Emilio Barchiesi 
email: barchiesiemilio@gmail.com
  
Francesco Dell'isola 
  
François Hild 
  
On the Validation of Homogenized Modeling for Bi-Pantographic Metamaterials via Digital Image Correlation

Keywords: Metamaterial, second gradient continuum, Hencky-type model, additive manufacturing, bias extension test

The derivation by variational asymptotic homogenization of a 2D-continuum model describing large elastic planar deformations of a discrete bi-pantographic structure is presented. A rectangular bi-pantographic specimen was additively manufactured and subjected to a bias extension test for macroscopic strains up to ca. 40%. The deformations of the bi-pantographic sample were measured via FE-based digital image correlation. Measured boundary conditions then drove the numerical model of the experiment. The gray level residuals were utilized to independently probe the kinematic hypotheses of DIC and FE simulations against the full video of the experiment for validation purposes.

Introduction

In the last decade, motivated by the application of generalized and second gradient continua theories introduced in the early 1960s [START_REF] Toupin | Theories of elasticity with couple-stress[END_REF][START_REF] Green | Micro-materials and multipolar continuum mechanics[END_REF][START_REF] Mindlin | Second gradient of strain and surface-tension in linear elasticity[END_REF][START_REF] Maugin | Generalized continuum mechanics: what do we mean by that?[END_REF], mechanical models of pantographic structures [START_REF] Dell'isola | Designing a light fabric metamaterial being highly macroscopically tough under directional extension: rst experimental evidence[END_REF][START_REF] Dell'isola | Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium[END_REF] have been investigated. Owing to their simple topology, pantographic fabrics are an archetype when dealing with the homogenization of discrete structures leading to second gradient continua [START_REF] Alibert | Truss modular beams with deformation energy depending on higher displacement gradients[END_REF][START_REF] Abdoul-Anziz | Strain gradient and generalized continua obtained by homogenizing frame lattices[END_REF], discrete [START_REF] Turco | Fiber rupture in sheared planar pantographic sheets: numerical and experimental evidence[END_REF][START_REF] Turco | Large deformations induced in planar pantographic sheets by loads applied on bers: experimental validation of a discrete lagrangian model[END_REF][START_REF] Turco | Non-standard coupled extensional and bending bias tests for planar pantographic lattices. part i: numerical simulations[END_REF][START_REF] Turco | Pantographic structures presenting statistically distributed defects: numerical investigations of the eects on deformation elds[END_REF][START_REF] Turco | Isola, King post truss as a motif for internal structure of (meta) material with controlled elastic properties[END_REF][START_REF] Turco | Enhanced piolahencky discrete models for pantographic sheets with pivots without deformation energy: Numerics and experiments[END_REF] and semi-discrete [START_REF] Andreaus | A ritz approach for the static analysis of planar pantographic structures modeled with nonlinear eulerbernoulli beams[END_REF] models making use of extension and bending elements [START_REF] Steigmann | Variational theory for spatial rods[END_REF][START_REF] Cazzani | Constitutive models for strongly curved beams in the frame of isogeometric analysis[END_REF][START_REF] Cazzani | Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches[END_REF][START_REF] Spagnuolo | A targeted review on large deformations of planar elastic beams: extensibility, distributed loads, buckling and postbuckling[END_REF], generalized shell theories [START_REF] Altenbach | On the linear theory of micropolar plates[END_REF][START_REF] Eremeyev | Foundations of micropolar mechanics[END_REF][START_REF] Altenbach | Cosserat-type rods[END_REF], second gradient continuaand related mathematical challenges [START_REF] Eremeyev | Linear pantographic sheets: existence and uniqueness of weak solutions[END_REF][START_REF] Placidi | Semi-inverse method à la saint-venant for two-dimensional linear isotropic homogeneous second-gradient elasticity[END_REF], parameter identication of second gradient continua [START_REF] Placidi | Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coecients[END_REF][START_REF] Placidi | Identication of two-dimensional pantographic structure via a linear d4 orthotropic second gradient elastic model[END_REF], numerical simulations dealing with second gradient continua [START_REF] Abali | Strain gradient elasticity with geometric nonlinearities and its computational evaluation[END_REF][START_REF] Niiranen | Variational formulation and isogeometric analysis for fourth-order boundary value problems of gradient-elastic bar and plane strain/stress problems[END_REF][START_REF] Khakalo | Isogeometric analysis of higher-order gradient elasticity by user elements of a commercial nite element software[END_REF][START_REF] Balobanov | Kirchholove shells within strain gradient elasticity: Weak and strong formulations and an h3conforming isogeometric implementation[END_REF], continuum descriptions of brous materials [START_REF] Placidi | A second gradient formulation for a 2d fabric sheet with inextensible bres[END_REF], among other elds in Solid Mechanics.

Interestingly, the scientic developments of pantographic fabrics can be also recast within the spirit of metamaterials [START_REF] Barchiesi | Mechanical metamaterials: a state of the art[END_REF][START_REF] Dell'isola | Pantographic metamaterials: an example of mathematically driven design and of its technological challenges[END_REF]. Pantographic prototypes have been developed and manufactured with the goal of obeying some of the above mentioned models and, consequently, material control by optimization of additive manufacturing processes at relevant scales has been considered a key objective. Therefore, experimental studies have been carried out for understanding how dierent 3D-printing processes and raw materials [START_REF] Spagnuolo | Phenomenological aspects of quasiperfect pivots in metallic pantographic structures[END_REF] inuenced mechanical and morphological properties of printed samples at dierent scales, ranging from micrometers [START_REF] Dell'isola | Forcedisplacement relationship in micro-metric pantographs: Experiments and numerical simulations[END_REF] to millimeters, which were imaged by optical and Scanning Electron microscopy, and tomography.

Studies analyzing dierent designs (e.g., hinge/torsional joints [START_REF] Golaszewski | Metamaterials with relative displacements in their microstructure: technological challenges in 3d printing, experiments and numerical predictions[END_REF]) have also been carried out. Bridging properties at dierent scales [START_REF] Yang | Computation and experimental comparison of the deformation behavior of pantographic structures with dierent microgeometry under shear and torsion[END_REF][START_REF] Yang | Material characterization and computations of a polymeric metamaterial with a pantographic substructure[END_REF] has led to new methodologies for, say, granular microstructures [START_REF] Misra | Micromechanical model for viscoelastic materials undergoing damage[END_REF][START_REF] Misra | Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics[END_REF][START_REF] Misra | Thermomechanics-based nonlinear rate-dependent coupled damage-plasticity granular micromechanics model[END_REF]. Experimental studies have shown that pantographic fabrics exhibited a remarkably wide elastic domain and that the elastic response of printed specimens depended weakly upon the raw printed material [START_REF] Angelo | The macroscopic behavior of pantographic sheets depends mainly on their microstructure: experimental evidence and qualitative analysis of damage in metallic specimens[END_REF], thereby suggesting that they can be considered by all means as metamaterials [START_REF] Engheta | Metamaterials: Physics and Engineering Explorations[END_REF].

Such studies have also unveiled new phenomenologies, for instance, the so-called Poynting eect reversal [START_REF] Misra | Pantographic metamaterials show atypical poynting eect reversal[END_REF], which has then led to new model features. It has been proven

that damage mechanisms strongly depended upon geometric dimensions of mechanical elements and raw material properties [START_REF] Spagnuolo | Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments[END_REF]. In all analyzed cases of printed specimens, thanks to their reticulated structure, they were shown to be damage tolerant [START_REF] Turco | Fiber rupture in sheared planar pantographic sheets: numerical and experimental evidence[END_REF].

The use of digital image correlation (DIC) as a means of analyzing kinematic details in experiments performed on such materials has been considered very recently. Finite element based analyses have been performed at macroscopic [START_REF] Turco | Enhanced Piola-Hencky discrete models for pantographic sheets with pivots without deformation energy: Numerics and experiments[END_REF] and mesoscopic [START_REF] Dell'isola | Pantographic metamaterials: an example of mathematically driven design and of its technological challenges[END_REF] scales. In the latter case, the underlying mesh was directly adapted by using basic morphological operations applied to the picture of the reference conguration. An alternative approach consisted in starting with the mesh of the nominal conguration, and use regularized registrations to backtrack it onto the actual picture of the reference conguration [START_REF] Dell'isola | Advances in Pantographic Structures: Design, Manufacturing, Models, Experiments and Image Analyses[END_REF]. This measurement technique is very appealing since these metamaterials deform considerably and classical means (e.g., strain gauges or extensometer) cannot be used.

The development of bi-pantographic fabrics has benetted from the abovementioned studies. Such metamaterials were initially proposed as assemblies of discrete pantographic beams [START_REF] Seppecher | Linear elastic trusses leading to continua with exotic mechanical interactions[END_REF] leading, at the macroscopic scale, to second gradient materials whose strain energy density depends upon the curvature and the stretch derivative of material lines along the corresponding reference direction. This rst work was restricted to small strains and non-extensible elements. It is proposed to derive hereafter, by asymptotic homogenization, the macroscopic response of a 2D-continuum, which is able to describe large strains of bi-pantographic metamaterials.

In the present study, a homogenized model of bi-pantographic fabrics was also probed against experimental measurements provided by global (i.e., FEbased) DIC. Consequently, the nite element discretizations can be made identical in DIC analyses and numerical simulations. Figure 1 shows the owchart of the one-way validation framework followed herein. For a given picture of the deformed conguration, the displacement eld is computed as the result of the registration with the picture in the reference conguration. The quality of the registration is assessed thanks to the gray level residuals. The measured Dirichlet boundary conditions are then applied to the nite element model. For the same picture, the displacement eld is computed according to the implemented constitutive law. Because the measured boundary conditions were applied to the FE model, gray level residuals can also be evaluated [START_REF] Buljac | Numerical validation framework for micromechanical simulations based on synchrotron 3D imaging[END_REF]. It was shown that such procedure was the best when probing multiscale models [START_REF] Shakoor | On the choice of boundary conditions for micromechanical simulations based on 3D imaging[END_REF].

Thanks to such procedure, the quality of the measurements and the predictions is independently probed with respect to the experimental data (i.e., the full video acquired during the test). It has to be noted that the methodologies exploited in the global T3-DIC analysis, with a mesh made of 3-noded (T3) triangles that was not made to match the bi-pantographic unit cells, are not new [START_REF] Turco | Enhanced Piola-Hencky discrete models for pantographic sheets with pivots without deformation energy: Numerics and experiments[END_REF]. However, the oneway connection between experimental measurements and simulations is here established for the rst time in the literature for the quantitative validation of a homogenized model of bi-pantographic fabrics.

DIC -residuals

DIC

Lower-scale, i.e., local mechanical and DIC analyses considering richer kinematic hypotheses and geometries could achieve better results in terms of gray level residuals [START_REF] Hild | Multiscale DIC applied to Pantographic Structures[END_REF]. Yet, the question that is addressed herein is to assess to what extent a coarse macroscale continuous description can represent and predict experimental measurements. Such reduced-order description is of utmost utility when dealing with complex systems whose ecient element-byelement description still poses challenges to modern computational methods.

The problem of nding an ecient model for the studied metamaterial is the scope of the present paper. For a consistent comparison between reducedorder model and DIC, both will employ the same (macroscale) geometry and kinematics. This goal motivates the use of FE-based DIC [START_REF] Broggiato | Adaptive image correlation technique for full-eld strain measurement[END_REF][START_REF] Sun | Finite-element formulation for a digital image correlation method[END_REF][START_REF] Besnard | Finite-element displacement elds analysis from digital images: Application to Portevin-Le Chatelier bands[END_REF], where the underlying hypothesis is the continuity of the displacement eld associated with FE discretizations. Last, it is noteworthy that such macroscale analyses would clearly compare better with experimental pictures should the number of unit cells be increased, as the scale separation would become more pronounced.

The outline of the paper follows the previous owchart. In Section 2, the main steps of the homogenization procedures are presented. The boundary value problem is introduced for the considered bias extension test. The latter is studied in Section 3, and global DIC is briey recalled. A mesh sensitivity analysis is performed to validate the chosen discretization for DIC measurements. Section 4 is devoted to the validation of the derived model against experimental data extracted from a bias extension test.

2. Homogenized Continuum (HC)

Studied Metamaterial

Following the rationale behind the design of pantographic prototypes [START_REF] Seppecher | Linear elastic trusses leading to continua with exotic mechanical interactions[END_REF], a rectangular bi-pantographic specimen was additively manufactured by Selective Laser Sintering (SLS) using Polyamide as the bulk material (Figure 2). 

Homogenization Scheme

In Figure 3(c), elastic elements are colored in black (extensional Hooke elastic springs, stiness k E ), red (rotational Hooke elastic springs, stiness k F ), blue (rotational Hooke elastic springs, stiness k F ) and green (rotational Hooke elastic springs, stiness k S ). It is worth emphasizing at this stage that the passage from pantographic [START_REF] Dell'isola | Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium[END_REF] to bi-pantographic fabrics, in terms of asymptotic homogenization, is not as trivial as the designation may suggest.

Bi-pantographic fabrics are regarded as assemblies of two orthogonal families of parallel ε-spaced pantographic beams (Figure 4(a)), hinge-joined together at their intersection points, and aligned along e x and e y , respectively. First, the 120 homogenization of a single pantographic beam is addressed [START_REF] Barchiesi | Synthesis of second gradient architectured metamaterials: Micro-to-macro approaches, numerical investigations, additive manufacturing and experimental validation[END_REF]. When not otherwise specied, the indices i, µ and ν will henceforth belong respectively to the following index sets: i ∈ {0, 1, . . . , N -1}, µ ∈ {1, 2} and ν ∈ {D, S}. Throughout the homogenization procedure, it is assumed that the angles ϕ 1D i and ϕ 2D i vary within the range (0, π), thus entailing that ξ µ i ∈ (0, π).
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In such a case, the kinematics of the spring system of 

ϕ 1D i = cos -1 p i+1 -p i 2 + 1D i 2 -2S i+1 2 2 1D i p i+1 -p i , ϕ 1S i = cos -1 p i -p i-1 2 + 1S i 2 -2D i-1 2 2 1S i p i -p i-1 , ϕ 2D i = cos -1 p i+1 -p i 2 + 2D i 2 -1S i+1 2 2 2D i p i+1 -p i , ϕ 2S i = cos -1 p i -p i-1 2 + 2S i 2 -1D i-1 2 2 2S i p i -p i-1 , (1) 
while the angles ξ µ i in Figure 4(c) are computed as

ξ 1(2) i = cos -1 1(2)D i 2 + 2(1)S i+1 2 -p i+1 -p i 2 2 1(2)D i 2(1)S i+1
.

(

) 2 
The angle θ i in Figure 4(c) reads

θ i = ϑ i+1 -ϑ i = tan -1 (p i+1 -p i ) • e y (p i+1 -p i ) • e x -tan -1 (p i -p i-1 ) • e y (p i -p i-1 ) • e x . (3) 
The deformation energy of the discrete micromodel is expressed as

E µ = k E 2 i µ,ν µν i - 1 √ 3 ε 2 + k F 2 i µ (β µ i ) 2 + k S 2 i µ (ξ µ i -π + 2γ) 2 = k E 2 i µ,ν µν i - 1 √ 3 ε 2 + k F 2 i µ θ i + (-1) µ ϕ µS i -ϕ µD i 2 + k S 2 N -2 i=0 µ ξ µ i - 2 3 π 2 , (4) 
where k E > 0 and k F , k S > 0 are the stinesses of the extensional and rotational springs, respectively. 135

The following asymptotic expansion is assumed for the lengths µν i of the extensional springs

µν i = 1 √ 3 ε + ε 2 ˜ µν i + o(ε 2 ), ˜ µν i ∈ R . (5) 
Assumption ( 5) states that the lengths µν i are obtained as ε-corrections of the initial length 1 √ 3 ε. Therefore, the lengths µν i are vanishing with order one in ε when ε → 0. In other words, a kind of quasi-inextensibility property is assumed for the extensional springs, whose elongation is given, at leading order in ε, by

ε 2 ˜ µν i . Therefore, the quantities ˜ µν i , independent of ε, are ε 2 -scaled (absolute)
elongations of extensional springs. Inserting assumption (5) into the energy (4)

leads to

E µ = k E 2 i µ,ν ε 2 ˜ µν i + o(ε 2 ) 2 + k F 2 i µ θ i + (-1) µ ϕ µS i -ϕ µD i 2 + k S 2 N -2 i µ ξ µ i - 2 3 π 2 . ( 6 
)
Due to the slenderness of the microstructure, a macroscale one-dimensional continuum is sought in the limit of vanishing ε. The reference domain of the continuum is a one-dimensional straight segment connecting all points P i of the discrete micromodel. An abscissa s is introduced and varies within the interval

I = [0, (N -1)ε].
The independent kinematic Lagrangian descriptors of the macromodel are assumed to be χ : I → E 2 and ˜ µν : I → R. The placement eld χ locates the 1D-continuum into E 2 , and is introduced to describe, at the macroscale, the midline of the discrete system (i.e., points p i ∈ E 2 ).

Accounting for the change in spring lengths ˜ µν i introduced in Equation ( 5), the placement eld is augmented by four micro-strain functions ˜ µν . The generalized coordinates of the discrete system are related to χ and ˜ µν by

χ(s i ) = p i , ˜ µν (s i ) = ˜ µν i ( 7 
)
where s i = iε. For convenience, the functions ρ : [0, L] → R + and ϑ : I → [0, 2π) are introduced to rewrite the tangent vector eld χ to the deformed 1D-continuum as

χ (s) = ρ(s) [cos ϑ(s)e x + sin ϑ(s)e y ] , (8) 
where (•) denotes the dierentiation of (•) with respect to the reference abscissa s. Thus ρ corresponds to the norm of the tangent vector χ , and is referred to as stretch of the 1D-continuum and ϑ corresponds to the material curvature of such continuum. For the asymptotic identication, the energy ( 6) is expanded in ε. First, the expansion of χ is given by

χ(s i±1 ) = χ(s i ) ± εχ (s i ) + ε 2 2 χ (s i ) + o(ε 2 ) , (9) 
while for ˜ µν , it becomes

µν (s i±1 ) = 1 √ 3 ε + ˜ µν (s i )ε 2 + o(ε 2 ) ( 10 
)
which is obtained by combining Equation ( 5) with Equation ( 7) 2 and the

expansion ˜ µν (s i±1 ) = ˜ µν (s i ) + o(ε 0 ).
Next, the aim is to expand Equation [START_REF] Dell'isola | Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium[END_REF]. The terms θ i , ϕ µS i -ϕ µD i and ξ µ i , which are all functions of the placement eld χ and/or the micro-strains ˜ µν , need to be approximated. Combining Equations ( 9) and ( 7) 1 with Equation ( 3)

yields θ i = ϑ (s i )ε + o(ε) , (11) 
Similarly, combining Equations 9, ( 10) and [START_REF] Alibert | Truss modular beams with deformation energy depending on higher displacement gradients[END_REF] with Equation (1) leads to

ϕ 1(2)S i -ϕ 1(2)D i = 4[ρ 2 -2 /3]( ˜ 1(2)S -˜ 1(2)D ) + ( 2 / √ 3)(ρ 2 ) + ( 8 /3)( ˜ 2(1)D -˜ 2(1)S ) ρ( 4 / √ 3) 4 /3 -ρ 2 s=si ε + o(ε) (12) 
for the dierences ϕ

1(2)S i -ϕ 1(2)D i
. By incorporating Equations ( 9), ( 10) and [START_REF] Alibert | Truss modular beams with deformation energy depending on higher displacement gradients[END_REF] in Equation ( 2) enables the angles ξ µ i to be assessed

ξ µ i = cos -1 1 - 3 2 ρ 2 s=si + o(ε 0 ) . ( 13 
)
Substituting Equations ( 11), ( 12) and ( 13) in Equation ( 6) provides the expansion of the micromodel energy as a function of the kinematic descriptors χ and ˜ µν

E µ = i k E ε 4 2 µ,ν ˜ µν 2 + o(ε 0 ) + k S cos -1 1 - 3 2 ρ 2 - 2 3 π + o(ε 0 ) 2 + k F ε 2 2 ϑ + 4[ρ 2 -2 /3)]( ˜ 1S -˜ 1D ) + ( 2 / √ 3)(ρ 2 ) + ( 8 /3)( ˜ 2D -˜ 2S ) 4ρ( 1 / √ 3) 4 /3 -ρ 2 + o(ε 0 ) 2 + k F ε 2 2 ϑ + 4[ρ 2 -2 /3)]( ˜ 2S -˜ 2D ) + ( 2 / √ 3)(ρ 2 ) + ( 8 /3)( ˜ 1D -˜ 1S ) 4ρ( 1 / √ 3) 4 /3 -ρ 2 + o(ε 0 ) 2 s=si . ( 14 
)
The stinesses of the discrete system are related to the microscopic length scale ε by the following scaling laws

k E = K E ε -3 , k F = K F ε -1 , k S = K S ε (15) 
where K E , K F , K S > 0 are constants that are independent of ε. It is worth noting that the asymptotic expansion ( 5) is implied by the scaling laws [START_REF] Andreaus | A ritz approach for the static analysis of planar pantographic structures modeled with nonlinear eulerbernoulli beams[END_REF], which are such that k F /k E ∝ ε 2 and k S /k E ∝ ε 4 , meaning that extensional springs are becoming stier than rotational springs (with dierent orders in ε according to the type of spring (F/S)) as ε tends to zero.

The continuum limit is now obtained by letting ε → 0. Using Equation [START_REF] Turco | Enhanced piolahencky discrete models for pantographic sheets with pivots without deformation energy: Numerics and experiments[END_REF] together with the scaling laws [START_REF] Andreaus | A ritz approach for the static analysis of planar pantographic structures modeled with nonlinear eulerbernoulli beams[END_REF] allows the deformation energy to be derived for the homogenized model

E = I K S cos -1 1 - 3 2 ρ 2 - 2 3 π 2 + K E 2 µν ˜ µν 2 ds + I K F 2 ϑ + 4[ρ 2 -2 /3)]( ˜ 1S -˜ 1D ) + ( 2 / √ 3)(ρ 2 ) + ( 8 /3)( ˜ 2D -˜ 2S ) 4ρ( 1 / √ 3) 4 /3 -ρ 2 2 ds + I K F 2 ϑ + 4[ρ 2 -2 /3)]( ˜ 2S -˜ 2D ) + ( 2 / √ 3)(ρ 2 ) + ( 8 /3)( ˜ 1D -˜ 1S ) 4ρ( 1 / √ 3) 4 /3 -ρ 2 2 ds . ( 16 
)
The energy is enforced to be stationary with respect to the independent kinematic descriptors ˜ µν . Equating to zero the variations of the deformation energy functional [START_REF] Steigmann | Variational theory for spatial rods[END_REF] with respect to admissible variations in the independent kinematic descriptors ˜ µν yields a linear system of four algebraic equations in which ˜ µν are the unknowns. Introducing the quantities

C 1 = K F 2K F ρ 2 -1 /3 (K E ρ 2 + 8K F ) , C 2 = K F 4 /3 -ρ 2 ( 1 /3)K E ρ 2 -2K F ρ 2 -( 4 /9)K E , (17) 
at equilibrium, the following conditions are satised

˜ µD = 1 √ 3 ρ ρ C 1 + (-1) µ-1 ϑ C 2 , ˜ µS = 1 √ 3 ρ [-ρ C 1 + (-1) µ ϑ C 2 ] . (18) 
By substituting the results [START_REF] Cazzani | Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches[END_REF] into Equation ( 16), the homogenized deformation energy is expressed in terms of the placement eld χ only

E = I K E K F 3 /4ρ 2 -1 3 /4ρ 2 (K E -6K F ) -K E ϑ 2 + 3 /4ρ 2 (1 -3 /4ρ 2 ) [8K F + ρ 2 (K E -6K F )] ρ 2 + K S cos -1 1 - 3 2 ρ 2 - 2 3 π 2 ds . ( 19 
)
The results obtained thus far for a single pantographic beam are extended to homogenize the behavior of bi-pantographic metamaterials. Let Ψ(ρ, ρ , ϑ )

denote the integrand of Equation [START_REF] Spagnuolo | A targeted review on large deformations of planar elastic beams: extensibility, distributed loads, buckling and postbuckling[END_REF]. The domain Ω is expressed as 

Ω = {x = (x, y) ∈ R 2 s.t. x ∈ X ∧ y ∈ Ỹ (x)} = {x = (x, y) ∈ R 2 s.t. y ∈ Ȳ ∧ x ∈ X(
E = X Ỹ (x) Ψ ρ y (x), ∂ρ y ∂y (x), ∂ϑ y ∂y (x) dydx + Ȳ X(y) Ψ ρ x (x), ∂ρ x ∂x (x), ∂ϑ x ∂x (x) dxdy , (20) 
where ρ x , ρ y : Ω → R + and ϑ x , ϑ y : Ω → [0, 2π) are implicitly dened by

∂χ HC ∂x (x) = ρ x (x) {[cos ϑ x (x)] e x + [sin ϑ x (x)] e y } ∂χ HC ∂y (x) = ρ y (x) {[cos ϑ y (x)] e y + [sin ϑ y (x)] e x } , (21) 
and, with the previous derivation, reduce to 215

E = Ω α={x,y} K S cos -1 1 - 3 2 ρ 2 α - 2 3 π 2 + K E K F 3 /4ρ 2 α -1 3 /4ρ 2 α (K E -6K F ) -K E ∂ϑ α ∂α 2 + 3 /4ρ 2 α (1 -3 /4ρ 2 α ) [8K F + ρ 2 α (K E -6K F )] ∂ρ α ∂α 2 dA , (22) 
where K S , K E , and K F are the scaled macro-stinesses corresponding to the micro-stinesses k S , k E , and k F , respectively.

The values of these macro-stinesses were calibrated by tting total reaction force data (Figure 5) and six discrete displacements obtained by local digital image correlation (DIC) [START_REF] Barchiesi | Synthesis of second gradient architectured metamaterials: Micro-to-macro approaches, numerical investigations, additive manufacturing and experimental validation[END_REF] in the considered bias extension test for global 220 longitudinal strains up to ca. 25%. A very good agreement is observed over the whole range of investigated strains. The calibrated parameters are reported in Table 1). They are the only ones that will be used in the sequel for validation purposes.

Table 1: Calibrated parameters of the continuum model.

K F K E K S 0.9 J 0.33 J 34 N• m -1

Numerical Implementation 225

Solving the weak or strong form problems for the homogenized continuum model is a direct problem in the sense that, given boundary conditions on a reference domain, the admissible displacement eld that makes stationary the energy functional is sought. The solution of the weak form was implemented within the commercial software COMSOL Multiphysics.

In the last years, 230 thanks to the interest in gradient elasticity, eorts in numerically addressing such non-standard problems have grown, thus establishing well-known methodologies [START_REF] Niiranen | Variational formulation and isogeometric analysis for fourth-order boundary value problems of gradient-elastic bar and plane strain/stress problems[END_REF][START_REF] Khakalo | Isogeometric analysis of higher-order gradient elasticity by user elements of a commercial nite element software[END_REF].

It is worth noting that besides the term ∂ϑ α /∂α (i.e., curvature of material lines along e α in the reference conguration), the term ∂ρ α /∂α also appears in Equation [START_REF] Spagnuolo | A targeted review on large deformations of planar elastic beams: extensibility, distributed loads, buckling and postbuckling[END_REF], which is the derivative along the direction e α of the stretch of material lines along e α in the reference conguration. This observation implies that, for the above continuum deformation energy, conditions on the boundaries (Figure 3(a)) are prescribed on i) the normal displacement gradient, ii) the displacement itself, and conditions at the vertices on the displacement [START_REF] Auray | Analytical continuum mechanics à la HamiltonPiola least action principle for second gradient continua and capillary uids[END_REF].

For instance, in the considered bias extension test, the reference domain Ω is nominally subjected to the essential boundary conditions described in Table 2.

Table 2: Nominal boundary conditions for bias extension test of bi-pantgraphic fabrics. The vector n is the outward unit normal to ∂Ω in x (see Figure 3(a)).

∂Ω 1 ∂Ω 3 u HC (x) = 0 u HC (x) = ūe ζ , ū ∈ R + ∇u HC (x) • n(x) = 0 ∇u HC (x) • n(x) = 0
The kinematic prescriptions in the second row, as combined with those in the rst row of Table 2, imply that ∇u HC (x) = 0 on Ω 1 ∪ Ω 3 , which is consistent with the micro-macro identication procedure when using stocky rhomboidal elements (Figure 2).

Bias Extension Test

Experimental Conguration

A displacement-controlled bias extension test was performed on the sample shown in Figure 2 for macroscopic strains up to ca. 40% (Figure 6). In textile mechanics, the bias extension test is a standard experiment to investigate inplane combined shear and tensile responses of materials made up of two families of bers [START_REF] Cooper | A bias extension test[END_REF]. The bias extension test is performed on samples having the shape of a rectangle with dimension in the loading direction greater than the width [START_REF] Boisse | The bias-extension test for the analysis of in-plane shear properties of textile composite reinforcements and prepregs: a review[END_REF].

are initially oriented at ±45 • with respect to the loading direction. In other words, the sample to be used in a bias extension test is cut along the two biases, i.e., the two orthogonal directions forming ±45 • with the bers. An Bi-pantographic fabrics exhibit an extremely wide elastic range (i.e., the dissipated energy is negligibly small compared to the elastic energy stored during loading). Such extreme elastic strains are achievable as their macroscopic levels are considerably greater than single-elastic-element strains. While satisfying boundary conditions and internal connection constraints, elements arrange locally in space to minimize the total deformation energy by mimicking mechanisms corresponding to zero-energy deformation modes [START_REF] Seppecher | Linear elastic trusses leading to continua with exotic mechanical interactions[END_REF].

FE-Based Digital Image Correlation

The 139 pictures of deformed congurations were registered with the picture of the reference conguration (Figure 7) via Digital Image Correlation (DIC [START_REF] Sutton | Advances in Two-Dimensional and Three-Dimensional Computer Vision[END_REF][START_REF] Sutton | Computer vision-based, noncontacting deformation measurements in mechanics: A generational transformation[END_REF]). Various approaches have been introduced, namely, local (i.e., subset-based) analyses [START_REF] Peters | Digital imaging techniques in experimental stress analysis[END_REF][START_REF] Sutton | Determination of displacements using an improved digital correlation method[END_REF][START_REF] Chu | Applications of digital-imagecorrelation techniques to experimental mechanics[END_REF], and global (e.g., nite element based)

techniques [START_REF] Broggiato | Adaptive image correlation technique for full-eld strain measurement[END_REF][START_REF] Sun | Finite-element formulation for a digital image correlation method[END_REF][START_REF] Besnard | Finite-element displacement elds analysis from digital images: Application to Portevin-Le Chatelier bands[END_REF]. In the present case, FE-DIC was used to measure displacement elds since it provides a very natural link with nite element simulations (i.e., the meshes can be made identical provided the element size is compatible with measurement uncertainties [START_REF] Hild | Comparison of local and global approaches to digital image correlation[END_REF]). Working within the high-deformation regime in the considered bias extension test, bi-pantographic specimens undergo extremely large contraction-to-extension ratios equal to ca. 0.85. Consequently, a solution will be sought very far from the reference conguration, which adds complexity for both modeling and DIC approaches. In global DIC [START_REF] Besnard | Finite-element displacement elds analysis from digital images: Application to Portevin-Le Chatelier bands[END_REF][START_REF] Hild | Digital image correlation[END_REF], two gray level images f and g are registered by minimizing the global residual

Φ 2 c = ROI ρ 2 DIC (x) (23) 
which is the integration over the region of interest (ROI) of the squared sum of the gray level residual

ρ DIC (x) = f (x) -g (x + u DIC (x)) (24) 
that is computed for each pixel x of the ROI, and corresponds to the dierence of the gray levels in the reference conguration f and that in the deformed conguration g corrected by the measured displacement u DIC (x). The latter is parameterized with a set of degrees of freedom υ n , which are gathered in the column vector {υ}

u DIC (x) = n υ n ψ n (x) (25) 
associated with the trial elds ψ n . The minimization with respect to the unknown degrees of freedom is nonlinear. One way of performing such minimization is to follow modied Newton schemes [START_REF] Sutton | Image correlation for shape, motion and deformation measurements: Basic Concepts, Theory and Applications[END_REF][START_REF] Hild | Digital image correlation[END_REF]. In the sequel, meshes made of T3 elements were considered [START_REF] Leclerc | Integrated digital image correlation for the identication of mechanical properties[END_REF].

The trial displacement elds then become the shape functions of T3 elements. Very recently, T3-DIC was shown to be applicable to pantographic metamaterials at various scales of kinematic descriptions [START_REF] Turco | Enhanced Piola-Hencky discrete models for pantographic sheets with pivots without deformation energy: Numerics and experiments[END_REF][START_REF] Dell'isola | Pantographic metamaterials: an example of mathematically driven design and of its technological challenges[END_REF][START_REF] Dell'isola | Advances in Pantographic Structures: Design, Manufacturing, Models, Experiments and Image Analyses[END_REF][START_REF] Hild | Multiscale DIC applied to Pantographic Structures[END_REF].

With the studied material, the speckle pattern was only applied over a small area of the ROI (Figure 7). In order to properly converge, due to such a speckle pattern, elastic regularization was considered in the global DIC approach [START_REF] Réthoré | An extended and integrated digital image correlation technique applied to the analysis fractured samples[END_REF][START_REF] Tomi£evi¢ | Mechanics-aided digital image correlation[END_REF]. A second term was added to the global residual Φ 2 c , in the spirit of Tikhonov and Arsenin regularization schemes [START_REF] Tikhonov | Solutions of ill-posed problems[END_REF]. In the present case, the equilibrium gap functional [START_REF] Claire | A nite element formulation to identify damage elds: The equilibrium gap method[END_REF] was selected for inner nodes and boundary nodes that were traction-free

Φ 2 m = {υ} [K] [K]{υ} (26) 
where [K] is the rectangular stiness matrix restricted to the selected nodes.

For the other edge nodes, a similar penalization was considered

Φ 2 b = {υ} [L] [L]{υ} (27) 
where [L] is a second order operator restricted to edge nodes [START_REF] Mendoza | Complete Mechanical Regularization Applied to Digital Image and Volume Correlation[END_REF]. The global residual to be minimized then consists of the weighted sum of the previous three quantities, namely, Φ 2 c , Φ 2 m and Φ 2 b .

Since the physical dimension of the correlation functional is dierent from that of the other two functionals, they need to be made dimensionless. Penalization weights premultiplying Φ 2 m and Φ 2 b are introduced [69, 70, 73]. They are proportional to regularization lengths raised to the fourth power. The larger the regularization lengths, the more weight is put on the penalty terms. This penalization acts as a low-pass mechanical lter, namely, all high frequency components of the displacement eld that are not mechanically admissible are ltered out. Similarly, for low-contrast areas mechanical regularization provides the displacement interpolation.

In the present case, the regularization length was set to 150 pixels, which is the size of elementary cells (Figure 3(b)). It is worth noting that other choices could have been made, in particular, smaller regularization lengths.

However, they would no longer represent a physical length but rather a help for convergence of the minimization scheme. Consequently, such choices will not be discussed hereafter. Similarly, analyses at lower scales [START_REF] Dell'isola | Pantographic metamaterials: an example of mathematically driven design and of its technological challenges[END_REF][START_REF] Dell'isola | Advances in Pantographic Structures: Design, Manufacturing, Models, Experiments and Image Analyses[END_REF][START_REF] Hild | Multiscale DIC applied to Pantographic Structures[END_REF] were not considered to remain consistent with the modeling framework of Section 2.

Further, since large strain levels occur, the previous regularization was only applied to incremental displacements {δυ} (i.e., from one picture to the next)

Φ 2 m = {δυ} [K] [K]{δυ} (28) 
and

Φ 2 b = {δυ} [L] [L]{δυ} (29) 
Such regularization leads to assume Hencky-type elasticity at the scale of the regularization length, which is less stringent than innitesimal elastic in a situation of nite strains.

When dealing with large deformations, the solution for the current picture can be initialized from the solution of the previous step. A further approach can be adopted, namely incremental DIC (as opposed to direct DIC, i.e., the approach presented thus far where the reference picture is not the initial one). In this approach, in a step-wise procedure, the picture preceding the current one is chosen as the reference picture for the correlation analysis. Consequently, the mesh is gradually deformed to follow the motions. The incremental displacements are cumulated to determine the overall (Lagrangian) displacement elds with respect to the non-updated initial picture. As the minimization problem for incremental DIC does not have an optimal substructure property, such cumulated displacements are dierent from those obtained by direct DIC and may yield higher cost functions, i.e., higher global residuals (Equation ( 23)).

For pantographic structures, this may not be the case, and needs to be checked.

Last, the displacement results obtained by incremental DIC are exploited as initialization to direct DIC for the corresponding picture pairs.

Figure 8 shows the change of root mean square residuals, i.e., RMS (ρ DIC ), for direct and incremental DIC when using the discretization shown in Figure 7.

In the present case, direct DIC leads to lower residuals in comparison with incremental DIC. The former will be selected when comparing the measurements with numerical simulations. The fact that the residual levels increase as the bi-pantographic fabric is deformed more is an indication that a continuum description is no longer able to fully capture the details of the experimental kinematics. This observation is not a shortcoming of DIC but rather a check on the kinematic hypotheses made to capture the full complexity of the test via macroscale quantities.

Figure 8: RMS gray level correlation residual for direct and incremental DIC using the mesh shown in Figure 7.

The eect of the discretization has also to be assessed on the previous results.

Three additional regular meshes were considered with dierent characteristic 360 length scales ranging from 77 to 24 pixels. The latter is dened as the mean square root of element area. The mesh shown in Figure 7 has a characteristic length of 34 pixels.

In Figure 9, the RMS residuals are reported for the four dierent discretizations. Mesh convergence is observed for the three ner discretizations. This result is related to the selected regularization length 365 (here equal to 150 pixels), which controls the high frequency uctuations of displacement elds. From all these last results, it is concluded that the nite element mesh used in the numerical simulations (Figure 7) is also compatible with regularized DIC measurements at the macroscopic scale. With the selected DIC parameters the noise-oor displacement uncertainty is less than to 0.025 pixel (i.e., 2 μm), which is very small given the large deformations experienced by the studied metamaterial.

Validation Results

When quantitatively comparing the performances of DIC and a homogenized continuum model, a measure of goodness of kinematic results has to be dened given the fact that the load response was used in the calibration procedure (see Figure 5). The rst (and standard) way of comparing DIC measurements with models is to report the displacement elds u DIC and u HC over the meshed ROI as obtained for, say, picture #93 (Figure 10). It may be concluded that the two results are qualitatively in agreement. To get a more quantitative assessment, displacement dierences should be computed [START_REF]Full-Field Measurements and Identication in Solid Mechanics[END_REF]. In the present case, since the same mesh was used, this comparison is straightforward as it can be performed node-wise. Figure 11 shows the displacement dierence elds for the same analyzed picture. It is worth noting that, despite the fact that displacements measured by DIC at short sides of the specimen were used as boundary condition for the continuum model, the displacement dierence between the latter and DIC is non-zero along such short boundaries (see Figure 11). The continuum model was numerically solved by means of a mixed weak nite element formulation in which boundary conditions were not encoded strongly, i.e., node-wise within test functions, but were enforced weakly via Lagrange multipliers. Therefore, such discrepancy should be expected. In particular, this discrepancy is observed at corners and is concentrated in the two triangular mesh elements intersecting at a corner. It is expected that such a discrepancy will be conned to ever smaller regions when the mesh size decreases.

The RMS dierence for the longitudinal component is equal to 8 pixels, and 9 pixels in the transverse direction. These levels are two orders of magnitude higher than the measurement uncertainty for both components. They may seem very high. However, it is worth noting that the longitudinal displacement range is of the order of 400 pixels. It is therefore concluded that the observed dierences are related to model errors. Yet, it cannot be decided which part of the data, namely, experimental and/or numerical quantities are questionable. A second route consists in computing the gray level residuals associated with numerical simulations [START_REF] Buljac | Numerical validation framework for micromechanical simulations based on synchrotron 3D imaging[END_REF]. This procedure is viable provided the measured boundary conditions are prescribed to the numerical simulations (see Figure 1).

It was shown to be the best in various experimental congurations [START_REF] Carpiuc-Prisacari | Comparison between experimental and numerical results of mixed-mode crack propagation in concrete: Inuence of boundary conditions choice[END_REF][START_REF] Shakoor | On the choice of boundary conditions for micromechanical simulations based on 3D imaging[END_REF]. It will also be utilized herein. By following such path, the merits of each approach are independently probed against the experimental video. The correlation residual becomes a pixel-wise measure of goodness, and its RMS computed over the ROI a global goodness measure. Gray level residuals were dened in Equation [START_REF] Placidi | Semi-inverse method à la saint-venant for two-dimensional linear isotropic homogeneous second-gradient elasticity[END_REF] for DIC. The same equation, substituting u HC for u DIC will be considered for evaluating the gray level residuals associated with the homogenized continuum model

ρ F E (x) = f (x) -g (x + u F E (x)) (30) 
Figure 12 shows the residual maps corresponding to the displacement elds measured via direct DIC and predicted with the HC model (Figure 10). The residuals are very low close to the left and right edges since the sample does not deform much and the measured displacement is consistent with the experiment. This observation applies for both approaches since the HC simulations were driven by measured Dirichlet boundary conditions. Even if imperfectly prescribed (see above discussion), the residuals are very low in those areas, thereby proving that the measured and simulated displacements are trustworthy.

Conversely, the residuals are higher in the central part of the sample for HC simulations compared with DIC measurements. On a more quantitative basis, the RMS residual is equal to 31 gray levels for DIC and 43 gray levels for HC.

These levels are signicantly higher than those observed at the beginning of the experiment (i.e., ≈ 3 gray levels), which are close to acquisition noise. This result shows that the present model, even though in very good agreement with force measurements (Figure 5) is not able to fully capture the local complexities of the experimental kinematics. This conclusion also applies (to a lesser degree) to DIC results whose kinematic assumptions are not fully capturing the complexity of the local deformation of the studied metamaterial. analyses [START_REF] Dell'isola | Pantographic metamaterials: an example of mathematically driven design and of its technological challenges[END_REF][START_REF] Dell'isola | Advances in Pantographic Structures: Design, Manufacturing, Models, Experiments and Image Analyses[END_REF][START_REF] Hild | Multiscale DIC applied to Pantographic Structures[END_REF].

A plot of the RMS residuals versus picture number for direct DIC, incremental DIC and HC simulations is shown in Figure 13. DIC performs better than the HC model, be it direct or incremental. This trend is to be expected since DIC, contrary to HC modeling, mainly minimizes the correlation residuals (see summand in Equation ( 23)). For all approaches, the RMS residuals increase with the picture number and their relative increment is decreasing. Further, the residuals of the HC model are not too high in comparison with those of DIC, which allows the present macroscopic model to be deemed reasonable. Last, three jumps are observed (for pictures #7, 106, 128), whose occurrence is due to changes in lighting conditions.

Figure 13: Gray level RMS residuals for direct DIC, incremental DIC, and HC simulations.

Conclusion

In this paper, a rst comparison between performances of FE-based DIC and a homogenized continuum model was performed within the nite strain regime of a recently designed metamaterial with bi-pantographic microstructure. The homogenized model was derived from a discrete description at the microscale.

Experimental displacement data (not full-elds) up to ca. 25% total elongations were used for calibrating the model parameters. In the present case, the same FE discretization could be used thanks to Hencky-type elastic regularization (at the scale of the metamaterial cells) of DIC.

A measure of goodness of kinematic results was devised for both approaches, which allows the merits and shortcomings of DIC and HC simulations to be probed in an absolute (i.e., independent) way via gray level residuals. It was observed that, while DIC performed better than the continuum model, the latter gave good results given the very high levels of strains. This result thus shows that the homogenized model can capture the main deformation features but not the complexity of local details. The constitutive law is not only descriptive but also predictive for a wider range than that used for calibration purposes (the
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 1 Figure 1: Flowchart of the validation procedure comparing DIC and homogenized continuum residuals in a bias extension test.

Figure 2 :

 2 Figure 2: Additively manufactured bi-pantographic specimen. Full top-view (a) and zoomed in left-bottom area (b) showing ends to be put in grips, element arrangement and connections.

Figure 3 :

 3 Figure 3: Bi-pantographic metamaterial. (a) Domain Ω. (b) Reference conguration of a unit cell. (c) Force elements and deformed conguration of a unit cell.

Figure 4 :

 4 Figure 4: Schematic view of a discrete pantographic beam. (a) Reference conguration. (b) Generalized coordinates of i-th cell. (c) Deformed conguration with redundant kinematic quantities. (d) Force elements of a single cell.
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 4 is described by nitely many generalized coordinates. The coordinates are the positions p i ∈ E 2 of the points at position P i in the reference conguration and the lengths of the oblique deformed springs µν i ∈ R. The angles ϕ µν i in Figure 4(c) are obtained by applying the law of cosines 130

  y)}, where (x, y) are the coordinates of x in the basis (e x , e y ).The family of pantographic beams within Ω aligned along e x in the reference conguration is now considered. The corresponding placement eld χ x : Ω → E 2 is dened to be such that χ x (x) denotes the current position of the hinge point of a beam belonging to such a family, which is at position x in the reference conguration. Similarly, the placement eld χ y : Ω → E 2 is dened for the family of pantographic beams aligned along e y .The hinge constraint applied to the intersection x (reference conguration) of the two families of pantographic beams is encoded in expressions χ x (x) = χ y (x) = χ HC (x) := u HC (x) -x, where χ HC : Ω → E 2 and u HC : Ω → R 2 are the placement and displacement functions of the target homogenized continuum, respectively. The deformation energy of the bi-pantographic structure is given as the sum of the deformation energies of the two families of pantographic beams. Hence, the homogenized deformation energy for the bi-pantographic metamaterial is expressed as
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 5 Figure 5: Reaction force vs. prescribed displacement for total longitudinal strains up to ca. 25%.
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 6 Figure 6: Pictures of deformed congurations in a bias extension test on bi-pantographic metamaterial.

Figure 7 :

 7 Figure 7: Picture of the reference congurations in a bias extension test on bi-pantographic metamaterial. The mesh used in the simulations of the HC model is overlaid. Its characteristic size is equal to 34 pixels (≈ 2.7 mm).

Figure 9 :

 9 Figure 9: RMS gray level residuals for direct DIC with dierent meshes.

Figure 10 :

 10 Figure 10: Displacement elds u DIC and u HC (longitudinal component along e ζ on top, transverse component along eς at bottom) expressed in pixels over the meshed ROI as obtained for picture #93 by means of the validation procedure shown in Figure 1. The reference picture lies in the background and the nite element mesh in the foreground.

Figure 11 :

 11 Figure 11: Displacement dierence eld u HC -u DIC (longitudinal component along e ζ (a) and transverse component along eς (b)) expressed in pixels over the meshed ROI as obtained for picture #93 by means of the validation procedure shown in Figure 1. The reference picture lies in the background and the nite element mesh in the foreground.

Figure 12 :

 12 Figure 12: Gray level residual maps for direct DIC and HC predictions corresponding to picture #93.
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Possible outlooks include the combination of the two methodologies in so-called integrated DIC [START_REF] Leclerc | Integrated digital image correlation for the identication of mechanical properties[END_REF][START_REF] Mathieu | Estimation of elastoplastic parameters via weighted FEMU and integrated-DIC[END_REF], and especially an automated calibration procedure of the HC model based on numerical sensitivity analyses [START_REF] Tarantola | Inverse Problems Theory. Methods for Data Fitting and Model Parameter Estimation[END_REF] in, 475 e.g., , bias extension tests. Such procedure will aim at minimizing the gray level residuals under the constraint of mechanical admissibility provided by numerical simulations using the HC model or any other Ansatz. Figure 15 shows the gray level residuals for the second part of the experiment. 745 Their overall levels are higher than in the rst part (Figure 14). Figure 15: Gray level residual maps for direct DIC and HC predictions corresponding to pictures #93, 116, 139 (Figure 6).