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INRIA Sophia Antipolis, Project Team COFFEE
Laboratoire J. A. Dieudonné, UMR 7351 CNRS,
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Abstract

The aim of this paper is to propose kinetic models associated with
conservation laws with a non-local flux and to prove the existence of
solutions for these kinetic equations. In order to make the article as
efficient as possible, we have highlighted the hypotheses that make the
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types of hypotheses on the kinetic model and two different techniques
to obtain an existence result.
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1 Introduction

1.1 Context

Non local fluxes have been introduced recently to model pedestrian or vehicular
traffic [10], [11], [13], [9]. These fields of application are emerging [1] and non-
local models should appear in the coming years to model more phenomena. On
the other hand, kinetic models associated with conservation laws have proven
to be very useful both from a theoretical and a numerical point of view ([16],
[19]). It is therefore natural to ask the question of kinetic model for these
new non-local models. This is the object of this paper: to propose kinetic
models associated with conservation laws with a non-local flux and to prove
the existence of solutions for these kinetic equations. In order to make the
article as efficient as possible, we have highlighted the hypotheses that make
the proofs work, so that it can be used for other models.

1.2 Models

First of all, let us specify the kind of models that we will study both from
the point of view of the law of conservation with non-local flux then from the
point of view of the kinetic equation.

For the non-local scalar conservation law, we consider the following models:

∂tρ+ ∂x(F (ρ)G(η ∗ ρ)) = 0, (1.1)
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which mean

∂tρ(t, x) + ∂x(F (ρ(t, x))G((η ∗ ρ)(t, x))) = 0, (t, x) ∈ [0,+∞[×R, (1.2)

where F,G ∈ C1(R,R), η ∈ C1(R,R) ∩ L∞(R) and

(η ∗ ρ)(t, x) =
∫
R
η(x− y)ρ(t, y) dy. (1.3)

This term is well defined if y 7→ ρ(t, y) ∈ L1(R) for any t.
For the kinetic equation, we consider:

∂tfε + ∂x(a(v, ξ)fε) =
Mρε − fε

ε
, (1.4)

which mean

∂tfε(t, x, v, ξ) + ∂x(a(v, ξ)fε(t, x, v, ξ)) =
Mρε(t, x, v, ξ)− fε(t, x, v, ξ)

ε
, (1.5)

for (t, x, v, ξ) ∈ [0,+∞[×R3, where

ρε(t, x) =
∫∫
R2

fε(t, y, v, ξ) dξdv (1.6)

and M is the Maxwellian which will be defined later. This kinetic model is
of the BGK type. See the references [17], [16], [5], [2] for the case of a scalar
conservation law and studies for some systems.

1.3 Main results and organization of the paper

The organization of the paper is as follows. In the section 2, we consider the
assumptions the kinetic model have to satisfy in order that our study works.
First, we need two assumptions (2.1)-(2.2) to assure the consistance between
the kinetic equation and the non-local scalar equation. Then, we expose the
hypotheses necessary to obtain the existence of solutions for the kinetic equa-
tion according to the method used. We will present two proof methods, each
one requiring specific hypotheses. For the first existence result, we need (2.3).
For the second existence result, we need (2.4)-(2.10). This section ends with
a formal proof that justifies the need for consistence assumptions.

In section 3, we study the well-posedness of the kinetic equation with as-
sumption (2.3). In this framework, we can use a fixed point and the proof is
relatively usual. We get the following result.

Theorem 1.1 Let F,G ∈ C1(R,R), η ∈ C1(R,R) ∩ L∞(R). Let f 0 ∈ L1(R3).
We consider a maxwellian M satisfying (2.1) and (2.3). Then there exists
ρ ∈ L∞([0, T ], L1(R3)) for any T > 0 solution of (1.4) with initial data f 0.
Furthermore this solution ρ ∈ L∞([0, T ], L1(R3)) is unique with the initial data.
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This case is the easiest among the two that we study but most of the models
won’t verify (2.3) thus it require the study of the second model.

This is why in section 4, we study the existence of a solution for the kinetic
equation with assumption (2.4)-(2.10). We get the following result.

Theorem 1.2 Let F,G ∈ C1(R,R), η ∈ C1(R,R) ∩ L∞(R). Let f 0 ∈ L1(R3) ∩
L2(R3) such that xf 0, ξf 0, vf 0, a(v, ξ)f 0 ∈ L1(R3) and

∫
R

∫∫
R2

f 0(x, v, ξ) dvdξ

2

dx < +∞.

We consider a maxwellian M satisfying (2.1) and (2.4)-(2.10). Assume that
there exists a constant K > 0 such that

|F (z)| ≤ K(|z|+ |z|2) for any z ∈ R. (1.7)

Then there exists ρ ∈ L∞([0, T ], L1(R3)) for any T > 0 solution of (1.4) with
initial data f 0.

This proof uses Schauder’s theorem and is much more complex and requires
solving numerous technical difficulties.

Then, in section 6, we present a model which satisfies the assumptions for
the first theorem and in section 5, a model which satisfies the ones for the
second theorem.

2 General framework for the kinetic model

This section sets the general framework and the assumptions that the kinetic
model must satisfy for our study. Then, we present the formal limit of the
model to check that the limit equation is indeed the expected one.

2.1 Assumptions on the kinetic model

The first assumptions for the kinetic model are consistency type ones. They
will ensure that the formal limit is indeed the non-local equation.
Consistance assumptions.

We assume that, for any ρ : R2 → R, there exists Mρ : R4 → R such that∫∫
R2

Mρ(t, x, v, ξ) dξdv = ρ(t, x) (2.1)

and ∫∫
R2

a(v, ξ)Mρ(t, x, v, ξ) dξdv = F (ρ(t, x))G((η ∗ ρ)(t, x)). (2.2)

These two previous properties ensure the consistency between the kinetic and
the non-local scalar equation.
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For the existence of a solution to the kinetic equation, according to the
model, we can consider two differents lists of assumptions.

Assumption for existence 1.
We assume that for any ρ1, ρ2 ∈ L1(R2),∫
R

∫∫
R2

|Mρ1(t, x, v, ξ)−Mρ2(t, x, v, ξ)| dvdξ dx ≤ K
∫
R
|ρ1 − ρ2| (t, x) dx

(2.3)

Assumptions for existence 2.
We assume that there exists constants K2, K3, K4, K5 > 0 and p = 1 or 2

such that, for any ρ : R→ R,∫∫
R2

|Mρ(t, x, v, ξ)| dξdv ≤ |ρ(t, x)|, (2.4)

∫∫
R2

|a(v, ξ)Mρ(t, x, v, ξ)| dξdv ≤ K2|F (ρ(t, x))G((η ∗ ρ)(t, x))|, (2.5)

∫∫
R2

|ξ||Mρ(t, x, v, ξ)| dξdv ≤ K3 |ρ(t, x)|
(

1 +
∫
R
|ρ(t, y)|2 dy

)
, (2.6)

∫∫
R2

|v||Mρ(t, x, v, ξ)| dξdv ≤ K4 ρ
2(t, x), (2.7)

∫∫
R2

|Mρ(t, x, v, ξ)|2 dξdv ≤ K5 |ρ(t, x)|p, (2.8)

if ρn → ρ a.e. (t, x) and |ρn| ≤ |h| ∈ L1(R), then Mρn →Mρ a.e. (t, x, v, ξ)
(2.9)

and
the term a(v, ξ) allows to apply an averaging lemma . (2.10)

Remark 2.1 We have to specify what we mean by averaging lemma. It is such
a result : if

∂tgn + ∂x(a(v, ξ)gn = hn

with (gn)n and (gn)n bounded in L1(]0, T [×R × R2) then ρn is compact in
L1
loc(]0, T [×R) where

ρn(t, x) =
∫∫
R2

ψ(ξ, v)gn(t, y, v, ξ) dξdv

with ψ ∈ L∞(]0, T [×R×R2). The function a(v, ξ) must satisfy a non degeneracy
condition to pretend getting this kind of result.
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The first assumption allows us to apply contraction technic and the second
list of assumptions to apply Schauder’s result. If the model satisfies the As-
sumption for existence 1, we should use it but in practice, it is not often
the case. Then, we have to consider the Assumptions for existence 2.

Remark 2.2 Notice that (2.1) and (2.4) imply∫∫
R2

|Mρ(t, x, v, ξ)| dξdv = |ρ(t, x)|

and if K2 = 1, then (2.2) and (2.5) imply∫∫
R2

|a(v, ξ)Mρ(t, x, v, ξ)| dξdv = |F (ρ(t, x))G((η ∗ ρ)(t, x))|.

Remark 2.3 Notice also that if we have a majoration like∫∫
R2

|ξ||Mρ(t, x, v, ξ)| dξdv ≤ K3 |ρ(t, x)|
∫
R
|ρ(t, y)| dy,

then it implies (2.6).

Remark 2.4 If we want to gives an additional property as for example the pos-
itivity of the solution, we have to add this fact in the assumptions. Thus for
the important case where we want ρ ≥ 0, for example for the first existence
result, we just need the assumptions:∫∫

R2

Mρ(t, x, v, ξ) dξdv = ρ(t, x), (2.11)

∫∫
R2

a(v, ξ)Mρ(t, x, v, ξ) dξdv = F (ρ(t, x))G((η ∗ ρ)(t, x)) (2.12)

and∫
R

∫∫
R2

|Mρ1(t, x, v, ξ)−Mρ2(t, x, v, ξ)| dvdξ dx ≤ K
∫
R
|ρ1 − ρ2| (t, x) dx

(2.13)
for any ρ, ρ1, ρ2 ≥ 0.

2.2 Formal limit

Consistency assumptions, that is to say (2.1) and (2.2) are related to the
consistency between kinetic and non-local equation by the following formal
limit. Formally, passing to the limit as ε→ 0 in (1.4), gives

Mρ = f,
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by noting f the limit of (fε). On the other hand, an integration with respect
to (v, ξ) of (1.4) yields

∂t

∫∫
R2

fε dξdv + ∂x

∫∫
R2

a(v, ξ)fε dξdv = 0,

since ∫∫
R2

Mρε(t, x, v, ξ) dξdv = ρε(t, x) =
∫∫
R2

fε(t, x, v, ξ) dξdv.

At the limit, we thus have

∂t

∫∫
R2

Mρ dξdv + ∂x

∫∫
R2

a(v, ξ)Mρ dξdv = 0.

Now ∫∫
R2

Mρ(t, x, v, ξ) dξdv = ρ(t, x)

and ∫∫
R2

a(v, ξ)Mρ(t, x, v, ξ) dξdv = F (ρ)G(η ∗ ρ).

Finally we get
∂tρ+ ∂x(F (ρ)G(η ∗ ρ)) = 0.

3 Well-posedness of the kinetic equation with

assumption (2.3)

We consider the case of Assumption for existence 1. We also need the first
assumption of consistency. Then, we assume that (2.1) and (2.3) are satisfied
are we prove that it allows to get existence and unicity of a solution to the
kinetic equation.

Proof of Theorem 1.1. Equation (1.4) is equivalent to the following integral
representation

fε(t, x, v, ξ) = e−t/εfε(0, x−a(v, ξ)t, v, ξ)+
1

ε

∫ t

0
e(s−t)/εMρε(s, x−a(v, ξ)(t−s), v, ξ) ds

with

ρε(t, x) =
∫∫
R2

fε(t, y, v, ξ) dξdv.

Let ε > 0 and T > 0. Denote by Φ the application from L∞([0, T ], L1(R3)) to
L∞([0, T ], L1(R3)) which at f associate

Φ(f)(t, x, v, ξ) = e−t/εf 0(x−a(v, ξ)t, v, ξ)+
1

ε

∫ t

0
e(s−t)/εMρ(s, x−a(v, ξ)(t−s), v, ξ) ds,
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where

ρ(t, x) =
∫∫
R2

f(t, y, v, ξ) dξdv.

For f1, f2 ∈ L∞([0, T ], L1(R3)), we note

ρ1(t, x) =
∫∫
R2

f1(t, y, v, ξ) dξdv and ρ2(t, x) =
∫∫
R2

f2(t, y, v, ξ) dξdv

and we have∫∫∫
R3

|Φ(f1)(t, x, v, ξ)− Φ(f2)(t, x, v, ξ)| dxdξdv

≤ 1

ε

∫∫
R3

∫ t

0
e(s−t)/ε|Mρ1 −Mρ2|(s, x− a(v, ξ)(t− s), v, ξ) ds dxdξdv

≤ 1

ε

∫ t

0

∫∫
R2

e(s−t)/ε
∫
R
|Mρ1(s, x, v, ξ)−Mρ1(s, x, v, ξ)| dx dξdvds

≤ 1

ε

∫ t

0
e(s−t)/ε

∫
R
K|ρ1 − ρ2|(s, x) dxds

≤ K
1

ε

∫ t

0
e(s−t)/ε

∫∫∫
R3

|f1(s, x, v, ξ)− f2(s, x, v, ξ)| dxdξdvds

≤ K
1

ε

∫ t

0
e(s−t)/ε ds sup

s∈[0,t]

∫∫∫
R3

|f1(s, x, v, ξ)− f2(s, x, v, ξ)| dxdξdv

≤ K
(
1− e−t/ε

)
sup
s∈[0,t]

∫∫∫
R3

|f1(s, x, v, ξ)− f2(s, x, v, ξ)| dxdξdv.

Thus

sup
t∈[0,T ]

∫∫∫
R3

|Φ(f1)(t, x, v, ξ)− Φ(f2)(t, x, v, ξ)| dxdξdv

≤ K
(
1− e−T/ε

)
sup
t∈[0,T ]

∫∫∫
R3

|f1(t, x, v, ξ)− f2(t, x, v, ξ)| dxdξdv.

Taking

Tε = −ε ln
(

2K − 1

2K

)
> 0,

we have

K
(
1− e−Tε/ε

)
=

1

2

and Φ is a contraction on L∞([0, Tε], L
1(R3)). Then we get the existence and

uniqueness of a solution in L∞([0, Tε], L
1(R3)) to (1.4) with initial data f 0 ≥ 0.
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Since the time Tε does not depend on f 0, we can restart from the obtained
solution at value Tε and get a solution on [Tε, 2Tε] and so on. Finally we get
existence and uniqueness of a solution in X on any [0, T ] with T > 0.

We also have a variant for the important case where ρ ≥ 0.

Proposition 3.1 Let f 0 ∈ L1(R3) such that f0 ≥ 0. We consider a maxwellian
M satisfying (2.11) and (2.13). Then there exists ρ ∈ L∞([0, T ], L1(R3)) for
any T > 0 solution of (1.4) with initial data f 0 and such that ρ ≥ 0.

Proof. We adapt the previous proof by considering the space X of functions
f in L∞([0, Tε], L

1(R3)) such that f ≥ 0. For f ∈ X, we have Φ(f) ∈ X since
then ρ ≥ 0 and Mρ ≥ 0.

4 Existence of a solution for the kinetic equa-

tion with assumptions (2.4)-(2.10)

We consider the case of Assumption for existence 2. We also need the
first assumption of consistency. Then, we assume that (2.1) and (2.4)-(2.10)
are satisfied and we prove that it allows to get existence of a solution to the
kinetic equation.

Proof of Theorem 1.2.
Let ε > 0 and T > 0. Denote by Φ the application from L∞([0, T ], L1(R3))

to L∞([0, T ], L1(R3)) which at f associate

Φ(f)(t, x, v, ξ) = e−t/εf 0(x−a(v, ξ)t, v, ξ)+
1

ε

∫ t

0
e(s−t)/εMρ(s, x−a(v, ξ)(t−s), v, ξ) ds,

where

ρ(t, x) =
∫∫
R2

f(t, y, v, ξ) dξdv.

There exists constants C1
0 , . . . , C

6
0 , C

a
0 > 0 such that∫∫∫

R3

|f 0(x, v, ξ)| dvdξdx = C1
0 < +∞. (4.1)

∫∫∫
R3

|x||f 0(x, v, ξ)| dvdξdx = C2
0 < +∞, (4.2)

∫∫∫
R3

|ξ||f 0(x, v, ξ)| dvdξdx = C3
0 < +∞, (4.3)

∫∫∫
R3

|v||f 0(x, v, ξ)| dvdξdx = C4
0 < +∞, (4.4)
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∫∫∫
R3

|f 0(x, v, ξ)|2 dvdξdx = C5
0 < +∞. (4.5)

∫
R

∫∫
R2

f 0(x, v, ξ) dvdξ

2

dx = C6
0 < +∞ (4.6)

and ∫∫∫
R3

|a(v, ξ)||f 0(x, v, ξ)| dvdξdx = Ca
0 < +∞. (4.7)

We set
G = 1 + sup

z∈B(0,‖η‖∞R1)

|G(z)| < +∞ (4.8)

since G is continuous and B(0, ‖η‖∞R1) is compact. We take

R1 = max
(
C1

0 ,
Ca

0

K2KG

)
, R2 = C2

0 , R3 = max(C3
0 , K3R1(1 +R6)), (4.9)

R4 = max(C4
0 , K4K6), R5 = max(C5

0 , K5R1, K5R6) (4.10)

and

R6 = max
(
C6

0 ,
Ca

0

K2KG

)
. (4.11)

We denoteR = (R1, R2, R3, R4, R5, R6) and CR the set of all f ∈ L∞([0, T ], L1(R3))
such that for a.e. t ∈]0, T [,∫∫∫

R3

|f(t, x, v, ξ)| dvdξdx ≤ R1, (4.12)

∫∫∫
R3

|x||f(t, x, v, ξ)| dvdξdx ≤ R2, (4.13)

∫∫∫
R3

|ξ||f(t, x, v, ξ)| dvdξdx ≤ R3, (4.14)

∫∫∫
R3

|v||f(t, x, v, ξ)| dvdξdx ≤ R4, (4.15)

∫∫∫
R3

|f(t, x, v, ξ)|2 dvdξdx ≤ R5 (4.16)

and ∫
R

∫∫
R2

f(t, x, v, ξ) dvdξ

2

dx ≤ R6. (4.17)
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We denote also C̃R the set of all f ∈ C([0, T ], L1(R3)) satisfying (4.12)-(4.17)
with

∂tf + ∂x(a(v, ξ)f) +
1

ε
f ∈ CR

ε
. (4.18)

The presentation of the proof is divided into seven parts.
Step 1. We prove that if f ∈ CR, then Mρ ∈ CR.
First, using (2.4), we have∫∫∫

R3

|Mρ(t, x, v, ξ)| dvdξdx ≤
∫
R
|ρ(t, x)|dx

≤
∫
R

∫∫
R2

|f(t, x, v, ξ)| dξdvdx

≤ R1

and, using (2.1),

∫
R

∫∫
R2

Mρ(t, x, v, ξ) dvdξ

2

dx ≤
∫
R
ρ(t, x)2dx

≤
∫
R

∫∫
R2

|f(t, x, v, ξ)| dξdv

2

dx

≤ R6.

Now, using (2.8), we get∫∫∫
R3

|Mρ(t, x, v, ξ)|2 dvdξdx ≤
∫
R
K5|ρ(t, x)|pdx.

If p = 1, it gives∫∫∫
R3

|Mρ(t, x, v, ξ)|2 dvdξdx ≤
∫
R
K5

∫∫
R2

|f(t, x, v, ξ)| dξdvdx

≤ K5R1 ≤ R5.

Otherwise p = 2 and it gives

∫∫∫
R3

|Mρ(t, x, v, ξ)|2 dvdξdx ≤
∫
R
K5

∫∫
R2

f(t, x, v, ξ) dξdv

2

dx

≤ K5R6 ≤ R5.

11



Now, using (2.4), we have∫∫∫
R3

|x||Mρ(t, x, v, ξ)| dvdξdx ≤
∫
R
|x||ρ(t, x)|dx

≤
∫∫∫
R3

|x||f(t, x, v, ξ)| dvdξdx

≤ R2.

Furthermore, using (2.6), we have∫∫∫
R3

|ξ||Mρ(t, x, v, ξ)| dvdξdx

≤
∫
R
K3|ρ(t, x)|

(
1 +

∫
R
|ρ(t, y)|2dy

)
dx

≤ K3

∫∫∫
R3

|f(t, x, v, ξ)| dξdvdx

1 +
∫
R

∫∫
R2

|f(t, y, v, ξ)| dξdv

2

dy


≤ K3R1(1 +R6)
≤ R3.

Finally, using (2.7), we deduce∫∫∫
R3

|v||Mρ(t, x, v, ξ)| dvdξdx ≤
∫
R
K4|ρ(t, x)|2 dx

≤ K4

∫
R

∫∫
R2

f(t, x, v, ξ) dξdv

2

dx

≤ K4K6

≤ R4.

Then we get that Mρ ∈ CR.

Step 2. We prove that if f ∈ CR, then Φ(f) ∈ CR.
First, we have∫∫∫

R3

|Φ(f)(t, x, v, ξ)| dvdξdx

≤ e−t/ε
∫∫∫
R3

|f 0(x− a(v, ξ)t, v, ξ)| dvdξdx

+
1

ε

∫ t

0
e(s−t)/ε

∫∫∫
R3

|Mρ(s, x− a(v, ξ)(t− s), v, ξ)| dvdξdx ds
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≤ e−t/ε
∫∫∫
R3

|f 0(x, v, ξ)| dvdξdx

+
1

ε

∫ t

0
e(s−t)/ε

∫∫∫
R3

|Mρ(s, x, v, ξ)| dvdξdx ds

≤ e−t/εR1 +
1

ε

∫ t

0
e(s−t)/εR1 ds

≤ e−t/εR1 +R1(1− e−t/ε) = R1.

Now notice that

Φ(f)(t, x, v, ξ) = e−t/εf 0(x− a(v, ξ)t, v, ξ)

+(1− e−t/ε)
∫ t

0
Mρ(s, x− a(v, ξ)(t− s), v, ξ) e

(s−t)/ε ds∫ t
0 e
−σ/εdσ

,

then for a convex function H, we have

H(Φ(f)(t, x, v, ξ)) ≤ e−t/εH(f 0(x− a(v, ξ)t, v, ξ))

+(1− e−t/ε)H
(∫ t

0
Mρ(s, x− a(v, ξ)(t− s), v, ξ) e

(s−t)/ε ds∫ t
0 e
−σ/εdσ

)

and by Jensen’s inequality, we get

H(Φ(f)(t, x, v, ξ)) ≤ e−t/εH(f 0(x− a(v, ξ)t, v, ξ))

+(1− e−t/ε)
∫ t

0
H(Mρ(s, x− a(v, ξ)(t− s), v, ξ)) e

(s−t)/ε ds∫ t
0 e
−σ/εdσ

≤ e−t/εH(f 0(x− a(v, ξ)t, v, ξ))

+
1

ε

∫ t

0
e(s−t)/εH(Mρ(s, x− a(v, ξ)(t− s), v, ξ)) ds.

With H(z) = z2, it gives

(Φ(f)(t, x, v, ξ))2 ≤ e−t/ε(f 0(x− a(v, ξ)t, v, ξ))2

+
1

ε

∫ t

0
e(s−t)/ε(Mρ(s, x− a(v, ξ)(t− s), v, ξ))2 ds.

and, using (2.8),∫∫∫
R3

Φ(f)(t, x, v, ξ)2 dvdξdx

≤ e−t/ε
∫∫∫
R3

|f 0(x− a(v, ξ)t, v, ξ)|2 dvdξdx
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+
1

ε

∫ t

0
e(s−t)/ε

∫∫∫
R3

|Mρ(s, x− a(v, ξ)(t− s), v, ξ)|2 dvdξdx ds

≤ e−t/ε
∫∫∫
R3

|f 0(x, v, ξ)|2 dvdξdx

+
1

ε

∫ t

0
e(s−t)/ε

∫∫∫
R3

|Mρ(s, x, v, ξ)|2 dvdξdx ds

≤ e−t/εC5
0 +

1

ε

∫ t

0
e(s−t)/εR5 ds

≤ e−t/εR5 +R5(1− e−t/ε) = R5.

Furthermore∫∫
R2

Φ(f)(t, x, v, ξ) dvdξ

= e−t/ε
∫∫
R2

f 0(x− a(v, ξ)t, v, ξ) dvdξ

+
1

ε

∫ t

0
e(s−t)/ε

∫∫
R2

Mρ(s, x− a(v, ξ)(t− s), v, ξ) dvdξ ds

then, by convexity,∫∫
R2

Φ(f)(t, x, v, ξ) dvdξ

2

≤ e−t/ε

∫∫
R2

f 0(x− a(v, ξ)t, v, ξ) dvdξ

2

+
1

ε

∫ t

0
e(s−t)/ε

∫∫
R2

Mρ(s, x− a(v, ξ)(t− s), v, ξ) dvdξ

2

ds.

Thus

∫
R

∫∫
R2

Φ(f)(t, x, v, ξ) dvdξ

2

dx

≤ e−t/ε
∫
R

∫∫
R2

f 0(x− a(v, ξ)t, v, ξ) dvdξ

2

dx

+
1

ε

∫ t

0
e(s−t)/ε

∫
R

∫∫
R2

Mρ(s, x− a(v, ξ)(t− s), v, ξ) dvdξ

2

dx ds
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≤ e−t/ε
∫
R

∫∫
R2

f 0(x, v, ξ) dvdξ

2

dx

+
1

ε

∫ t

0
e(s−t)/ε

∫
R

∫∫
R2

Mρ(s, x, v, ξ) dvdξ

2

dx ds

≤ e−t/εC6
0 + +

1

ε

∫ t

0
e(s−t)/εR6 ds

≤ e−t/εR6 +R6(1− e−t/ε) = R6.

Now, using (2.4) and (2.5), we have∫∫∫
R3

|x||Φ(f)(t, x, v, ξ)| dvdξdx

≤ e−t/ε
∫∫∫
R3

|x||f 0(x− a(v, ξ)t, v, ξ)| dvdξdx

+
1

ε

∫ t

0
e(s−t)/ε

∫∫∫
R3

|x||Mρ(s, x− a(v, ξ)(t− s), v, ξ)| dvdξdx ds

≤ e−t/ε
∫∫∫
R3

|x+ a(v, ξ)t||f 0(x, v, ξ)| dvdξdx

+
1

ε

∫ t

0
e(s−t)/ε

∫∫∫
R3

|x+ a(v, ξ)(t− s)||Mρ(s, x, v, ξ)| dvdξdx ds

≤ e−t/ε(C2
0 + tCa

0 )

+
1

ε

∫ t

0
e(s−t)/ε

∫
R

(|x||ρ(s, x)|+ (t− s)K2|F (ρ(s, x))G((η ∗ ρ)(s, x))|) dx ds

≤ e−t/ε(C2
0 + tCa

0 )

+
1

ε

∫ t

0
e(s−t)/ε

∫∫∫
R3

|x||f(s, x, v, ξ)| dvdξdx+ (t− s)K2

∫
R
|F (ρ(s, x))G((η ∗ ρ)(s, x))|dx

 ds

≤ e−t/ε(C2
0 + tCa

0 ) +
1

ε

∫ t

0
e(s−t)/ε

(
R2 + (t− s)K2

∫
R
|F (ρ(s, x))G((η ∗ ρ)(s, x))|dx

)
ds.

Since

|(η ∗ ρ)(s, x)| ≤ ‖η‖∞
∫
R
|ρ(s, y)| dy ≤ ‖η‖∞R1,

we note that
|G((η ∗ ρ)(s, x))| ≤ G,

then, with relation (1.7),∫∫∫
R3

|x||Φ(f)(t, x, v, ξ)| dvdξdx
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≤ e−t/ε(C2
0 + tCa

0 ) +
1

ε

∫ t

0
e(s−t)/ε

(
R2 + (t− s)K2G

∫
R
K(|ρ(s, x)|+ |ρ(s, x)|2)dx

)
ds

≤ e−t/ε(C2
0 + tCa

0 ) +
1

ε

∫ t

0
e(s−t)/ε (R2 + (t− s)K2K(R1 +R6)G) ds.

Now
1

ε

∫ t

0
e(s−t)/ε(α + sβ) ds = α− βε+ tβ + (βε− α)e−t/ε,

then, with α = R2 + tK2K(R1 +R6)G and β = −K2K(R1 +R6)G, we get∫∫∫
R3

|x||Φ(f)(t, x, v, ξ)| dvdξdx

≤ e−t/ε(C2
0 + tCa

0 ) +R2 + tK2K(R1 +R6)G − εRa + εK2K(R1 +R6)G − tK2K(R1 +R6)G
+(Raε−K2K(R1 +R6)Gε−R2 − tK2K(R1 +R6)G)e−t/ε

≤ C2
0 +R2 + εK2K(R1 +R6)G −K2K(R1 +R6)Gε−R2

+t(Ca
0 +K2K(R1 +R6)G −K2K(R1 +R6)G −K2K(R1 +R6)G)

≤ C2
0 + t(Ca

0 −K2K(R1 +R6)G)
≤ R2

since C2
0 ≤ R2 and K2K(R1 +R6)G ≥ Ca

0 .
Furthermore we have∫∫∫

R3

|ξ||Φ(f)(t, x, v, ξ)| dvdξdx

≤ e−t/ε
∫∫∫
R3

|ξ||f 0(x− a(v, ξ)t, v, ξ)| dvdξdx

+
1

ε

∫ t

0
e(s−t)/ε

∫∫∫
R3

|ξ||Mρ(s, x− a(v, ξ)(t− s), v, ξ)| dvdξdx ds

≤ e−t/ε
∫∫∫
R3

|ξ||f 0(x, v, ξ)| dvdξdx

+
1

ε

∫ t

0
e(s−t)/ε

∫∫∫
R3

|ξ||Mρ(s, x, v, ξ)| dvdξdx ds

≤ e−t/εC3
0 +

1

ε

∫ t

0
e(s−t)/εR3 ds

≤ e−t/εR3 +R3(1− e−t/ε) = R3.

Finally we have∫∫∫
R3

|v||Φ(f)(t, x, v, ξ)| dvdξdx
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≤ e−t/ε
∫∫∫
R3

|v||f 0(x− a(v, ξ)t, v, ξ)| dvdξdx

+
1

ε

∫ t

0
e(s−t)/ε

∫∫∫
R3

|v||Mρ(s, x− a(v, ξ)(t− s), v, ξ)| dvdξdx ds

≤ e−t/ε
∫∫∫
R3

|v||f 0(x, v, ξ)| dvdξdx

+
1

ε

∫ t

0
e(s−t)/ε

∫∫∫
R3

|v||Mρ(s, x, v, ξ)| dvdξdx ds

≤ e−t/εC04 +
1

ε

∫ t

0
e(s−t)/εR4 ds

≤ e−t/εR4 +R4(1− e−t/ε) = R4.

Then we get that Φ(f) ∈ CR.

Step 3. We prove that if f ∈ CR, then Φ(f) ∈ C̃R.
By step 1 and step 2 and since Φ(f) satisfies

∂tΦ(f) + ∂x(a(v, ξ)Φ(f)) +
1

ε
Φ(f) =

Mρ

ε
, (4.19)

we get (4.18) for Φ(f).

Step 4. We prove that Φ is continuous on CR.
Let g, gn ∈ CR such that gn → g in L∞([0, T ], L1(R3)). Set

ρn(t, x) =
∫∫
R2

gn(t, y, v, ξ) dξdv and ρ(t, x) =
∫∫
R2

g(t, y, v, ξ) dξdv.

Since ∫
R
|ρn − ρ| (t, x, v, ξ) dxdξdv ≤

∫∫∫
R3

|gn − g|(t, x, v, ξ) ds dxdξdv,

then ρn → ρ in L1(]0, T [×R) and there exists a subsequence ρϕ(n) and a
function h ∈ L1(R) such that ρϕ(n) → ρ and |ρϕ(n)| ≤ |h| a.e. t, x. Thus
Mρϕ(n)

→Mρ a.e. t, x, v, ξ by (2.9). Furthermore, the sequence (Mρϕ(n)
)n is

uniformly integrable thanks to (4.16) and tight thanks to (4.13)-(4.15). Then
by Vitali’s convergence theorem, we getMρϕ(n)

→Mρ in L1(]0, T [×R3). Now

|Φ(gϕ(n))−Φ(g)|(t, x, v, ξ) ≤ 1

ε

∫ t

0
e(s−t)/ε

∣∣∣Mρϕ(n)
−Mρ

∣∣∣ (s, x−a(v, ξ)(t−s), v, ξ) ds,
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thus ∫∫∫
R3

∣∣∣Φ(gϕ(n))(t, x, v, ξ)− Φ(g)(t, x, v, ξ)
∣∣∣ dxdξdv

≤ 1

ε

∫∫
R3

∫ t

0
e(s−t)/ε|Mρϕ(n)

−Mρ|(s, x− a(v, ξ)(t− s), v, ξ) ds dxdξdv

≤ 1

ε

∫ t

0

∫∫
R2

e(s−t)/ε
∫
R
|Mρϕ(n)

−Mρ|(s, x, v, ξ) dx dξdvds.

We obtain

sup
t∈[0,T ]

∫∫∫
R3

∣∣∣Φ(gϕ(n))(t, x, v, ξ)− Φ(g)(t, x, v, ξ)
∣∣∣ dxdξdv

≤ 1

ε

∫ T

0

∫∫∫
R3

|Mρϕ(n)
−Mρ|(s, x, v, ξ) dx dξdvds

and we get that Φ(gϕ(n))→ Φ(g) in L∞([0, T ], L1(R3)), or also in C([0, T ], L1(R3)).
It is enough to get the continuity of Φ on CR.

Step 5. We prove the following properties on the sets CR and C̃R: they
are convex and not empty, the set CR is compact for the weak topology of
L1(]0, T [×R3) and the set C̃R is closed in C([0, T ], L1(×R3).

The sets CR and C̃R are clearly convex. Since f 0 ∈ CR, the set CR is not
empty. Since f 0 ∈ CR, then Φ(f 0) ∈ C̃R by step 2. Thus the set C̃R is not
empty.

The uniformly integrability comes from (4.16) and the tightness comes from
(4.13)-(4.15), then the set CR is relatively compact for the weak topology of
L1(]0, T [×R3) by Dunford-Pettis’ theorem.

Let us prove now that CR is closed for the weak topology of L1(]0, T [×R3).
Since CR is convex, it is enough to prove that CR is closed for the strong
topology of L1(]0, T [×R3). Let gn ∈ CR such that gn → g in L1([0, T ]×R3).
After extraction of a subsequence, we have gϕ(n) → g a.e. (t, x, v, ξ) and

gϕ(n)(t, )̇→ g(t, )̇ in L1([0, T ]×R3) a.e. t. Since the sequence (gϕ(n))n satisfies
(4.12)-(4.17) uniformly with respect to n, applying Fatou’s lemma to each
inequality, we get that g ∈ CR.

We prove similarly that C̃R is closed in C([0, T ], L1(×R3).

Step 6. We prove that Φ(C̃R) is relatively compact in C([0, T ], L1(R3).
Let fn ∈ Φ(C̃R) defines a sequence in Φ(C̃R). Then there exists gn ∈ C̃R

such that fn = Φ(gn). Set

ρn(t, x) =
∫∫
R2

gn(t, x, v, ξ) dξdv.
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Since C̃R ⊂ CR and since CR is compact for the weak topology of L1(]0, T [×R3),
there exists a subsequence gϕ(n) such that gϕ(n) ⇀g in weak L1([0, T ] × R3).
Thus ρϕ(n) ⇀ρ in weak L1([0, T ]×R) since the functions are in CR where

ρ(t, x) =
∫∫
R2

g(t, x, v, ξ) dξdv.

Since gϕ(n) ∈ C̃R, then, by (4.18),

hϕ(n) = ε∂tgϕ(n) + ε∂x(a(v, ξ)gϕ(n)) + gϕ(n) ∈ CR.

By (2.10), we get that ρϕ(n) is compact in L1
loc(]0, T [×R), then for a subse-

quence ρϕ◦ψ(n) → ρ̃ in L1(]0, T [×K) for any compact K of R. We deduce,
since the functions are in CR, that ρϕ◦ψ(n) → ρ in L1(]0, T [×R).

Finally we apply the same argument as in step 4 to get that for a sub-
sequence fϕ◦ψ◦Γ(n)Φ(gϕ◦ψ◦Γ(n)) → Φ(g) in C([0, T ], L1(R3)). This is how we
finalise step 6.

Step 7. We conclude by applying Schauder’s theorem in C([0, T ], L1(R3))
to Φ : C̃R → C̃R. There exists f ∈ C([0, T ], L1(R3)) such that Φ(f) = f .
This gives a solution in [0, T ] for any T > 0, and by extraction of a diagonal
subsequence, we obtain a solution in [0,+∞[.

Remark 4.1 Notice that (1.7) is satisfied for example if F ′ ∈ L∞ and F (0) = 0
since then

|F (z)| = |F (z)− F (0)| ≤ ‖F ′‖∞|z|.
But we can also consider more general cases.

5 A model for the contraction result

Let’s explicit a model for which the assumptions (2.11)-(2.13) are satisfied.
For the scalar non-local model, we assume that

F (0) = 0 and η,
1

η
∈ L∞(R), (5.1)

that is to say that there exists α, β > 0 such that

α ≤ η(z) ≤ β, for any z ∈ R. (5.2)

Notice that the term η ∗ ρ is well defined as soon as x 7→ ρ(t, x) ∈ L1(R) for
any t.

For the kinetic model, we take

a(v, ξ) = b(v)c(ξ)
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with
b(v) = F ′(v), c(ξ) = G(ξ) + ξG′(ξ) (5.3)

and
Mρ(t, x, v, ξ) = Mρ(t,x),(η∗ρ)(t,x)(v, ξ), (5.4)

where
Mρ,q(v, ξ) = M1(v, ρ)M2(ξ, q), (5.5)

M1(v, ρ) =

{
sgn(ρ) if (ρ− v)v ≥ 0,
0 if (ρ− v)v < 0,

(5.6)

M2(ξ, q) =

{ sgn(q)

q
if (q − ξ)ξ > 0,

0 if (q − ξ)ξ ≤ 0,
(5.7)

Remember that

ρ(t, x) =
∫∫
R2

f(t, y, v, ξ) dξdv.

Notice that we writeMρ(t, x, v, ξ) and notMρ(t,x)(v, ξ) because here the term
Mρ(t, x, v, ξ) depends on the function ρ for any value at (t, y) because of the
term η ∗ ρ. At the kinetic level, we also have a non-local taking into account
the values of ρε.

5.1 First properties

First, notice the following properties :

Proposition 5.1 The functions M1 and M2 satisfy∫
R
M1(v, ρ) dv = ρ,

∫
R
|M1(v, ρ)−M1(v, ρ̃)| dv = |ρ− ρ̃| ,∫

R
C ′(v)M1(v, ρ) dv = C(ρ)− C(0), ∀C ∈ C1(R,R),∫

R
M2(ξ, q) dξ = 1Iq 6=0,∫

R
(C(ξ) + ξC ′(ξ))M2(ξ, q) dξ = C(q)1Iq 6=0, ∀C ∈ C1(R,R).

Proof. The four first properties come from classical computations. The last
one comes from the following. For q > 0, we have∫
R

(C(ξ) + vC ′(ξ))M2(ξ, q) dξ =
∫ q

0

1

q
(C(ξ) + vC ′(ξ)) dξ =

1

q

∫ q

0
(ξC(ξ))′ dξ

=
1

q
[ξC(ξ)]q0 = C(q)
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and for q < 0,∫
R

(C(ξ) + vC ′(ξ))M2(ξ, q) dξ =
∫ 0

q

−1

q
(C(ξ) + vC ′(ξ)) dξ = C(q).

The most difficult property to deal with is :

Proposition 5.2 The function M satisfied∫∫
R2

|Mρ,q(v, ξ)−Mρ̃,q̃(v, ξ)| dξdv = |ρ− ρ̃|+ 2
min(ρ, ρ̃)

max(q, q̃)
|q − q̃|

for any ρ, ρ̃ ≥ 0 and q, q̃ > 0.

Proof. We have∫∫
R2

|Mρ,q(v, ξ)−Mρ̃,q̃(v, ξ)| dξdv =
∫∫
R2

|M1(v, ρ)M2(ξ, q)−M1(v, ρ̃)M2(ξ, q̃)| dξdv.

For ρ̃ > ρ > 0 and q̃ > q > 0, we get∫∫
R2

|Mρ,q(v, ξ)−Mρ̃,q̃(v, ξ)| dξdv

=
∫ ρ

0

∫ q

0
|M1(v, ρ)M2(ξ, q)−M1(v, ρ̃)M2(ξ, q̃)| dξdv

+
∫ ρ

0

∫ q̃

q
|M1(v, ρ)M2(ξ, q)−M1(v, ρ̃)M2(ξ, q̃)| dξdv

+
∫ ρ̃

ρ

∫ q̃

0
|M1(v, ρ)M2(ξ, q)−M1(v, ρ̃)M2(ξ, q̃)| dξdv

=
∫ ρ

0

∫ q

0

∣∣∣∣∣1q − 1

q̃

∣∣∣∣∣ dξdv +
∫ ρ

0

∫ q̃

q

∣∣∣∣∣0− 1

q̃

∣∣∣∣∣ dξdv +
∫ ρ̃

ρ

∫ q̃

0

∣∣∣∣∣0− 1

q̃

∣∣∣∣∣ dξdv
= 2ρ

q̃ − q
q̃

+ (ρ̃− ρ).

For ρ̃ > ρ > 0 and q > q̃ > 0, we get∫∫
R2

|Mρ,q(v, ξ)−Mρ̃,q̃(v, ξ)| dξdv

=
∫ ρ

0

∫ q̃

0
|M1(v, ρ)M2(ξ, q)−M1(v, ρ̃)M2(ξ, q̃)| dξdv

+
∫ ρ

0

∫ q

q̃
|M1(v, ρ)M2(ξ, q)−M1(v, ρ̃)M2(ξ, q̃)| dξdv

+
∫ ρ̃

ρ

∫ q̃

0
|M1(v, ρ)M2(ξ, q)−M1(v, ρ̃)M2(ξ, q̃)| dξdv
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+
∫ ρ̃

ρ

∫ q

q̃
|M1(v, ρ)M2(ξ, q)−M1(v, ρ̃)M2(ξ, q̃)| dξdv

=
∫ ρ

0

∫ q̃

0

∣∣∣∣∣1q − 1

q̃

∣∣∣∣∣ dξdv +
∫ ρ

0

∫ q̃

q

∣∣∣∣∣1q − 0

∣∣∣∣∣ dξdv +
∫ ρ̃

ρ

∫ q̃

0

∣∣∣∣∣0− 1

q̃

∣∣∣∣∣ dξdv + 0

= 2ρ
q − q̃
q

+ (ρ̃− ρ).

5.2 Assumptions satisfied and existence result

Proposition 5.3 Let F,G, η ∈ C1(R,R) functions such that (5.1)-(5.2). Let
a(v, ξ) = b(v)c(ξ) be such that (5.3)-(5.7). Then the model satisfy (2.11)-
(2.13).

Proof. First we have∫∫
R2

Mρ(t, x, v, ξ) dξdv =
∫
R
M1(v, ρ(t, x)) dv

∫
R
M2(ξ, (η ∗ ρ)(t, x)) dξ

= ρ(t, x)1I(η∗ρ)(t,x) 6=0 = ρ(t, x)

since (η ∗ ρ)(t, x) > 0 as soon as ρ(t, x) > 0 (remember that η > 0) and thus
ρ(t, x) = 0 a.e. if (η ∗ ρ)(t, x) = 0 a.e. Thus we get (2.11). Now we have∫∫
R2

b(v)c(ξ)Mρ(t, x, v, ξ) dξdv =
∫
R
b(v)M1(v, ρε(t, x)) dv

∫
R
c(ξ)M2(ξ, (η ∗ ρε)(t, x)) dξ

= F (ρ(t, x))G((η ∗ ρ)(t, x))1Iη∗ρ(t,x)6=0

= F (ρ(t, x))G((η ∗ ρ)(t, x))

since η ∗ ρ(t, x) = 0 a.e. implies ρ(t, x) = 0 a.e. and F (0) = 0. Thus we get
(2.12). Finally we have∫∫

R2

|Mρ1(t, x, v, ξ)−Mρ2(t, x, v, ξ)| dξdv

=
∫∫
R2

∣∣∣Mρ1(t,x),(η∗ρ1)(t,x)(v, ξ)−Mρ2(t,x),(η∗ρ2)(t,x)(v, ξ)
∣∣∣ dξdv

= |ρ1 − ρ2| (t, x) + 2

(
min(ρ1, ρ2)

max(η ∗ ρ1, η ∗ ρ2)

)
(t, x) |η ∗ ρ1 − η ∗ ρ2|(t, x)

from proposition 5.2. As a consequence,∫
R

∫∫
R2

|Mρ1(t, x, v, ξ)−Mρ2(t, x, v, ξ)| dξdv

≤
∫
R
|ρ1 − ρ2| (t, x) dx+ 2

∫
R

(
min(ρ1, ρ2)

max(η ∗ ρ1, η ∗ ρ2)

)
(t, x) |η ∗ ρ1 − η ∗ ρ2|(t, x) dx
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Since

|(η ∗ ρ1 − η ∗ ρ2)(t, x)| ≤
∫
R
η(x− y) |(ρ1 − ρ2)(t, y)| dy

≤ ‖η‖∞
∫
R
|(ρ1 − ρ2)(t, y)| dy,

then we have∫
R

∫∫
R2

|Mρ1(t, x, v, ξ)−Mρ2(t, x, v, ξ)| dξdv

≤
∫
R
|ρ1 − ρ2| (t, x) dx+ 2‖η‖∞

∫
R
|(ρ1 − ρ2)(t, y)| dy

∫
R

(
min(ρ1, ρ2)

max(η ∗ ρ1, η ∗ ρ2)

)
(t, x) dx

From

min(ρ1, ρ2)

max(η ∗ ρ1, η ∗ ρ2)
=

ρ1 + ρ2 − |ρ1 − ρ2|
η ∗ ρ1 + η ∗ ρ2 + |η ∗ ρ1 − η ∗ ρ2|

≤ ρ1 + ρ2

η ∗ ρ1 + η ∗ ρ2

and

η ∗ ρ1(t, x) + η ∗ ρ2(t, x) ≥
∫
R
η(x− y)(ρ1 + ρ2)(t, y) dy ≥ α

∫
R

(ρ1 + ρ2)(t, y) dy.

we get

∫
R

min(ρ1, ρ2)

max(η ∗ ρ1, η ∗ ρ2)
dx ≤

∫
R

ρ1 + ρ2

α
∫
R(ρ1 + ρ2)(t, y) dy

dx =
1

α
.

Therefore we obtain

∫
R

∫∫
R2

|Mρ1(t, x, v, ξ)−Mρ2(t, x, v, ξ)| dξdv ≤
(

1 +
2‖η‖∞
α

)∫
R
|ρ1 − ρ2| (t, x) dx

and (2.13).

Finally, applying Proposition 3.1 we obtain the following result.

Theorem 5.4 Let f 0 ∈ L1(R3) such that f 0 ≥ 0. Let F,G, η ∈ C1(R,R)
functions such that F (0) = 0, η, 1

η
∈ L∞(R). Let a(v, ξ) = b(v)c(ξ) such that

(5.3)-(5.7). Then there exists ρ ∈ L∞([0, T ], L1(R3)) for any T > 0 solution
of (1.4) with initial data f 0 and such that ρ ≥ 0.
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6 A model for the Schauder result

We make the following assumptions on F , G and η:

F ∈ C2(R,R), F (0) = 0 and F, F ′ are strictly monotone functions, (6.1)

G ∈ C1(R,R), G,G′ are a strictly increasing functions, G′ > 0, (6.2)

and such that there exists X0 < 0, K0 > 0 and γ > 1 for which

|G(x)| ≤ K0

|x|γ
and |G′(x)| ≤ K0

|x|γ+1
if x ≤ X0, (6.3)

and
η ∈ C1(R,R) ∩ L∞(R) ∩ L2(R). (6.4)

The term η ∗ ρ is well defined as soon as x 7→ ρ(t, x) ∈ L1(R) for any t.
For the kinetic model, we consider

a(v, ξ) = b(v)d′(ξ) (6.5)

where

b(v) = F ′(v), d(ξ) = 2
+∞∑
n=0

G(ξ − 2n− 1) (6.6)

and
M̃ρ(t, x, v, ξ) = M̃ρ(t,x),(η∗ρ)(t,x)(v, ξ), (6.7)

where
M̃ρ,q(v, ξ) = M1(v, ρ)M3(ξ, q), (6.8)

M1(v, ρ) =

{
sgn(ρ) if (ρ− v)v ≥ 0,
0 if (ρ− v)v < 0,

(6.9)

M3(ξ, q) =
1

2
1I|ξ−q|<1(ξ). (6.10)

Remember that

ρ(t, x) =
∫∫
R2

f(t, y, v, ξ) dξdv.

Remark 6.1 Notice that d is well defined thanks to assumption (6.3) because

|G(ξ − 2n− 1)| ≤ K0

(2n+ 1− |ξ|)γ
for 2n+ 1 > |ξ|

and is C1 on R since, for any set ] − ∞, α] with α > 0, we have, for any
n ≥ n0 where 2n0 + 1 > α,

|G′(ξ − 2n− 1)| ≤ K0

(2n+ 1− α)γ+1
if x ∈ ]−∞, α].
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Then

d′(ξ) = 2
+∞∑
n=0

G′(ξ − 2n− 1) for any x ∈ R,

and d, d′ are strictly increasing functions and d′ > 0.

Remark 6.2 We can also consider the case where G is a strictly decreasing
function with assumptions on +∞ this time.

We need to apply averaging lemma, thus we have to assume the following
non degeneracy condition : for all R > 0, there is a constant C = C(R) such
that for z ∈ R, τ ∈ R with σ2 + τ 2 = 1, then

meas{(v, ξ) ∈ R2 s.t. |v|, |ξ| ≤ R and |a(v, ξ)σ − τ | ≤ ε} ≤ Cε. (6.11)

We refer to [12], [7], [14], [6], [18], [15] and references within for averaging
lemmas.

6.1 First properties

The property for M1 is in proposition 5.1. For M3, we have the following
result.

Proposition 6.1 Let F,G ∈ C1(R,R) such that (6.3) is satisfied. Then we
have, for any q ∈ R, ∫

R
M3(ξ, q) dξ = 1,∫

R
C̃ ′(ξ)M3(ξ, q) dξ =

1

2
(C(q + 1)− C(q − 1)), ∀C ∈ C1(R,R)

and ∫
R
d′(ξ)M3(ξ, q) dξ = G(q).

Proof. For the first property, we write∫
R

1

2
1I|ξ−q|<1(ξ) dξ =

1

2

∫ q+1

q−1
dξ =

2

2
= 1.

The second equality comes from the following:∫
R
C ′(ξ)M3(ξ, q) dξ =

1

2

∫ q+1

q−1
C ′(ξ) dξ =

1

2
(C(q + 1)− C(q − 1)).

Then we get the third one since

d(q + 1)− d(q − 1) = 2
+∞∑
n=0

G(q + 1− 2n− 1)− 2
+∞∑
n=0

G(q − 1− 2n− 1)

= 2G(q).
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Remark 6.3 Notice that we cannot apply contraction technics in this case since
we have the following equalities. First∫∫
R2

∣∣∣M̃ρ,q(v, ξ)− M̃ρ̃,q̃(v, ξ)
∣∣∣ dξdv =

∫∫
R2

|M1(v, ρ)M3(ξ, q)−M1(v, ρ̃)M3(ξ, q̃)| dξdv.

For ρ̃ > ρ > 0 and q̃ > q > 0, we get∫∫
R2

∣∣∣M̃ρ,q(v, ξ)− M̃ρ̃,q̃(v, ξ)
∣∣∣ dξdv

=
1

2

∫ ρ

0

∫
R
|1Iq−1<ξ<q+1(ξ)− 1Iq̃−1<ξ<q̃+1(ξ)| dξdv +

1

2

∫ ρ̃

ρ

∫
R

1Iq̃−1<ξ<q̃+1(ξ) dξdv.

If q + 2 ≤ q̃, we have∫∫
R2

∣∣∣M̃ρ,q(v, ξ)− M̃ρ̃,q̃(v, ξ)
∣∣∣ dξdv = 2ρ+ (ρ̃− ρ),

if q̃ < q + 2, we have∫∫
R2

∣∣∣M̃ρ,q(v, ξ)− M̃ρ̃,q̃(v, ξ)
∣∣∣ dξdv = ρ(q̃ − q) + (ρ̃− ρ).

Then, by studying the similar cases, we get∫∫
R2

∣∣∣M̃ρ,q(v, ξ)− M̃ρ̃,q̃(v, ξ)
∣∣∣ dξdv = 2 min(ρ, ρ̃)1Imin(q,q̃)+2≤max(q,q̃)

+ min(ρ, ρ̃)|q̃ − q|1I0<max(q,q̃)<min(q,q̃)+2 + |ρ̃− ρ|.

The term 2 min(ρ, ρ̃)1Imin(q,q̃)+2≤max(q,q̃) does not allow a contraction study.

6.2 Assumptions satisfied and existence result

Proposition 6.2 Let F,G, η : R → R, a : R2 → R satisfying (6.1)-(6.11).
Then the model of this section satisfies (2.1)-(2.2) and (2.4)-(2.10).

Proof. First we have∫∫
R2

M̃ρ(t, x, v, ξ) dξdv =
∫
R
M1(v, ρ(t, x)) dv

∫
R
M3(ξ, (η ∗ ρ)(t, x)) dξ = ρ(t, x).

Thus we get (2.1). Now we have∫∫
R2

a(v, ξ)M̃ρ(t, x, v, ξ) dξdv =
∫∫
R2

b(v)d′(ξ)M̃ρ(t, x, v, ξ) dξdv

=
∫
R
b(v)M1(v, ρ(t, x)) dv

∫
R
d′(ξ)M3(ξ, (η ∗ ρ)(t, x)) dξ

= F (ρ(t, ))G((η ∗ ρ)(t, x))
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and we obtain (2.2). Furthermore, we have∫∫
R2

|M̃ρ(t, x, v, ξ)| dξdv =
∫
R
|M1(v, ρ(t, x))| dv

∫
R
|M3(ξ, (η ∗ ρ)(t, x))| dξ

= |ρ(t, x)| ≤ |ρ(t, x)|,
that is to say (2.4) and∫∫
R2

|a(v, ξ)M̃ρ(t, x, v, ξ)| dξdv =
∫∫
R2

|b(v)||d′(ξ)||M1(v, ρ(t, x))||M3(ξ, (η ∗ ρ)(t, x))| dξdv

=
∫
R
|b(v)||M1(v, ρ(t, x))| dv

∫
R
|d′(ξ)||M3(ξ, (η ∗ ρ)(t, x))| dξ

=
∫
R
|F ′(v)||M1(v, ρ(t, x))| dv

∣∣∣∣∫
R
d′(ξ)M3(ξ, (η ∗ ρ)(t, x)) dξ

∣∣∣∣
≤ |F (ρ(t, x))G((η ∗ ρ)(t, x))|

thanks to the monotonicity properties of d and F and we have (2.5) with
K2 = 1. Now∫∫
R2

|ξ||M̃ρ(t, x, v, ξ)| dξdv =
∫
R
|M1(v, ρ(t, x))| dv

∫
R
|ξ|M3(ξ, (η ∗ ρ)(t, x)) dξ

and since∫
R
|ξ|M3(ξ, q) dξ =

{
|q| if q + 1 < 0 or q − 1 > 0,
(q2 + 1)/2 if q − 1 ≤ 0 ≤ q + 1,

we get
∫
R
|ξ|M3(ξ, q) dξ ≤ q2 + 1 and∫∫

R2

|ξ||M̃ρ(t, x, v, ξ)| dξdv ≤ |ρ(t, x)|
(
(η ∗ ρ)(t, x))2 + 1

)

≤ |ρ(t, x)|
(

1 +
(∫

R
η(x− y)ρ(t, y) dy

)2
)

≤ |ρ(t, x)|
(

1 +
∫
R
η(x− y)2 dy

∫
R
|ρ(t, y)|2 dy

)
≤ |ρ(t, x)|

(
1 +

∫
R
η(y)2 dy

∫
R
|ρ(t, y)|2 dy

)
≤ max

(
1,
∫
R
η(y)2 dy

)
|ρ(t, x)|

(
1 +

∫
R
|ρ(t, y)|2 dy

)

that is to say (2.6) with K3 = max
(

1,
∫
R
η(y)2 dy

)
. For the following estimate,

we have∫∫
R2

|v||M̃ρ(t, x, v, ξ)| dξdv =
∫
R
|v||M1(v, ρ(t, x))| dv

∫
R
M3(ξ, (η ∗ ρ)(t, x)) dξ
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and ∫
R
|v||M1(v, ρ(t, x))| dv =


∫ ρ

0
v dv if ρ > 0,∫ 0

ρ
(−v) dv if ρ ≤ 0,

thus
∫
R |v||M1(v, ρ(t, x))| dv = ρ(t, x)2/2 and∫∫

R2

|v||M̃ρ(t, x, v, ξ)| dξdv =
ρ(t, x)2

2

that is (2.7) with K4 = 1/2. After this, we write∫∫
R2

|M̃ρ(t, x, v, ξ)|2 dξdv =
∫
R
M1(v, ρ(t, x))2 dv

∫
R
M3(ξ, (η ∗ ρ)(t, x))2 dξ

=
∫
R
|M1(v, ρ(t, x))| dv

∫
R

1

2
M3(ξ, (η ∗ ρ)(t, x)) dξ

=
1

2
|ρ(t, x)|

and we get (2.8) with K5 = 1/2 and p = 1. Assuming now that we have
functions satisfying ρn → ρ a.e. (t, x) and |ρn| ≤ |h| ∈ L1(R), then applying
the theorem of dominated convergence, we get that

(η ∗ ρn)(t, x) =
∫
R
η(x− y)ρn(t, y) dy → (η ∗ ρ)(t, x) =

∫
R
η(x− y)ρ(t, y) dy

since η ∈ L∞. Then we get (2.9).
Let R > 0. We set

KR = max

(
8 sup
z∈[−R,R]

|F ′(z)| sup
z∈[−R,R]

|d′(z)|, 4√
7

)
1

R
.

Let (σ, τ) ∈ R2 such that σ2 + τ 2 = 1. Let ε ∈ ]0, 1/2[. We want to consider
set where |F ′(v)d′(ξ)σ + τ | < ε. Notice that changing (σ, τ) by (−σ,−τ), we
can assume that σ ≥ 0. There exists θ ∈ ]−π/2, π/2] such that σ = cos θ and
τ = sin θ. Since d′ is strictly increasing and strictly positive, we have

0 < d′(−R) < d′(ξ) < d′(R) for any ξ ∈ [−R,R].

We consider (v, ξ) ∈ R2 such that |v| ≤ R and |ξ| ≤ R satisfying

sin θ − ε < F ′(v)d′(ξ) cos θ < sin θ + ε.

If cos θ = 0, then the set of (v, ξ) satisfying ±1 − ε < 0 < ±1 + ε is empty
since 0 < ε < 1. We consider now the case cos θ > 0. Then we have

sin θ − ε
d′(ξ) cos θ

< F ′(v) <
sin θ + ε

d′(ξ) cos θ
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and since F ′ is strictly monotone, we get

(F ′)−1

(
sin θ − ε
d′(ξ) cos θ

)
< v < (F ′)−1

(
sin θ + ε

d′(ξ) cos θ

)
or

(F ′)−1

(
sin θ + ε

d′(ξ) cos θ

)
< v < (F ′)−1

(
sin θ − ε
d′(ξ) cos θ

)
.

Consider for example the strictly increasing case. First case: if 0 < 1/ cos(θ) ≤
KRR, then we get

meas{(v, ξ) ∈ R2 s.t. |v|, |ξ| ≤ R and |a(v, ξ)σ − τ | < ε}

≤
∫ d′(R)

d′(−R)

∫ (F ′)−1((sin θ+ε)/(d′(ξ) cos θ))

(F ′)−1((sin θ−ε)/(d′(ξ) cos θ))
dvdξ

≤
∫ g(R)

g(−R)

(
(F ′)−1

(
sin θ + ε

d′(ξ) cos θ

)
− (F ′)−1

(
sin θ − ε
d′(ξ) cos θ

))
dξ

≤ sup
z∈IR
|((F ′)−1)′(z)|

∫ g(R)

g(−R)

(
sin θ + ε

d′(ξ) cos θ
− sin θ − ε
d′(ξ) cos θ

)
dξ

where IR = [(−1− ε)KRR/d
′(R), (1 + ε)KRR/d

′(−R)]. It leads to

meas{(v, ξ) ∈ R2 s.t. |v|, |ξ| ≤ R and |F ′(v)d′(ξ)σ − τ | < ε}

≤ 2εKRR sup
z∈IR
|((F ′)−1)′(z)|

∫ g(R)

g(−R)

1

d′(ξ)
dξ.

Second case: if 1/ cos(θ) > KRR, then we get

|F ′(v)d′(ξ)σ| ≤ sup
z∈[−R,R]

|F ′(z)| sup
z∈[−R,R]

|d′(z)| 1

KRR
≤ 1

8

and

|τ | =
√

1− cos2 θ >

√
1− 1

K2
RR

2
≤ 3

4
.

Thus |a(v, ξ)σ − τ | > 3/4− 1/8 > 1/2 > ε and

meas{(v, ξ) ∈ R2 s.t. |v|, |ξ| ≤ R and |a(v, ξ)σ − τ | < ε} = 0.

Finally, we get

sup
σ2+τ2=1

meas{(v, ξ) ∈ R2 s.t. |v|, |ξ| ≤ R and |a(v, ξ)σ − τ | < ε} ≤ CRε

where

CR = 2KRR sup
z∈IR
|((F ′)−1)′(z)|

∫ g(R)

g(−R)

1

d′(ξ)
dξ

= 2 max

(
8 sup
z∈[−R,R]

|F ′(z)| sup
z∈[−R,R]

|d′(z)|, 4√
7

)
sup
z∈IR
|((F ′)−1)′(z)|

∫ g(R)

g(−R)

1

d′(ξ)
dξ.
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It gives (6.11) and we get (2.10).

Then applying Theorem 1.2 we settle the following result.

Theorem 6.3 Let f 0 ∈ L1(R3) ∩ L2(R3) such that xf 0, ξf 0, vf 0, a(v, ξ)f 0 ∈
L1(R3) and ∫

R

∫∫
R2

f 0(x, v, ξ) dvdξ

2

dx < +∞.

Consider F,G, η : R → R satisfying (6.1)-(6.4), (6.11) and assume that η ∈
L∞(R) and that there exists a constant K > 0 such that

|F (z)| ≤ K(|z|+ |z|2) for any z ∈ R.

Let a(v, ξ) = b(v)d′(ξ) such that (6.6)-(6.10). Then there exists ρ ∈ L∞([0, T ], L1(R3))
for any T > 0 solution of (1.4) with initial data f 0.
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