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Abstract

The aim of this paper is to propose kinetic models associated with
conservation laws with a non-local flux and to prove the existence of
solutions for these kinetic equations. In order to make the article as
efficient as possible, we have highlighted the hypotheses that make the
proofs work, so that it can be used for other models. We present two
types of hypotheses on the kinetic model and two different techniques
to obtain an existence result.
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1 Introduction

1.1 Context

Non local fluxes have been introduced recently to model pedestrian or vehicular
traffic [10], [11], [13], [9]. These fields of application are emerging [1] and non-
local models should appear in the coming years to model more phenomena. On
the other hand, kinetic models associated with conservation laws have proven
to be very useful both from a theoretical and a numerical point of view ([16],
[19]). It is therefore natural to ask the question of kinetic model for these
new non-local models. This is the object of this paper: to propose kinetic
models associated with conservation laws with a non-local flux and to prove
the existence of solutions for these kinetic equations. In order to make the
article as efficient as possible, we have highlighted the hypotheses that make
the proofs work, so that it can be used for other models.

1.2 Models

First of all, let us specify the kind of models that we will study both from
the point of view of the law of conservation with non-local flux then from the
point of view of the kinetic equation.

For the non-local scalar conservation law, we consider the following models:

O + 0:(F(p)G(n = p)) =0, (1.1)



which mean
Op(t,x) + 0(F(p(t, ) G((n* p)(t,x)) =0, (t,z) € [0,+00[xR, (1.2)

where F,G € C'(R,R), n € C'(R,R) N L>(R) and

(n*p)(t,x) = /Rn(x —y)p(t,y) dy. (1.3)

This term is well defined if y — p(t,y) € L'(R) for any ¢.
For the kinetic equation, we consider:

Ouf. + Ou(a(v,6)f.) = Mo~ 1z, (1.4)

€

which mean

Mps<t7xav7£) - fs(t,l','l),f)

atfa(tv‘T?Uag) +ax(a(vvg)fa(taxvvv£)) = - ) (15)
for (t,z,v,€) € [0, +00[XR3, where
peltw) = [ £ty v,€) dedo (16)
R2

and M is the Maxwellian which will be defined later. This kinetic model is
of the BGK type. See the references [17], [16], [5], [2] for the case of a scalar
conservation law and studies for some systems.

1.3 Main results and organization of the paper

The organization of the paper is as follows. In the section 2, we consider the
assumptions the kinetic model have to satisfy in order that our study works.
First, we need two assumptions (2.1)-(2.2) to assure the consistance between
the kinetic equation and the non-local scalar equation. Then, we expose the
hypotheses necessary to obtain the existence of solutions for the kinetic equa-
tion according to the method used. We will present two proof methods, each
one requiring specific hypotheses. For the first existence result, we need (2.3).
For the second existence result, we need (2.4)-(2.10). This section ends with
a formal proof that justifies the need for consistence assumptions.

In section 3, we study the well-posedness of the kinetic equation with as-
sumption (2.3). In this framework, we can use a fixed point and the proof is
relatively usual. We get the following result.

Theorem 1.1 Let F,G € C'(R,R), n € C'(R,R) N L=(R). Let f° € L*(R?).
We consider a mazwellian M satisfying (2.1) and (2.3). Then there exists
p € L>([0,T), L} (R%)) for any T > 0 solution of (1.4) with initial data f°.
Furthermore this solution p € L>([0,T], L*(R3)) is unique with the initial data.



This case is the easiest among the two that we study but most of the models
won’t verify (2.3) thus it require the study of the second model.

This is why in section 4, we study the existence of a solution for the kinetic
equation with assumption (2.4)-(2.10). We get the following result.

Theorem 1.2 Let F,G € C'(R,R), n € C*(R,R) N L=(R). Let f* € L'(R*)N
L3(R3) such that xf°,&f% vf0 a(v,&)f° € LY(R3) and

/]R (//fo(;,;,v,g) dudg) dr < Loo.

We consider a mazwellian M satisfying (2.1) and (2.4)-(2.10). Assume that
there exists a constant K > 0 such that

|F(2)] < K(]z| 4+ |2)?)  for any z € R. (1.7)

Then there exists p € L>([0,T], L*(R®)) for any T > 0 solution of (1.4) with
initial data f°.

This proof uses Schauder’s theorem and is much more complex and requires
solving numerous technical difficulties.

Then, in section 6, we present a model which satisfies the assumptions for
the first theorem and in section 5, a model which satisfies the ones for the
second theorem.

2 General framework for the kinetic model

This section sets the general framework and the assumptions that the kinetic
model must satisfy for our study. Then, we present the formal limit of the
model to check that the limit equation is indeed the expected one.

2.1 Assumptions on the kinetic model

The first assumptions for the kinetic model are consistency type ones. They
will ensure that the formal limit is indeed the non-local equation.
Consistance assumptions.

We assume that, for any p : R — R, there exists M, : R* — R such that

//Mp(t,x,v,f) dédv = p(t, x) (2.1)

and

[ o.My (t2,0.6) dedv = F(p(t )G+ p)(t.0). (22)

These two previous properties ensure the consistency between the kinetic and
the non-local scalar equation.



For the existence of a solution to the kinetic equation, according to the
model, we can consider two differents lists of assumptions.

Assumption for existence 1.
We assume that for any pi, po € L'(R?),

/Ré M, (t,2,0,8) — M, (t,z,v,§)| dvd do < K/R \p1 — pao| (t,2) dx
(2.3)

Assumptions for existence 2.
We assume that there exists constants Ky, K3, K4, K5 > 0 and p =1 or 2
such that, for any p: R — R,

J[ 1Mot 0. ) dgdv < Jo(t, )], (24

J[hatw. My (2.0l dedv < Kol Plo(t,2))G((n = p)(E )] (25)

RQ

J M0, )l dedo < Ko loft, )] (1+ [ ot )P dy),  (26)

R2

J1elMy(t w0, €) dgdv < Ko g, ), (2.7)

R2
1Mot 0. ) dedv < Ksp(t, )" (28)

R2
if p, = p a.e. (t,x) and |p,| < || € L'(R), then M, — M, a.e. (t,x,v,§)
(2.9)

and

the term a(v, ) allows to apply an averaging lemma . (2.10)

Remark 2.1 We have to specify what we mean by averaging lemma. It is such

a result : if
atgn + 8x(a<va g)gn - hn

with (gn)n and (gn)n bounded in L'(]0,T[XR X R?) then p, is compact in
L. (J0, T[XR) where

loc

pults) = [ ¥(€ v)gult,y.v,€) dedv
R2

with ¥ € L>(]0, T[xRxR?). The function a(v, &) must satisfy a non degeneracy
condition to pretend getting this kind of result.



The first assumption allows us to apply contraction technic and the second
list of assumptions to apply Schauder’s result. If the model satisfies the As-
sumption for existence 1, we should use it but in practice, it is not often
the case. Then, we have to consider the Assumptions for existence 2.

Remark 2.2 Notice that (2.1) and (2.4) imply
1Mot v.6)] déav = |p(t, @)
R2

and if Ky =1, then (2.2) and (2.5) imply

// |a(v, )M, (t, z, v, §)[ dEdv = [F(p(t, x))G((n * p) (¢, x))|.

Remark 2.3 Notice also that if we have a majoration like

J16IMtt 2, 0.) dgdo < Ky lp(t )] [ 1p(t9)] dy,

R2
then it implies (2.6).

Remark 2.4 If we want to gives an additional property as for example the pos-
itiwity of the solution, we have to add this fact in the assumptions. Thus for
the important case where we want p > 0, for example for the first existence
result, we just need the assumptions:

//./\/lp(t,a:,v,é’) dédv = p(t, x), (2.11)
[ atw. M (2.0, ddv = Pt el p(to)  (212)

and
Aé[\/\/lm(t,:c,v,f) — M, (t,x,v,8)| dvdé dx < K/]R o1 — po| (t, ) dz

(2.13)
for any p, p1,p2 > 0.

2.2 Formal limit

Consistency assumptions, that is to say (2.1) and (2.2) are related to the
consistency between kinetic and non-local equation by the following formal
limit. Formally, passing to the limit as ¢ — 0 in (1.4), gives

Mp:f7



by noting f the limit of (f.). On the other hand, an integration with respect
to (v,&) of (1.4) yields

o [[ 1-dgav+ o, [[ (v, €)1 dav =0,
R? R?

since

//Mpa(tw,v,f) dédv = p.(t,x) = //fg(t,x,v,f) dédv.
R?2 R2
At the limit, we thus have

o, [ Mydedv+ 0, [[ a(v, )M, dédv = 0.
R2 R2

//./\/lp(t,x,v,g) dédv = p(t, x)
R2

and

[ atv. M (t,,0,€) dedo = F(p)Gn « p).

Finally we get
Op + 0:(F(p)G(n = p)) = 0.

3 Well-posedness of the kinetic equation with
assumption (2.3)

We consider the case of Assumption for existence 1. We also need the first
assumption of consistency. Then, we assume that (2.1) and (2.3) are satisfied
are we prove that it allows to get existence and unicity of a solution to the
kinetic equation.

Proof of Theorem 1.1. Equation (1.4) is equivalent to the following integral
representation

fe(t,x,v,&) = e_t/efg((), x—a(v,{)t,v,§)+i /Ot 6(S_t)/5/\/lp8(s,x—a(v,f)(t—s),v,f) ds

with
p5<t,$) = //fi(t7y7va’5) dfd?}
R2

Let € > 0 and T > 0. Denote by ® the application from L>([0,T], L*(R?)) to
L>=([0,T], L*(R?)) which at f associate

O(f)(t,x,v,8) = e’t/sfo(x—a(v,f)t, v, f)—l—i /Ot e(S’t)/E/\/lp(s,a:—a(v,f)(t—s),v,ﬁ) ds,



where

plt.x) = [[ £(t.y,0,6) deav.
R2
For fi, fo € L>=([0,T], L'(R?)), we note

prlt.a) = [[ Altyv.€dsdo and  poltix) = [[ folty,0.€) déav
R? R?

and we have

ﬂmewmua—meau@mmmU

IN

/// =DM, — M, (5,2 — a(v,€)(t — ), v, €) ds dzdEdv

IN

g/o //esft e/R|Mpl(s,:L’,v,§)—Mpl(s,x,v,f)\dxdfdvds
R2

1 gt
g/o e(s_t)/a/ K|p1 — p2|(s, x) dxds

K- / (o= t)/s// |fi(s,z,v,8) — fa(s, x,v,8)| dedidvds

IN

IN

IN

K= / (s=0/¢ ds sup // |fi(s,2,0,8) = fa(s, 2,0, €)| dedEdv

s€[0,t]

IN

K(l —e’t/6 sup // |fi(s,z,v,8) — fa(s,z,v,&)| dedédv.

s€[0,t]
Thus

sup // ]@(fl)(t,x,v,g) o @(fé)(t,ﬂ?,v,g)‘ dl‘dfd’l}

t€[0,T] R

< K(l —e_T/s sup // |fi(t,z,v,8) — fo(t,z,v,€)| devdédv.

te[o T)

Taking

2K —1
T. = —¢l 0,
5n( oK >>

we have
K (1 — e’TE/E) = ;

and @ is a contraction on L>([0,7%], L'(R?)). Then we get the existence and
uniqueness of a solution in L>([0, 7¢], L'(R?)) to (1.4) with initial data f° > 0.



Since the time 7. does not depend on f°, we can restart from the obtained
solution at value T. and get a solution on [T;,27.] and so on. Finally we get
existence and uniqueness of a solution in X on any [0,7] with 7" > 0. O

We also have a variant for the important case where p > 0.

Proposition 3.1 Let f° € L'(R?) such that f0 > 0. We consider a mazwellian
M satisfying (2.11) and (2.13). Then there exists p € L>([0,T], L*(R?)) for
any T > 0 solution of (1.4) with initial data f° and such that p > 0.

Proof. We adapt the previous proof by considering the space X of functions
fin L>=([0,T.], L'(R?)) such that f > 0. For f € X, we have ®(f) € X since
then p > 0 and M, > 0. O

4 Existence of a solution for the kinetic equa-
tion with assumptions (2.4)-(2.10)

We consider the case of Assumption for existence 2. We also need the
first assumption of consistency. Then, we assume that (2.1) and (2.4)-(2.10)
are satisfied and we prove that it allows to get existence of a solution to the
kinetic equation.

Proof of Theorem 1.2.
Let € > 0 and T > 0. Denote by ® the application from L>°([0,T], L*(R?))

to L>=([0,T], L'(R?)) which at f associate

@(f)(t, x,v, 5) = e—t/afO(x_a(v’ f)ta v, §)+i /Ot e(s_t)/aMp(s> J?—CZ(U, 5)(t—$), v, 5) dS,

where
plt) = [[ fit.y.v.6) dedv.
R2
There exists constants C§, ..., C¢, C§ > 0 such that
/// | (z,v,8)| dvdédr = Cf < +o0. (4.1)
R3
19117 @, v, )l dvdgdr = G < +ox, (4.2)
R3
[ s @, v,0)l dvdgdn = € < +oc, (4.3)
R3
10170, 0)] dvdgda = € < +oc, (4.4)
R3



/// | (z,v,6)|? dvdédr = C) < +o0. (4.5)
R3

2
/R (// O(z,v,6) dvd{) dr = C§ < +00 (4.6)
R2
and
] 1w, 111 (@, v,0)] dvdgda = C < +oc. (4.7)
R3
We set
G=14+ sup |G(2)| <400 (4.8)

2€B(0,]Inlloc R1)

since G is continuous and B(0, ||n]|«R1) is compact. We take

C(z
R, = max ((Jg, Kzlo(g) , Ry=0C2 Ry=max(Cy, KsRi(1+ Rg)), (4.9)
R, = max(Cy, K4Kg), Rs=max(Cy, KsRy, K5Rg) (4.10)
and
R = max <06 CO) (4.11)
6 0 KQKQ . .

We denote R = (Ry, Ry, R3, Ry, Rs, Rg) and Cr the set of all f € L>([0,T1], L*(R?))
such that for a.e. t €]0, T,

£t 0. ) dvda < Ry, (4.12)
R3
] 1211t ,0. )| dudgda < R, (4.13)
R3
[ €15tz 0,0)| dvdgdr < R, (4.14)
R3
101t 0.) dvdgde < R, (4.15)
R3
] 1# k.0 ) dvdgde < s (4.16)
R3

and

/R (// [t z,0,8) dvdg) dr < Re. (4.17)

10



We denote also Cg the set of all f € C([0,T], L*(R?)) satisfying (4.12)-(4.17)

with
0 +0ulal0, ) + 1f € 2 (1.18)

The presentation of the proof is divided into seven parts.
Step 1. We prove that if f € Cg, then M, € Ck.
First, using (2.4), we have

N Mot 0. ) dvdan < /R|p(t,x)|dx
R3

IN

/R/ |f(t, 2, v,8)| dédvdx
K2

Ry

IN

and, using (2.1),

R2
/R (// |f(t, 2,0, 8] dfdv) dx

< Rs.

IN

Now, using (2.8), we get

J] Mott w0 OF dvdar < [ Kot 2)lda.
R3

If p=1, it gives

] Mott v 0 dvdedr < [ Ky [[1£(t2,0.)| dgdvda
R3 R2
< K5;R; < Rs.

Otherwise p = 2 and it gives

2
// M, (t, 2,0, 6)|? dudédr < /RK5 (//f(t,x,v,g)dgdv) dz
R3 R2
< K5Re¢ < Rs.

11



Now, using (2.4), we have

17'|xH/vgxt,x,v,§)|dvdgdx < /;|xup(@ag|dx
R3

IN

12115t .0, ) dvdga
R3
< Rs.

Furthermore, using (2.6), we have

// €| M, (t, 2,0, 8)| dvdéda

< /Kslptﬂf <1+/\ﬂ \zdy> da

2
< Kg// |f(t, z,v,8)| dédvdx (1—1—/ (/ |f(t,y,v,§)\d§dv) dy)
R2
< K3R1(1 + Rg)
< Rs.

Finally, using (2.7), we deduce

///|U||Mp(t,$,v,§)|dvd§dx < /RK4|P(7575E)|2dx
R3

2
< .K;]QI(/“j(uagv,g)dgdv) dr
R2
< KyKg
< R,

Then we get that M, € Ck.

Step 2. We prove that if f € Cg, then ®(f) € Ck.
First, we have

Z7i|¢(f)agx,v,§)|dvd§dx
< e_t/‘e///|f0 x —a(v,&)t,v, )| dvdédx

,/ St.ﬂ|W1 v, &)(t — ), v,8)| dvdéda ds

12



IA

e’t/s///|f0(x,v,f)|dvd§dx
R3

1
+E/ e(s_t)/E// |IM,(s,z,v,§)| dvdédx ds
0
R3

IN

e '*R, + i /t e0/2 R, ds
0
< e "R+ R(1—e"%) =R,

Now notice that
O(f)(t,z,0,8) = _t/gfo( a(v, §)t,v,§)

o 59/ ds
) f} Ml =l (=)0 e

then for a convex function H, we have
H(®(f)(t,x,0,8)) < e FH(f*(z = a(v,6)t,0,))
(s=0)/ g
- —t/e —_ 76
t(1—e < / M, ( =908, /€d0>

and by Jensen’s inequality, we get
H(®(f)(t,2,0,€)) < e CH(f(x — a(v,&)t,0,€))
H1 =) [T HM, (5,0~ a(w, (0 — 5),0,)
< e EH(f(r - alv, )t v,€))
+i /O LD (M, (s, 2 — a0, €)(t — 5), v, €)) ds

e(s_t)/a dS
Jyeoleda

With H(z) = 22, it gives

(@(f)(t,2,0,8))° < €W<%x—m Ot,0,6))?
1 _
o [V My (5,2 — a0, €) (¢ 5),0,))2d

and, using (2.8),

// O(f)(t,z,0,6)? dvded

< e_t/s///|f0 r — a(v,E)t, v, €)|? dvdédx

13



f/ (s—t)/ // M, (s Ot — ), v,8)|? dvdéda ds

e_t/5M|f0 z,v,&)* dvdéda
R3

1t
+E/ e(s_t)/e// M, (s, 7,0,€)|* dvdédz ds
0
R3

IN

IN

1 gt
e~ECS 4 g/o eV Ry ds
< eit/ERg, + R5<1 — e*t/s) = R5.

Furthermore

//CD (t, 2,0, €) dvde

= e_t/s//fow—a &)t v, &) dvdg

,/ (s—)/ //M &)t — s),v,&) dvde ds

then, by convexity,

( e t.a.0.0 dvdg)
< ele (//fox—a tvf)dvdﬁ)Q
Tz / e (//M S),?f’f)dvdfyds.

Thus

/R (// O(F)(t, 2,0, ) dvd§)2 dx
< ’t/e/ (//fox—avf)tvf)dvdf) dx
/ (s— t)/E/ (//M )t —s),v §)dvd§)2 dx ds

14



IN

e_t/E/R (// Oz, v,€) dvd£)2 dx
R2
—i—i/ot e(sft)/s/R (42 M, (s,z,v,€) dvd§>2 dz ds

1 t
e MeCS 4 +g/0 e V/eRe ds
< e_t/aRG + RG(]. — G_t/a) = Rg.

Now, using (2.4) and (2.5), we have

/// || ®(f)(t, 2, v,&)| dvdéd

—t/s///|x||f0 (x —a(v,&)t, v, €)| dvdédx

IN

IN

,/ (s=)/ // || M, (5,2 — a(v,€)(t — 5),v,€)| dvdEdz ds

IN

e // lz + a(v, || fO(z,v,€)| dvdédx

+/ e //|“f+a )(t = 8)||M,(s,2,v,8)| dvdédx ds

IN

e t/é(CQ +tC“)

L [ e [ (allo(s, )] + (¢~ )P (ols,2)G(n # p)(5, 7)) s

IN

e—f/s(c2 +tCf)

+= / (s=t)/ (// ||| f(s,x,v,&)| dvdédx + (t — s) Kg/ |F(p(s,x )G((n*p)(s,x)ﬂdw) ds

t
< eTVE(C2 1Y) —1—2/() els=t/e (RQ +(t—s KQ/R |F(p(s,x))G((n * p)(s,x))ldﬂf) ds

Since
0% )(s.2)] < [l [ [p(s,0)] dy < [l

we note that
G((n* p)(s,2))| <G,
then, with relation (1.7),

122t 2,0.6)  dvdgda
L

15



then,

N

IN

INIA

t
e7VE(C2 4 tCY) —1—2/ elst/e (R (t—s KQQ/ (lp(s, )| + |p(s, z)| )dm) ds
0

1 t
e7E(C2 + 1) + g/ eI (Ry + (t — 8) KL K (Ry + Rg)G) ds.
0

t
1/ eV (a + sB)ds = a — fe +tB + (Be — a)e Ve,
e Jo

with o = R2 -+ tKQK(Rl —+ R6)Q and ﬁ = —KQK(Rl -+ RG)Q, we get

[ 19t 2.0.) dvdea
0

e VE(C2 4 1C8) + Ry + tKy K (Ry + Rg)G — eRy + e Ko K(Ry + Rg)G — tKoK(Ry + Rg)G
+(Rye — K3 K (Ry 4 Rg)Ge — Ry — tKoK(Ry + Rg)G)e /¢

C2 4+ Ry + e Ko K(Ry + Rg)G — KoK (Ry + Rg)Ge — Ry

+t(Cy + Ko K (R + Rg)G — Ko K(Ry + R)G — KoK (Ry + Re)G)

CG +t(C§ — K2 K(Ry + Re)G)

Ry

since C¢ < Ry and KoK (Ry + Rg)G > C.

Furthermore we have

//!sué )(t2,0,6)] dvdeda

IA

‘“5/// €176 — a(0. 1.0, dudeds

+ /0 el [Z €My (s, 7 = alv, )t — 5),v,6)| dvdgdr ds

< e [ €17 @.v.0)| dvded
o

1 t
—i—g/o e(sft)/s// £ M, (s, 2,v,&)| dvdédx ds
R3

N

IN

1 t
e ECS 4 f/ eV Ry ds
g Jo
< G_t/aRg + Rg(l — G_t/g) = Rg.

Finally we have

I wie a0, ) dvdgda
A
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IN

el /// o]l £ = alv, €)t, v,€)| dvdgda
7/ (s=t)/ // [v|[M (s, 2 — a(v,&)(t — s),v,§)| dvdédx ds
e’t/s///|v\|f0 x,v,§)| dvdédx
R

1 gt
—i—g/ e(s_t)/’f// 0] M (s, z,v,8)| dvdéde ds
0
R3

IN

1 t

< e_t/€C’04 + f/ /e R, ds
g Jo

< €_t/€R4 + R4(]_ - €_t/€) == R4.

Then we get that ®(f) € Ckg.

Step 3. We prove that if f € Ck, then ®(f) € Ch.
By step 1 and step 2 and since ®(f) satisfies

00(F) + Oula(w, () + ~a(f) = 22, (4.19)

3

we get (4.18) for O(f).

Step 4. We prove that ® is continuous on Chk.
Let g, g, € Cg such that g, — g in L>=([0,T], L*(R3)). Set

pult;2) = [[ gulty, 0. dcdv and  p(t,2) = [ glt,y.0,€) dédv.
R?2 R?2

Since

/ lon — p| (t, z,v,&) dedédv < // lgn — g|(t, z,v,§) ds dxdEdv,
R
R3

then p, — p in L'(J0,T[xR) and there exists a subsequence p,,) and a
function h € L'(R) such that pymy — p and |pym)| < |h| ae. t,z. Thus
M,y = M, ae. t,x,0,€ by (2.9). Furthermore, the sequence (M, )y is
uniformly integrable thanks to (4.16) and tight thanks to (4.13)-(4.15). Then

by Vitali’s convergence theorem, we get M, — M, in L'(]0, T[xR?). Now

1 t
_ - (s—t)/e
|D(gpn))—P(9)|(t, z,0,8) < 8/O e M

— /\/lp’ (s,z—a(v,&)(t—s),v,&)ds

Po(n)
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thus

/// D (gom)) (t,,0,€) = B(g) (¢, 7,v, )| dudédv

1 ¢
< */// e(S*t)/5|Mp¢(n) — M,|(s,z —a(v,&)(t — s),v,§) ds dedédv
9 3 0
1 ! s—t)/e
= E/o / e /R‘M%m — M,|(s,2,v,§) dz dédvds.
R2
We obtain

sup ///‘CI) Gom))(t, z,0,&) — P(g )(t,x,v,f)’ dxdédv

t€[0,T]

< E/o // M., — M,|(s,2,v,€) do dédvds
b

and we get that ®(g,(,)) — ®(g) in L>([0, T}, L(R?)), or also in C([0, 77, L*(R?)).
It is enough to get the continuity of ® on Ck.

Step 5. We prove the following properties on the sets Cr and Cg: they
are convex and not empty, the set Cr is compact for the weak topology of

L'(]0, T[xR?) and the set Cp is closed in C([0,T], L'(xR3).
The sets Cr and Cj are clearly convex. Since f° € Cg, the set C is not

empty. Since f° € Cg, then ®(f°) € Cg by step 2. Thus the set C is not
empty.

12l‘}lge uniformly integrability comes from (4.16) and the tightness comes from
(4.13)-(4.15), then the set Cf is relatively compact for the weak topology of
L'(]0, T[xR?) by Dunford-Pettis’ theorem.

Let us prove now that Cf is closed for the weak topology of L'(]0, T[xR?).
Since Cg is convex, it is enough to prove that Cg is closed for the strong
topology of L'(]0, T[><R3) Let g, € Cg such that g, — ¢ in L'([0,T] x R3).
After extraction of a subsequence, we have g,u) — ¢ a.e. (t,z,v,§) and
Gom)(t,) — g(t,) in LY([0,T] x R?) a.e. t. Since the sequence (g, () satisfies
(4.12)-(4.17) uniformly with respect to n, applying Fatou’s lemma to each
inequality, we get that g € Ck.

We prove similarly that Cr is closed in C'([0,T], L'(xR3).

Step 6. We prove that d(Cp) is relatively compact in C([0, 7], L'(R?).

Let f, € CID(CR) defines a sequence in CID(CR) Then there exists g, € Cr
such that f, = ®(g,). Set

pn(t,x) = //gn(t,x,v,f) dédv.
R2

18



Since Cr C Cg and since C'g is compact for the weak topology of L'(]0, T[xR?),
there exists a subsequence g,(,) such that g,y — ¢ in weak L'([0,7] x R?).
Thus py(m) — p in weak L*([0,7] x R) since the functions are in Cg where

p(t,x) = //g(t,x,v,ﬁ) dédv.
R?

Since gy(m) € Chp, then, by (4.18),

hgo(n) = gatgcp(n) + 5890(@(”7 f)gw(n)) T 9p(n) € Ckr.

By (2.10), we get that pyg, is compact in Lj,(]0, T[xR), then for a subse-
quence pPuoy(ny — p in L(J0, T[xK) for any compact K of R. We deduce,
since the functions are in Ck, that pueyn) — p in L'(J0, T[xR).

Finally we apply the same argument as in step 4 to get that for a sub-
sequence fyopor(n)P(gpoporn)) — P(g) in C([0,T], L*(R?)). This is how we
finalise step 6.

Step 7. We conclude by applying Schauder’s theorem in C([0, 7], L'(R?))

to ® : Cr — Cgr. There exists f € C([0,T], L'(R?)) such that ®(f) = f.
This gives a solution in [0, 7] for any T" > 0, and by extraction of a diagonal
subsequence, we obtain a solution in [0, +oo[. [

Remark 4.1 Notice that (1.7) is satisfied for example if F' € L*> and F(0) =0

since then

[F(2)| = [F(2) = F(O)] < [[F"]]so]]-

But we can also consider more general cases.

5 A model for the contraction result

Let’s explicit a model for which the assumptions (2.11)-(2.13) are satisfied.
For the scalar non-local model, we assume that

1
F0)=0 and n,—-¢€L>™R), (5.1)
Ui
that is to say that there exists a, 8 > 0 such that

a<n(z)<p, foranyze€R. (5.2)

Notice that the term 7 * p is well defined as soon as x +— p(t,z) € L'(R) for
any t.
For the kinetic model, we take

a(v,§) = b(v)e(§)
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with

b(v) = F'(v), (&) =G(&)+£G'(€) (5.3)
and

M(t,2,v,8) = Myt 2, (nip) (t.2) (0, §), (5.4)

where
MP;‘I(”?&) Ml(vvp)MQ(gaq)7 (55)
M) ={ (0 Rl 2D 69

SgN(q) i _

M, (€, q) = { ) ii EZ - gg 2 8 (5.7)

Remember that

plt.x) = [[ f(t.y.v.€) déav.
s

Notice that we write M, (t,z,v,£) and not M, »)(v, &) because here the term

M, (t,z,v,&) depends on the function p for any value at (¢,y) because of the
term 7 * p. At the kinetic level, we also have a non-local taking into account
the values of p..

5.1 First properties
First, notice the following properties :

Proposition 5.1 The functions My and My satisfy
/RMl(v,p) dv = p,
[ 13w, p) = M0, )] dv = o = 5],
[ CMi(v.p)dv = C(p) = C(0). ¥C € C'RR),
[ Ma(&,0) d€ = L0,

[ (C(©) +£C"€)Ma(&.9) dE = C(@) 1y, VC € C'(R.R).

Proof. The four first properties come from classical computations. The last
one comes from the following. For ¢ > 0, we have

flc©+oc@nends = [ +oce)d = - ['ece) s
— lEC©l = cta)
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and for ¢ < 0,

JL(C© +oC@)Mae 0)d = [ OO +uC(©) d¢ = Cla). D

The most difficult property to deal with is :
Proposition 5.2 The function M satisfied

min(p.p) |
//| My (v, €)] dédv = | — pl +2 B r g — g

for any p,p >0 and q,G > 0.
Proof. We have

[ 10000, ) = My a(0,6)] dédv = [[ [M:(0, )M, ) = M (v, M€, )| el
R2 R2

For p>p>0and g > q> 0, we get

J1M50,6) = M3a(0,9)] dedo
R2

= " [" 1. p)MaAE @) = M0, D) M(6, )] dedo
[ [ 1800 006 0) — (0. 7) (6. D) dedo

+/ﬁ /q |Mi(v, p)Ma(&, q) — Ma(v, p)Ma(€, )| dédv

= —’ 0—‘ O—’dfdv
q—q
= 20—+ (p—p)
q
For p>p>0and qg>¢qg> 0, we get
/|Mpq My (v, €)| dédv

- /0 /0 | My (v, p)Ms(€,q) — M (v, p)Ms(, )| dédv
+/0p/§q‘M1(U,P)M2(€, q) — My (v, p)Ms(€, )| dedv

+/f /oq~ | M (v, p) Ma(€, q) = M (v, p) Mo (€, §)| dédv

21



4 [ [ 109Vl 0) — Mo, IS D) di
/p 71

—‘dgdv
q—q ;

q
= 2p—— +(p—
q

_0‘

0—| dédv + 0
p). O

5.2 Assumptions satisfied and existence result

Proposition 5.3 Let F,G,n € CY(R,R) functions such that (5.1)-(5.2). Let
a(v,€) = b(v)e(€) be such that (5.3)-(5.7). Then the model satisfy (2.11)-
(2.13).

Proof. First we have
J[ Motz 0. dgao = [ Mio,plt2))dv [ M6, (0 ) (t,0)) e
R2

= p(t, ) Lpup)(t.)20 = p(t, @)

since (n* p)(t,z) > 0 as soon as p(t,z) > 0 (remember that n > 0) and thus
p(t,x) =0 ae. if (n*p)(t,x) =0 a.e. Thus we get (2.11). Now we have

// ot z,v,8)dédv = /Rb(v)Ml(v,ps(t,a:))dv/Rc(f)MQ(f, (n* p)(t,x)) d§

EF(p(t,z))G((n* p)(t, x))][n*p(t,x);éo
F(p(t,x))G((n* p)(t, x))

since 1 * p(t,z) = 0 a.e. implies p(t,x) = 0 a.e. and F(0) = 0. Thus we get
(2.12). Finally we have

/ My (t,2,0,€) = My (t,,,€)| dEdo

- // Mt 6:0) (0 €) = Mot ()2 (0, €)| didw

min(py, pa)
— py— ol (t 2 t _ .
= palt) 42 (O (1) g el

from proposition 5.2. As a consequence,

/R//|Mp1(t,a:,v,§) — M, (t, z,v,€)| dédv

min(pq,
< [l pl(t.2) dx+2/< (b1, ) )(t,xﬂn*pl—n*pg\(amdax
max(n * p1,n * pa)
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Since

e —nxp)t o) < [ e =y)ler = p2)(t.3)] dy

9l [ 1(o1 = pa)(t.1) dy.

IN

then we have

/1;{//|Mpl(t,x,v,§) — M, (t, z,v,6)| dédv
R2

< [l =l oo 2l o = poenlay [, (O ()

max(n * p1,1 * pa

From

min(py, p2) _ p1+ p2 — |p1 — pal o Pt
max(n * p1,n % p2) Nk pL Nk pr K pr—nxpa] T Mk pL 0k po

and

n*p1(t, ) + 1% pa(t, ) Z/Rn(af—y)(pﬁrm)(t,y) dyZa/R(erm)(t,y)dy-

we get

/ min(py, p2) du / pP1L+ P2 dr — 1
R max(n * p1,n*p2) ~ JRa [g(p1+p2)(t,y)dy o

Therefore we obtain

/Ré/2 ‘Mpl(fﬂ‘rav?g) - MP2<t7.T,'07£)‘ dde < (1 + 2”2”00) /R ]pl - p2| (t,I) dx

and (2.13). O
Finally, applying Proposition 3.1 we obtain the following result.
Theorem 5.4 Let f© € LY(R?) such that f© > 0. Let F,G,n € C*(R,R)

functions such that F(0) = 0, n,% € L*(R). Let a(v,&) = b(v)c(€) such that

(5.3)-(5.7). Then there exists p € L>([0,T], L*(R?)) for any T > 0 solution
of (1.4) with initial data f° and such that p > 0.
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6 A model for the Schauder result
We make the following assumptions on F', G and 7:
F € C*R,R),F(0) =0 and F, F’ are strictly monotone functions, (6.1)

G € CY(R,R),G,G" are a strictly increasing functions, G’ > 0, (6.2)
and such that there exists Xy < 0, Ky > 0 and v > 1 for which

K Ko
1G(z)| < ﬁ and  |G'(z)| < MI% if 2 < X, (6.3)

and ) )
neCYR,R)NL¥R) N L*(R). (6.4)

The term 7 * p is well defined as soon as z — p(t,z) € L'(R) for any t.
For the kinetic model, we consider

a(v, &) = b(v)d'(§) (6.5)
where .
b(v) = F'(v), d(&) =2 Z G —2n—-1) (6.6)
and . -
M(t,2,v,€) = M2, (pep) t.0) (0, €, (6.7)
where ~
Mp,q(vag) = Ml(vvp)M3(§7Q>7 (68)
e ={ 50 020 9
Miy(€,0) = 3 Tega(©). (6.10)

Remember that
plt.2) = [[ £(t.y,0,6) dedv.
R2

Remark 6.1 Notice that d is well defined thanks to assumption (6.3) because

Ko
GE¢—-2n—1) < or2n+1>
and is C' on R since, for any set | — oo, a] with a > 0, we have, for any
n > ng where 2ng + 1 > a,
Ky

IG'(€—2n—1)| < Gnt1—a)e

if x € |—00,al.
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Then .
d€)=2> G(E—-2n-1) foranyz €R,
n=0
and d,d" are strictly increasing functions and d’ > 0.

Remark 6.2 We can also consider the case where G 1is a strictly decreasing
function with assumptions on +oo this time.

We need to apply averaging lemma, thus we have to assume the following
non degeneracy condition : for all R > 0, there is a constant C' = C(R) such

that for z € R, 7 € R with 02 + 72 = 1, then
meas{(v,£) € R*s.t. |v],|¢| € R and |a(v,€)o — 7| < e} < Ce. (6.11)
We refer to [12], [7], [14], [6], [18], [15] and references within for averaging

lemmas.

6.1 First properties

The property for M; is in proposition 5.1. For M;s, we have the following
result.

Proposition 6.1 Let F,G € C'(R,R) such that (6.3) is satisfied. Then we
have, for any q € R,

[ M(&qyd =1,
R

[ COMy(& @) de = S(Cla+ 1)~ Cla— 1)), ¥C € CHRR)

and

[ €M (6.q) dé = Glo)

Proof. For the first property, we write

1 1 fa+l 2
/R§1[|s—q|<1(€) g = 2/q d=5=1

The second equality comes from the following:

, 1 ettt 1
L Cr@nseayde =5 [ O'€)de = 5(Cla+ 1)~ Clg— 1),

Then we get the third one since

dlg+1)—d(g—1) = 2+ZOOG(q—|—1—2n—1)—2§G(q—1—2n—1)
— 20(¢). _
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Remark 6.3 Notice that we cannot apply contraction technics in this case since
we have the following equalities. First

] 138,0.€) = V50, 6)| dedv =[] 160, p)Ms(E @) — M0, 9)My(€,3)| dedo.
R? R?
Forp>p>0andq>q>0, we get

//\Mpq My q(v,€)| dédv

1
- 2/0 /R‘][q—1<£<q+1(§) — T 1<e<g+1(§)] ddv + 2/[)'0/R]Iq_1<£<q~+1(§) dédv.

If ¢+ 2 < q, we have
//’ PQ(U f)‘ dédv = 2p+ (p — p),

if ¢ < q+ 2, we have

Mj3(v,€)| dédv = p(d — q) + (5 — p)-
Then, by studying the similar cases, we get
//‘ pq( 5)‘ dgd?] = 2m1n<p7 ﬁ)][min(q,d)JrQﬁmax(q,(j)

+ min(p> :5)|q - qu[(]<max(q,q)<min(q,q~)+2 + ’ﬁ - P’

The term 2min(p, p) Ivin(q,6)+2<max(q,q) does not allow a contraction study.

6.2 Assumptions satisfied and existence result

Proposition 6.2 Let F,G,n: R — R, a : R*> — R satisfying (6.1)-(6.11).
Then the model of this section satisfies (2.1)-(2.2) and (2.4)-(2.10).

Proof. First we have

//Mp(t,x,v,£) dedv — /RMl(v,p(t,x))dv/RMg,(f, (0% p)(t,2)) dE = plt, ).

Thus we get (2.1). Now we have

// M(t,z,0,€) dédv = //b VA ()M, (L, z, v, €) dédv

. /R (o) My (v, p(t, ) dv | (&) Ma(E. Oy * )t 2)) d
= F(p(t.)C((n # p)(t.)
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and we obtain (2.2). Furthermore, we have

J] Mt v, ©)ldedo = [ Moot )] do [ (M(E, (% ) (1) ds

= |p(t;2)| < |p(t, z)],
that is to say (2.4) and

[t Mt 2.0 )1 dgav = [[ @I 1M (v, plt, ) 1Ms(E, (1% p)(E, )] do

= [ @I (. plt )l dv [ |2 ©IIM(E, (5 p) (2. )| €

= [ IF @M@ ot 2) dv | [ d©Malg, (1 p)(t2)) d

< |F(p(t,x))G((n* p)(t, )]

thanks to the monotonicity properties of d and F' and we have (2.5) with
KQ =1. Now

1t v, &)l dgdo = [ 100, plt )l dv [ IEM(E (n % p)(2))

and since

{1l ifg+1<0orqg—1>0,
/R|€|M3(§,q)d€—{(q2+1)/2 ifq—1<0<g+1,

we gt [ [¢[My(€,q)d¢ < ¢* + 1 and
R

[tttz 0.0l dedo < Ip(t )] ((n+p)(t,2))? + 1)
R2

< |p(t, )] <1+ (/Rn(fv—y)p(t,y) dy)2>

< |p(t,x)\(H/Rn(x—y)Qdy/R\p(t,y)Vd@

< |p(t,l‘)l(1+/Rn(y)2dy/R|p(t,y)|2dy)

< max (L [ nPdy) o(t.)] (1+ [ Ip(ty) dy)

that is to say (2.6) with K3 = max (1, / n(y)? dy). For the following estimate,
R

we have

1018 20, €) [ dgdv = [ ol [, plt )l do [ (&, (% p) (8, )
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and )
/ vdv if p> 0,
0

0
/ (—v)dv if p <0,
o

thus fg [0]| M (v, p(t, 2))| dv = p(t, 2)?/2 and

[ s, p(t, )] dv =

// |U||Mﬂ(t’x>va€)’dfdv = ,O(t,QQ:)Q
R2

that is (2.7) with K4 = 1/2. After this, we write

J] Mtz 0P dedo = [ Mi(o.p(t))dv [ Mae. (n p)(t.2))” dg

= [ I gt el [ SMGE (% o)1) de
1
= §‘p(t>$)|

and we get (2.8) with K5 = 1/2 and p = 1. Assuming now that we have
functions satisfying p, — p a.e. (t,x) and |p,| < |h| € L*(R), then applying
the theorem of dominated convergence, we get that

(n* pn)(t, ) = /Rn(x —y)pa(t,y) dy — (n* p)(t,x) = /Rn(x —y)p(t,y)dy

since n € L. Then we get (2.9).
Let R > 0. We set

4 1
Kr=max |8 sup |F'(z)] sup |d(?)|,—=] =.
" ( ZG[*II;R}’ ( )‘ ZE[*ER]’ ( )l ﬁ) R

Let (0,7) € R? such that 02 + 72 = 1. Let € € ]0,1/2[. We want to consider
set where |F'(v)d'(§)o + 7| < e. Notice that changing (o, 7) by (-0, —7), we
can assume that o > 0. There exists 0 € |—m/2,7/2] such that ¢ = cos 6 and
7 = sin#. Since d’ is strictly increasing and strictly positive, we have

0<d(—R)<d(€) <d(R) forany¢e€[—R,R]
We consider (v,€) € R? such that |[v| < R and |¢| < R satisfying
sinf —e < F'(v)d'(§) cosf < sinf +e.

If cos® = 0, then the set of (v,€&) satisfying +1 — ¢ < 0 < +1 + ¢ is empty
since 0 < € < 1. We consider now the case cos@ > 0. Then we have

sinf — ¢ < F'(v) < sinf 4 ¢
d'(§) cos O d'(§) cos O
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and since F” is strictly monotone, we get
inf —e sinf + ¢
F/ —1 Sin F/ —1
(F) (d’(g) cosf) SV (F7) d'(§) cosd

inf + ¢ sinf — ¢
-1 (S -1 '
(F7) (d’(ﬁ) cosf) SV (F7) d'(§) cosd
Consider for example the strictly increasing case. First case: if 0 < 1/ cos(f) <

KRR, then we get
meas{ (v, &) € R? s.t. \v[ €] < R and |a(v,§)o — 7| < e}

d'(R) (F"Y~Y((sin84¢)/(d’'(€) cos 6))
/ / dvde
—1((sinf—e)/(d'(£€) cos 0))
R) sinf + ¢ sinf — e
< Y ———— | - (F) Y ————] | d
- /g(—R) <( ) <d’(§) cosG) () (d’({) cos@)) ¢

sinf + ¢ sinf — ¢
< (F') /
- Sél[i I(( 2 ( ) cos 0 d’(f) cos 9) d

where Ig = [(—1 —e)KgR/d(R), (1 +¢)KgrR/d' (—R)]. It leads to
meas{ (v, &) € R? s.t. ]v| €] < R and |F’(U)d'(5)0 — 7] <¢e}

< 2eKgRsup |[((F |/ Cr d’

z€lp

or

Second case: if 1/ cos(f) > KgR, then we get

1 1
F'(v)d (€)o| < su F'(z su d(z < =
POE©d < s (PO s WOy < g

/ 1 3
|T|: 1—COS20> 1—WSZ

Thus |a(v,&)o — 7| >3/4—1/8 >1/2 > ¢ and
meas{ (v, &) € R* s.t. |v|,]¢] < R and |a(v,&)o — 7| < e} = 0.
Finally, we get
sup meas{(v,&) € R* s.t. |v],[¢] < R and |a(v,€&)o — 7| < e} < Cge

and

024712=1
where
Cr = 2KgRsup |[(F)71)(2)] /
z€IR ( R 5
s (8 s (P sup (1) ) e [
= max sup z Sup sup z
2€[—R,R) 2€[—R, \/_ 2€lp 9(—R) d/(f)
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It gives (6.11) and we get (2.10). O
Then applying Theorem 1.2 we settle the following result.
Theorem 6.3 Let f° € LY(R3) N L*(R?) such that xf°, & vf0 a(v,&)f° €

Ll(Rs) and 2
/R (// fo(q;,v,g) dvd{) dr < +00.
R2

Consider F,G,n : R — R satisfying (6.1)-(6.4), (6.11) and assume that n €
L>*(R) and that there ezists a constant K > 0 such that

|F(2)] < K(]z| +|2[*)  for any z € R.

Let a(v, &) = b(v)d'(€) such that (6.6)-(6.10). Then there exists p € L>([0,T], L'(R?))
for any T > 0 solution of (1.4) with initial data f°.
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