior

Both natural images set and medical images set need 1005 priors to boost the performance of SR techniques. Liang et al. [START_REF] Liang | Incorporating image priors with deep convolutional neural networks for image super-resolution[END_REF] integrated gradient prior by introducing a feature extraction layer where the parameters are fixed. Meanwhile, salient maps, investigated in [START_REF] Mahapatra | Retinal vasculature segmentation using local saliency maps and generative adversarial networks for image super resolution[END_REF], can be also regarded as handcrafted prior information. As previously 1010 mentioned, one drawback of this prior is that it contained hyper-parameters which are very crucial but need to be chosen empirically for every sample in the dataset. As previously mentioned, the T-L network proposed in [START_REF] Oktay | Anatomically constrained neural networks (acnns): application to cardiac image enhancement and segmentation[END_REF] used auto encoder to integrate image constraints.

1015

Different from handcrafted priors such as gradient information, the prior considered in this paper is described with an auto encoder. Both SR image and the ground truth are encoded into a low dimension space and their compacted features are optimized to be similar. 1020 Lehtinen et al. in [START_REF] Lehtinen | Noise2noise: Learning image restoration without clean data[END_REF] proposed a denoising method in which the network is trained only based on noisy images, i.e. no clean image is in the dataset. During the training process, both input and output are noisy images including the same clean image but with different noise.

1025

In the test stage, a noisy image will be sufficient for the network to accomplish the denoising task. One important assumption of this work is that the average value of noise is 0. The authors explained that if the average of noise is 0, then the average of a set of noisy images is a denoised 1030 image. Since the network is trained with stochastic gradient descent methods, although every example in the batch corresponds to an inaccurate optimization direction, the average of these examples gradients points toward a correct direction. [START_REF] Ulyanov | Deep image prior[END_REF]. Precisely, the inputs are a set of uniformly distributed random noise features, parameters in the network are randomly initialized and are optimized by minimizing 1040 the L 2 distance between the output of the network and the given degraded image. Intuitively, the network can be compared to a regularizer in the optimization task, but being more flexible than handcrafted regularization terms such as total variation regularization. This approach has 1045 been tested on several tasks, including denoising, super resolution, inpainting. Its performance in denoising and inpainting tasks are very impressive, but becomes relatively limited for SR, because no further detail information is provided.

Both [START_REF] Lehtinen | Noise2noise: Learning image restoration without clean data[END_REF][START_REF] Ulyanov | Deep image prior[END_REF] investigate how to improve image quality in the absence of ground truth. These methods allows to find deep prior hidden in the noisy images. Such priors can be used to solve SR problems.

Conclusion 1055

In this review, we have briefly gone through the state of the art of deep learning for SR of natural images, and presented applications and developments for medical images. The main challenges, data paucity and how to add priors have finally been discussed. Deep learning methods 
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 1 Figure 1: Illustration of a classical neuron network. In the training stage, the input and output are fed with training data, the network is optimized by minimizing a user-selected function with respect to parameters within the network. Each solid circle represents a neuron which consists of linear transformation and nonlinear activation function.
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 2 Figure 2: Illustration of 3 activation functions: ReLU, PReLU, sigmoid activation functions. The coefficient for the negative parts in ReLU is zero, whereas in PReLU, it is parametrized by a. Sigmoid function is used for two label classification.
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 31 Single image super resolution versus multiple image super resolution Two types of super resolution methods can be distinguished: single-image and multiple-image methods. The aim is to generate a high-resolution image from a single 190 or from multiple low-resolution images. Multiple-image super-resolution is based on information fusion between subpixel shifted low resolution images and generally allows for higher reconstruction accuracy. Multiple-image based methods generally utilize global/local geometric or photo-195 metric relations between multiple low resolution images.
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 4 Deep learning architecture for natural image set 3.4.1. The first DL method for solving SR 265 Super resolution convolutional neural network (SRCNN) [2] is a cornerstone in the literature of deep learning for super resolution problems. It seldom disappears in the benchmarks of CNN based approaches. The schema of SRCNN is presented in Fig.3. In this three layer network, 270 the first layer is responsible for patch extraction and representation of features at LR scale, the layer in the middle is used to approximate a nonlinear mapping function, and the third layer reconstructs super resolution images. SR-CNN is a landmark in SR development, nevertheless, it is 275 usually blamed for its shallow structure.

Figure 3 :

 3 Figure 3: Schema of SRCNN: a network consists of 3 layers. The first layer is used for patch extraction and representation, the layer in the middle corresponds to non-linear mapping, the third layer reconstructs final SR images.

Figure 4 :

 4 Figure 4: Figure adapted from[START_REF] Tai | Image super-resolution via deep recur-1110 sive residual network[END_REF]. (a) VDSR[START_REF] Kim | Accurate image superresolution using very deep convolutional networks[END_REF]. The skip connection between the input and output ensures the stability of the network, particularly for deep network. (b) DRCN[START_REF] Kim | Deeply-recursive convolutional network for image super-resolution[END_REF]. The dashed green block is a recursive block. The convolution layers within the recursive block share the same parameters. (c) DRRN (B=1, U=2)[START_REF] Tai | Image super-resolution via deep recur-1110 sive residual network[END_REF]. B denotes the number of recursive blocks and U is the number of recursive units in a recursive block. The green dashed block denotes a residual unit, the red dashed block represents a recursive block. Inside of a recursive block, the convolution layers in the same color share the same parameters.

Figure 5 :

 5 Figure 5: Illustration of FSRCNN architecture[START_REF] Dong | Accelerating the super-resolution 1120 convolutional neural network[END_REF] 

Figure 6 :

 6 Figure 6: Illustration of EDSR network[START_REF] Lim | Enhanced deep residual networks for single image super-resolution[END_REF]. The ResBlock is stacked by a convolution layer, Relu activation, convolution layer and a constant scaling layer. The constant scaling layer simply rescales the residual with the purpose of keeping the stability of the network when the number of filters exceeded 1000[START_REF] Szegedy | Inception-1260 v4, inception-resnet and the impact of residual connections on learning[END_REF].

445Figure 7 :

 7 Figure 7: Illustration of LapSR [41]. Red arrows refers to convolution layers, blue arrows are transposed convolutions, green arrows are element-wise addition.
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Fig. 9 Figure 9 :

 99 Fig.9 demonstrates the framework of the denseNet. Dif-

  fering from ResNets, the denseNet concatenates the outputs of former blocks while ResNets uses summation. The denseNet encourages to reuse the features, enhance signal propagation, as a result, less parameters are required and 470 reduce the model size by employing small growth rate.The success of denseNet quickly draws the attention of researchers in the super resolution field[START_REF] Tong | Image super-resolution using dense skip connections[END_REF][START_REF] Zhang | Residual dense network for image super-resolution[END_REF]. Tong et al. in[START_REF] Tong | Image super-resolution using dense skip connections[END_REF] build a framework for super resolution problems using dense skip connections (SRdenseNet). The schema is 475 illustrated in Fig.10. As explained in the caption of Fig.10,

Figure 10 :

 10 Figure 10: Illustration of the architecture of SRdenseNet [60]. It uses dense block to enhance image features then feed the enhanced features into deconvolution layers for upsampling. Long skip connections preserve low level features and enables the dense blocks to learn high level features.The bottleneck combines both low and high level features and feed the results into deconvolution layers.the SRdenseNet extends the conception of denseNet to blocks for the purpose of abstracting high level features, and combines all the high level features with low level features via bottleneck layer, afterward passing though de-480

Figure 11 :

 11 Figure 11: Comparison of different network blocks[42]. (a) Residual block in [43]. (b) Dense block in SRDenseNet [60]. (c) Residual dense block [42] Zhang et al. proposed a residual dense network to

Figure 12 :

 12 Figure 12: The illustration of the residual dense network[START_REF] Zhang | Residual dense network for image super-resolution[END_REF].
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Fig. 13

 13 Fig.13 illustrates 4 images in the Set5 and 4 images in the Set14.The RDN+ outperforms all the other methods in the table. The sign '+' denotes that the results are improved with self-similarity strategy[START_REF] Lim | Enhanced deep residual networks for single image super-resolution[END_REF]. As we know, during the
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Figure 14 :

 14 Figure 14: Illustration of the CNN architecture proposed by Park et al. [70]. 2D low resolution slices are generated by taking the average of 3D high resolution slices. As can be seen in the figure, on the contraction path, images characters are synthesized at different scales, and on the expansion path, super resolution images are gradually reconstructed.

Figure 15 :

 15 Figure15: Illustration of GAN-CIRCLE network[START_REF] You | CT super-resolution gan constrained by the identical, residual, and cycle learning ensemble (gan-circle)[END_REF]. x is the noisy LR input, y is the HR image, G is the generator of forward Gan, from LR towards HR, F is the generator of the backward GAN, from HR towards LR. Dx and Dy are discriminators of backward and forward discriminators. Lsup, L adv , L idt and L jst are four losses in the entire work, where Lsup corresponds to generator loss supervised, L adv is the adversarial loss, L idt is a loss forcing F (x) to be close to x, G(y) close to y. The lose L jst integrates total variation regularization to reduce noise on the results.

Figure 16 :

 16 Figure 16: The proposed T-L network segmentation and super resolution tasks[80].
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  Ulyanov et al. considered to use untrained deep learning networks to explore deep priors from given degraded images

Figure 13 :

 13 Figure 13: Illustration of 8 images in the set5 as well as set14. The images on the top row are 4 images from the Set5. The images on the bottom row are 4 images from the Set14.

Table 1 :

 1 Comparison of PSNR different methods for natural image sets set5 and set14, the low resolution images are generated with BI degradation model. The upsampling factor is 4. The sign '+' represents that the approach has been boosted with self-assemble. The results are collected from correspondent publications.

	methods	set5	set14
	SRCNN[2]	30.49 27.61
	VDSN [9]	31.35 28.03
	DRCN[10]	31.53 38.04
	DRRN(B1U25)[11] 31.68 28.21
	ESPCN[12]		

Take middle slice U-net input output Input slice (thick) Output slice Ground truth slice (thin) Average slices High resolution Low noise High resolution Low noise Low resolution Low noise 32 64 64 32 32 64 128 128 128 128 256 256 256 512 512 256 256 256 128 128 128 64 64 64 32 32 max pool up-conv 1×1 conv Conv,,BN,relu Skip connection

  

  have shown

	885	
		that a 3D CNN outperforms its 2D counterpart since they
		completely exploit the 3D volume information. The net-
		work architectures use 3D convolutions. With the addi-
		tional dimension introduced by a 3D CNN, the number
	890	of parameters of the network grows rapidly. The perfor-
		mance of a deep network generally improves with more
		layers and weights but with 3D the model becomes com-
		putationally expensive. Densely connected network has an
		efficient memory usage and is practical for 3D images.
		4.3. Other modalities

895 Mahapatra et al. combined GAN network with a salient map

where the parameters are updated during the optimization of the network. Upscaling low resolution images with transpose convolution layer is very flexible since the parameters in the convolution filters are adaptable during the training process. However, upscaling low resolution 370

illustrated on Fig.14and is based on U-net usually used

tegrate information from different image domains. The

the best performance in terms of SSIM, while the MSPC returns best PSNR. The LR images were simulation images.

Patching Merging

Densely connected block Chen et al. in [START_REF] Chen | Brain mri super resolution using 3D deep densely connected neural networks[END_REF] proposed a densely connected super resolution network (DCSRN) for brain MRI images, The proposed structure is demonstrated in Fig. 17. It can be seen that the network is densely connected, the output of the each block will be reused in latter blocks. The authors resumed 3 advantages of their proposed network: faster training since the path is shorten; tiny model be-show great potential to solve SR in medical image field, despite many challenges, the performance of SR techniques become more and more promising. 
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