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POINTWISE CONVERGENCE OF NONCOMMUTATIVE FOURIER
SERIES

GUIXIANG HONG, SIMENG WANG AND XUMIN WANG

Abstract. This paper is devoted to the study of pointwise convergence of Fourier series
for non-abelian compact groups, group von Neumann algebras and quantum groups. It is
well-known that a number of approximation properties of groups can be interpreted as sum-
mation methods and mean convergence of the associated noncommutative Fourier series.
Based on this framework, this work studies the refined counterpart of pointwise convergence
of these Fourier series. As a key ingredient, we develop a noncommutative bootstrap method
and establish a general criterion of maximal inequalities for approximative identities of non-
commutative Fourier multipliers. Based on this criterion, we prove that for any countable
discrete amenable group, there exists a sequence of finitely supported positive definite func-
tions tending to 1 pointwise, so that the associated Fourier multipliers on noncommutative
Lp-spaces satisfy the pointwise convergence for all p > 1. In a similar fashion, we also obtain
results for a large subclass of groups (as well as quantum groups) with the Haagerup property
and the weak amenability. We also consider the analogues of Fejér means and Bochner-Riesz
means in the noncommutative setting. Our approach heavily relies on the noncommutative
ergodic theory in conjunction with abstract constructions of Markov semigroups, inspired by
quantum probability and geometric group theory. Even back to the Fourier analysis on Eu-
clidean spaces and non-abelian compact groups, our results are novel and yield new insights
and problems. On the other hand, we obtain as a byproduct the dimension free bounds of
the noncommutative Hardy-Littlewood maximal inequalities associated with convex bodies.
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1. Introduction and main results

The study of convergence of Fourier series goes back to the very beginning of Fourier
analysis. Recall that for an integrable function f on the unit circle T, the Dirichlet summation
method is defined as

(DNf)(z) =
N∑

k=−N
f̂(k)zk, z ∈ T, N ∈ N,

where f̂ denotes the Fourier transform of f . This summation method is quite intuitive, but
very intricate to deal with. Indeed, the mean convergence of these sums is equivalent to
the boundedness of the Hilbert transform, which is a typical example of Calderón-Zgymund
singular integral operators; the corresponding pointwise convergence problem is much more
complicated and was solved by Carleson and Hunt, which is now well-known as the Carleson-
Hunt theorem. In order to study these Dirichlet means and their higher-dimensional version,
there have appeared numerous related problems together with other summation methods,
which have always been motivating the development of harmonic analysis. For instance, as
averages of Dirichlet means, the Fejér means stand out

(FNf)(z) =

N∑
k=−N

(
1− |k|

N

)
f̂(k)zk, z ∈ T, N ∈ N.

It is well-known that FN defines a positive and contractive operator on Lp(T), and FNf
converges almost everywhere to f for all 1 ≤ p ≤ ∞ (see e.g. [Gra08]). In the case of higher
dimensions, the ball multiplier problem was solved negatively by Fefferman [Fef71]; and people
considered instead the Bochner-Riesz means which can be viewed as fractional averages of
ball multipliers. However, that whether the Bochner-Riesz means with critical index still have
the desired mapping properties remains one of the famous open problems in three and higher
dimensions, which is closely related to many other open problems in harmonic analysis, PDEs,
additive combinatorics, number theory etc (see e.g. [KT02, Tao99b, Tao99a, Tao04] and the
references therein). These problems have been stimulating the further development of analysis
and beyond.

In recent decades, similar topics have been fruitfully developed in the setting of operator
algebras and geometric group theory. The study was initiated in the groundbreaking work of
Haagerup [Haa79], motivated by the approximation properties of group von Neumann algebras.
Indeed, let Γ be a countable discrete group with left regular representation λ : Γ→ B(`2(Γ))
given by λ(g)δh = δgh, where the δg’s form the unit vector basis of `2(Γ). The corresponding
group von Neumann algebra V N(Γ) is defined to be the weak operator closure of the linear
span of λ(Γ). For f ∈ V N(Γ) we set τ(f) = 〈δe, fδe〉 where e denotes the identity of Γ. Then
τ is a faithful normal tracial state on V N(Γ). Any such f admits a formal Fourier series∑

g∈Γ

f̂(g)λ(g) with f̂(g) = τ(fλ(g−1)).
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The convergence and summation methods of these Fourier series at the operator algebraic level
(i.e. at the L∞(V N(Γ)) level) are deeply linked with the geometric and analytic properties of
Γ, and in the noncommutative setting they are usually interpreted as various approximation
properties for groups (see e.g. [BO08, CCJ+01]). More precisely, for a function m : Γ→ C we
may formally define the corresponding Fourier multiplier by

(1.1) Tm :
∑
g∈Γ

f̂(g)λ(g) 7→
∑
g∈Γ

m(g)f̂(g)λ(g).

We may consider among others the following approximate properties:

(1) Γ is amenable if there exists a family of finitely supported functions (mN )N∈N on Γ so
that TmN defines a unital completely positive map on V N(Γ) and TmN f converges to
f in the w*-topology for all f ∈ V N(Γ) (equivalently, mN converges pointwise to 1).

(2) Γ has the Haagerup property if there exists a family of c0-functions (mN )N∈N on Γ
so that TmN defines a unital completely positive map on V N(Γ) and mN converges
pointwise to 1.

(3) Γ is weakly amenable if there exists a family of finitely supported functions (mN )N∈N on
Γ so that TmN defines a completely bounded map on V N(Γ) with supN ‖TmN ‖cb <∞
and mN converges pointwise to 1.

If we take Γ = Z (in this case V N(Z) = L∞(T)) and mN (k) = (1 − |k|/N)+, then TmN
recovers the Fejér means FN and obviously satisfies the above conditions. These approximation
properties play an essential role in the modern theory of von Neumann algebras, as well as
in geometric group theory. For example, the work of Cowling-Haagerup [CH89] on the weak
amenability solves the isomorphism problems of various group von Neumann algebras; the
Haagerup property and its opposite Kazhdan property (T) are amongst the central tools in
Popa’s deformation/rigidity theory [Pop07]; also, the weak amenability is a key ingredient
in the modern approach to the strong solidity and uniqueness of Cartan subalgebras [OP10,
CS13, PV14].

Despite the remarkable progress in this field, it is worthy mentioning that only the con-
vergence of TmN f in the w*-topology was studied in the aforementioned work. A standard
argument also yields the convergence in norm in the corresponding noncommutative Lp-spaces
Lp(V N(Γ)) for 1 ≤ p <∞. On the other hand, the analogue of almost everywhere convergence
in the noncommutative setting was introduced by Lance in his study of noncommutative er-
godic theory [Lan76]; this type of convergence is usually called the almost uniform convergence
(abbreviated as a.u. convergence; see Section 2.2). Keeping in mind the aforementioned im-
pressive results already obtained from the mean convergence, it is natural to develop a refined
theory of pointwise convergence of noncommutative Fourier series, and to seek applications in
geometric group theory, operator algebras and harmonic analysis. More precisely, it is known
that for the previous maps TmN and for f ∈ Lp(V N(Γ)), there exists a subsequence (Nk)k
(possibly depending on f and p) such that TmNk f converges a.u. to f . From the viewpoint of
analysis, the following problem naturally arises: can we choose Nk to be independent of f , or
even can we choose Nk to be k? If G is abelian, this is exactly the classical pointwise conver-
gence problem. As mentioned previously, the study of the pointwise convergence problem is
much more difficult than the mean convergence problem as in the case of Dirichlet means; it
still remains one of the major subjects of harmonic analysis nowadays, for instance the study of
Bochner-Riesz means and maximal Schrödinger operators, see e.g. [Tao02, LS15, DZ19, LW19]
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and the references therein. So the above problem should be regarded as one of the initial steps
to develop Fourier analysis on noncommutative Lp-spaces.

However, compared to the classical setting, the pointwise convergence problem on non-
commutative Lp-spaces remains essentially unexplored, up to sporadic contributions [JX07,
CXY13]. The reason for this lack of development might be explained by numerous difficul-
ties one may encounter when dealing with maximal inequalities for noncommutative Fourier
multipliers. Indeed, in the commutative setting, the pointwise convergence problem almost
amounts to the validity of maximal inequalities [Ste61], and the arguments for maximal in-
equalities depend in their turn on the explicit expressions or the pointwise estimates of the
kernels. However, the kernels of noncommutative Fourier multipliers are only formal elements
in a noncommutative L1-space, which are in general no longer related to classical functions and
cannot be pointwisely comparable, so the usual methods for classical maximal inequalities do
not apply to the noncommutative setting any more. Although the notion of noncommutative
maximal inequality has been formulated successfully thanks to the theory of vector-valued non-
commutative Lp spaces [Pis98, Jun02], the approaches to these inequalities are very limited,
except the noncommutative Doob inequality in martingale theory [Jun02] and its analogue
in ergodic theory [JX07, HLW20], where some additional nice properties of the underlying
operators are available.

In this paper we would like to provide a new approach to the maximal inequalities and
pointwise convergence theorems for noncommutative Fourier series. To our best knowledge,
the current trend of investigation on noncommutative Fourier multipliers mainly relies on var-
ious transference methods and quantum probability theory (see e.g. [NR11, CXY13, JMP14,
JMP18]). The method presented in this paper is completely independent of all these pre-
ceding works, so is entirely new. The strategy turns out to be efficient in a very general
setting; roughly speaking, it allows us to deal with all Fourier-like structures including quan-
tum groups, twisted crossed products and free Gaussian systems. In many cases, we may
give an explicit answer to the pointwise convergence problem raised previously. Back to the
classical setting, this approach also yields new results, insights and problems.

In the following part of this section we will present some of our main results.

Criteria for maximal inequalities of Fourier multipliers. Our key technical theorem
gives a criterion for maximal inequalities of noncommutative Fourier multipliers. This criterion
only focuses on the regularity and decay information of symbols of multipliers in terms of length
functions. Hence it is relatively easy to verify. As mentioned previously, the theorem can be
extended to all Fourier-like expansions in general von Neumann algebras. For simplicity we
only present the results for group von Neumann algebras V N(Γ) as illustration, and we refer
to Theorem 4.2, Theorem 4.3 and Theorem 4.18 for a complete statement.

Let Γ be a discrete group and let ` : Γ → [0,∞) be a conditionally negative definite
function on it. We consider a family of real valued unital positive definite functions (mt)t∈R+ .
It is known that the associated operators (Tmt)t∈R+ defined as in (1.1) extend to contractive
maps on Lp(V N(Γ)) for all 1 ≤ p ≤ ∞ (see Section 4 for more details). In this framework we
present the following result. We refer to Section 2 for the notions of noncommutative Lp-spaces
Lp(V N(Γ)) and noncommutative maximal norms ‖ sup+

n xn‖p for (xn)n ⊂ Lp(V N(Γ)).
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Theorem 1.1. Let Γ, ` and (Tmt)t∈R+ be as above. Assume that there exist α, β > 0 and
η ∈ N+ such that for all g ∈ Γ and 1 ≤ k ≤ η we have

|1−mt(g)| ≤ β `(g)α

t
, |mt(g)| ≤ β t

`(g)α
,

∣∣∣∣dkmt(g)

dtk

∣∣∣∣ ≤ β 1

tk
,

then for all 1 + 1
2η < p ≤ ∞ there exists a constant c such that for all f ∈ Lp(V N(Γ)),

‖ sup
t∈R+

+Tmtf‖p ≤ c‖f‖p and Tmtf → f a.u. as t→∞,

and for all 1 < p ≤ ∞ there exists a constant c such that for all f ∈ Lp(V N(Γ)),

‖sup
N∈N

+Tm
2N
f‖p ≤ c‖f‖p and Tm

2N
f → f a.u. as N →∞,

Similar results hold for uniformly bounded (but not necessarily positive) Fourier multipliers
(Tmt) if we restrict ourselves to the case p ≥ 2. The study of Theorem 1.1 relies on the analysis
of lacunary subsequences (Tm

2N
)N∈N. This type of lacunarity seems to be insufficient in the

further study of abstract analysis on groups. The theorem below is more suitable for the
abstract setting, which applies to other sequences without being of the form (Tm

2N
)N∈N in

Theorem 1.1 and will play a prominent role in the remaining part of this work.

Theorem 1.2. Let Γ and ` be as above. Let (mN )N∈N be a sequence of real valued unital
positive definite functions. If there exist α, β > 0 such that for all g ∈ Γ,

|1−mN (g)| ≤ β `(g)α

2N
, |mN (g)| ≤ β 2N

`(g)α
,

then for all 1 < p ≤ ∞ there exists a constant c > 0 such that for all f ∈ Lp(V N(Γ)),

‖sup
N∈N

+TmN f‖p ≤ c‖f‖p and TmN f → f a.u. as N →∞.

The main idea of the proof will be to compare the Fourier multipliers with certain quantum
Markov semigroups, and then apply the ergodic theory of the latter developed by [JX07].
This is first loosely inspired by the study of variational inequalities (in particular the compar-
ison between averaging operators and martingales in [CDHX17, DHL17, HM17]), and then
by Bourgain’s approach to the dimension-free bounds of Hardy-Littlewood maximal inequal-
ities [Bou86a, Bou86b, Bou87, DGM18]. Bourgain’s work is based on a careful study of the
Lp(`∞)-norm estimate of differences between ball averaging operators and Poisson semigroups
on Euclidean spaces. In this paper we will develop similar techniques for noncommutative
Fourier multipliers and abstract quantum Markov semigroups. This method based on ergodic
theory seems to be new even for the study of pointwise convergence of commutative Fourier
multipliers; see in particular Corollaries 1.7 and 1.8.

As a key point of the proof, we will develop a bootstrap argument in the noncommutative
setting for the first time. The so-called bootstrap methods have had a deep impact on classical
harmonic analysis since the original work [NSW78]; see e.g. [DRdF86, Car86, BMSW18].
Though not explicitly mentioned in the original papers, the aforementioned work by Bourgain
[Bou86a, Bou86b, Bou87] can be essentially compared with the previous ones and recognized
with hindsight as a certain bootstrap argument with independent techniques. Motivated by
Bourgain’s method, we will develop a bootstrap argument based on the almost orthogonality
principle: deducing the desired Lp-estimates for p < 2 from the L2-estimates by a delicate
study of suitable decompositions of (TmN f − Te−tN

√
`f)N and certain differences of (TmN f)N .
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It is relevant to remark that there is no straightforward way to extend the classical bootstrap
arguments directly to the noncommutative setting. In particular, as a noncommutative variant
of the vector-valued Lp-space Lp(Ω; `2) for the study of noncommutative square functions, the
space Lp(M; `cr2 ) (to be defined in Subsection 3) does not coincide with the interpolation
space of the form (Lp(M; `q1), Lp(M; `q2))θ unless the underlying von Neumann algebraM is
commutative, but the corresponding interpolation method for the commutative case plays a
key role in realizing classical bootstrap arguments; also, as a fundamental tool, the Littlewood-
Paley-Stein square function estimate of sharp growth order for p < 2 is itself a quite involved
topic in noncommutative analysis. Our proof is consequently more intricate than the classical
ones, and involves more modern techniques or ideas from operator space theory, maximal
inequalities and noncommutative square function estimates.

Approximation properties, pointwise convergence of Fourier series and explicit
examples. Based on the preceding theorems, we may provide answers to the noncommutative
pointwise convergence problems for a wide class of Fourier multipliers on quantum groups.
Again we only present here the particular case of group von Neumann algebras for simplicity;
the general version for quantum groups can be found in Thereom 5.9 and Corollary 5.11. We
refer to Section 5 for the notion of groups with the ACPAP, which form a large subclass of
groups with the Haagerup property and the weak amenability.

Theorem 1.3. (1) Any countable discrete amenable group Γ admits a sequence of finitely
supported unital positive definite functions (mN )N∈N so that TmN f converges to f a.u. for all
f ∈ Lp(V N(Γ)) with 1 < p ≤ ∞.

More generally, for any sequence of finitely supported unital positive definite functions
(mN )N∈N on Γ pointwise converging to 1, there exists a subsequence (mNk)k∈N such that
TmNk f converges to f a.u. for all f ∈ Lp(V N(Γ)) with 1 < p ≤ ∞.

(2) Any countable discrete group Γ with the ACPAP admits a sequence of completely con-
tractive Fourier multipliers (TmN )N∈N on V N(Γ) so that mN are finitely supported and TmN f
converges to f a.u. for all f ∈ Lp(V N(Γ)) with 2 ≤ p ≤ ∞.

Our approach to the above theorem differs greatly from usual strategies in the study of
pointwise convergence problems. The key idea is to construct an abstract Markov semi-
group whose symbols are sufficiently close to (mN )N so that Theorem 1.2 becomes applicable.
In hindsight, the construction is essentially inspired by geometric group theory and oper-
ator algebras; in particular we would like to mention several related works in this setting
[JM04, CS15, DFSW16, CS17], where an interplay between Fourier multipliers, approxima-
tion properties and abstract Markov semigroups has been highlighted. Our method applies to
quite general classes of Fourier multipliers as soon as the symbols satisfy a suitable conver-
gence rate. Together with the comments after Theorem 1.2, our approach might be viewed
as an application of ergodic theory of genuinely abstract semigroups to pointwise convergence
problems, which is novel even in the classical setting (see Theorem 1.6 and Corollary 1.8).

Our method is also useful for the study of pointwise convergence of Dirichlet means in
the noncommutative setting. Taking an increasing sequence (KN )N∈N of finite subsets of
Γ, one may consider the partial sums DNf =

∑
g∈KN f̂(g)λ(g) for f ∈ V N(Γ). As in the

classical case, in general f cannot be approximated by DNf in the uniform norm ‖ ‖∞ even
for elements f in the reduced C*-algebra C∗r (Γ) generated by λ(Γ). On the other hand, the
problem of convergence of DNf in Lp-norms in the noncommutative setting is also very subtle
(see e.g. [JNRX04, BF06]). In [BC09, BC12, CWW15], the uniform convergence of (DN )N∈N
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on some smooth dense subalgebras of C∗r (Γ) was studied. However, if we replace the uniform
convergence by the almost uniform one and choose appropriately the family (KN )N∈N, it
seems that the result can be largely improved; in particular we may obtain the almost uniform
convergence for more general measurable operators contained in L2(V N(Γ)). The proof will
be given in the general setting of quantum groups in Proposition 5.12.

Theorem 1.4. Any countable discrete group Γ with the ACPAP admits an increasing sequence
(KN )N∈N of finite subsets of Γ such that the series

∑
g∈KN f̂(g)λ(g) converges a.u. to f as N

tends to infinity for all f ∈ L2(V N(Γ)).

As in the classical setting, it would be interesting to deal with more explicit examples of
Fourier multipliers. Apart from the above abstract result, our method is also useful for the
study of concrete multipliers in the noncommutative setting.

Example 1.5. i) Generalized Fejér means: We may introduce the following analogue of Fejér
means on non-abelian discrete amenable groups. Let (KN )N∈N be a Følner sequence, that is,
KN ⊂ Γ are subsets so that

mN (g) :=
1KN ∗ 1KN (g)

|KN |
=
|KN ∩ gKN |
|KN |

→ 1, as N →∞,

where |KN | denotes the cardinality of KN . Then mN is finitely supported and the associated
multiplier TmN is unital completely positive with mN finitely supported. And there is a
subsequence (Nk)k∈N such that

TmNk f → f a.u. f ∈ Lp(V N(Γ))

for all 1 < p ≤ ∞. For instance if Γ is a group of polynomial growth with finite generating
set S, we may take KN = SN . If moreover Γ is a 2-step nilpotent group and p > 3/2, we may
take Nj = j. We refer to Section 6.1 for more details.

ii) Noncommutative Bochner-Riesz means: Let Γ be a hyperbolic group so that the word
length function | | is conditionally negative definite. For example we may take Γ to be a
non-abelian free group or a hyperbolic Coxeter group. The following Bochner-Riesz means
are introduced in [MdlS17]: for a fixed δ > 1 we take

Bδ
Nf =

∑
g∈Γ:|g|≤N

(
1− |g|

2

N2

)δ
f̂(g)λ(g), f ∈ Lp(V N(Γ)).

We have Bδ
Nf → f almost uniformly for all 2 ≤ p ≤ ∞. We refer to Section 6.3.1 for more

details.
iii) Smooth positive definite radial kernels on free groups: Let F be a non-abelian free group.

As before, | | denotes its natural word length function. Let ν be an arbitrary positive Borel
measure supported on [−1, 1] with ν([−1, 1]) = 1 and write dνt(x) = dν(tx) for all t > 0. For
any t > 0, set

mt(g) =

∫
R
x|g|dνt(x− e−

2
t ) =

∫ 1

−1

(y
t

+ e−
2
t

)|g|
dν(y), g ∈ F.

Then for all 1 < p ≤ ∞ and all f ∈ Lp(V N(F)),

Tmtf → f a.u. as t→∞.
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The proof can be founded in Section 6.3.2. Note that if ν is the Dirac measure on 0, then
this statement amounts to the almost uniform convergence of Poisson semigroups on V N(F)
proved in [JX07].

Applications to classical analysis on compact groups. As mentioned previously, we will
indeed establish Theorem 1.3 in the general setting of Woronowicz’s compact quantum groups.
As a particular case our result applies to Fourier series of non-abelian compact groups. Recall
that for a compact group G, any function f ∈ Lp(G) admits a Fourier series

f(x) ∼
∑

π∈Irr(G)

dim(π)Tr(f̂(π)π(x)), x ∈ G with f̂(π) =

∫
G
f(x)π(x−1)dx,

where Irr(G) denotes the collection of equivalence classes of irreducible unitary representations
of G. The study of pointwise summability of above Fourier series is much more intricate than
the abelian case. To our best knowledge, the pointwise convergence theorems in this setting
were studied for differentiable or continuous functions in [HC66, Sug71, Hua18], and for some
p-integrable functions on compact Lie groups for example in [Cle74, ST78]. However, from
the viewpoint of amenable quantum groups, our approach easily establishes the following
pointwise convergence theorem for general p-integral functions. The summation method does
not rely on the Lie algebraic structure, which is a novel aspect compared to previous works;
moreover it can be extended to the general setting of compact quantum groups.

Theorem 1.6. Let G be a compact second countable group. There exists a sequence of finitely
supported functions mN : Irr(G)→ R so that

(FNf)(x) :=
∑

π∈Irr(G)

mN (π) dim(π)Tr(f̂(π)π(x)), x ∈ G, f ∈ Lp(G)

defines unital positive operators on Lp(G) and

lim
N→∞

FNf = f a.e., f ∈ Lp(G)

for all 1 < p ≤ ∞.
Moreover, there exists an increasing sequence of finite subsets KN ⊂ Irr(G) such that for

all f ∈ L2(G) we have

f(x) = lim
N→∞

∑
π∈KN

dim(π)Tr(f̂(π)π(x)), a.e. x ∈ G.

The functions mN can be explicitly determined by the representation theory of G. More
details and examples will be given in Section 6.2. Note that though the above result is stated
in a totally classical setting, the role of noncommutative analysis on quantum groups is still
non-avoidable in the proof.

The classical Euclidean setting. In the classical Euclidean setting, our approach provides
the following new type of approximate identities. We refer to Section 6.4 for more details.

Corollary 1.7. Let B be a symmetric convex body in Rd with volume 1. Let Φ be the inverse
Fourier transform of the convolution 1B ∗1B, where 1B denotes the characteristic function of
B, and let Φt = t−dΦ(t−1·) for t > 0. Then we have

lim
t→0

Φt ∗ f = f a.e., f ∈ Lp(Rd)
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with 3/2 < p <∞, and
lim
j→∞

Φ2−j ∗ f = f a.e., f ∈ Lp(Rd)

with 1 < p <∞.

These approximate identities might be regarded as generalized Fejér means; in particular,
if B is the unit cube, the convergence of (Φt ∗ f)t>0 also holds for 1 < p <∞ and we recover
the classical Fejér means. We can alternatively deal with the problem by using classical
estimate of Φ if the boundary of B satisfies some smooth conditions (see Remark ??), but
our approach based on Theorem 1.1 seems more efficient for general convex bodies without
smooth boundaries. To our knowledge, these approximate identities have not yet been widely
studied by harmonic analysts. However, from the viewpoint of geometric theory of amenable
groups, they arise very naturally when we study Følner sets in Rd other than cubes, such as
balls and rectangles. It seems that one needs more efforts and new tools to obtain further
results, which suggests new challenges to classical harmonic analysts and (convex) geometers.
We will give the proof and mention a few problems in Section 6.4.

On the other hand, Theorem 1.3 (1) and Theorem 1.4 indeed provide the following general
abstract answers to the classical pointwise convergence problems. Indeed, if we take Γ = Zd,
then Lp(V N(Γ)) coincides with Lp(Td) and the theorems amount to the following facts:

Corollary 1.8. (1) Let (ΦN )N∈N ⊂ L1(Td) be an arbitrary sequence of positive trigonometric
polynomials with limN ‖ΦN ∗ f − f‖1 = 0 for all f ∈ L1(Td). Then there exists a subsequence
(Nk)k∈N such that for all 1 < p ≤ ∞ and all f ∈ Lp(Td), we have

lim
k→∞

ΦNk ∗ f = f a.e.

(2) There exists a subsequence (Nk)k∈N such that∑
j∈Zd:
√
|j1|2+···+|jd|2≤Nk

f̂(j)e2πi〈j,·〉

converges a.e. to f as k tends to infinity for all f ∈ L2(Td).

From the proof of Theorem 1.4, the number Nk in the above assertion (2) can be actually
chosen to be 2k, which partially recovers [CRdFV88, Theorem B]; while the problem whether
Nk can be equal to k, was solved by Carleson when d = 1 - known as the Carleson theorem -
and is still a well-known open problem in classical harmonic analysis for d ≥ 2.

Note that when reduced to this classical setting, our method is still novel, which unavoid-
ably involves the ergodic theory and the bootstrap method in Theorem 1.2 as well as the
aforementioned genuinely abstract Markov semigroups.

Dimension free bounds of noncommutative Hardy-Littlewood maximal inequali-
ties. We remark that Theorem 1.1 also implies as a byproduct the dimension free bounds
of noncommutative Hardy-Littlewood maximal operators. The noncommutative version of
Hardy-Littlewood maximal inequalities was studied in [Mei07] for balls respect to Euclidean
metrics and in [HLW20] for general doubling metric spaces. The dimension free bounds in this
noncommutative setting were studied by the first author in [Hon20] for Euclidean balls; be-
cause of various difficulties in noncommutative analysis as mentioned before, the general case
for convex bodies remained unexplored before our work. Our following result establishes the
desired maximal inequalities for general convex bodies in Rd with dimension free estimates.
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Theorem 1.9. Let B be a symmtric convex body in Rd and N a semifinite von Neumman
algebra. Define Φr : Lp(Rd;Lp(N ))→ Lp(Rd;Lp(N )) by

Φr(f)(x) =
1

µ(B)

∫
B
f(x− ry)dy.

Then there exist constants Cp > 0 independent of d and B such that the following holds:
(1) For any 1 < p <∞,

‖sup
j∈Z

+Φ2j (f)‖p ≤ Cp‖f‖p, f ∈ Lp(Rd;Lp(N )).

(2) For any 3
2 < p <∞,

‖ sup
r∈R+

+Φr(f)‖p ≤ Cp‖f‖p, f ∈ Lp(Rd;Lp(N )).

(3) If B is the `q-ball {(xi)di=1 :
∑d

i=1 |xi|q ≤ 1} with q ∈ 2N, then for any 1 < p <∞,

‖ sup
r∈R+

+Φr(f)‖p ≤ Cp‖f‖p, f ∈ Lp(Rd;Lp(N )).

Before ending the introduction, we would like to mention the following order estimate for
square function inequalities, which is of independent interest. This order of constants (p−1)−6

is of crucial use in the proof of Theorem 1.1. The following remarkable result is established
in [JLMX06] without specifying the order of the constants. Our proof is based on a slight
adaption of the arguments in [JLMX06], which will be given in Section 3.

Theorem 1.10. Let M be a finite von Neumann algebra. Let (Pt)t∈R+ be the subordinate
Poisson semigroup of a semigroup (St)t∈R+ of unital completely positive trace preserving and
symmetric operators onM. Then there exists an absolute positive constant c such that for all
1 < p < 2 and x ∈ Lp(M) we have

inf

{∥∥∥∥(

∫ ∞
0
|t∂Pt(xc)|2

dt

t
)

1
2

∥∥∥∥
p

+

∥∥∥∥(

∫ ∞
0
|(t∂Pt(xr))∗|2

dt

t
)

1
2

∥∥∥∥
p

}
≤ c(p− 1)−6‖x‖p

where the infimum runs over all xc, xr ∈ Lp(M) such that x = xc + xr.

The rest of the paper is divided as follows. In Section 2 we will recall the background and
prove some preliminary results on noncommutative vector-valued Lp-spaces and pointwise
convergences. Section 3 is devoted to the proof of square function estimates in Theorem 1.10.
In Section 4 we will establish the key criterion for maximal inequalities of Fourier multipliers,
i.e., Theorem 1.1. Lastly, in Section 5 we will prove Theorem 1.3 and in Section 6 we will
establish various examples of maximal inequalities and pointwise convergence theorems of
noncommutative Fourier multipliers, including Theorem 1.6 and Theorem 1.9.

Notation: In all what follows, we write X . Y if X ≤ CY for an absolute constant C > 0,
and X .α,β,··· Y if X ≤ CY for a constant C > 0 depending only on the parameters indicated.
Also, we write X � Y if C−1Y ≤ X ≤ CY for an absolute constant C > 0.
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2. Preliminaries

LetM denote a semifinite von Neumann algebra equipped with a normal semifinite faithful
trace τ . Let SM+ denote the set of all x ∈ M+ such that τ(suppx) < ∞, where suppx
denotes the support projection of x. Let SM be the linear span of SM+. Then SM is a
w*-dense ∗-subalgebra ofM. Given 1 ≤ p <∞, we define

‖x‖p = [τ(|x|)p]1/p, x ∈ SM,

where |x| = (x∗x)1/2 is the modulus of x. Then (SM, ‖ · ‖p) is a normed space, whose
completion is the noncommutative Lp-space associated with (M, τ), denoted by Lp(M, τ) or
simply by Lp(M). As usual, we set L∞(M, τ) = M equipped with the operator norm. Let
L0(M) denote the space of all closed densely defined operators on H measurable with respect
to (M, τ), where H is the Hilbert space on whichM acts. Then the elements of Lp(M) can be
viewed as closed densely defined operators onH. A more general notion of Haagerup Lp-spaces
on arbitrary von Neumann algebras can be found in Section 4.5.2. We refer to [PX03] for more
information on noncommutative Lp-spaces. We say that a map T : Lp(M, τ) → Lp(M, τ) is
n-positive (resp. n-bounded) for some n ∈ N if T ⊗ idMn extends to a positive (resp. bounded)
map on Lp(M⊗Mn, τ ⊗Tr), where Mn denotes the algebra of all n×n complex matrices and
Tr denotes the usual trace on it, and we say that T is completely positive (resp. completely
bounded) if it is n-positive (resp. n-bounded) for all n ∈ N. We will denote by ‖T‖cb the
supremum of the norms of T ⊗ idMn on Lp(M⊗Mn, τ ⊗ Tr) over all n ∈ N.

2.1. Noncommutative `∞-valued Lp-spaces. In classical analysis, the pointwise proper-
ties of measurable functions are often studied by estimating the norms of maximal functions of
the form ‖ supn |fn|‖p. However, these maximal norms in the noncommutative setting require
a specific definition, since supn |xn| does not make sense for a sequence (xn)n of operators.
This difficulty is overcome by considering the spaces Lp(M; `∞), which are the noncommu-
tative analogs of the usual Bochner spaces Lp(X; `∞). These spaces were first introduced by
Pisier [Pis98] for injective von Neumann algebras and then extended to general von Neumann
algebras by Junge [Jun02]. See also [JX07, Section 2] for more details.

Given 1 ≤ p ≤ ∞, we define Lp(M; `∞) to be the space of all sequences x = (xn)n∈N in
Lp(M) which admit a factorization of the following form: there exist a, b ∈ L2p(M) and a
bounded sequence y = (yn) ⊂M such that

xn = aynb, n ∈ N.

The norm of x in Lp(M; `∞) is given by

‖x‖Lp(M;`∞) = inf

{
‖a‖2p sup

n∈N
‖y‖∞‖b‖2p

}
where the infimum runs over all factorizations of x as above. We will adpot the convention
that the norm ‖x‖Lp(M;`∞) is denoted by ‖ sup+

n xn‖p. As an intuitive description, it is worth
remarking that a selfadjoint sequence (xn)n∈N of Lp(M) belongs to Lp(M; `∞) if and only if
there exists a positive element a ∈ Lp(M) such that −a ≤ xn ≤ a for any n ∈ N. In this case,
we have

(2.1) ‖sup
n∈N

+xn‖p = inf{‖a‖p : a ∈ Lp(M)+,−a ≤ xn ≤ a,∀n ∈ N}.
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The subspace Lp(M, c0) of Lp(M; `∞) is defined as the space of all family (xn)n∈N ⊂ Lp(M)
such that there are a, b ∈ L2p(M) and (yn) ⊂M verifying

xn = aynb and lim
n→∞

‖yn‖∞ = 0.

It is easy to check that Lp(M, c0) is a closed subspace of Lp(M; `∞). It is indeed the closure
of the subspace of all finitely supported sequences.

On the other hand, we may also consider the space Lp(M; `c∞) for 2 ≤ p ≤ ∞. This
space Lp(M; `c∞) is defined to be the family of all sequences (xn)n∈N ⊂ Lp(M) which admits
a ∈ Lp(M) and (yn) ⊂ L∞(M) such that

xn = yna and sup
n∈N
‖yn‖∞ <∞.

‖(xn)‖Lp(M;`c∞) is then defined to be the infimum of {supn∈N ‖yn‖∞‖a‖p} over all factorization
of (xn) as above. It is easy to check that ‖ ‖Lp(M;`c∞) is a norm, which makes Lp(M; `c∞) a
Banach space. Moreover, (xn) ∈ Lp(M; `c∞) iff (x∗nxn) ∈ Lp/2(M; `∞). Indeed, we have

(2.2) ‖(xn)‖Lp(M;`c∞) = ‖(x∗nxn)‖1/2Lp/2(M;`∞).

We define similarly the subspace Lp(M; cc0) of Lp(M; `c∞).
We define the space Lp(M; `r∞) := {(xn) : (x∗n) ∈ Lp(M; `c∞)} for 2 ≤ p ≤ ∞ with the norm

‖(xn)‖Lp(M;`r∞) = ‖(x∗n)‖Lp(M;`c∞). The following interpolation theorem was firsted studied by
Pisier in [Pis96] and then generalized by Junge and Parcet in [JP10].

Lemma 2.1 ([JP10, Theorem A]). For any 2 ≤ p ≤ ∞, we have isometrically

Lp(M; `∞) = (Lp(M; `c∞), Lp(M; `r∞))1/2 .

Another Banach space Lp(M; `1) is also defined in [Jun02]. Given 1 ≤ p ≤ ∞, a sequence
x = (xn)n∈N belongs to Lp(M; `1) if there are ukn, vkn ∈ L2p(M) such that

xn =
∑
k≥0

u∗knvkn, n ≥ 0

and

‖(xn)n‖Lp(M;`1) := inf


∥∥∥∥∥∥
∑
k,n≥0

u∗knukn

∥∥∥∥∥∥
1/2

p

∥∥∥∥∥∥
∑
k,n≥0

v∗knvkn

∥∥∥∥∥∥
1/2

p

 <∞.

Specially, for a positive sequence x = (xn), we have

‖x‖Lp(M;`1) = ‖
∑
n≥0

xn‖p.

The following proposition will be useful in this paper.

Proposition 2.2 ([JX07, JP10]). Let 1 ≤ p, p′ ≤ ∞ and 1/p+ 1/p′ = 1.
(1) Lp(M; `∞) is the dual space of Lp′(M; `1) when p′ 6= ∞. The duality bracket is given

by
〈x, y〉 =

∑
n≥0

τ(xnyn), x ∈ Lp(M; `∞), y ∈ Lp′(M; `1).

In particular for any positive sequence (xn)n in Lp(M; `∞), we have

‖sup
n

+xn‖p = sup{
∑
n

τ(xnyn) : yn ∈ L+
p′(M) and ‖

∑
n

yn‖p′ ≤ 1}.
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(2) Each element in the unit ball of Lp(M; `∞) (resp. Lp(M; `1)) is a sum of sixteen (resp.
eight) positive elements in the same ball.

(3) Let 1 ≤ p0 < p < p1 ≤ ∞ and 0 < θ < 1 be such that 1
p = 1−θ

p0
+ θ

p1
. Then the following

complex interpolation holds: we have isometrically

Lp(M; `∞) = (Lp0(M; `∞), Lp1(M; `∞))θ .

Similar complex interpolations also hold for Lp(M; `c∞) with 2 ≤ p ≤ ∞.

We remark that we may define the spaces Lp(M; `∞(I)), Lp(M; c0(I)) and Lp(M; `c∞(I)),
Lp(M; cc0(I)) for any uncountable index set I in the same way. The above properties still hold
for these spaces. We will simply denote the spaces by the same notation Lp(M; `∞), Lp(M; c0)
and so on if no confusion can occur.

Remark 2.3. It is known that a family (xi)i∈I ⊂ Lp(M) belongs to Lp(M; `∞) if and only if

sup
J⊂I finite

∥∥∥ sup
i∈J

+ xi

∥∥∥
p

< ∞,

and in this case

(2.3)
∥∥∥ sup
i∈I

+ xi

∥∥∥
p

= sup
J finite

∥∥∥ sup
i∈J

+ xi

∥∥∥
p
.

Similar observations hold for Lp(M; `c∞). As a conseqeunce, for any 1 ≤ p < ∞ and any
(xt)t∈R+ ∈ Lp(M; `∞) such that the map t 7→ xt from R+ to Lp(M) is continuous, we have

‖(xt)t∈R+‖Lp(M;`∞) = lim
a→1+

‖(xaj )j∈Z‖Lp(M;`∞).

To see this, we note that ‖(xt)t∈R+‖Lp(M;`∞) ≥ lim supa→1+ ‖(xaj )j∈Z‖Lp(M;`∞); thus by (2.3)
it suffices to show that ‖(xtk)1≤k≤n‖Lp(M;`∞) is dominated by lim infa→1+ ‖(xaj )j∈Z‖Lp(M;`∞)

for any (finitely many) elements t1, . . . , tn. This is obvious since for any ε > 0, by continuity we
may find a scalar a0 ∈ R+ sufficiently close to 1 such that for all 1 ≤ k ≤ n, ‖xtk−xajk0

‖p < ε/n

with some jk ∈ Z and ‖(x
aj0

)j∈Z‖Lp(M;`∞) ≤ lim infa→1+ ‖(xaj )j∈Z‖Lp(M;`∞) + ε, which implis

‖(xtk)1≤k≤n‖Lp(M;`∞) ≤ ‖(xajk0
)1≤k≤n‖Lp(M;`∞) +

∑
1≤k≤n

‖xtk − xajk0
‖p

≤ lim inf
a→1+

‖(xaj )j∈Z‖Lp(M;`∞) + 2ε.

Similarly, for 2 ≤ p <∞, we have

‖(xt)t∈R+‖Lp(M;`c∞) = lim
a→1+

‖(xaj )j∈Z‖Lp(M;`c∞).

2.2. Maximal inequalities and pointwise convergence. The standard tool in the study
of pointwise convergence is the following type of maximal inequalities.

Definition 2.4. Let 1 ≤ p ≤ ∞. Consider a family of maps Φn : Lp(M)→ L0(M) for n ∈ N.
(1) We say that (Φn)n∈N is of strong type (p, p) with constant C if

‖sup
n∈N

+Φn(x)‖p ≤ C‖x‖p, x ∈ Lp(M).

(2) We say that (Φn)n∈N is of weak type (p, p) (p <∞) with constant C if for any x ∈ Lp(M)
and any α > 0 there is a projection e ∈M such that

‖eΦn(x)e‖∞ ≤ α, n ∈ N and τ(e⊥) ≤
[
C
‖x‖p
α

]p
.
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(3) We say that (Φn)n∈N is of restricted weak type (p, p) (p <∞) with constant C if for any
projection f ∈M and any α > 0, there is a projection e ∈M such that

‖eΦn(f)e‖∞ ≤ α n ∈ N and τ(e⊥) ≤
(
C

α

)p
τ(f).

It is easy to see that for any 1 < p <∞,

strong type (p, p)⇒ weak type (p, p)⇒ restricted weak type (p, p).

Here is a simple but useful proposition.

Proposition 2.5. Let (Φn)n∈N be a sequence of positive linear maps on Lp(M). Then

‖(Φn)n : Lp(M; `∞)→ Lp(M; `∞)‖ � ‖(Φn)n : Lp(M)→ Lp(M; `∞)‖.
Proof. By setting xn = x, it is obvious to see that

‖(Φn)n : Lp(M)→ Lp(M; `∞)‖ ≤ ‖(Φn)n : Lp(M; `∞)→ Lp(M; `∞)‖.
For the inverse direction, we consider positive elements first. Let (xn)n ∈ Lp(M; `∞)+. For
any ε > 0, by (2.1), we can find an element a ∈ Lp(M)+ such that,

0 ≤ xn ≤ a, ∀n and ‖a‖p ≤ ‖sup
n∈N

+xn‖p + ε.

By linearity and positivity of (Φn)n, we have 0 ≤ Φnxn ≤ Φna. Therefore

‖sup
n

+Φnxn‖ ≤ ‖sup
n

+Φna‖ ≤ ‖(Φn)n : Lp(M)→ Lp(M; `∞)‖(‖sup
n

+xn‖p + ε).

Thus, by arbitrariness of ε and Proposition 2.2 (2), we get

‖(Φn)n : Lp(M; `∞)→ Lp(M; `∞)‖ ≤ 16‖(Φn)n : Lp(M)→ Lp(M; `∞)‖.
�

The Marcinkiewicz interpolation theorem plays an important role in the study of maximal
inequalities. Its analogue for the noncommutative setting was first established by Junge and
Xu in [JX07], and then was generalized in [BCO17] and [Dir15]. We present Dirksen’s version
here.

Theorem 2.6 ([Dir15, Corollary 5.3]). Let 1 ≤ p < r < q ≤ ∞. Let (Φn)n∈N be a family of
positive linear maps from Lp(M) +Lq(M) into L0(M). If (Φn)n∈N is of restricted weak type
(p, p) and of strong type (q, q) with constants Cp and Cq, then it is of strong type (r, r) with
constant

Cr . max{Cp, Cq}(
rp

r − p
+

rq

q − r
)2.

We need an appropriate analogue for the noncommutative setting of the usual almost ev-
erywhere convergence. This is the notion of almost uniform convergence introduced by Lance
[Lan76].

Definition 2.7. Let xn, x ∈ L0(M). (xn)n∈N is said to converge almost uniformly (a.u. in
short) to x if for any ε > 0 there is a projection e ∈M such that

τ(e⊥) < ε and lim
n→∞

‖(xn − x)e‖∞ = 0.

(xn)n∈N is said to converge bilaterally almost uniformly (b.a.u. in short) to x if for any ε > 0
there is a projection e ∈M such that

τ(e⊥) < ε and lim
n→∞

‖e(xn − x)e‖∞ = 0.
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It is obvious that the a.u. convergence implies the b.a.u. convergence, so we will be mainly
interested in the former. Note that in the commutative case, both notions are equivalent to the
usual almost everywhere convergence in terms of Egorov’s Theorem in the case of probability
space.

It is nowadays a standard method of deducing pointwise convergence from maximal inequal-
ities. We will use the following facts.

Lemma 2.8 ([DJ04]). (1) If a family (xi)i∈I belongs to Lp(M, c0) with some 1 ≤ p < ∞,
then xi conveges b.a.u. to 0.

(2) If a family (xi)i∈I belongs to Lp(M, cc0) with some 2 ≤ p <∞, then xi conveges a.u. to
0.

Proposition 2.9. (1) Let 1 ≤ p < ∞ and (Φn)n∈N be a sequence of positive linear maps on
Lp(M). Assume that (Φn)n∈N is of weak type (p, p). If (Φnx)n∈N converges a.u. to 0 for all
elements x in a dense subspace of Lp(M), then (Φnx)n∈N converges a.u. for all x ∈ Lp(M).

(2) Let 1 ≤ p < ∞ and (Φn)n∈N be a sequence of linear maps on Lp(M). Assume that
(Φn)n∈N satisfies the following one sided weak type (p, p) maximal inequalities, i.e. there
exists C > 0 such that for any x ∈ Lp(M) and α > 0 there exists a projection e ∈ M such
that

(2.4) ‖Φn(x)e‖∞ ≤ α, n ∈ N and τ(e⊥) ≤
[
C
‖x‖p
α

]p
.

If (Φnx)n∈N converges a.u. to 0 for all elements x in a dense subspace of Lp(M), then
(Φnx)n∈N converges a.u. for all x ∈ Lp(M).

Proof. The assertion (1) is given by [CL16, Theorem 3.1].
The second part is standard and is implicitly established in the proof of [JX07, Remark

6.5] and [CXY13, Theorem 5.1] for which we provide a brief argument for the convenience
of the reader. Let x ∈ Lp(M) and ε > 0. For any m ≥ 1, take ym ∈ Lp(M) such that
‖x−ym‖p < 2−2m/pC−1ε1/p and (Φnym)n converges a.u. to 0 as n→∞. Denote zm = x−ym.
By the estimation of one side weak type (p, p), we may find a projection em ∈M such that

sup
n
‖Φn(zm)em‖∞ ≤ 2−m/p and τ(e⊥m) ≤

[
C
‖zm‖p
2−m/p

]p
< 2−mε.

We may also find a projection fm ∈M such that

τ(f⊥m) < 2−mε and lim
n→∞

‖Φn(ym)fm‖∞ = 0.

Let e =
∧
m(em ∧ fm). Then

τ(e⊥) ≤
∑
m≥1

(τ(e⊥m) + τ(f⊥m)) < ε

and for any m ≥ 1,

lim sup
n→∞

‖Φn(x)e‖∞ ≤ lim
n→∞

(‖Φn(ym)fm‖+ ‖Φn(zm)‖) ≤ 2−m/p,

which means that limn→∞ ‖Φn(x)e‖∞ = 0. Therefore, Φn(x) converge a.u. to 0. �

We recall the following well-known fact, which is of essential use for our arguments. The
following maximal inequalities and the a.u. convergence on dense subspaces are given in
[JX07], and the a.u. convergence on Lp-spaces then follows from Proposition 2.9 (1). We
recall that a map T is said to be symmetric if τ(T (x)∗y) = τ(x∗T (y)) for any x, y ∈ SM.
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Proposition 2.10. Let (St)t∈R+ be a semigroup of unital completely positive trace preserving
and symmetric maps onM. We have

‖(St(x))t‖Lp(M;`∞) ≤ cp‖x‖p, x ∈ Lp(M), 1 < p <∞,
and

‖(St(x))t‖Lp(M;`c∞) ≤
√
cp‖x‖p, x ∈ Lp(M), 2 < p <∞,

where cp ≤ Cp2(p− 1)−2 with C an absolute constant. Moreover, (St(x))t converges a.u. to x
as t→ 0 for all x ∈ Lp(M) with 1 < p <∞.

3. Noncommutative Hilbert space valued Lp-spaces and square function
estimates

In this section we will collect some preliminary results on noncommutative square functions,
which are among the essential tools in this paper. Some of the results proved in this section
might be folkloric for experts, but we include them here for the convenience of the reader.

The noncommutative Hilbert space valued Lp-spaces provide a suitable framework for study-
ing square functions in the noncommutative setting. In this paper we will only use the following
concrete representations of these spaces; for a more general description we refer to the papers
[LPP91, LP86, JLMX06].

First, for a finite sequence (xn)n ⊂ Lp(M), we define

‖(xn)‖Lp(M;`c2) =

∥∥∥∥∥∥
(∑

n

x∗nxn

)1/2
∥∥∥∥∥∥
p

, ‖(xn)‖Lp(M;`r2) =

∥∥∥∥∥∥
(∑

n

xnx
∗
n

)1/2
∥∥∥∥∥∥
p

.

We alert the reader that the two norms above are not comparable at all if p 6= 2. Let Lp(M; `c2)
(resp. Lp(M; `r2) ) be the completion of the space of all finite sequences in Lp(M) with respect
to ‖ ‖Lp(M;`c2) (resp. ‖ ‖Lp(M;`r2)). The space Lp(M; `cr2 ) is defined in the following way. If
2 ≤ p ≤ ∞, we set

Lp(M; `cr2 ) = Lp(M; `c2) ∩ Lp(M; `r2)

equipped with the norm

‖(xn)‖Lp(M;`cr2 ) = max{‖(xn)‖Lp(M;`c2), ‖(xn)‖Lp(M;`r2)}.

If 1 ≤ p ≤ 2, we set
Lp(M; `cr2 ) = Lp(M; `c2) + Lp(M; `r2)

equipped with the norm

‖(xn)‖Lp(M;`cr2 ) = inf{‖(yn)‖Lp(M;`c2) + ‖(zn)‖Lp(M;`r2)}

where the infimum runs over all decompositions xn = yn + zn in Lp(M).
Second, for the Borel measure space (R+ \ {0}, dtt ), we may consider the norms

‖(xt)t‖Lp(M;Lc2( dt
t

)) =

∥∥∥∥∥
(∫ ∞

0
x∗txt

dt

t

)1/2
∥∥∥∥∥
p

, ‖(xt)t‖Lp(M;Lr2( dt
t

)) =

∥∥∥∥∥
(∫ ∞

0
xtx
∗
t

dt

t

)1/2
∥∥∥∥∥
p

.

We refer to [JLMX06, Section 6.A] for the rigorous meaning of the integral appeared in the
above norm. Then we may define the spaces Lp(M;Lc2(dtt )), Lp(M;Lr2(dtt )) and Lp(M;Lcr2 (dtt ))
in a similar way.

We recall the following basic properties.
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Proposition 3.1. (1) (Duality) Let 1 ≤ p <∞ and p′ such that 1/p′ + 1/p = 1. Then

(Lp(M; `c2))∗ = Lp′(M; `r2), (Lp(M; `r2))∗ = Lp′(M; `c2), (Lp(M; `cr2 ))∗ = Lp′(M; `cr2 ).

The duality bracket is given by

〈(xn)n, (yn)n〉 =
∑
n

τ(xnyn), (xn)n ⊂ Lp(M), (yn)n ⊂ Lp′(M).

(2) (Complex interpolation [Pis82]) Let 1 ≤ p, q ≤ ∞ and 0 < θ < 1. Let 1
r = 1−θ

p + θ
q .

Then we have the isomorphism with absolute constants

(Lp(M; `cr2 ), Lq(M; `cr2 ))θ = Lr(M; `cr2 ).

Similar complex interpolations also hold for Lp(M; `c2) and Lp(M; `r2).

A sequence of independent random variables (εn) on a probalility space (Ω, P ) is called
a Rademarcher sequence if P (εn = 1) = P (εn = −1) = 1

2 for any n ≥ 1. The following
noncommutative Khintchine inequalities are well-known.

Proposition 3.2 ([LP86, LPP91, Pis98]). Let (εn) be a Rademarcher sequence on a probability
space (Ω, P ). Let 1 ≤ p <∞ and (xn) be a sequence in Lp(M; `cr2 ).

(1) If 1 ≤ p ≤ 2, then there exists an absolute constant c > 0 such that

c‖(xn)n‖Lp(M;`cr2 ) ≤ ‖
∑
n

εnxn‖Lp(Ω;Lp(M)) ≤ ‖(xn)n‖Lp(M;`cr2 ).

(2) If 2 ≤ p <∞, then there exists an absolute constant c > 0 such that

‖(xn)n‖Lp(M;`cr2 ) ≤ ‖
∑
n

εnxn‖Lp(Ω;Lp(M)) ≤ c
√
p‖(xn)n‖Lp(M;`cr2 ).

The following proposition will be useful for our further studies.

Proposition 3.3. Let (xn)n∈N ∈ Lp(M; `∞). Then there exists an absolute constant c > 0
such that for any 1 ≤ p ≤ ∞,

‖(xn)n‖Lp(M;`∞) ≤ ‖(xn)n‖Lp(M;`cr2 );

and for any 2 ≤ p ≤ ∞,
‖(xn)n‖Lp(M;`c∞) ≤ ‖(xn)n‖Lp(M;`c2).

Proof. We start with the proof of the first inequality. It is trivial for the case p =∞:

‖(xn)n‖L∞(M;`∞) = sup
n
‖xn‖∞ ≤

∥∥∥∥∥∥
(∑

n

x∗nxn

)1/2
∥∥∥∥∥∥
∞

≤ ‖(xn)n‖L∞(M;`cr2 ).

Recall that by the Hölder inequality (see also [Jun02, Lemma 3.5]), for any 1 ≤ p ≤ ∞ and
for any sequence (xn)n in Lp(M; `1),

‖
∑
n

xn‖p ≤ ‖(xn)n‖Lp(M;`1).

On the other hand, for any 1 ≤ p ≤ ∞, by the definition of ‖ ‖Lp(M;`1), one can easily get
‖(εnxn)‖Lp(M;`1) = ‖(xn)‖Lp(M;`1) with εn ∈ {±1}. Now we set (εn)n to be a Rademarcher
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sequence on a probability space (Ω, P ). It is folkloric that

‖(xn)‖L∞(M;`cr2 ) = ‖(εnxn)‖L∞(M;`cr2 ) ≤ ‖
∑
n

εnxn‖L2(Ω;L∞(M))

≤ ‖
∑
n

εnxn‖L∞(Ω;L∞(M)) = sup
ω∈Ω

∥∥∥∥∥∑
n

εn(ω)xn

∥∥∥∥∥
∞

≤ sup
ω∈Ω
‖(εn(ω)xn)n‖L∞(M;`1) = ‖(xn)n‖L∞(M;`1).

Let (yn)n ∈ L1(M; `∞). By duality and the above inequality we have

‖(yn)n‖L1(M;`∞) = sup

{ ∑
n τ(xnyn)

‖(xn)‖L∞(M,`1)
: (xn) ∈ L∞(M, `1)

}
≤ sup

{ ∑
n τ(xnyn)

‖(xn)‖L∞(M;`cr2 )
: (xn) ∈ L1(M; `cr2 )

}
≤ ‖(yn)‖L1(M;`cr2 ).

By interpolation we immediately get the first inequality in the lemma.
The above arguments tell that ‖ ‖Lp(M;`∞) ≤ ‖ ‖Lp(M;`cr2 ) for 1 ≤ p ≤ ∞. As before, by

a duality argument we indeed get ‖ ‖Lp(M;`∞) ≤ ‖ ‖Lp(M;`cr2 ) ≤ ‖ ‖Lp(M;`1). Therefore, we
obtain the second inequality:

‖(xn)‖Lp(M;`c∞) = ‖(x∗nxn)‖1/2Lp/2(M;`∞) ≤ ‖(x
∗
nxn)‖1/2Lp/2(M;`1)

=

∥∥∥∥∥
(∑

n

x∗n ⊗ e1,n

)(∑
n

xn ⊗ en,1

)∥∥∥∥∥
1/2

Lp/2(M⊗B(`2))

≤

∥∥∥∥∥
(∑

n

xn ⊗ en,1

)∗∥∥∥∥∥
1/2

Lp(M⊗B(`2))

∥∥∥∥∥
(∑

n

xn ⊗ en,1

)∥∥∥∥∥
1/2

Lp(M⊗B(`2))

= ‖xn‖Lp(M;`c2).

�

In the noncommutative setting usually we do not have the analogue of the complex interpo-
lation (Lp(`q1), Lp(`q2))θ = Lp(`

cr
2 ) with 1/2 = (1−θ)/q1 +θ/q2, which is an essential obstruc-

tion to generalize many classical methods on maximal inequalities in [Bou86a, Bou87, Car86].
Nevertheless, we still have the following weaker property, which will be enough for our pur-
pose in this paper. More precisely, we will compare the norms of positive symmetric maps on
Lp(M; `cr2 ) with those on L p

2−p
(M; `∞). Note that if T is a symmetric and selfadjoint map

onM (by selfadjointness we mean that T (x∗) = T (x)∗ for all x ∈M), then

(3.1) τ(T (x)y) = τ([T (x∗)]∗y) = τ((x∗)∗T (y)) = τ(xT (y)) x, y ∈ SM.

Therefore, T equals its predual operator on L1(M). In particular, T extends to L1(M)
with the same norm, and by interpolation it also extends to a bounded map on Lp(M) with
1 < p < ∞. In this context we state the following property (note that a positive map is
automatically selfajoint).
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Lemma 3.4. Let (Φj)j be a sequence of unital positive and symmetric maps on M. Denote
Φ : (xj)j 7→ (Φjxj)j. Let 1 < p < 2. Then

‖Φ : Lp(M; `cr2 )→ Lp(M; `cr2 )‖ ≤ 2‖Φ : L p
2−p

(M; `∞)→ L p
2−p

(M; `∞)‖1/2.

Similar inequalities hold for the spaces Lp(M; `c2) and Lp(M; `r2) if (Φj)j is a sequence of
unital 2-positive maps.

Proof. Since Φj are unital positive maps, by Kadison’s Cauchy-Schwarz inequality [Kad52],
for any selfadjoint element xj ∈ Lp(M), we have

Φj(xj)
2 ≤ Φj(x

2
j ).

Assume that (xj)j ∈ Lp′(M; `cr2 ) is a sequence of selfadjoint elements. Then the conjugate
index p′ is greater than 2 and

‖(Φjxj)j‖Lp′ (M;`cr2 ) =

∥∥∥∥∥∥∥
∑

j

(Φjxj)
2

1/2
∥∥∥∥∥∥∥
p′

≤

∥∥∥∥∥∥∥
∑

j

Φj(x
2
j )

1/2
∥∥∥∥∥∥∥
p′

=
∥∥∥(Φj(x

2
j )
)
j

∥∥∥1/2

Lp′/2(M;`1)

≤ ‖Φ : Lp′/2(M; `1)→ Lp′/2(M; `1)‖1/2‖(xj)j‖Lp′ (M;`cr2 ).

For general (xj)j ∈ Lp′(M; `cr2 ), we may decompose it into two sequence of selfadjoint elements.
Note that ‖(xj)j‖Lp′ (M;`cr2 ) = ‖(x∗j )j‖Lp′ (M;`cr2 ) for p′ > 2. Therefore,

‖Φ : Lp′(M; `cr2 )→ Lp′(M; `cr2 )‖ ≤ 2‖Φ : Lp′/2(M; `1)→ Lp′/2(M; `1)‖1/2.

As explained in (3.1), the dual operator of Φ equals itself and we obtain

‖Φ : Lp(M; `cr2 )→ Lp(M; `cr2 )‖ ≤ 2‖Φ : L p
2−p

(M; `∞)→ L p
2−p

(M; `∞)‖1/2,

as desired.
For the spaces Lp(M; `c2) and Lp(M; `r2), similar arguments still work for non selfadjoint

elements (xj) if the maps Φj are 2-positive, since in this case we can use the following Cauchy-
Schwarz inequality |Φj(xj)|2 ≤ Φj(|xj |2) (see e.g. [Pau02, Proposition 3.3]). �

The square function estimates for noncommutative diffusion semigroups has been estab-
lished in [JLMX06]. In this section we will slightly adapt the arguments of [JLMX06] so
as to obtain a refined version of this result for our further purpose. Throughout this sub-
section, (St)t∈R+ always denotes a semigroup of unital completely positive trace preserving
and symmetric maps onM with the negative infinitesimal generator A. Let (Pt) denote the
subordinate Poisson semigroup of (St), i.e. the negative generator of Pt is −(−A)1/2.

For notational simplicity, the vector-valued spaces Lp(M;Lc2(R; dtt )), Lp(M;Lr2(R; dtt )) and
Lp(M;Lcr2 (R; dtt )) are denoted respectively by Lp(Lc2(dtt )), Lp(Lr2(dtt )) and Lp(Lcr2 (dtt )) in this
section.

To state our theorem, we recall the dilation property. Let (M, τ), (N , τ ′) be two von
Neumann algebra where τ and τ ′ are normal faithful semifinite traces. If π : (M, τ)→ (N , τ ′)
is a normal unital faithful trace preserving ∗-representation, then it (uniquely) extends to an
isometry from Lp(M) into Lp(N ) for any 1 ≤ p < ∞. We call the adjoint E : N → M of
the embedding L1(M) ↪→ L1(N ) induced by π the conditional expectation associated with π.
Moreover E : N →M is unital and completely positive.
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Definition 3.5. Let T : M → M be a bounded operator. We say that T satisfies Rota’s
dilation property if there exist a von Neumann algebra N equipped with a normal semifinite
faithful trace, a normal unital faithful ∗-representation π : M → N which preserves traces,
and a decreasing sequence (Nm)m≥1 of von Neumann subalgebras of N such that

(3.2) Tm = Ê ◦ Em ◦ π, m ≥ 1,

where Em : N → Nm ⊂ N is the canonical conditional expectation onto Nm, and where
Ê : N →M is the conditional expectation associated with π.

We recall the following typical examples of operators with Rota’s dilation property.

Lemma 3.6. (1) ([JRS14, Dab10]) IfM is a finite von Neumann algebra and τ is a normal
faithful state onM, then for all t ∈ R+, the operator St satisfies Rota’s dilation property.

(2) ([Ste70]) IfM is a commutative von Neumann algebra and L is another semifinite von
Neumann algebra, then for all t ∈ R+, the operator St⊗ IdL onM⊗L satisfies Rota’s dialtion
property.

We aim to prove the following square function estimates, which are essentially established
in [JLMX06, JW17], without specifying the order (p − 1)−6. However, we will see that the
methods in [JLMX06], together with the sharp constants of various martingale inequalities,
are enough to obtain this order. The outline of our proof is slightly different from that of
[JLMX06], but all the ingredients are already available in the latter.

Proposition 3.7. Assume that for all t ∈ R+, the operator St satisfies Rota’s dilation prop-
erty. Then for all 1 < p < 2 and x ∈ Lp(M) we have

inf

{∥∥∥∥(

∫ ∞
0
|t∂tPt(xc)|2

dt

t
)

1
2

∥∥∥∥
p

+

∥∥∥∥(

∫ ∞
0
|(t∂tPt(xr))∗|2

dt

t
)

1
2

∥∥∥∥
p

}
≤ c(p− 1)−6‖x‖p(3.3)

where the infimum runs over all xc, xr ∈ Lp(M) such that x = xc + xr, and c > 0 is an
absolute constant.

Remark 3.8. When the underlying von Neumann algebra is commutative, it is known from
Stein [Ste70] that the optimal order here is (p−1)−1. In the noncommutative case, we believe
that the order (p − 1)−6 is not optimal. However, this order is sufficient for our purpose in
the sequel.

Our study of the semigroup (Pt)t is based on the analysis of the ergodic averages as follows:

Mt =
1

t

∫ t

0
Sudu.

We will need the following claim.

Lemma 3.9. For any y ∈ Lp(M),

‖(t∂Pty)t‖Lp(Lc2( dt
t

)) ≤ c‖(t∂Mty)t‖Lp(Lc2( dt
t

)),

where c > 0 is an absolute constant. The inequality remains true if we replace the norm of
Lp(L

c
2(dtt )) by Lp(Lr2(dtt )) or Lp(Lcr2 (dtt )).
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Proof. This claim is well known to experts. We only give a sketch of its arguments. Set
ϕ(s) = 1

2
√
π
e−1/4s

s3/2
. Using integration by parts we have

Pt =
1

t2

∫ ∞
0

ϕ(
s

t2
)(∂(sMs))ds = −

∫ ∞
0

sϕ′(s)Mt2sds.

Therefore

t∂Pt = −2

∫ ∞
0

t2s2ϕ′(s)∂Mt2sds = −2

∫ ∞
0

sϕ′(s)(t2s∂Mt2s)ds(3.4)

which yields the claim by noting that ‖·‖Lp(Lc2( dt
t

)) is a norm and sϕ′(s) is absolutely integrable.
�

We need the following auxiliary result.

Proposition 3.10. Assume that for all t ∈ R+, the operator St satisfies Rota’s dialtion
property. Then for 1 < p < 2 and x ∈ Lp(M), we have

‖(t∂Pt(x))t>0‖Lp(Lcr2 ( dt
t

)) ≤ c(p− 1)−2‖x‖p,(3.5)

where c > 0 is an absolute constant.

Proof. This result has been essentially obtained in [JLMX06], together with the optimal es-
timates for martingale inequalities in [Ran02, JX05]. Indeed, let (En)n∈N be a monotone
sequence of conditional expectations on M and xn = En+1(x) − En(x) be a sequence of
martingale differences with x ∈ Lp(M). By the estimate for noncommutative martingale
transform in [Ran02, Theorem 4.3] and the Khintchine inequality in Lemma 3.2, we have

‖(xn)n∈N‖Lp(`cr2 ) ≤
c

p− 1
‖x‖p,

and by the noncommutative Stein inequality [JX05, Theorem 8] we have for any sequence
(yn)n∈N ⊂ Lp(M),

‖(Enyn)n∈N‖Lp(`cr2 ) ≤
c

p− 1
‖(yn)n∈N‖Lp(`cr2 ) 1 < p < 2,

where c > 0 is an absolute constant. Then tracing the order in the proof of [JLMX06, Corollary
10.9], we obtain that for all ε > 0,

‖(
√
mDε

m(x))m≥1‖Lp(`cr2 ) ≤
c′

(p− 1)2
‖x‖p,

where c′ > 0 is an absolute constant, and where

Dε
m = ρεm − ρεm−1 and ρεm =

1

m+ 1

m∑
k=0

Skε.

By a standard discretization argument (see e.g. [JLMX06, Lemma 10.11]), we get the following
inequality

‖(t∂Mtx)t‖Lp(Lcr2 ( dt
t

)) ≤ c
′(p− 1)−2‖x‖p.

Then the desired result follows from Lemma 3.9. �
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Estimate (3.5) is weaker than (3.3). The remaining task for proving Proposition 3.7 is to
show

inf

{∥∥∥∥(

∫ ∞
0
|t∂Pt(xc)|2

dt

t
)

1
2

∥∥∥∥
p

+

∥∥∥∥(

∫ ∞
0
|(t∂Pt(xr))∗|2

dt

t
)

1
2

∥∥∥∥
p

}
(3.6)

. (p− 1)−4‖(t∂Pt(x))t>0‖Lp(Lcr2 ( dt
t

))

where the infimum runs over all decompositions x = xc + xr in Lp(M). This inequality is
essentially proved in [JLMX06, Theorem 7.8]; the order (p − 1)−4 is not stated there, but it
follows from a careful computation on all the related constants appearing in the argument
therein. For the convenience of the reader, we will recall some parts of the proof and clarify
all the constants in the proof which are concerned with the precise order.

For notational simplicity, we say that a family F ⊂ B(Lp(M)) is Col-bounded (resp. Row-
bounded) if there is a constant C such that for any sequence (Tk)k ⊂ F , we have

(3.7) ‖(Tk)k : Lp(M; `c2)→ Lp(M; `c2)‖ ≤ C (resp. ‖(Tk)k : Lp(M; `r2)→ Lp(M; `r2)‖ ≤ C) ,

and the least constant C will be denoted by Col(F) (resp. Row(F)).
We quote a useful result from [CdPSW00, Lemma 3.2] (see also [JLMX06, Lemma 4.2]).

Lemma 3.11. Let F ⊂ B(Lp(M)) be a Col-bounded (resp. Row-bounded) collection with
Col(F) = M (resp. Row(F) = M). Then the closure of the complex absolute convex hull of
F in the strong operator topology is also Col-bounded (resp. Row-bounded) with the constant
Col(F) ≤ 2M (resp. Row(F) ≤ 2M).

For any θ ∈ (0, π), we let

Σθ = {z ∈ C∗ : |Arg(z)| < θ}.

Without the concrete order of growth of the constant on p, the following lemma is contained
in [JLMX06, Theorem 5.6]. Note that the present area C\Σνp in the following lemma is
contained in the optimal area C\Σωp described in [JLMX06, Theorem 5.6].

Lemma 3.12. Let 1 < p < 2. Let (St)t be a semigroup of unital completely positive trace
preserving and symmetric maps. Let A be the negative infinitesimal generator of (St)t. Then
the set Fp = {z(z − A)−1 : z ∈ C\Σνp} ⊂ B(Lp(M)) with νp = (p+1)π

4p is Col-bouneded and
Row-bounded with constants

Col(Fp) ≤ c(p− 1)−2 and Row(Fp) ≤ c(p− 1)−2,

where c is an absolute constant.

Proof. Let s1, · · · , sn be some nonnegative real numbers. For any z ∈ C∗ with 0 ≤ Arg(z) ≤ π
2 ,

we define a map U(z) with

U(z) : L2(M; `c2) ∩ Lq(M; `c2)→ L2(M; `c2) + Lq(M; `c2)

(xk)k 7→ (Szsk(xk))k.

Note that for any x ∈ L2(M), the function z 7→ U(z)x is continuous and bounded in the area
{z ∈ C∗ : 0 ≤ Arg(z) ≤ π/2} by [JLMX06, Proposition 5.4 and Lemma 3.1]. This U(z) is
well defined. On the one hand, for any t > 0, we have

‖U(tei
π
2 ) : L2(M; `c2)→ L2(M; `c2)‖ ≤ 1.
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On the other hand, by duality and Lemma 3.4 and Proposition 2.10, we may find an absolute
constant c such that for any t > 0, 2 < q <∞,

‖U(t) : Lq(M; `c2)→ Lq(M; `c2)‖ = ‖U(t) : L q
q−1

(M; `c2)→ L q
q−1

(M; `c2)‖

≤ ‖U(t) : L q
q−2

(M; `∞)→ L q
q−2

(M; `∞)‖1/2

≤ cq.

Let p′ = p
p−1 be the conjugate number of p. We fix βp = π

2p′ . Let q = p′(
π−2βp
π−p′βp ) = 2(p′ − 1)

and α =
2βp
π = 1

p′ . These numbers satisfy 1−α
q + α

2 = 1
p′ . By complex interpolation, we know

that
Lp′(M; `c2) = [Lq(M; `c2), L2(M; `c2)]α.

By the ‘sectorial’ form of Stein’s interpolation principle (see for instance [JLMX06, Lemma
5.3]), we have

‖U(eiβp) : Lp′(M; `c2)→ Lp′(M; `c2)‖ ≤ (cq)1−α ≤ cq.
Thus,

‖(Sskeiβp (xk))k‖Lp′ (M;`c2) ≤ cq‖(xk)‖Lp′ (M;`c2).

Similarly, we have
‖(Sske−iβp (xk))k‖Lp′ (M;`c2) ≤ cq‖(xk)‖Lp′ (M;`c2).

Namely, (Sz)z∈∂Σβp
is Col-bounded with constant cq. Then we get that the set

{Sz : Lp′(M)→ Lp′(M) : z ∈ Σβp}

is also Col-bounded. Indeed, by a standard argument (see e.g. [Wei01, Proposition 2.8]), we
see that any Sz with z ∈ Σβp can be approximated by convex combinations of {Sz : z ∈ ∂Σβp}.
Therefore, by Lemma 3.11 we get that

Col({Sz : Lp′(M)→ Lp′(M) : z ∈ Σβp}) ≤ 2cq = 2cp′(
π − 2βp
π − p′βp

) ≤ 2c(p− 1)−1.

By duality, we have

(3.8) Row
(
{Sz : Lp(M)→ Lp(M) : z ∈ Σβp}

)
≤ 2c(p− 1)−1.

Set ωp = π
p −

π
2 and νp = (p+1)π

4p . Then 0 < π
2 − νp < βp <

π
p′ = π

2 − ωp. By the Laplace
formula, we have that for any z ∈ C\Σπ/2,

(z −A)−1 = −
∫ ∞

0
etzStdt.

Denote Γ+
βp

= {u = teiβp : t ∈ R+}. By [JLMX06, Proposition 5.4 and Lemma 3.1], u 7→ Su is
analytic on the area Σπ

2
−ωp . Note that Γ+

βp
⊂ Σπ

2
−ωp . Then by the Cauchy theorem, we have

that for any z ∈ C\Σπ/2,

(3.9) z(z −A)−1 = −
∫ ∞

0
zetzStdt = −

∫
Γ+
βp

zeuzSudu.

Note that for any z ∈ C with νp ≤ Arg(z) ≤ π/2, we have

Re(uz) = |z|t cos(Arg(z) + βp) = −|z|t sin(Arg(z)− π/2p),



POINTWISE CONVERGENCE OF NONCOMMUTATIVE FOURIER SERIES 24

and hence,∫
Γ+
βp

‖zeuzSudu‖ ≤ sup
u∈Γ+

βp

‖Su‖
∫ ∞

0
re−rt sin(Arg(z)−π/2p)dt ≤

supu∈Γ+
βp

‖Su‖

sin(νp − π/2p)
<∞.

Hence, (3.9) holds for any z ∈ C\Σνp . Note that
νp−π/2p

sin(νp−π/2p) . 1 since 0 < νp−π/2p < π
8 . By

Lemma 3.11 and (3.8), we get

Row(Fp) ≤ 2

∣∣∣∣∣
∫

Γ+
βp

zeuzdu

∣∣∣∣∣ · Row({Sz : Lp(M)→ Lp(M) : z ∈ Σβp})

.
(p− 1)−1

sin(νp − π/2p)
.

(p− 1)−1

νp − π/2p
. (p− 1)−2.

A similar proof shows that
Col(Fp) . (p− 1)−2.

�

Now let us prove the desired proposition.

Proof of (3.6) and Proposition 3.7. Set F (z) = ze−z, G(z) = 4F (z) and G̃(z) = G(z̄). Let
B = −(−A)1/2 be the negative infinitesimal generator of (Pt)t. We have

F (tB)x = tBe−tBx = −t ∂
∂t

(Pt(x)).

Let ωp = π
p −

π
2 , νp = (p+1)π

4p and ξp = (3p+1)π
8p . These numbers satisfy ωp < νp < ξp <

π
2 .

Note that (Pt)t∈R+ is again a semigroup of unital completely positive trace preserving and
symmetric maps. By [JLMX06, Corollary 11.2], B : Lp(M) → Lp(M) admits a bounded
H∞(Σξp) functional calculus. By [JLMX06, Theorem 7.6 (1)], B satisfies the dual square
function estimate (S∗

G̃
), since G ∈ H∞0 (Σξp). Note that F ∈ H∞0 (Σξp) and

∫∞
0 G(t)F (t)dtt = 1.

By the proof of [JLMX06, Theorem 7.8], we get that
(3.10)

inf

{∥∥∥∥(

∫ ∞
0
|t∂Pt(xc)|2

dt

t
)

1
2

∥∥∥∥
p

+

∥∥∥∥(

∫ ∞
0
|(t∂Pt(xr))∗|2

dt

t
)

1
2

∥∥∥∥
p

}
≤ 2C‖(t∂Pt(x))t>0‖Lp(Lcr2 ( dt

t
))

where the infimun runs over all decompositions of x = xc+xr in Lp(M) and C = max{‖Tc‖, ‖Tr‖},
with Tc and Tr being defined as

Tc : Lp(L
c
2(
dt

t
))→ Lp(L

c
2(
dt

t
))

(xt)t 7→ (

∫ ∞
0

F (sB)G(tB)xt
dt

t
)s

and

Tr : Lp(L
r
2(
dt

t
))→ Lp(L

r
2(
dt

t
))

(xt)t 7→ (

∫ ∞
0

F (sB)G(tB)xt
dt

t
)s.
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Let νp < γ < ξp. Denote

fγ(t) =

{
−teiγ , t ∈ R−,
te−iγ , t ∈ R+,

and let Γγ = {fγ(t) : t ∈ R} ⊂ C. Set

TΦ : Lp(L
c
2(R,

∣∣∣∣dtt
∣∣∣∣))→ Lp(L

c
2(R,

∣∣∣∣dtt
∣∣∣∣))

(xt)t∈R 7→
(
fγ(t)(fγ(t)−B)−1xt

2πi

)
t∈R

.

Denote K1 =
∫

Γγ
|F (z)|

∣∣dz
z

∣∣ and K2 =
∫

Γγ
|G(z)|

∣∣dz
z

∣∣ . By the proof of [JLMX06, Theo-
rem 4.14], we have

‖Tc‖ ≤ K1K2‖TΦ‖.
And the proof of [JLMX06, Proposition 4.4] shows that

‖TΦ‖ ≤ Col(O)

whereO =
{

1
µ(I)

∫
I fγ(t)(fγ(t)−B)−1dµ(t) : I ⊂ R, 0 < µ(I) <∞

}
. Moreover, by Lemma 3.11,

Col(O) ≤ 2 Col({z(z −B)−1 : z ∈ Γγ}).
Since γ > νp, by Lemma 3.12,

Col({z(z −B)−1 : z ∈ Γγ}) . (p− 1)−2.

On the other hand,

K1 =

∫
Γγ

|F (z)|
∣∣∣∣dzz
∣∣∣∣ = 2

∫ ∞
0
|te−iγe−t(cos(γ)−i sin(γ))|dt

t
= 2

∫ ∞
0

e−t cos(γ)dt .
1

cos(γ)
,

and K2 = 4K1. Note that γ < ξp = (3p+1)π
8p and 0 < π

2 − ξp <
π
16 . We have

1

cos(γ)
≤ 1

sin(π2 − ξp)
. (p− 1)−1.

Therefore,
‖Tc‖ . (p− 1)−4.

Similarly,
‖Tr‖ . (p− 1)−4.

Thus C . (p−1)−4 and we obtain (3.6). As mentioned previously, this implies Proposition 3.7.
The proof is complete. �

4. Proof of Theorem 1.1 and Theorem 1.2

This section is devoted to the study of general criteria for maximal inequalities and pointwise
convergences given by Theorem 1.1. Our argument does not essentially rely on the group
theoretic structure. Note that there are a number of typical structures with Fourier-like
expansions in noncommutative analysis, which are not given by group algebras. Hence instead
of the framework in Theorem 1.1, we would like to state and prove results in a quite general
setting.

To proceed with our study, we will only require the following simple framework. In the
sequel, we fix a von Neumann algebraM equipped with a normal semifinite faithful trace τ ,
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and an isometric isomorphism of Hilbert spaces U : L2(M) → L2(Ω, µ;H) for some distin-
guished regular Borel measure space (Ω, µ) and Hilbert space H. Assume additionally that
U−1(Cc(Ω;H)) is a dense subspace in Lp(M) for all 1 ≤ p ≤ ∞ (for p = ∞ we refer to
the w*-density), where Cc(Ω;H) denotes the space of H-valued continuous functions with
compact supports. Given a measurable function m ∈ L∞(Ω;C), we denote by Tm the linear
operator on L2(M) determined by

(4.1) Tm : L2(M)→ L2(M), U(Tmx) = mU(x), x ∈ L2(M).

We call m the symbol of Tm. The operator Tm is obviously a generalization of a classical
Fourier multiplier. Moreover, for a discrete group Γ, taking

M = V N(Γ), (Ω, µ) = (Γ, counting measure), H = C, U : λ(g) 7→ δg,

the above framework coincides with that considered in Theorem 1.1.

Example 4.1. Apart from group von Neumann algebras, this framework applies to various
typical models in the study of noncommutative analysis. As an illustration we recall briefly
some of them.

(1) Twisted crossed product ([BC09, BC12]): Let Γ be a discrete group with a twisted
dynamical system Σ on a von Neumann algebra N ⊂ B(L2(N )). Then we may consider the
von Neumann algebra M generated by the associated regular covariant representation of Γ
and the natural representation of N on `2(Γ;L2(N )). Each x ∈ M admits a Fourier series∑

g∈Γ x̂(g)λΣ(g) with x̂(g) ∈ N . Take Ω = Γ, H = L2(N ) and U : x 7→ x̂. It is easy to see
that for any m ∈ `∞(Γ), the multiplier in (4.1) is given by

Tm :
∑
g∈Γ

x̂(g)λΣ(g) 7→
∑
g∈Γ

m(g)x̂(g)λΣ(g),

which is the usual Fourier multiplier considered in [BC09]. As a particular case, this also
coincides with the Fourier multipliers on quantum tori studied by [CXY13].

(2) Rigid C*-tensor category ([PV15, AdLW18]): Let C be a rigid C*-tensor category, A(C)
its Fourier algebra andM the von Neumann algebra generated by the image of the left regular
representation of C[C]. Set (Ω, µ) = (Irr(C), d) where d denotes the intrinsic dimension, and
set U : L2(M) → `2(Ω) by U(α) = δα for α ∈ Irr(C). Then for any m ∈ `∞(Ω), it is easy
to check that Tm is the dual map of the multiplication operator θ 7→ mθ for θ ∈ A(C), which
gives the Fourier multiplier studied in [PV15, AdLW18].

(3) Clifford algebras, free semicircular systems and q-deformations: Let M = Γq(H) be a
q-deformed von Neumann algebra in the sense of Bożejko and Speicher [BS91, BS94]. The case
q = 0 corresponds to Voiculescu’s free Gaussian von Neumann algebra and the case q = −1 to
the usual Clifford algebras. We choose the canonical orthonormal basis of L2(M) with index
set Ω according to the Fock representation

⊕
nH

⊗n, and denote by U the corresponding
isomorphism. We view m : N → C naturally as a function on Ω by setting the value m(n)
on indexes of basis in H⊗n. Then for any such m, the operator Tm coincides with the radial
Fourier multiplier studied in [JLMX06, Section 9].

(4) Quantum Euclidean spaces [GPJP20]: LetM = RΘ be the quantum Euclidean space
associated with an antisymmetric n×n-matrix Θ. Take Ω = Rn and let U : L2(RΘ)→ L2(Rn)
be the canonical isomorphism. Then the operator Tm coincides with a usual quantum Fourier
multiplier on RΘ.
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(5) The framework also applies to non-abelian compact groups, compact quantum groups
and von Neumann algebras of locally compact groups, where we may take U to be the usual
Fourier transform. We will discuss some of them in more details in the next sections.

Our criterion is based on comparisons with symbols of a symmetric Markov semigroup. To
state our results, we fix a semigroup (St)t∈R+ of unital completely positive trace preserving
and symmetric maps onM of the form

St = Te−t` : L2(M)→ L2(M), U(Stx) = e−t`(·)(Ux), x ∈ L2(M),

for a distinguished continuous function ` : Ω→ [0,∞). We will also consider the subordinate
Poisson semigroup (Pt)t of (St)t, that is,

Pt = T
e−t
√
` : L2(M)→ L2(M), U(Ptx) = e−t

√
`(·)(Ux), x ∈ L2(M).

We will consider the family of operators (TmN )N∈N (resp. (Tmt)t∈R+) induced by a sequence
of measurable functions (mN )N∈N (resp. (mt)t∈R+) on Ω. Recall that we are interested in the
following types of conditions for the symbols (mN )N∈N (resp. (mt)t∈R+) in Theorem 1.1:
(A1) There exist α > 0 and β > 0 such that for all N ∈ N and almost all ω ∈ Ω, we have

(4.2) |1−mN (ω)| ≤ β `(ω)α

2N
, |mN (ω)| ≤ β 2N

`(ω)α
.

(A2) There exist α > 0, β > 0 and η ∈ N+ such that t 7→ mt(ω) is piecewise η-differentiable
for almost all ω ∈ Ω, and for all 1 ≤ k ≤ η, all t ∈ R+ and almost all ω ∈ Ω we have

(4.3) |1−mt(ω)| ≤ β `(ω)α

t
, |mt(ω)| ≤ β t

`(ω)α
,

∣∣∣∣dkmt(ω)

dtk

∣∣∣∣ ≤ β 1

tk
.

Intuitively, (A1) is motivated by considering the subsequence (m2N )N∈N of (mt)t∈R+ in
(A2), but the present form in (A1) is slightly more general. Indeed we will see in Section 5
other abstract and important constructions of symbols satisfying (A1) but without being of
the aforementioned form (m2N )N∈N.

We split our study into two parts. The first part mainly deals with the L2-theory of the
above multipliers. Note that (A1) (resp. (A2)) implies that (mN )N∈N (resp. (mt)R+) is
uniformly bounded with respect to the ‖ ‖∞-norm: for any N ∈ N and almost all ω ∈ Ω,

|mN (ω)| ≤ min{|mN (ω)|+ 1, |1−mN (ω)|+ 1} ≤ β + 1.

Similar arguments hold for (mt)t∈R+ . This implies that the operators (TmN )N∈N and (Tmt)t∈R+

are uniformly bounded on L2(M). In this section we will always assume that the operators
(TmN )N∈N and (Tmt)t∈R+ extend to uniformly bounded maps onM and for notational conve-
nience we set

γ = ‖TmN :M→M‖, (resp. γ = ‖Tmt :M→M‖).
Then by complex interpolation they also extend to uniformly bounded maps on Lp(M) for
all 2 ≤ p ≤ ∞. In this setting we have the following result. A more precise estimate on the
endpoint case p = 2 can be found in Subsection 4.1.

Theorem 4.2. Let (TmN )N∈N and (Tmt)t∈R+ be the uniformly bounded maps on M given
above.

(1) If (mN )N satisfies (A1), then for any 2 ≤ p <∞ there exists a constant c > 0 depending
only on p, α, β and γ, such that for all x ∈ Lp(M),

‖(TmNx)N‖Lp(M;`∞) ≤ c‖x‖p, and TmNx→ x a.u. as N →∞.
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(2) If (mt)t satisfies (A2), then for any 2 ≤ p <∞ there exists a constant c > 0 depending
only on p, α, β and γ, such that for all x ∈ Lp(M),

‖(Tmtx)t‖Lp(M;`∞) ≤ c‖x‖p, and Tmtx→ x a.u. as t→∞.

In order to obtain similar results for general p > 1, we need to assume the positivity of
the maps (TmN )N∈N and (Tmt)t∈R+ . Note that if the maps extend to positive and symmetric
contractions onM, then by the argument before Lemma 3.4, they also extend to contractions
on Lp(M) for all 1 ≤ p ≤ ∞. In this framework we have the following results.

Theorem 4.3. Assume that the operators (TmN )N∈N and (Tmt)t∈R+ extend to positive and
symmetric contractions on M. Assume additionally that for all t ∈ R+, the operator St
satisfies Rota’s dialtion property.

(1) If (mN )N satisfies (A1), then for any 1 < p < ∞ there is a constant c > 0 depending
only on p, α, β such that for all x ∈ Lp(M),

‖(TmNx)N‖Lp(M;`∞) ≤ c‖x‖p and TmNx→ x a.u. as N →∞.

(2) If (mt)t satisfies (A2), then for any 1+ 1
2η < p <∞ there is a constant c > 0 depending

only on p, α, β, η such that for all x ∈ Lp(M)

‖(Tmtx)t‖Lp(M;`∞) ≤ c‖x‖p and Tmtx→ x a.u. as t→∞.

The above theorems recover Theorem 1.1 and Theorem 1.2. Indeed, if M is a finite von
Neumann algebra, the additional assumption on Rota’s dilation property is fulfilled by Lemma
3.6 (1). Note that for any positive definite function m on Γ, the associated map Tm on
V N(Γ) is completely positive (see e.g. [BO08, Theorem 2.5.11]). Also, by the Schoenberg
theorem, for any conditionally negative definite function ` : Γ → [0,∞), the associated map
λ(g) 7→ e−t`(g)λ(g) forms a semigroup of unital completely positive trace preserving and
symmetric maps on V N(Γ). On the other hand, for any function m : Γ→ C with m(e) = 1,
the map Tm is τ -preserving; if Tm is unital positive on V N(Γ), then it extends to positive
contractions to Lp(V N(Γ)) for all 1 ≤ p ≤ ∞ (see e.g. [JX07, Lemma 1.1]). Moreover, if m
is real-valued, then one may easily check that Tm is a symmetric map. So the assumptions of
Theorem 1.1 coincide with those of the above theorems.

Before starting the proof, we give several remarks on the statement of the above theorems.

Remark 4.4. Instead of continuous families (mt)t∈R+ in (A2), we may also consider maximal
inequalities of families (mN )N∈N with suitable conditions on their differences, which we will
frequently use in further discussions. Let (mN )N∈N be a family of measurable functions on
Ω satisfying the following assumption: there exist α > 0 and β > 0 such that for almost all
ω ∈ Ω we have

(4.4) |1−mN (ω)| ≤ β `(ω)α

N
, |mN (ω)| ≤ β N

`(ω)α
, |mN+1(ω)−mN (ω)| ≤ β 1

N
.

Then for any 2 ≤ p <∞, there exists a constant c > 0 depending only on p, α, β and γ, such
that for all x ∈ Lp(M), we have

‖(TmNx)N‖Lp(M;`∞) ≤ c‖x‖p, and TmNx→ x a.u. as N →∞.

If moreover the operators (TmN )N∈N extend to positive and symmetric contractions on M,
then the assertion holds for all 3/2 < p <∞ as well.



POINTWISE CONVERGENCE OF NONCOMMUTATIVE FOURIER SERIES 29

This follows immediately from the previous theorems since (4.4) leads to a special case of
(A2). Indeed, for 0 ≤ t < 1 , set mt = m0 = 0. For t ≥ 1, we write t = Nt + rt with Nt ∈ N
and 0 ≤ rt < 1, and we define

mt = (1− rt)mNt + rtmNt+1.

It is obvious that (mt)t∈R+ satisfies (A2) with η = 1.
One may also study more general conditions associated with higher order differences, which

might be parallel to the case η > 1 in (A2). However the computation seems to be much
more intricate and we would like to leave it to the reader.

Remark 4.5. The statement in (A1) and (A2) can be flexibly adjusted, which we will
frequently use in further discussions:

(1) For α ≥ 1 and for the maps (TmN )N∈N and (Tmt)t∈R+ given in Theorem 4.2 or Theo-
rem 4.3, we will indeed establish the corresponding maximal inequalities under the following
weaker conditions (4.5) or (4.6). Indeed, for α ≥ 1, (A1) implies that for almost all ω ∈ Ω we
have

(4.5) |1−mN (ω)| .β
`(ω)

2N/α
, |mN (ω)| .β

2N/α

`(ω)
.

To see this, recall that we have |mN (ω)| ≤ β + 1, so we see that

(β + 1)−1|mN (ω)| ≤ ((β + 1)−1|mN (ω)|)
1
α ≤ (β + 1)−

1
αβ

1
α

2N/α

`(ω)
.

Similarly, using |1−mN (ω)| ≤ β + 1 and repeating the above argument, we see that

|1−mN (ω)| .β
`(ω)

2N/α
.

In the same way, (A2) implies

(4.6) |1−mt(ω)| .β,γ
`(ω)

t1/α
, |mt(ω)| .β,γ

t1/α

`(ω)
,

∣∣∣∣dkmt(ω)

dtk

∣∣∣∣ ≤ β 1

tk
.

On the other hand, the proof of the above theorems for the case of 0 < α < 1 can be always
reduced to that of α ≥ 1. To see this it suffices to take ˜̀ = `α for 0 < α < 1 and consider
the new semigroup of unital completely positive trace preserving and symmetric maps given
by S̃t := T

e−t˜̀
(see [Yos95]); if the multipliers satisfy (A1) or (A2) with respect to ` for

0 < α < 1, then they also satisfy the same condition with respect to ˜̀ for α = 1.
(2) Theorem 4.2 (1) and Theorem 4.3 (1) still hold with the index set N replaced by Z in

(A1). This can be seen from their proofs; alternatively, we may deduce this easily from a
standard re-indexation argument. Indeed, let (mN )N∈Z be a sequence of measurable functions
on Ω satisfying (4.2) for all N ∈ Z. Take N0 ∈ Z and write m̃j = mN0+j for j ∈ N. Then
(4.2) implies that for all j ∈ N and almost all ω ∈ Ω,

|1− m̃j(ω)| ≤ β 2N0`(ω)α

2j
, |m̃j(ω)| ≤ β 2j

2N0`(ω)α
.

Note that ˜̀ = 2N0/α` yields again a semigroup of unital completely positive trace preserving
and symmetric maps S̃(N0)

t := T
e−t˜̀

. Then applying Theorem 4.2 (1) or Theorem 4.3 (1) to m̃
and ˜̀, we see that (m̃j)j∈N = (mN )N≥N0 satisfies the corresponding maximal inequality with
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constant independent of ˜̀and N0. Thus the similar maximal inequalities and a.u. convergence
still hold for (mN )N∈Z.

Remark 4.6. The completely bounded version of the above two theorems holds true as well.
In other words, if N is another semifinite von Neumann algebra and if we replace TmN by
TmN ⊗ IdN , Tmt by Tmt ⊗ IdN and M by M̃ = M⊗N , then the above two theorems still
hold true. Indeed, it suffices to consider a larger Hilbert space H̃ = H ⊗L2(N ) and apply the
above theorems to M̃ and H̃.

The following result on mean convergences is an easy consequence of our assumptions.

Proposition 4.7. Let (TmN )N , (Tmt)t and 1 < p <∞ be given as in Theorem 4.2 or Theorem
4.3 which satisfy (A1) or (A2) correspondingly.

(1) The family (Tmt)t is strongly continuous on Lp(M), i.e., for any x ∈ Lp(M) the function
t 7→ Tmtx is continuous from R+ to Lp(M).

(2) We have

lim
N→∞

‖TmNx− x‖p = 0, lim
t→∞
‖Tmtx− x‖p = 0, x ∈ Lp(M).

Proof. Let x ∈ U−1(Cc(Ω;H)) and E = supp(U(x)) ⊂ Ω. By the Hölder inequality, for any
t0 ≥ 0 and 2 ≤ p <∞,

‖Tmtx− Tmt0x‖p ≤ ‖Tmtx− Tmt0x‖
2/p
2 ‖Tmtx− Tmt0x‖

1−2/p
∞

. ‖(mt −mt0)1E‖2/p∞ ‖x‖
2/p
2 ‖x‖

1−2/p
∞ .

By the continuity of mt and the compactness of E, the above quantity tends to 0 as t → t0.
Similar arguments work for p < 2 by using the Hölder inequality with endpoints p = 1, 2.
Similarly, by the continuity of ` and the compactness of E, we have

lim
N→∞

‖TmNx− x‖p = 0, lim
t→∞
‖Tmtx− x‖p = 0.

For general elements x ∈ Lp(M), it suffices to note that the operators (TmN )N and (Tmt)t
extend to uniformly bounded operators on Lp(M). Thus the desired results follow from a
standard density argument. �

Now we are ready to proceed with the proof of the previous theorems.

4.1. L2-estimates under lacunary conditions.

Proposition 4.8. Let (mN )N∈Z ⊂ L∞(Ω). Assume that there exist a function f : Ω→ [0,∞)
and a positive number a > 1 such that for almost all ω ∈ Ω,

(4.7) |mN (ω)| ≤ β aNf(ω)

(aN + f(ω))2
.

Then,

‖(TmNx)N∈Z‖L2(M;`cr2 ) . β

√
a2

a2 − 1
‖x‖2, x ∈ L2(M).
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Proof. We have

‖(TmNx)N‖2L2(M;`cr2 ) =τ

(∑
N∈Z
|TmNx|

2

)
=
∑
N∈Z
‖TmNx‖

2
L2(M) =

∑
N∈Z
‖mNU(x)‖2L2(Ω;H)

=

∫
Ω

∑
N∈Z
‖mN (ω)(Ux)(ω)‖2Hdµ(ω)

≤‖
∑
N∈Z
|mN |2‖L∞(Ω)‖Ux‖2L2(Ω;H) = ‖

∑
N∈Z
|mN |2‖L∞(Ω)‖x‖2L2(M).

However, by (4.7) we see that for almost all ω ∈ Ω with f(ω) > 0,∑
N∈Z
|mN (ω)|2 ≤

∑
N<loga f(ω)

β2 a2N

f(ω)2
+

∑
N≥loga f(ω)

β2 f(ω)2

a2N
. β2 a2

a2 − 1
,

while mN (ω) = 0 if f(ω) = 0 by (4.7). Thus we obtain the desired inequality. �

Below we show a more precise L2-estimate.

Lemma 4.9. Assume that t 7→ mt(ω) is differentiable for almost all ω ∈ Ω. Choose an
arbitrary measurable function f : Ω→ [0,∞). For j ∈ Z, define

aj = sup
t

 sup
2j−2<

f(ω)
t
≤2j

|mt(ω)|

 , bj = sup
t

 sup
2j−2<

f(ω)
t
≤2j

t ·
∣∣∣∣∂mt(ω)

∂t

∣∣∣∣
 .

Assume
K =

∑
j∈Z

a
1/2
j (a

1/2
j + b

1/2
j ) <∞.

Then for x ∈ L2(M), we have the following maximal inequalities

‖(Tmtx)t‖L2(M;`∞) . K‖x‖2 and ‖(Tmtx)t‖L2(M;`c∞) . K‖x‖2.

Proof. We prove the second assertion first. Let {ηj}j∈Z be a partition of unity of R+ satisfying∑
j

ηj = 1, supp ηj ⊂ [2j−2, 2j ], 0 ≤ ηj ≤ 1 and |η′j | < C2−j .

Define mt,j(ω) = mt(ω)ηj(
f(ω)
t ) ∈ L∞(Ω). For notational simplicity, denote by Tt,j the

operators with symbols mt,j ; that is,

U(Tt,jx) = mt,jU(x), x ∈ L2(M).

Then we have

(4.8) ‖(Tmtx)t‖L2(M;`c∞) =

∥∥∥∥∥∥
∑
j∈Z

Tt,jx


t

∥∥∥∥∥∥
L2(M;`c∞)

≤
∑
j∈Z
‖(Tt,jx)t‖L2(M;`c∞).

From now on we fix an arbitrary j ∈ Z. In the sequel of this proof we denote

Uk(x)(ω) = U(x)(ω) · 1[2k−2,2k+1](f(ω)), ω ∈ Ω and xk = U∗(Uk(x)), x ∈ L2(M).
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Since supp ηj ⊂ [2j−2, 2j ], for v ∈ Z and t ∈ [2v, 2v+1) we have

mt,j(ω)U(x)(ω) = mt(ω)ηj(
f(ω)

t
)U(x)(ω) = mt(ω)ηj(

f(ω)

t
)Uv+j(x)(ω).

We may rewrite the above equality as

Tt,jx = Tt,jxv+j , t ∈ [2v, 2v+1).

Choose an integer Aj such that aj+bj
aj
≤ Aj ≤ 2(aj+bj)

aj
and we divide the interval [2v, 2v+1]

into Aj parts:

2v = γ0 < γ1 < γ2 · · · < γAj = 2v+1 with γk+1 − γk = 2v ·A−1
j .

For any t ∈ [2v, 2v+1), there exists 0 ≤ k(t) ≤ Aj − 1 such that t ∈ [γk(t), γk(t)+1). By the
convexity of the operator square function, we have

|Tt,jxv+j |2 = |U∗(mt,jUv+j(x))|2

=

∣∣∣∣∣U∗
(∫ t

γk(t)

(
∂ms,j

∂s

)
Uv+j(x)ds+mγk(t),j · Uv+j(x)

)∣∣∣∣∣
2

≤ 2(t− γk(t))

∫ t

γk(t)

∣∣∣∣∂Ts,j(xv+j)

∂s

∣∣∣∣2 ds+ 2|Tγk(t),j(xv+j)|2

≤ 2

(
2v

Aj

∫ γk(t)+1

γk(t)

∣∣∣∣∂Ts,j(xv+j)

∂s

∣∣∣∣2 ds+ |Tγk(t),j(xv+j)|2
)

≤ 2

Aj−1∑
k=0

(
2v

Aj

∫ γk+1

γk

∣∣∣∣∂Ts,j(xv+j)

∂s

∣∣∣∣2 ds+ |Tγk,j(xv+j)|2
)

=
2v+1

Aj

∫ 2v+1

2v

∣∣∣∣∂Ts,j(xv+j)

∂s

∣∣∣∣2 ds+ 2

Aj−1∑
k=0

|Tγk,j(xv+j)|2.

We denote

yv =
2v+1

Aj

∫ 2v+1

2v

∣∣∣∣∂Ts,j(xv+j)

∂s

∣∣∣∣2 ds+ 2

Aj−1∑
k=0

|Tγk,j(xv+j)|2.

Then

(4.9) |Tt,jxv+j |2 ≤ yv.

Similarly, we have

|(Tt,jxv+j)
∗|2 ≤ y′v =

2v+1

Aj

∫ 2v+1

2v

∣∣∣∣(∂Ts,j(xv+j)

∂s

)∗∣∣∣∣2 ds+ 2

Aj−1∑
k=0

|Tγk,j(xv+j)
∗|2.

Let us estimate the quantities ‖yv‖1 and ‖y′v‖1. We have

‖yv‖1 = τ(yv) =
2v+1

Aj

∫ 2v+1

2v

∥∥∥∥∂Ts,j(xv+j)

∂s

∥∥∥∥2

2

ds+ 2

Aj−1∑
k=0

‖Tγk,j(xv+j)‖22,
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‖y′v‖1 = τ(y′v) =
2v+1

Aj

∫ 2v+1

2v

∥∥∥∥(∂Ts,j(xv+j)

∂s

)∗∥∥∥∥2

2

ds+ 2

Aj−1∑
k=0

‖Tγk,j(xv+j)
∗‖22.

Hence, ‖yv‖1 = ‖y′v‖1. Note that∫ 2v+1

2v

∣∣∣∣(∂ms,j(ω)

∂s

)∣∣∣∣2 ds =

∫ 2v+1

2v

∣∣∣∣ ∂∂s
(
ms(ω)ηj(

f(ω)

s
)

)∣∣∣∣2 ds
=

∫ 2v+1

2v

∣∣∣∣∂ms(ω)

∂s
· ηj
(
f(ω)

s

)
− η′j

(
f(ω)

s

)
f(ω)

s2
·ms(ω)

∣∣∣∣2 ds
.
∫ 2v+1

2v

(∣∣∣∣bjs
∣∣∣∣+
∣∣∣aj
s

∣∣∣)2

ds (since supp ηj ⊂ [2j−2, 2j ])

.
1

2v+1
(bj + aj)

2.

By the Fubini theorem, we have

2v+1

Aj

∫ 2v+1

2v

∥∥∥∥∂Ts,j(xv+j)

∂s

∥∥∥∥2

2

ds =
2v+1

Aj

∫ 2v+1

2v

∥∥∥∥∂ms,j

∂s
Uv+j(x)

∥∥∥∥2

L2(Ω;H)

ds

=
2v+1

Aj

∫
Ω

(∫ 2v+1

2v

∣∣∣∣(∂ms,j(ω)

∂s

)∣∣∣∣2 ds
)
|Uv+j(x)(ω)|2dµ(ω)

.
(bj + aj)

2

Aj
‖xv+j‖22,

and

2

Aj−1∑
k=0

‖Tγk,j(xv+j)‖22 =

Aj−1∑
k=0

∫
Ω
|mγk(ω)|2

∣∣∣∣ηj (f(ω)

γk

)∣∣∣∣2 |Uv+j(x)(ω)|2dµ(ω)

≤ 2Aja
2
j‖xv+j‖22.

Therefore,

‖y′v‖1 = ‖yv‖1 .
(

(bj + aj)
2

Aj
+Aja

2
j

)
‖xv+j‖22.

Recall that (4.9) asserts that |Tt,jxv+j |2 ≤ yv ≤
∑

u∈Z yu. So

‖(Tt,jx)t‖L2(M;`c∞) = ‖(|Tt,jxv+j |2)t‖1/2L1(M;`∞) ≤

∥∥∥∥∥∑
u∈Z

yu

∥∥∥∥∥
1/2

1

≤

(∑
u∈Z
‖yu‖1

)1/2

(4.10)

.

(∑
u∈Z

(
(bj + aj)

2

Aj
+Aja

2
j

)
‖xu+j‖22

) 1
2

.

Note that

[2j+u−2, 2j+u+1] = ∪2
l=0[2j+u+l−2, 2j+u+l−1].
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We have ∑
u∈Z
‖xu+j‖22 =

∑
u∈Z

∫
Ω

∣∣U(x)(ω) · 1[2j+u−2,2j+u−2](f(ω))
∣∣2 dµ(ω)

≤
2∑
l=0

∫
Ω

∣∣∣∣∣U(x)(ω) ·
∑
u∈Z

1[2j+u+l−2,2j+u+l−1](f(ω))

∣∣∣∣∣
2

dµ(ω)

=
2∑
l=0

‖U(x)‖22

where the last equality holds since∑
u∈Z

1[2j+u+l−2,2j+u+l−1](f(ω)) = 1.

Thus, ∑
u∈Z
‖xu+j‖22 ≤ 3‖x‖22.

Recall that aj+bj
aj
≤ Aj ≤ 2(aj+bj)

aj
. Together with (4.10), we have

‖(Tt,jx)t‖L2(M;`c∞) . a
1/2
j (aj + bj)

1/2

(∑
u∈Z
‖xu+j‖22

)1/2

. a1/2
j (aj + bj)

1/2‖x‖2.

By (4.8), the proof is complete for the second maximal inequality.
Similarly, we have

‖(Tmtx)t‖L2(M;`r∞) . K‖x‖2.
Let us recall Lemma 2.1 which shows that the space L2(M; `∞) is the complex interpolation
space of L2(M; `c∞) and L2(M; `r∞). Therefore we have

‖(Tmt) : L2(M)→ L2(M; `∞)‖

≤ ‖(Tmt) : L2(M)→ L2(M; `c∞)‖1/2‖(Tmt) : L2(M)→ L2(M; `r∞)‖1/2

. K.

�

4.2. Proof of Theorem 4.2. Now we are ready to conclude Theorem 4.2.
First assume that (mN )N∈N satisfies (A1). Set TφN = TmN − P2−N/α with the symbol

φN = mN − e
−
√
`

2N/2α .By Remark 4.5 (1) and (A1), we can easily see that

|φN (ω)| ≤ |1−mN (ω)|+ |1− e−
√
`(ω)

2N/2α | .β

√
`(ω)

2N/2α
,(4.11)

|φN (ω)| ≤ |mN (ω)|+ |e−
√
`(ω)

2N/2α | .β
2N/2α√
`(ω)

,(4.12)

Therefore, |φN (ω)| ≤ 2N/2α
√
`(ω)(

2N/2α+
√
`(ω)

)2 . By Proposition 3.3, Proposition 4.8 and Proposition

2.2 (3), we get for any 2 ≤ p <∞ and x ∈ Lp(M),

‖(TφN (x))N‖Lp(M;`∞) .α,β,γ,p ‖x‖p, and ‖(TφN (x))N‖Lp(M;`c∞) .α,β,γ,p ‖x‖p.
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Applying Proposition 2.10, we also get the strong type (p, p) estimate for TmN with a constant
c depending only on α, β, γ, p.

Assume that (mt)t∈R+ satisfies (A2). Again set Tφt = Tmt−Pt−1/α with φt = mt−e
−
√
`

t1/2α .
We have the following estimates similar to (4.11) and (4.12): for almost all ω ∈ Ω

|φt(ω)| .β min

{(
`(ω)α

t

)1/2α

,

(
t

`(ω)α

)1/2α
}
,

|∂φt(ω)

∂t
| ≤ β 1

t
+

1

t
· (
√
`(ω)

αt1/2α
e
−
√
`(ω)

t1/2α ) .α,β
1

t
.

Applying Lemma 4.9, we get

‖sup
t

+Tφtx‖2 ≤ K‖x‖2 x ∈ L2(M),

where
K .α,β

∑
j∈Z

(2−|j|/2α(2−|j|/2α + 1))1/2 .α,β 1.

By Proposition 2.2 (3), for any 2 ≤ p <∞, (Tφt)t∈R+ is of strong type (p, p) with constant c
depending only on α, β, γ, p. Similarly, for any 2 ≤ p <∞, we have

(4.13) ‖(Tφt(x))t∈R+‖Lp(M;`c∞) .α,β,γ,p ‖x‖p x ∈ Lp(M).

Therefore, we conclude the strong type (p, p) estimate for (Tmt)t thanks to Proposition 2.10.
Now the desired a.u. convergence follows immediately from the above maximal inequalities

by an argument in [HLW20]. For instance, we consider the symbols (mt)t∈R+ satisfying (A2).
Let x ∈ U−1(Cc(Ω;H)) and set E = suppU(x). Note that E is a compact set. We consider
the maps Tψt = Tmt − id with ψt = mt−1. As the proof of Proposition 4.7, by (A2), we have

‖Tψtx‖p ≤ 2γ1−(2/p)‖(mt − 1)1E‖2/pL∞(E)‖x‖
2/p
2 ‖x‖

1−2/p
∞ .α,γ

‖`α1E‖2/pL∞(E)

t2/p
‖x‖2/p2 ‖x‖

1−2/p
∞ .

By the continuity of ` and the compactnesss of E, we have

lim
M→∞

∫ ∞
M
‖Tψtx‖ppdt .α,γ lim

M→∞

∫ ∞
M

‖`α1E‖2L∞(E)

t2
‖x‖22‖x‖p−2

∞ dt(4.14)

.α,γ lim
M→∞

‖`α1E‖2L∞(E)‖x‖
2
2‖x‖

p−2
∞

M
= 0.

Thus, as M tends to ∞,

‖(Tψtx)t≥M‖pLp(M;`c∞) ≤ ‖(|Tψtx|
2)t≥M‖p/2Lp/2(M;`∞)

≤
∥∥∥(∫

t≥M
|Tψtx|pdt

) 2
p
∥∥∥p/2
p/2
≤
∫ ∞
M
‖Tψtx‖ppdt→ 0.

As a result, for any x ∈ U−1(Cc(Ω;H)), Tψt(x) converges a.u. to 0 as t → ∞ according
to [JX07, Lemma 6.2]. Moreover, (4.13) obviously yields that (Tφt)t∈R+ satisfies the one-
sided weak type (p, p) maximal inequality for p ≥ 2 as in Proposition 2.9 (2). Note that the
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subordinate Poisson semigroup (Pt)t is of weak type (p, p) for all p ≥ 1 by [JX07, Remark
4.7]. Hence for any p ≥ 2, x ∈ Lp(M), we find a projection e ∈M such that

sup
t
‖ePt(x∗x)e‖∞ ≤ α2 and τ(e⊥) .p α

−p‖x∗x‖p/2p/2 = α−p‖x‖pp.

However, since Pt is completely positive, we can use Cauchy-Schwarz inequality to get

sup
t
‖Pt(x)e‖∞ = ‖ePt(x)∗Pt(x)e‖1/2∞ ≤ sup

t
‖ePt(x∗x)e‖1/2∞ ≤ α.

So (Pt)t also satisfies the one-sided weak type (p, p) maximal inequality for p ≥ 2. Thus (Tmt)t
also satisfies the same inequality and by Proposition 2.9 (2), we see that Tψt(x) = Tmt(x)− x
converges a.u. to 0 as t→∞ for all x ∈ Lp(M). The case of (A1) can be dealt with similarly.
Thus the proof of Theorem 4.2 is complete.

4.3. Proof of Theorem 4.3 (1). In this subsection we study the maximal inequalitities for
1 < p < 2 in Theorem 4.3 (1). To approach this we need to develop several interpolation
methods.

Lemma 4.10. Let (Φj)j∈Z be a sequence of uniformly bounded linear maps on M and write
γ = supj ‖Φj : M → M‖ < ∞. Let 1 < p < q < 2 and θ ∈ (0, 1) be determined by
1
q = 1−θ

p + θ
2 . Assume that there exist c1, c2 > 0 such that for any s ∈ N+, there is a

decomposition of maps Φj = Φ
(s,1)
j + Φ

(s,2)
j where (Φ

(s,1)
j )j extends to a family of maps of weak

type (p, p) with constant Cp ≤ sθc1 and (Φ
(s,2)
j )j extends to a family of maps of weak type

(2, 2) with constant C2 ≤ s−(1−θ)c2. Then for any x ∈ SM and λ > 0, there exists a projection
e ∈M such that

sup
j
‖eΦj(x)e‖∞ < λ and τ(e⊥) .γ (cp1 + c2

2)

(
‖x‖1−θp ‖x‖θ2

λ

)q
.

In particular, (Φj)j∈Z is of restricted weak type (q, q) with constant

Cq .γ (cp1 + c2
2)1/q.

Proof. Let x ∈ SM+. Consider a positive integer s ∈ N+. By the weak type estimates of
(Φ

(s,1)
j )j and (Φ

(s,2)
j )j , for any λ > 0, we take two projections e1, e2 ∈M, such that

sup
j
‖e1Φ

(s,1)
j (x)e1‖∞ ≤ λ and τ(e⊥1 ) ≤

(
c1s

θ ‖x‖p
λ

)p
,

sup
j
‖e2Φ

(s,2)
j (x)e2‖∞ ≤ λ and τ(e⊥2 ) ≤

(
c2s

θ−1 ‖x‖2
λ

)2

.

Set e = e1 ∧ e2. Since Φj = Φ
(s,1)
j + Φ

(s,2)
j we have,

‖eΦj(x)e‖∞ ≤ 2λ, j ∈ Z,
and

τ(e⊥) ≤ τ(e⊥1 + e⊥2 ) ≤
(
c1s

θ ‖x‖p
λ

)p
+

(
c2s

θ−1 ‖x‖2
λ

)2

.

We consider x⊥λ = x1(λ,∞)(x) and xλ = x1[0,λ](x). Applying the above arguments to x⊥λ ,
we can find a projection e ∈M such that

‖eΦj(x
⊥
λ )e‖∞ ≤ 2λ, j ∈ Z.
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and

(4.15) τ(e⊥) ≤
(
c1s

θ ‖x⊥λ ‖p
λ

)p
+

(
c2s

θ−1 ‖x⊥λ ‖2
λ

)2

.

Since x = xλ + x⊥λ and xλ ≤ λ · 1, for any j ∈ Z, we have

‖e(Φjx)e‖∞ ≤ ‖e(Φj(xλ))e‖∞ + ‖e(Φj(x
⊥
λ ))e‖∞ ≤ (γ + 2)λ.

Note that for 1 < p ≤ 2,

(
t1(λ,∞)(t)

)p
=

(
t1(λ,∞)(t)

)2
t2−p

≤
(
t1(λ,∞)(t)

)2
λ2−p , t > 0.

Therefore we have (x⊥λ )p ≤ (x⊥λ )2

λ2−p and

‖x⊥λ ‖
p
p

λp
≤
‖x⊥λ ‖22
λ2

.

Hence, we can choose s to be an integer satisfying

s �
(
λp‖x⊥λ ‖22
λ2‖x⊥λ ‖

p
p

) q
2p

,

and by (4.15) we have

τ(e⊥) .

c1

(
λp‖x⊥λ ‖22
λ2‖x⊥λ ‖

p
p

) q−p
p(2−p) ‖x⊥λ ‖p

λ

p

+

c2

(
λp‖x⊥λ ‖22
λ2‖x⊥λ ‖

p
p

) q−2
2(2−p)

(
‖x⊥λ ‖2
λ

)2

. (cp1 + c2
2)λ−q‖x⊥λ ‖(1−θ)qp ‖x⊥λ ‖

θq
2 .

(4.16)

Since 0 ≤ x⊥λ ≤ x, the above inequality yields

τ(e⊥) . (cp1 + c2
2)

(
‖x‖1−θp ‖x‖θ2

λ

)q
.

In order to obtain the restricted weak type (q, q) estimate, it suffices to take x = f in the
above inequality for an arbitrary projection f ∈ SM+. Then

τ(e⊥) .γ (cp1 + c2
2)

(
τ(fp)(1−θ)/pτ(f2)θ/2

λ

)q
= (cp1 + c2

2)λ−qτ(f),

which implies that (Φj)j∈Z is of restricted weak type (q, q) with constant

Cq .γ (cp1 + c2
2)1/q

�

Lemma 4.11. Assume that for all t ∈ R+, the operator St satisfies Rota’s dialtion property.
Let s ∈ N, α > 0, j ∈ Z and define ∆

(s)
α,j = P2−(j+2s)/α − P2−(j−2s)/α. Then for any 1 < p < 2,

‖(∆(s)
α,jx)j‖Lp(M;`cr2 ) .α s(p− 1)−6‖x‖p, x ∈ Lp(M).
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Proof. We may write

∆
(s)
α,jx =

∫ 2−(j−2s)/α

2−(j+2s)/α

(
− ∂

∂t
Pt(x)

)
dt, x ∈ Lp(M).

Let x = x1 + x2 for x1, x2 ∈ Lp(M). By the convexity of the operator square function,

|∆(s)
α,jx1|2 =

∣∣∣∣∣
∫ 2−(j−2s)/α

2−(j+2s)/α

1√
t

(
−
√
t
∂

∂t
Pt(x1)

)
dt

∣∣∣∣∣
2

≤

(∫ 2−(j−2s)/α

2−(j+2s)/α

t

∣∣∣∣( ∂

∂t
Pt(x1)

)∣∣∣∣2 dt
)(∫ 2−(j+2s)/α

2−(j−2s)/α

dt

t

)

.α s

(∫ α̃−j+2s

α̃−j−2s

t

∣∣∣∣( ∂

∂t
Pt(x1)

)∣∣∣∣2 dt
)
,

where α̃ = 21/α. Therefore,

‖
(

∆
(s)
α,jx1

)
j
‖Lp(M;`c2) =

∥∥∥∥∥∥∥
 ∞∑
j=−∞

|∆(s)
α,jx1|2

1/2
∥∥∥∥∥∥∥

.α
√
s

∥∥∥∥∥∥∥
 ∞∑
j=−∞

∫ α̃−j+2s

α̃−j−2s

t

∣∣∣∣( ∂

∂t
Pt(x1)

)∣∣∣∣2 dt
1/2

∥∥∥∥∥∥∥
p

.α
√
s

∥∥∥∥∥∥∥
 ∞∑
j=−∞

2s−1∑
k=−2s

∫ α̃−j+k+1

α̃−j+k
t

∣∣∣∣( ∂

∂t
Pt(x1)

)∣∣∣∣2 dt
1/2

∥∥∥∥∥∥∥
p

.α s

∥∥∥∥∥∥
(∫ ∞

0
t

∣∣∣∣( ∂

∂t
Pt(x1)

)∣∣∣∣2 dt
)1/2

∥∥∥∥∥∥
p

Similarly,

‖(∆(s)
α,jx2)j‖Lp(M;`r2) .α s

∥∥∥∥∥∥
(∫ ∞

0
t

∣∣∣∣( ∂

∂t
Pt(x2)

)∗∣∣∣∣2 dt
)1/2

∥∥∥∥∥∥
p

.

On the other hand,

‖(∆(s)
α,jx)j‖Lp(M;`cr2 ) ≤ inf{‖(∆(s)

α,jx1)j‖Lp(M;`c2) + ‖(∆(s)
α,jx2)j‖Lp(M;`r2)}

where the infimum runs over all x1, x2 ∈ Lp(M) such that x = x1 + x2. Then the conclusion
follows from Proposition 3.7. �

Now, let us prove Theorem 4.3 (1).

Proof. The case p ≥ 2 has been already treated by Theorem 4.2. In this proof, we focus on
the case 1 < p < 2.
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Fix a finite index set J ⊂ Z. Denote

A(p,∞) = ‖(Tmj )j∈J : Lp(M; `∞)→ Lp(M; `∞)‖,
A(p, 1) = ‖(Tmj )j∈J : Lp(M; `1)→ Lp(M; `1)‖,
A(p, 2) = ‖(Tmj )j∈J : Lp(M; `cr2 )→ Lp(M; `cr2 )‖.

Since J is finite, all these quantities are well-defined and finite. Because the operators (Tmj )j∈J
are positive maps, by Proposition 2.5 we have

(4.17) ‖(Tmj )j∈J : Lp(M)→ Lp(M; `∞)‖ � A(p,∞).

Let 1 < p < 2. It is sufficient to show that A(p,∞) is dominated by a positive constant
independent of J .

Consider 1 < q1 < q2 < 2 and let θ ∈ (0, 1) be the number satisfying 1
q2

= 1−θ
q1

+ θ
2 . For

s ∈ N+ we write s0 = [(1− θ)α log2 s] + 1. Denote by ∆
(s)
j = P2−(j+2s0)/2α − P2−(j−2s0)/2α

the difference introduced in Lemma 4.11 asociated with s0 and 2α. By Proposition 3.3 and
Lemma 4.11, we have

‖sup
j∈J

+ Tmj (∆
(s)
j x)‖q1 ≤ A(q1, 2)‖

(
∆

(s)
j x
)
j
‖Lq1 (M;`cr2 )

.α A(q1, 2)s0(q1 − 1)−6‖x‖q1 .

By Proposition 2.10 and Lemma 4.11 , we have

‖sup
j∈J

+ S2−j/α(∆
(s)
j x)‖q1 . (q1 − 1)−2‖

(
∆

(s)
j x
)
j
‖Lq1 (M;`cr2 )

.α s0(q1 − 1)−8‖x‖q1 .

We set Tφj = Tmj − S2−j/α with φj = mj − e
− `(·)

2j/α . Hence,

‖sup
j∈J

+ Tφj (∆
(s)
j x)‖q1 .α A(q1, 2)(q1 − 1)−8s0‖x‖q1 .

Let us assume (1−θ)α log2 s ≥ 1 first. Note that for any s > 0 and δ > 0, we have log2 s .
sδ

δ .
Therefore we get that

s0 ≤ 2(1− θ)α log2 s .α
sθ

θ
.α (q2 − q1)−1sθ.

If (1− θ)α log2 s < 1, then s0 = 1 ≤ sθ ≤ (q2 − q1)−1sθ. Hence,

(4.18) ‖sup
j∈J

+ Tφj (∆
(s)
j x)‖q1 .α A(q1, 2)(q1 − 1)−8(q2 − q1)−1sθ‖x‖q1 .

Let ω ∈ Ω and let

δ
(s)
j (ω) = exp

(
−

√
`(ω)

2(j+2s0)/2α

)
− exp

(
−

√
`(ω)

2(j−2s0)/2α

)
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be the symbol of ∆
(s)
j . Note that

|1− δ(s)
j (ω)| ≤

∣∣∣∣∣1− exp

(
−

√
`(ω)

2(j+2s0)/2α

)∣∣∣∣∣+

∣∣∣∣∣exp

(
−

√
`(ω)

2(j−2s0)/2α

)∣∣∣∣∣
.α

√
`(ω)

2(j+2s0)/2α
+

2(j−2s0)/2α√
`(ω)

.

When 2j ≥ `(ω)α, by the above inequality we have |1 − δ(s)
j (ω)| .α 2−s0/α(2j/α

`(ω) )1/2 , and as

the computation in (4.11) we have |φj(ω)| .β `(ω)

2j/α
. In particular,

|φj(ω)(1− δ(s)
j (ω))| .α,β 2−s0/α

(
`(ω)

2j/α

)1/2

.α,β 2−s0/α

(
2j/α`(ω)

(2j/α + `(ω))2

)1/2

.

When 2j < `(ω)α, similarly we have |1− δ(s)
j (ω)| .α 2−s0/α( `(ω)

2j/α
)1/2, and as the computation

in (4.12) we have |φj(ω)| .β 2j/α

`(ω) . Therefore

|φj(ω)(1− δ(s)
j (ω))| .α,β 2−s0/α

(
2j/α

`(ω)

)1/2

.α,β 2−s0/α

(
2j/α`(ω)

(2j/α + `(ω))2

)1/2

.

By Proposition 4.8, we have

(4.19) ‖sup
j∈J

+Tφj (1−∆
(s)
j )x‖2 .α,β 2−s0/α‖x‖2 .α,β sθ−1‖x‖2.

Thus by (4.18), (4.19) and Lemma 4.10, we see that (Tφj )j∈J is of restricted weak type (q2, q2)
with constant
(4.20)
C ′q2 .α,β

((
A(q1, 2)(q1 − 1)−8(q2 − q1)−1

)q1 + 1
)1/q2 .α,β A(q1, 2)(q1 − 1)−8(q2 − q1)−1.

Set D = sup1<u≤2(u− 1)22A(u,∞) <∞. Choose an index 1 < r ≤ 2 such that

(r − 1)22A(r,∞) >
D

2
.

We apply the restricted weak type estimate of (Tφj )j in (4.20) to the particular case q1 =
1
2(r + 1) and q2 = q1 + (r − q1)/2. Note that by Proposition 2.10, the semigroup (St)t is of
strong type (q2, q2) with constant c(q2 − 1)−2. Recall that Tmj = Tφj + S2−j/α , thus (Tmj )j∈J
is also of restricted weak type (q2, q2) with constant

Cq2 .α,β A(q1, 2)(q1 − 1)−8(q2 − q1)−1 + (q2 − 1)−2

.α,β A(
q1

2− q1
,∞)1/2(r − 1)−9.

The last inequality above follows from Lemma 3.4 and the values of q1 and q2. Because (Tmj )j
is of strong type (∞,∞) and of restricted weak type of (q2, q2), applying Theorem 2.6 we have

(4.21) ‖sup
j∈J

+Tmjx‖r ≤ max{Cq2 , 1}(
rq2

r − q2
+ r)2‖x‖r, x ∈ Lr(M).
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By (4.17), this means that A(r,∞) . Cq2(r − 1)−2. Therefore,

(4.22) (r − 1)−22D

2
< A(r,∞) .α,β A(

q1

2− q1
,∞)1/2(r − 1)−11.

Recall that A( q1
2−q1 ,∞) .α,β 1 if q1

2−q1 ≥ 2 by Theorem 4.2. Without loss of generality we
assume that 1 < q1

2−q1 < 2. Then (4.22) yields

(r − 1)−22D

2
.α,β

((
q1

2− q1
− 1

)−22

D

)1/2

(r − 1)−11

Recall that q1 = 1
2(r + 1). We have

D .α,β 1.

In other words, (p − 1)22A(p,∞) .α,β 1 for any 1 < p ≤ 2. In particular, this estimate is
independent of the finite index set J . So we obtain the desired maximal inequality according
to Remark 2.3.

Note that Tmjx converges a.u. to x as j → ∞ for x ∈ L2(M) by Theorem 4.2 and that
L2(M)∩Lp(M) is dense in Lp(M). Applying Proposition 2.9 (1), we get the a.u. convergence
of (Tmjx)j for x ∈ Lp(M). �

4.4. Proof of Theorem 4.3 (2). Our idea is reducing the desired maximal inequalities to
those for lacunary subsequences already studied in the preceding subsection.

Lemma 4.12. Assume that the family (mt)t∈R+ satisfies (A2). Then for any 1 ≤ q < 2 and
q + q(2−q)

q−1+2η < p < 2, we have

‖(Tmt)t∈R+ : Lp(M)→ Lp(M; `∞)‖ .β,η,p,q sup
1≤δ≤2

‖(Tm
δ2j

)j∈Z : Lq(M)→ Lq(M; `∞)‖1−θ

provided that the right hand side is finite, where θ is determined by 1
p = 1−θ

q + θ
2 .

Proof. Our proof is based on the estimate of multi-order differences of (mt)t. For notational
simplicity we denote these differences as follows: we start with setting the first order differences
of the following form

ψ
[s]
t = m

22−s−1 t
−mt, s ∈ N, t ∈ R+,

and define the higher order ones inductively by

ψ
[s1,s2,...,sv ]
t = ψ

[s1,s2,··· ,sv−1]

22−sv−1 t
− ψ[s1,s2,··· ,sv−1]

t , s1, . . . , sv ∈ N, t ∈ R+, 2 ≤ v ≤ η.

We denote by Ψ
[s1,s2,...,sv ]
t = T

ψ
[s1,s2,...,sv ]
t

the associated multipliers for 1 ≤ v ≤ η.

We will estimate the maximal norms of (Tmt)t by using those of (Ψ
[s1,s2,...,sv ]
t )t. To see this,

note that by Proposition 4.7, (Tmt(x))t is strongly continuous on Lp(M) for all 1 < p < ∞.
We consider the dyadic approximations with increasing index sets Is = {2j/2s : j ∈ Z} for
s ∈ N. By Remark 2.3, we have for x ∈ Lp(M),

‖ sup
t∈R+

+Tmtx‖p = lim
s→∞

‖sup
t∈Is

+Tmtx‖p

≤ ‖sup
t∈I0

+Tmtx‖p +
∞∑
s=0

(
‖ sup+

t∈Is+1

Tmtx‖p − ‖sup
t∈Is

+Tmtx‖p

)
.
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Note that we have the bijection J : Is → Is+1\Is, 2j/2
s 7→ 2(2j+1)/2s+1

= 2
1

2s+1 2j/2
s and

Is+1 = Is ∪ J(Is). Hence for

yt =

{
Tmtx t ∈ Is
TmJ−1(t)

x t ∈ J(Is)
,

we have ‖ sup+
t∈Is+1

yt‖ = ‖ sup+
t∈Is Tmtx‖. Then applying the triangle inequality, we get

‖ sup+

t∈Is+1

Tmtx‖p − ‖sup
t∈Is

+Tmtx‖p ≤ ‖sup
t∈Is

+Ψ
[s]
t (x)‖p.

In other words, we obtain

‖ sup
t∈R+

+Tmtx‖p ≤ ‖sup
t∈I0

+Tmtx‖p +
∞∑
s=0

‖sup
t∈Is

+Ψ
[s]
t (x)‖p.

Applying the above arguments to maps of the form Ψ
[s]
t in place of Tmt , we see that for each

s1 ≥ 1,

‖ sup
t∈Is1

+Ψ
[s1]
t (x)‖p ≤ ‖sup

t∈I0

+Ψ
[s1]
t (x)‖p +

s1−1∑
s2=0

‖ sup
t∈Is2

+Ψ
[s1,s2]
t (x)‖p.

Hence,

‖ sup
t∈R+

+Tmtx‖p ≤ ‖sup
j∈Z

+Tm
2j
x‖p +

∞∑
s1=0

‖sup
t∈I0

+Ψ
[s1]
t (x)‖p +

∞∑
s1=1

s1−1∑
s2=0

‖ sup+

t∈Is2
Ψ

[s1,s2]
t (x)‖p.

Repeating this process η times, we get

‖ sup
t∈R+

+Tmtx‖p

≤‖sup
j∈Z

+Tm
2j
x‖p +

∞∑
s1=0

‖sup
t∈I0

+Ψ
[s1]
t (x)‖p +

∞∑
s1=1

s1−1∑
s2=0

‖sup
t∈I0

+Ψ
[s1,s2]
t (x)‖p + · · ·

+
∑

s1>s2>···>sη−1

‖sup
t∈I0

+Ψ
[s1,s2,...sη−1]
t (x)‖p +

∑
s1>s2>···>sη

‖ sup
t∈Isη

+Ψ
[s1,s2,...,sη ]
t (x)‖p.

(4.23)

It remains to study the maximal norms of (Ψ
[s1,s2,...,sv ]
t )t on the right hand side of the

above inequality. To this end we need to estimate the derivative ∂kt ψ
[s1,s2,...,sv ]
t (ω) by virtue

of Lemma 4.9. More precisely, we will show that for any 1 ≤ v ≤ η,

(4.24)
∣∣∣∂kt (ψ[s1,s2,...,sv ]

t

)∣∣∣ .β 2−(s1+s2···+sv) (2k + 2v)v

tk
0 ≤ k ≤ η − v.

Let us prove this inequality by induction. For notational simplicity we write ρv = 22−sv−1 .
Note that 1 < ρv < 2 and that applying the mean value theorem to the function x 7→ 2x, we
get that for any 1 ≤ v ≤ η and k ≥ 0,

(4.25) ρkv − 1 . k2−sv .

Consider first v = 1. For any 0 ≤ k ≤ η − 1,

|∂kt ψ
[s1]
t (ω)| = |∂ktmρ1t(ω)− ∂ktmt(ω)| =

∣∣∣ρk1∂kγmγ(ω)|γ=ρ1t − ∂ktmt(ω)
∣∣∣
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By (A2),
∣∣∂kγmγ(ω)|γ=ρ1t

∣∣ .β 1
(ρ1t)k

. Hence

|∂kt ψ
[s1]
t (ω)| .β (ρk1 − 1)

1

(ρ1t)k
+
∣∣∣∂kγmγ(ω)|γ=ρ1t − ∂ktmt(ω)

∣∣∣ .
By the mean value theorem and (A2),∣∣∣∂kγmγ(ω)|γ=ρ1t − ∂ktmt(ω)

∣∣∣ ≤ (ρ1t− t) sup
t≤γ≤ρ1t

|∂k+1
γ mγ(ω)| .β

ρ1t− t
tk+1

.

Therefore, according to (4.25), we have

|∂kt ψ
[s1]
t (ω)| .β (ρk1 − 1)

1

(ρ1t)k
+
ρ1 − 1

tk

.β
k2−s1

tk
+

2−s1

tk

.β 2−s1
k + 1

tk
.

So (4.24) holds for v = 1. Assume that (4.24) holds for some 1 ≤ v ≤ η − 1 and consider the
case of v + 1. For any 0 ≤ k ≤ η − (v + 1), arguing as above, we have

|∂kt ψ
[s1,s2,··· ,sv+1]
t (ω)| = |ρkv+1∂

k
γ (ψ[s1,s2,··· ,sv ]

γ (ω))|γ=ρv+1t − ∂kt (ψ
[s1,s2,··· ,sv ]
t (ω))|

.β (ρkv+1 − 1)2−(s1+s2···+sv) (2k + 2v)v

(ρv+1t)k

+ (ρv+1t− t) sup
t≤γ≤ρv+1t

|∂k+1
γ (ψ[s1,s2,··· ,sv ]

γ (ω))|

.β k2−sv+12−(s1+s2···+sv) (2k + 2v)v

tk

+ (ρv+1t− t)2−(s1+s2···+sv) (2k + 2 + 2v)v

tk+1

.β 2−(s1+s2···+sv+1) (2(k + 1 + v))v+1

tk
.

So (4.24) is proved. In particular, setting k = 0 and k = 1 respectively, we get for any
1 ≤ v ≤ η

(4.26)
∣∣∣ψ[s1,s2,··· ,sv ]
t (ω)

∣∣∣ .β,η 2−(s1+s2···+sv),

and for any 1 ≤ v ≤ η − 1,

(4.27)
∣∣∣∂tψ[s1,s2,··· ,sv ]

t (ω)
∣∣∣ .β,η 2−(s1+s2···+sv) 1

t
.

This also yields∣∣∣∂tψ[s1,s2,··· ,sη ]
t (ω)

∣∣∣ ≤ ∣∣∣∂tψ[s1,s2,··· ,sη−1]
ρηt (ω)

∣∣∣+
∣∣∣∂tψ[s1,s2,··· ,sη−1]

t (ω)
∣∣∣

.β,η 2−(s1+s2+···+sη−1) 1

t
.(4.28)

On the other hand, by definition

(4.29) ψ
[s1,s2,··· ,sv ]
t =

∑
ε∈{0,1}v

(−1)(v+
∑v
i=1 εi)mρεt
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where ε = (ε1, · · · , εv) ∈ {0, 1}v and ρε = ρε11 ρ
ε2
2 · · · ρεvv . Recall that s1 < s2 < · · · sv and

sv ≥ v, we have
1 < ρε ≤ 22−sv−1+2−sv+···+2−sv+v−2

< 22−sv−1+v
< 2.

By (A2), ∣∣∣ψ[s1,s2,··· ,sv ]
t (ω)

∣∣∣ ≤ ∑
ε∈{0,1}v

|mρεt(ω)| ≤
∑

ε∈{0,1}v
β
ρεt

`(ω)α
≤ β22v t

`(ω)α
,

∣∣∣ψ[s1,s2,··· ,sv ]
t (ω)

∣∣∣ ≤ ∑
ε∈{0,1}v

|1−mρεt(ω)| ≤
∑

ε∈{0,1}v
β
`(ω)α

ρεt
≤ 2vβ

`(ω)α

t
.

Thus, setting

a
[s1,s2,··· ,sv ]
j := sup

t

 sup
2j−2<

`(ω)α

t
≤2j

∣∣∣ψ[s1,s2,··· ,sv ]
t (ω)

∣∣∣
 ,

and

b
[s1,s2,··· ,sv ]
j := sup

t

 sup
2j−2<

`(ω)α

t
≤2j

t
∣∣∣∂tψ[s1,s2,··· ,sv ]

t (ω)
∣∣∣
 ,

together with (4.26) and (4.27), we have for 1 ≤ v ≤ η − 1,

a
[s1,s2,··· ,sv ]
j .β,η min{2−(s1+s2+···+sv), 2−|j|}, b

[s1,s2,··· ,sv ]
j .β,η 2−(s1+s2+···+sv).

Then by Lemma 4.9, for 1 ≤ v ≤ η − 1, we have

(4.30) ‖ sup+

t∈R+

Ψ
[s1,s2,··· ,sv ]
t x‖2 . K [s1,s2,···sv ]‖x‖2,

with

K [s1,s2,··· ,sv ] =
∑
j∈Z

(a
[s1,s2,··· ,sv ]
j )1/2(a

[s1,s2,··· ,sv ]
j + b

[s1,s2,··· ,sv ]
j )1/2

.β,η

 ∑
|j|≤s1+s2+···+sv

2−(s1+s2+···+sv)/2 +
∑

|j|>s1+s2···+sv

2−|j|/2

 · 2−(s1+s2+···+sv)/2

.β,η
s1 + s2 + · · ·+ sv

2(s1+s2+···+sv)
.

Similarly, for v = η, by (4.26) and (4.28),

(4.31) ‖ sup+

t∈R+

Ψ
[s1,s2,··· ,sη ]
t x‖2 . K [s1,s2,··· ,sη ]‖x‖2,

with
K [s1,s2,···sη ] .β,η

s1 + s2 + · · ·+ sη

2(s1+s2···+sη−1)+
sη
2

.

In the following we consider the case 1 ≤ q < 2. Denote

Aq = sup
1≤δ≤2

‖(Tm
δ2j

)j∈Z : Lq(M)→ Lq(M; `∞)‖.

For 1 ≤ v ≤ η − 1, by (4.29) we have

(4.32) ‖sup
t∈I0

+Ψ
[s1,s2,··· ,sv ]
t x‖q ≤

∑
ε∈{0,1}v

‖sup
t∈I0

+Tmρεtx‖q ≤ 2vAq‖x‖q.
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For v = η, we decompose

Isη = {2j/2
sη

: j ∈ Z} =
2sη−1⋃
l=0

{2
(2sη )j+l

2sη : j ∈ Z} =
2sη−1⋃
l=0

2
l

2sη I0.

By (4.29) and the triangle inequality, we have

‖ sup+

t∈Isη
Ψ

[s1,s2,...,sη ]
t (x)‖q ≤

∑
ε∈{0,1}η

‖ sup+

t∈Isη
Tmρεtx‖q(4.33)

≤
∑

ε∈{0,1}η

2sη−1∑
l=0

‖ sup+

t∈2
l

2sη I0

Tmρεtx‖q

≤
∑

ε∈{0,1}η

2sη−1∑
l=0

‖sup
t∈I0

+Tm
2
l

2sη ρεt

x‖q

.η Aq2
sη‖x‖q.

Now the conclusion follows easily from the complex interpolation. Let 1 < p < 2 and
0 < θ < 1 with 1

p = 1−θ
q + θ

2 . By (4.30), (4.32) and interpolation, we see that for v ≤ η − 1,

‖sup
t∈I0

+Ψ
[s1,s2,··· ,sv ]
t x‖p .β,η A1−θ

q (s1 + s2 · · ·+ sv)
θ 2−θ(s1+s2···+sv)‖x‖p.

By (4.31), (4.33) and interpolation, for v = η,

‖ sup+

t∈Isη
Ψ

[s1,s2,...,sη ]
t (x)‖p .β,η A1−θ

q 2(1−θ)sη (s1 + s2 · · ·+ sη)
θ 2−θ(s1+s2···+

sη
2

)‖x‖p.

We apply the above estimate to (4.23). Note that when v ≤ η − 1,∑
s1>s2>···>sv

(s1 + s2 · · ·+ sv)
θ 2−θ(s1+s2···+sv)

.θ
∑

s2>···>sv

∞∑
s1=s2+1

2−θ(s1+s2···+sv)/2 .θ
∑

s2>···>sv
2−θs2/22−θ(s2+···+sv)/2

.θ
∑

s3>···>sv
2−θs32−θ(s3+···+sv)/2 .θ · · · .θ

∑
sv≥0

2−(v−1)θsv/2 .θ 1.

Applying the similar computation to v = η, we have∑
s1>s2>···>sη

2(1−θ)sη (s1 + s2 · · ·+ sη)
θ 2−θ(s1+s2···+

sη
2

) .θ
∑
sη≥0

2(1−θ)sη(sη + 1)θ2−(η− 1
2

)θsη .

Thus the above quantity is finite if (1 − θ) < (η − 1
2)θ, i.e. θ > 2

2η+1 , which requires that

q + q(2−q)
q−1+2η < p ≤ 2. Therefore, together with (4.23), if q + q(2−q)

q−1+2η < p ≤ 2,

‖ sup+

t∈R+

Tmtx‖p .β,η,θ A1−θ
q ‖x‖p.

The proof is complete. �
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Proof of Theorem 4.3 (2). For any 1 ≤ δ ≤ 2 and j ∈ Z, set tj = 2jδ. (A2) implies that

|1−mtj (ω)| ≤ β `(ω)α

2jδ
≤ β `(ω)α

2j
and |mtj (ω)| ≤ 2β

2j

`(ω)α
.

By Thereom 4.3 (1) and Remark 4.5 (2), for any 1 < q ≤ 2, we have

sup
1≤δ≤2

‖sup
j∈Z

+Tmtjx‖q .α,β,q,η ‖x‖q.

Note that q+ q(2−q)
q−1+2η tends to 1+ 1

2η as q → 1. Hence, by Lemma 4.12, for any 1+ 1
2η < p ≤ 2,

we get
‖ sup+

t∈R+

Tmtx‖p .α,β,p,η ‖x‖p.

The a.u. convergence is proved similarly as in (1). �

4.5. The case of operator-valued multipliers and nontracial states. Based on the
previous arguments, we may extend our results to the setting of operator-valued multipliers
and Haagerup’s nontracial Lp-spaces. This will be particularly essential for our further study
of multipliers on quantum groups in the next section. All the previous arguments for p ≥ 2
can be transfered without difficulty into this new setting, and we will leave the details to
interesting readers. However, the previous proof for the case p < 2 does not continue to hold
for Haagerup’s Lp-spaces. Based on Haagerup’s reduction method, we will rather use our
previous results for the tracial setting to deduce the desired properties for the nontracial ones.

4.5.1. Operator-valued multipliers in the tracial setting. Let us first begin with the operator-
valued multipliers on tracial von Neumann algebras. Let R be a von Neumann algebra
equipped with a semifinite normal trace. Assume that there is an isometric isomorphism

U : L2(R)→
⊕
i∈I

Hi

where I is an index set and Hi is a Hilbert space for each i ∈ I. For any bounded sequence
m := (m(i))i∈I with m(i) ∈ B(Hi), we can define an operator-valued multiplier on R:

Tm : L2(R)→ L2(R)

x 7→ U−1 (m(i)(Ux)(i))i∈I .(4.34)

Note that if Hi = C for all i ∈ I, then this goes back to our first setting in (4.1) with Ω = I
equipped the counting measure. Proposition 4.8 can be adapted to this new setting.

Proposition 4.13. Let (TmN )N∈Z be a sequence of operator-valued multipliers as above. As-
sume that there exist a function f : I → [0,∞) and a positive number a > 1 such that

(4.35) ‖mN (i)‖B(Hi) ≤ β
aNf(ω)

(aN + f(ω))2

Then,

‖(TmNx)N∈Z‖L2(R;`cr2 ) ≤ β
√

a2

a2 − 1
‖x‖2.

Proof. Repeat the proof of Proposition 4.8. �

Using Proposition 4.13, Lemma 4.10, Lemma 3.4 and Lemma 4.11, we may deduce the
following result. The proof is the same as that of Theorem 4.2 and Theorem 4.3 (for (A1)).
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Theorem 4.14. Let ` := (`(i))i∈I be a sequence with `(i) ∈ B(Hi). Assume that (Te−t`)t∈R+

is a semigroup of unital completely positive trace-preserving symmetric maps on R. For any
N ∈ N, let mN := (mN (i))i∈I be a sequence with mN (i) ∈ B(Hi). Assume that (TmN )N∈N
extends to a family of bounded maps on R with γ := supN ‖TmN : R → R‖ < ∞. Assume
that there exist α > 0 and β > 0 such that for all i ∈ I we have

(4.36) ‖ idHi −mN (i)‖B(Hi) ≤ β
‖`(i)‖αB(Hi)

2N
, ‖mN (i)‖B(Hi) ≤ β

2N

‖`(i)‖αB(Hi)

.

(1) For all 2 ≤ p < ∞ there is a constant c > 0 depending only on p, α, β, γ such that for
all x ∈ Lp(R), we have

‖(TmNx)N‖Lp(R;`∞) ≤ c‖x‖p, and TmNx→ x a.u. as N →∞.

(2) Assume additionally that the operators (TmN )N∈N extend to positive symmetric con-
tractions on R and that St satisfies Rota’s dialtion property for all t ∈ R+. Then for any
1 < p <∞, there is a constant c depending only on p, α, β such that for all x ∈ Lp(R),

‖(TmNx)N‖Lp(R;`∞) ≤ c‖x‖p and TmNx→ x a.u. as N →∞.

4.5.2. Operator-valued multipliers on Haagerup noncommutative Lp spaces. LetM be a von
Neumann algebra acting on a Hilbert space H. Let ϕ be a fixed normal semifinite faithful
state onM. Let σ = (σt)t = (σϕt )t be the modular automorphism group with respect to ϕ.

Let Lp(M, ϕ) be the Haagerup noncommutative Lp-spaces associated with (M, ϕ). In the
following discussions we will not need the detailed information of these spaces, and we refer
to [Ter81, PX03, HJX10] for a detailed presentation. We merely remind the reader that the
elements in Lp(M, ϕ) can be realized as densely defined closed operators on L2(R;H) and
that L∞(M, ϕ) coincides with M for a certain suitable representation M on L2(R;H). If
N is a von Neumann subalgebra of M, then the associated Haagerup Lp-space Lp(N , ϕ|N )
can be naturally embedded as a subspace of Lp(M, ϕ) which preserves positivity. There is a
distinguished positive elementDϕ ∈ L1(M, ϕ)+, usually called the density operator associated
with ϕ, such that D1/2p

ϕ MD
1/2p
ϕ is dense in Lp(M, ϕ) (see e.g. [JX03, Lemma 1.1]). The

space Lp(M, ϕ) isometrically coincides with the usual tracial noncommutative Lp-space used
previously ifM is tracial. Indeed, ifM is equipped with a normal faithful tracial state τ with
ϕ = τ(·ρ) for some ρ ∈ L0(M, τ), then for any x ∈M,

(4.37) ‖D1/2p
ϕ xD1/2p

ϕ ‖Lp(M,ϕ) = [τ((ρ1/2pxρ1/2p)p)]1/p,

which coincides with the norm of ρ1/2pxρ1/2p in the tracial Lp-space Lp(M, τ) in the sense
of Section 2. In the sequel we will not distinguish the Haagerup Lp-spaces and the tracial
Lp-spaces introduced in Section 2 if ϕ is tracial.

In this subsection we set Γ =
⋃
n≥1 2−nZ, which is regarded as a discrete subgroup of R.

We consider the crossed procuct R =Moσ Γ. Recall that R is the von Neumann subalgebra
generated by π(M) and idH ⊗λ(Γ) in B(`2(R;H)), where π : M → B(`2(Γ;H)) is the ∗-
representation given by π(x) =

∑
t∈Γ σ−t(x)⊗ et,t and λ is the left regular representation of Γ

on `2(Γ). We will identifyM with π(M) and denote xo λ(t) = π(x)(idH ⊗λ(t)) for x ∈ M
and t ∈ Γ. We have

(xo λ(t)) · (y o λ(s)) = (xσt(y)) o λ(t+ s)
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for any x, y ∈M, t, s ∈ Γ. Let τΓ be the usual trace on V N(Γ) given by τΓ(λ(t)) = δt=0. The
dual state ϕ̂ on R is defined by

(4.38) ϕ̂(xo λ(t)) = ϕ(x)τΓ(λ(t)) x ∈M, t ∈ Γ.

We set
ak = −i2nLog(λ(2−k)) and τk = ϕ̂(e−ak ·)

with Log the principal branch of the logarithm so that 0 ≤ Im(Log(z)) < 2π. We denote by
Rk the centralizer of τk in R. We will use the following two theorems to reduce our problem
to the tracial case studied previously.

Theorem 4.15 ([HJX10, Theorem 2.1, Example 5.8, Remark 6.1]). (1) For each k ≥ 1, the
subalgebra Rk is finite and τk is a normal faithful tracial state on Rk;

(2) {Rk}k≥1 is an increasing sequence of von Neumann subalgebras such that ∪k≥1Rk is
w*-dense in R;

(3) for every k ∈ N, there exists a normal conditional expectation Ek from R onto Rk such
that

ϕ̂ ◦ Ek = ϕ̂ and σϕ̂t ◦ Ek = Ek ◦ σϕ̂t , t ∈ R.

For each 1 ≤ p <∞ and any k ∈ N, the map

E(p)
k (D

1/2p
ϕ̂ xD

1/2p
ϕ̂ ) = D

1/2p
ϕ̂ Ek(x)D

1/2p
ϕ̂ , x ∈ R

extends to a conditional expectation from Lp(R, ϕ̂) onto Lp(Rk, ϕ̂|Rk), and

lim
k
‖E(p)

k x− x‖Lp(R,ϕ̂) = 0, x ∈ Lp(R, ϕ̂).

Theorem 4.16 ([HJX10, Theorem 4.1, Proposition 4.3 and Theorem 5.1]). Assume that
T :M→M is a completely bounded normal map such that

(4.39) T ◦ σt = σt ◦ T, t ∈ R.

Then T admits a unique completely bounded normal extension T̂ on R such that

‖T̂‖cb = ‖T‖cb and T̂ (xo λ(g)) = T (x) o λ(g), x ∈M, g ∈ Γ.

Moreover, T̂ satisfies the following properties:
(1) σϕ̂t ◦ T̂ = T̂ ◦ σϕ̂t , t ∈ R;
(2) T̂ ◦ Ek(x) = Ek ◦ T̂ (x) for all x ∈ R, where (Ek)k are conditional expectations given in

Theorem 4.15.
Assume in addition that T is completely positive and ϕ-preserving. Then T̂ is also positive

and τk ◦ T̂ = τk, ϕ̂ ◦ T̂ = ϕ̂ where τk is the trace given in Theorem 4.15. Moreover, the map

T̂ (p) : D
1/2p
ϕ̂ xD

1/2p
ϕ̂ 7→ D

1/2p
ϕ̂ T̂ (x)D

1/2p
ϕ̂ , x ∈ R

extends to a positive bounded maps on Lp(R, ϕ̂) for all 1 ≤ p ≤ ∞.

Convention. In the sequel, for a given map T : M → M, we will denote, by the same
symbol T , all the maps T̂ (p) and their extensions to the Lp-spaces in the above setting,
whenever no confusion can occur.
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Let Hϕ be the GNS completion of M with respect to ϕ (we make the convention that
‖x‖2Hϕ = ϕ(x∗x) for x ∈M). Note that x 7→ xD

1/2
ϕ yields an isometric isomorphism from Hϕ

to L2(M, ϕ). Assume that there is an isometric isomorphism

(4.40) U : Hϕ →
⊕
i∈I

Hi

where I is an index set and Hi is a Hilbert space for each i ∈ I. Let m := (m(i))i be a
bounded sequence with m(i) ∈ B(Hi). As in (4.34), we may define the multiplier

(4.41) Tm : Hϕ → Hϕ, U(Tmx) = (m(i)(Ux)(i))i∈I , x ∈ Hϕ.

Applying the reduction theorems quoted above, we obtain the maximal inequalities for the
nontracial setting. The a.u. convergence can be adapted in the setting of Haagerup’s Lp-
spaces, usually called Jajte’s (bilaterally) almost sure (b.a.s. and a.s. for short) convergence
[Jaj91], for which we also refer to [JX07, Section 7.4].

Definition 4.17. (1) Let xn, x ∈ Lp(M, ϕ) with 1 ≤ p < ∞. The sequence (xn) is said to
converge almost surely (a.s. in short) to x if for every ε > 0 there is a projection e ∈ M and
a family (an,k) ⊂M such that

ϕ(e⊥) < ε and xn − x =
∑
k≥1

an,kD
1
p , lim

n→∞
‖
∑
k≥1

(an,ke) ‖∞ = 0,

where the two series converge in norm in Lp(M, ϕ) andM, respectively.
(2) Let xn, x ∈ Lp(M, ϕ) with 1 ≤ p <∞. The sequence (xn) is said to converge bilateral

almost surely (b.a.s. in short) to x if for every ε > 0 there is a projection e ∈M and a family
(an,k) ⊂M such that

ϕ(e⊥) < ε and xn − x = D
1
2p

∑
k≥1

an,kD
1
2p , lim

n→∞
‖
∑
k≥1

(ean,ke) ‖∞ = 0,

where the two series converge in norm in Lp(M, ϕ) andM, respectively.

As we mentioned at the beginning of this subsection, the space Lp(M, ϕ) isometrically
coincides with the tracial noncommutative Lp-space if the state ϕ is tracial. In this case, one
can easily verify that Jajte’s a.s. (resp. b.a.s) convergence recovers Lance’s a.u. (resp. b.a.u.)
convergence defined in Definition 2.7.

We keep the notation introduced previously in this subsection. The following is our main
result in this subsection, which generalizes the results for (A1) in Theorem 4.2 and Theorem
4.3. Those for (A2) can be dealt with in a similar manner, and we leave the details to
interesting readers.

Theorem 4.18. Let ` := (`(i))i∈I be a sequence with `(i) ∈ B(Hi) and write St = Te−t` for
t ∈ R+.. For any N ∈ N, let mN := (mN (i))i∈I be a bounded sequence with mN (i) ∈ B(Hi).
Assume that the following conditions hold:

(i) (St)t∈R+ extends to a semigroup of unital completely positive ϕ-preserving maps on M
and for any t ∈ R+, r ∈ R,

St ◦ σr = σr ◦ St, ϕ(St(x)∗y) = ϕ(x∗St(y)) x, y ∈M.

(ii) (TmN )N∈N extends to a family of selfadjoint maps onM with

γ := sup
N
‖TmN :M→M‖ <∞.
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(iii) There exist α > 0 and β > 0 such that for all i ∈ I we have

(4.42) ‖ idHi −mN (i)‖B(Hi) ≤ β
‖`(i)‖αB(Hi)

2N
, ‖mN (i)‖B(Hi) ≤ β

2N

‖`(i)‖αB(Hi)

.

Then there is a constant c > 0 depending only on p, α, β, γ such that for all 2 ≤ p <∞,

(4.43) ‖(TmNx)N‖Lp(M;`∞) ≤ c‖x‖p x ∈ Lp(M, ϕ).

and TmNx → x a.s. (resp. b.a.s.) as N → ∞ for all x ∈ Lp(M) with 2 < p < ∞ (resp.
p = 2).

If in addition the maps (TmN )N∈N are unital completely positive, symmetric and ϕ-preserving
onM and commute with the modular automorphism group σ, i.e.

TmN ◦ σr = σr ◦ TmN r ∈ R, N ∈ N,

then the above maximal inequality (4.43) also holds for all 1 < p < ∞ and TmNx → x b.a.s.
as N →∞ for all x ∈ Lp(M).

The proof of (4.43) for the case of p ≥ 2 is a mutatis mutandis copy of the arguments in
previous subsections. It suffices to note that the proof of Proposition 4.8 and Proposition 4.13
remains valid in the setting of Haagerup’s Lp-spaces if TmN is selfadjoint on M. We leave
the details to interesting readers. The reason why the previous arguments do not adapt to
the case of p < 2 is that the weak interpolation (Theorem 2.6) fails for Haagerup’s Lp-spaces.
So we will provide a proof for this case using the reduction theorems. On the other hand, we
will only prove the maximal inequalities. The implication from maximal inequalities to a.s.
(resp. b.a.s.) convergences, in particular the analogue of Proposition 2.9 (2), remains valid
on Lp(M, ϕ) if we replace the one sided weak type inequality (2.4) by the strong type one on
Lp(M; `c∞) for p > 2 (resp. on Lp(M; `∞) for 1 < p ≤ 2) by using [JX07, Lemma 7.10].

Proof of (4.43) for 1 < p < 2 and completely positive TmN . The operator U in (4.40) induces
an isometry on L2(Rk, τk) given by

Ûk : L2(Rk, τk) →
⊕

i∈I Hi ⊗ L2(V N(Γ), τΓ(e−ak ·))
xo λ(g) 7→ U(x)⊗ λ(g).

Indeed, Ûk is an isometry since for any finite sum
∑

g xg o λ(g) ∈ R, we have

‖Ûk(
∑
g

xg o λ(g))‖2⊕
i∈I Hi⊗L2(V N(Γ),τΓ(e−ak ·))

=
∑
g,h

ϕ(x∗gxh)τΓ(e−akλ(h− g)) =
∑
g,h

ϕ(σ−g(x
∗
gxh))τΓ(e−akλ(h− g))

=
∑
g,h

ϕ̂
(
σ−g(x

∗
gxh) o λ((h− g)e−ak

)
= ‖

∑
g

xg o λ(g)‖2L2(Rk,τk).

Take the Hilbert subspaces H ′i ⊂ Hi⊗L2(V N(Γ), τΓ(e−ak ·)) so that ran(Ûk) =
⊕

iH
′
i. Then

Ûk : L2(Rk, τk) →
⊕

iH
′
i becomes an isometric isomorphism. For any x o λ(g) ∈ Rk, the

element (TmNx) o λ(g) = T̂mN (x o λ(g)) also belongs to Rk since T̂mN ◦ Ek = Ek ◦ T̂mN by
Theorem 4.16. So Ûk((TmNx) o λ(g)) is well-defined and moreover, by (iii), we have

Ûk((TmNx) o λ(g)) = U(TmN (x))⊗ λ(g) = (mU(x))⊗ λ(g) = (m⊗ id)Ûk(xo λ(g)).
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In particular mN (i) ⊗ id sends H ′i into H ′i, and T̂mN |Rk is an operator-valued multiplier
in the sense of (4.34) (recall that (Rk, τk) is tracial). It is straightforward to verify that
T̂mN |Rk is unital completely positive τk-preserving onRk, and therefore it extends to a positive
contraction on Lp(Rk, τk). Similarly, the extension Ŝt := T̂e−t` also gives rise to a semigroup
of unital completely positive maps on R. It is easy to check that Ŝt is symmetric relative to
ϕ̂. The restriction Ŝt|Rk is τk-preserving and symmetric relative to τk since

Ŝt((xo λ(g))e−ak) = (Stx) o λ(g)e−ak = (Ŝt(xo λ(g)))e−ak

for all x ∈M and g ∈ Γ. Thus applying Theorem 4.14 to T̂mN |Rk , we obtain

(4.44) ‖sup
N

+ T̂mN (x)‖Lp(Rk,τk) ≤ c‖x‖Lp(Rk,τk), x ∈ Lp(Rk, τk),

where c is a constant only depending on α, β, p.
In the following we consider x ∈ Lp(M, ϕ)+. Since Lp(M, ϕ) can be naturally embedded

into Lp(R, ϕ̂), we regard x as an element in Lp(R, ϕ̂)+. By Theorem 4.16, we see that
T̂mN ◦ Ek = Ek ◦ T̂mN and hence T̂ (p)

mN ◦ E
(p)
k = E(p)

k ◦ T̂
(p)
mN . By Theorem 4.15, we have

lim
k→∞

T̂ (p)
mN

(E(p)
k (x)) = lim

k→∞
E(p)
k (T̂ (p)

mN
(x)) = T (p)

mN
(x) in Lp(R, ϕ̂).

Thus for any M > 0,

(4.45) lim
k→∞

‖ sup+

1≤N≤M
T̂ (p)
mN

(E(p)
k (x))‖Lp(Rk,ϕ̂|Rk ) = ‖ sup+

1≤N≤M
T̂ (p)
mN

(x)‖Lp(R,ϕ̂).

Without loss of generality, we assume that x = D
1/2p
ϕ̂ yD

1/2p
ϕ̂ with some y ∈ R+. By the

correspondence in (4.37), we get

‖ sup+

1≤N≤M
T̂ (p)
mN

(E(p)
k (x))‖Lp(Rk,ϕ̂|Rk ) = ‖ sup+

1≤N≤M
e
ak
2p T̂mN (Ek(y))e

ak
2p ‖Lp(Rk,τk).

Note that e
ak
2p belongs to the subalgebra generated by 1 o λ(Γ). For any element of the form

z =
∑

g∈Γ z(g) o λ(g) in Rk, we have

e
ak
2p T̂mN (z)e

ak
2p =

∑
g∈Γ

TmN (z(g)) o (e
ak
2p λ(g)e

ak
2p ) = T̂mN (e

ak
2p ze

ak
2p ).

So the previous equality reads

‖ sup+

1≤N≤M
T̂ (p)
mN

(E(p)
k (x))‖Lp(Rk,ϕ̂|Rk ) = ‖ sup+

1≤N≤M
T̂mN (e

ak
2p Ek(y)e

ak
2p )‖Lp(Rk,τk).

Together with (4.44), (4.45) and (4.37) we obtain

‖ sup+

1≤N≤M
T̂ (p)
mN

(x)‖Lp(R,ϕ̂) ≤ lim
k→∞

‖e
ak
2p Ek(y)e

ak
2p ‖Lp(Rk,τk) = lim

k→∞
‖D1/2p

ϕ̂ Ek(y)D
1/2p
ϕ̂ ‖Lp(Rk,ϕ̂|Rk )

= lim
k→∞

‖E(p)
k (x)‖Lp(Rk,ϕ̂|Rk ) = ‖x‖Lp(R,ϕ̂).

The proof is complete. �

Remark 4.19. Lance’s notion of a.u. convergence still makes sense for p =∞ in the nontracial
setting. The above theorem also implies that TmNx → x a.u. as N → ∞ for all x ∈ M,
according to [JX07, Lemma 7.13].
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5. Proof of Theorem 1.3

This section will be devoted to the proof of Theorem 1.3. In other words, we will construct
Fourier multipliers satisfying the pointwise convergence for groups with suitable approximation
properties. As in the previous section, only the framework of the form (4.1) (or the form
(4.34)) is involved in the essential part of our arguments. Since the approximation properties
of discrete quantum groups have drawn wide interest in recent years, we would like to present
the work in a more general setting, that is, Woronowicz’s compact quantum groups.

We refer to [Wor87, Wor98, Tim08] for a complete description of compact quantum groups.
In this paper, it suffices to recall that each compact quantum group G is an object cor-
responding to a distinguished von Neumann algebra denoted by L∞(G), a unital normal
∗-homomorphism ∆ : L∞(G) → L∞(G)⊗L∞(G) (usually called the comultiplication), and
a normal faithful state h : L∞(G) → C (usually called the Haar state) with the following
properties. First, the Haar state h is invariant in the sense that

(h⊗ id) ◦∆(x) = h(x)1 = (id⊗h) ◦∆(x), x ∈ L∞(G).

Second, a unitary n × n matrix u = (uij)
n
i,j=1 with coefficients uij ∈ L∞(G) is called an

n-dimensional unitary representation of G if for any 1 ≤ i, j ≤ n we have

∆(uij) =
n∑
k=1

uik ⊗ ukj .

We denote by Irr(G) the collection of unitary equivalence classes of irreducible representations
of G, and we fix a representative u(π) on a Hilbert space Hπ for each class π ∈ Irr(G) and
denote by dπ its dimension. In particular, we denote by 1 ∈ Irr(G) the trivial representation,
i.e. u1 = 1G with dimension 1. Then the space

Pol(G) = span{u(π)
ij : u(π) = (u

(π)
ij )dπi,j=1, π ∈ Irr(G)}

is a w*-dense ∗-subalgebra of L∞(G). We denote by Lp(G) the Haagerup noncommutative
Lp-spaces associated with (L∞(G), h). Last, there is a linear antihomomorphism S on Pol(G),
called the antipode of G, determined by

S(u
(π)
ij ) = (u

(π)
ji )∗ π ∈ Irr(G), 1 ≤ i, j ≤ dπ.

The antipode S has the polar decomposition S = R ◦ τ−i/2 = τ−i/2 ◦ R where R is a ∗-
antiautomorphism on L∞(G) and (τt)t∈R is a one-parameter group of ∗-automorphisms on
Pol(G) (called the scaling group). There exists a distinguished sequence of strictly positive
matrices Qπ ∈ B(Hπ) with π ∈ Irr(G) implementing the scaling group (τt)t∈R and the modular
automorphism group (σt)t∈R with respect to h on L∞(G), and indeed for all z ∈ C we have
(see for instance the computations in [Wan17, Section 2.1.2 and Section 3]),

(5.1) (τz ⊗ id)(u(π)) = Qiz
π u

(π)Q−iz
π , (σz ⊗ id)(u(π)) = Qiz

π u
(π)Qiz

π .

We say that G is of Kac type if Qπ = idHπ for all π ∈ Irr(G). In other words, G is of Kac
type if and only if the Haar state h is tracial.

Denote by `∞(Ĝ) =
⊕

π∈Irr(G)B(Hπ) the direct sum of von Neumann algebras B(Hπ) and
cc(Ĝ) be the finite direct sum in

⊕
π∈Irr(G)B(Hπ), i.e. m ∈ cc(Ĝ) if there are only finite

many π such that m(π) 6= 0. The notation Ĝ used above in fact corresponds to the dual
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discrete quantum group of G (see e.g. [VD98]). We will not involve the detailed quantum
group structure of Ĝ. For a linear functional ϕ on Pol(G), we define the Fourier transform by

F(ϕ)(π) = (ϕ⊗ id)((u(π))∗), π ∈ Irr(G).

This induces the Fourier transform F : Pol(G)→ cc(Ĝ), given by

F(x)(π) = (h(·x)⊗ id)
(

(u(π))∗
)
∈ B(Hπ), π ∈ Irr(G).

Note that F : Pol(G)→ cc(Ĝ) is bijective. Obviously there exists a Hilbert space completion
of cc(Ĝ), denoted by `2(Ĝ), such that F extends to an isometric isomorphism F : Hh → `2(Ĝ),
where Hh denotes the GNS completion of L∞(G) with respect to h as in Section 4.5.2 (see
e.g. [PW90] and [Wan17, Proposition 3.2]), more precisely,

(5.2) h(x∗x) =
∑

π∈Irr(G)

Tr(Qπ)Tr(Qπ(F(x)(π))∗F(x)(π)), x ∈ Hh,

where Tr denotes the usual (unnormalized) trace on matrices. Then F is consistent with our
framework in Section 4.5.2. For a symbol m = (m(π))π ∈ `∞(Ĝ), we can define a multiplier
Tm by (4.41), i.e.

Tm(x) = F−1(m · F(x)), x ∈ Pol(G),

which extends to a bounded map on Hh. This coincides with the multipliers considered in
[JNR09, Daw12, Wan17]. By (5.1) and the definition of Tm, we have (see e.g. [Wan17, Lemma
3.6])

(5.3) σr ◦ Tm ◦ σ−r = TQirmQ−ir , r ∈ R, where Q = ⊕πQπ.

Remark 5.1. Let Γ be a discrete group. We may define a comultiplication ∆ on the group
von Neumann algebra V N(Γ) by

∆(λ(g)) = λ(g)⊗ λ(g), g ∈ Γ.

The triple (V N(Γ),∆, τ) carries a compact quantum group structure G satisfying the afor-
mentioned properties, where we take L∞(G) = V N(Γ) and h = τ . In this case we usually
denote G = Γ̂. We remark that in our language of quantum groups, Γ coincides with the dual
discrete quantum group Ĝ. The set of unitrary equivalence classes of irreducible representa-
tions Irr(G) can be indexed by Γ, so that for every g ∈ Γ the associated representation is of
dimension 1 and is given by u(g) = λ(g) ∈ V N(Γ). Therefore, the set I defined above becomes
Γ, and the Fourier transform sends λ(g) to δg. Hence, for any m ∈ `∞(Γ), the associated
multiplier is

Tm : λ(g) 7→ m(g)λ(g), g ∈ Γ.

This notion coincides with the usual one on groups mentioned in the introduction.

A straightforward computation shows the following proposition (see for instance [Wan17,
Section 3]).

Proposition 5.2. Let S be the antipode and Φ be a functional on Pol(G).
(1) F(Φ ◦ S−1)(π) = (Φ⊗ id)(u(π)).

(2) F(Φ∗ ◦ S−1)(π) = (F(Φ)(π))∗ where Φ∗(x) = Φ(x∗) for any x ∈ Pol(G).
(3) F((id⊗Φ)∆(x)) = F(Φ ◦ S−1) · F(x).
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Remark 5.3. Let Φ be a functional on Pol(G) such that F(Φ ◦ S−1) = m. In other words,
by Proposition 5.2 (1),

m(π) = [Φ(u
(π)
ij )]ij .

By Proposition 5.2 (3), we have

(5.4) Tm(x) = F−1
(
F(Φ ◦ S−1) · F(x)

)
= (id⊗Φ)∆(x).

Therefore, we have the following properties.
(1) Tm is a unital completely positive map on Pol(G) if and only if Φ is a state on Pol(G).
(2) Tm is selfadjoint if and only if Φ∗ = Φ. Moreoverm(π)∗ = m(π) if and only if Φ∗◦S = Φ.
(3) We have

‖m(π)‖B(Hπ) = ‖u(π)m(π)‖L∞(G)⊗B(Hπ) =

∥∥∥∥∥∥
[∑

k

u
(π)
ik Φ(u

(π)
kj )

]
ij

∥∥∥∥∥∥
L∞(G)⊗B(Hπ)

=

∥∥∥∥[Tm(u
(π)
ij )
]
ij

∥∥∥∥
L∞(G)⊗B(Hπ)

≤ ‖Tm‖cb.

In view of our study in Section 4.5.2, it is essential to consider the case where Tm commutes
with the modular automorphism group σ.

Proposition 5.4. Let Φ be a functional on Pol(G) with Φ∗ = Φ and ϕ(π) = [Φ(u
(π)
ij )]i,j for

π ∈ Irr(G). Then the element

m(π) = lim
a→∞

1

2a

∫ a

−a
Qirπ ϕ̃(π)Q−irπ dr, where ϕ̃(π) = [

1

2
(Φ + Φ ◦R)(u

(π)
ij )]i,j

is well-defined in B(Hπ), and satisfies:
(i) m(π) is a selfadjoint matrix for any π ∈ Irr(G);
(ii) for any t ∈ R, σt ◦ Tm = Tm ◦ σt;
(iii) ‖m(π)‖B(Hπ) ≤ ‖ϕ(π)‖B(Hπ) and ‖ idHπ −m(π)‖B(Hπ) ≤ ‖ idHπ −ϕ(π)‖B(Hπ) for any

π ∈ Irr(G);
(iv) If Tϕ is unital completely positive on Pol(G), so is Tm.

Proof. The construction is implicitly given in the proof of [CS15, Lemma 5.2] and [DFSW16,
Proposition 7.17].

The element m is well-defined by the ergodic theorem since B(Hπ) is finite-dimensional.
Note that there is a ∗-antiautomorphism R̂ of `∞(Ĝ) with R̂2 = id such that (R ⊗ R̂)U = U

where U = ⊕π∈Irr(G)u
(π) is regarded as an element in L∞(G)⊗`∞(Ĝ) (see [Kus01, Proposition

7.2]), and therefore for any functional Υ on L∞(G), the following inequality holds

‖(Υ ◦R⊗ id)(U)− 1
`∞(Ĝ)

‖
`∞(Ĝ)

≤ ‖(Υ⊗ R̂)(U)− R̂(1
`∞(Ĝ)

)‖
`∞(Ĝ)

≤ ‖(Υ⊗ id)(U)− 1
`∞(Ĝ)

‖
`∞(Ĝ)

,

and
‖(Υ ◦R⊗ id)(U)‖

`∞(Ĝ)
≤ ‖(Υ⊗ id)(U)‖

`∞(Ĝ)
.

In particular, for π ∈ Irr(G), taking Υ(u
(α)
ij ) = δαπΦ(u

(π)
ij ) for all α ∈ Irr(G), we get

‖ϕ̃(π)‖B(Hπ) ≤ ‖ϕ(π)‖B(Hπ),
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and taking Υ(u
(α)
ij ) =

{
Φ(u

(π)
ij ), if α = π

δij , if α 6= π
, we get

‖ idHπ −ϕ̃(π)‖B(Hπ) ≤ ‖ idHπ −ϕ(π)‖B(Hπ), π ∈ Irr(G).

Then (iii) follows from the definition of m. Also, by Remark 5.3 we see that Tϕ̃ is unital
completely positive if Tϕ is. So in the following part we will assume without loss of generality
that ϕ = ϕ̃ and Φ = Φ ◦R. By (5.3) we have

(5.5) Tm = lim
a→∞

1

2a

∫ a

−a
σr ◦ Tϕ ◦ σ−rdr,

so we established the assertions (ii) and (iv). We consider

Ψ(x) = lim
a→∞

1

2a

∫ a

−a
Φ(τr(x))dr, x ∈ Pol(G).

Then by (5.1),

m(π) = lim
a→∞

1

2a

∫ a

−a
Qirπ ϕ(π)Q−irπ dr = lim

a→∞

1

2a

∫ a

−a
Qirπ [(Φ⊗ id)(u(π))]Q−irπ dr

= lim
a→∞

1

2a

∫ a

−a
(Φ ◦ τr ⊗ id)(u(π))dr = (Ψ⊗ id)(u(π)).

Note that Ψ is invariant under τ according to the ergodic theorem. Recall that Φ ◦ R = Φ.
So we have Ψ ◦ S = Ψ. By Proposition 5.2 and Φ = Φ∗, we get

m(π) = F(Ψ ◦ S−1)(π) = (F(Ψ)(π))∗ =
(
F(Ψ ◦ S−1)(π)

)∗
= m(π)∗.

So we obtain (i). �

We recall the following approximation properties of quantum groups introduced by De
Commer, Freslon and Yamashita in [DCFY14]. For simplicity of exposition, we always assume
in this paper that Irr(G) is countable. The general cases can be dealt with by considering the
collection of all finitely generated quantum subgroups of Ĝ.

Definition 5.5. Let G be a compact quantum group. Ĝ is said to have the almost completely
positive approximation property (ACPAP for short) if there are two sequences (ϕs)s∈N ⊂ `∞(Ĝ)

and (ψk)k∈N ⊂ cc(Ĝ) such that
(1) for any s, k ∈ N, Tϕs is a unital completely positive map on L∞(G);
(2) for any π ∈ Irr(G), we have

lim
s→∞

‖ idHπ −ϕs(π)‖B(Hπ) = 0 and lim
k→∞

‖ idHπ −ψk(π)‖B(Hπ) = 0;

(3) for any s ∈ N and ε > 0, there is a k = k(s, ε) such that ‖Tψk − Tϕs‖cb ≤ ε.
Moreover, if for any k ∈ N we may directly choose Tψk to be unital completely positive,

then Ĝ is said to be amenable (or to have the completely positive approximation property).

For notational convenience and without loss of generality, in the sequel we will always set
ϕ0(π) = ψ0(π) = δ1(π). Note that ϕs(1) = 1 for all s, therefore we will always assume that
ψk(1) = 1 for all k.
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Remark 5.6. Assume that Ĝ has the ACPAP. Then we may indeed find two sequences
(ϕs)s∈N ⊂ `∞(Ĝ), (ψk)k∈N ⊂ cc(Ĝ) satisfying (1)-(3) in Definition 5.5 such that the following
assertions also hold:

(4) Tψk is selfadjoint for all k ∈ N;
(5) ϕs and ψk are selfadjoint matrices for all s, k ∈ N;
(6) for any t ∈ R, s ∈ N, k ∈ N, σt ◦ Tφs = Tφs ◦ σt and σt ◦ Tψk = Tψk ◦ σt.
Indeed, for any sequences (ϕs)s∈N ⊂ `∞(Ĝ), (ψk)k∈N ⊂ cc(Ĝ) satisfying (1)-(3) in Def-

inition 5.5, by Remark 5.3 we see that the map x 7→ (Tψk(x∗))∗ is a multiplier associ-
ated with the matrices ψ̃k(π) = [Ψ∗k(u

(π)
ij )]ij , where Ψk is the functional on Pol(G) so that

Ψk(u
(π)
ij ) = ψk(π)ij . Then T

(ψk+ψ̃k)/2
is selfadjoint. Note that limk→∞ ‖ idHπ −ψk(π)‖∞ = 0

is equivalent to limk→∞Ψk(u
(π)
ij )→ δij pointwisely. Thus (ψk + ψ̃k)/2 satisfies (2). Since the

operators Tϕs are positive, Tϕs(x) = (Tϕs(x
∗))∗. Thus ((ψk + ψ̃k)/2)k satisfies (3). Therefore

we may always assume that Tψk is selfadjoint, which means that Ψk = Ψ∗k by Remark 5.3 (2).
We construct two new sequences (ϕ′s)s∈N ⊂ `∞(Ĝ), (ψ′k)k∈N ⊂ cc(Ĝ) by the formulas given in
Proposition 5.4, then they immediately satisfy (3) by (5.5). It is easy to see that (ϕ′s)s∈N and
(ψ′k)k∈N satisfy (1) (2) (4) (5) (6).

Remark 5.7. If G is of Kac type, the multipliers Tϕs and Tψk can be taken central by a
simple averaging argument, that is, ϕs(π) and ψk(π) belong to C idHπ for all π ∈ Pol(G). We
refer to [KR99, Bra17] for details.

Lemma 5.8. For any s ∈ N+, ϕs = (ϕs(ρ))ρ∈I with ϕs(ρ) ∈ B(Hρ), where (Hρ)ρ are Hilbert
spaces and I is an infinite countable set. Let (Es)s≥1 be an increasing sequence of finite
subsets of I with ∪s≥1Es = I. If lims→∞ ‖ϕs(ρ) − idHρ ‖B(Hρ) = 0 for any ρ ∈ I, then there
is a subsequence (sN )N≥1 of N such that

(5.6) ‖ idHρ −ϕsN+1
(ρ)‖B(Hρ) ≤ 2−N , ρ ∈ Es

N
.

Proof. We will construct a sequence (sN )N∈N by induction. First we let s1 = 1. Assume that
(sj)

N
j=0 has already been defined. For any ρ ∈ EsN , we can find an sN+1(ρ) > sN large enough,

such that for any s ≥ sN+1(ρ),

‖ idHρ −ϕs(ρ)‖B(Hρ) ≤ 2−N .

Since Es
N

is a finite set, we can set sN+1 = max{sN+1(ρ) : ρ ∈ Es
N
}. Therefore the proof is

complete. �

Then we may construct the semigroups and multipliers satisfying the assumptions of The-
orem 4.18.

Theorem 5.9. Assume that Ĝ has the ACPAP and let (ϕs)s∈N and (ψk)k∈N be the corre-
sponding sequences satisfying (1)-(6) in Definition 5.5 and Remark 5.6. Let (ks)s∈N+ be an
increasing subsequence of N such that ‖Tϕs − Tψks‖cb ≤

1
2s+1 . Let k0 = s0 = 0 and (sN )N∈N+

be a subsequence of N such that (5.6) holds with Es = ∪si=0 suppψki. Define

`(π) =
∑
j≥0

√
2
j (

idHπ −ϕsj (π)
)
.

Then the following assertions hold.
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(1) `(1) = 0 and for any π 6= 1,

‖`(π)‖B(Hπ) �
√

2
J(π)

where J(π) := min{j ∈ N : π ∈ Esj}.
(2) St : x 7→ F−1

(
e−t`(π)F(x)

)
is a semigroup of unital completely positive h-preserving

maps on L∞(G) and for any t ≥ 0, r ∈ R,

St ◦ σr = σr ◦ St and h(St(x)∗y) = h(x∗St(y)), x, y ∈ L∞(G).

(3) Denote mN = ψksN . Then (mN )N∈N satisfies

‖ idHπ −mN (π)‖B(Hπ) .
‖`(π)‖2B(Hπ)

2N
, ‖mN (π)‖B(Hπ) .

2N

‖`(π)‖2B(Hπ)

, π ∈ Irr(G).

In particular, for any 2 ≤ p <∞,

‖sup
N∈N

+TmNx‖p .p ‖x‖p, x ∈ Lp(G).

For all x ∈ Lp(G) with 2 < p < ∞ (resp. p = 2), TmN (x) converges a.s. (resp. b.a.s.) to x
as N →∞.

Moreover, if Ĝ is amenable, then the above results hold for all 1 < p < ∞ (with the b.a.s.
convergence for p ≤ 2). If G is of Kac type, all the convergences above are a.u.

Proof. By Remark 5.6 and (5.3), we have `(π)Qπ = Qπ`(π) for any π ∈ Irr(G) and St ◦ σr =
σr ◦ St for any t ∈ R+, r ∈ R.

Recall that for any N , TϕsN is unital and in particular ϕsN (1) = 1. As a consequence we
get `(1) = 0. In the following we consider π 6= 1 and estimate the quantity ‖`(π)‖B(Hπ).
Recall that k0 = s0 = 0 and ϕ0(π) = ψ0(π) = δ1(π), so E0 = {1}, which implies J(π) ≥ 1 if
π 6= 1. By the definition of J , we have π ∈ EsJ(π)

⊂ Esj−1 if j ≥ J(π) + 1. Recall that Tϕs is
unital completely positive and hence ‖ϕs(π)‖B(Hπ) ≤ 1 by Remark 5.3. Therefore, by (5.6),
we have

‖`(π)‖B(Hπ) ≤
J(π)∑
j=0

√
2
j‖ idHπ −ϕsj (π)‖B(Hπ) +

∑
j≥J(π)+1

√
2
j‖ idHπ −ϕsj (π)‖B(Hπ)

≤
J(π)∑
j=0

2
√

2
j

+
∑

j≥J(π)+1

√
2
j · 2−j .

√
2
J(π)

.

For j ≤ J(π) − 1, we have π /∈ Esj and hence ψksj (π) = 0. We also have idHπ −ϕsj (π) ≥ 0

for all j since ϕs(π) is selfadjoint and ‖ϕs(π)‖B(Hπ) ≤ 1 as mentioned previously. Also by
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Remark 5.3, we have ‖ϕs(π)− ψks(π)‖B(Hπ) ≤ ‖Tϕs − Tψks‖cb ≤
1

2s+1 . So

‖`(π)‖B(Hπ) = ‖
J(π)−1∑
j=0

√
2
j (

idHπ −ϕsj (π)
)

+
∑

j≥J(π)

√
2
j
(idHπ −ϕsj (π))‖B(Hπ)

≥ ‖
J(π)−1∑
j=0

√
2
j (

idHπ −ϕsj (π)
)
‖B(Hπ)

= ‖
J(π)−1∑
j=0

√
2
j
(

idHπ −ϕsj (π) + ψksj (π)
)
‖B(Hπ)

≥
J(π)−1∑
j=0

√
2
j
(

idHπ −
1

2sj+1

)
&
√

2
J(π)

.

Hence ` is well defined and (1) is verified.
Recall that `(1) = 0. Therefore St(1) = e−t`(1)1 = 1. On the other hand, recall that ϕs(π)

is selfadjoint, which means that `(π) is also selfadjoint. Thus by (5.2),

h(St(x)∗y) =
∑

π∈Irr(G)

Tr(Qπ) Tr
(
Qπ

(
e−t`(π)F(x)(π)

)∗
F(y)(π)

)
(5.7)

=
∑

π∈Irr(G)

Tr(Qπ) Tr
(
Qπ (F(x)(π))∗ e−t`(π)F(y)(π)

)
= h(x∗St(y)).

In particular,
h(St(x)) = h(St(1)x) = h(x).

Now let us verify the complete positivity of St. We define the functionals ε, L and Φs on
Pol(G) by

ε(u
(π)
ij ) = δij , L(u

(π)
ij ) = `(π)ij , Φs(u

(π)
ij ) = ϕs(π)ij .

Note that ε is a ∗-homomorphism on Pol(G), usually called the counit. By Remark 5.3, Φs

are states and
L =

∑
j≥0

√
2
j (
ε− Φsj

)
with the convergence understood pointwise on Pol(G). In particular

L(a∗a) = −
∑
j≥0

√
2
j
Φsj (a

∗a) ≤ 0, a ∈ ker ε.

This means that L is a generating functional in the sense of [DFSW16] and there is a state µt
with µt(u

(π)
ij ) = (e−t`(π))ij for all t and π by [DFSW16, Lemma 7.14 and Equality (7.4)]. So

by Remark 5.3, St = Te−t` is completely positive.
We take mN = ψks

N
. (If Ĝ is amenable, we take mN = ψks

N
= ϕsN .) If π = 1, then for

any N ∈ N, 1 −mN (1) = 0 since TψksN is unital. Note that sN ≥ N . If 1 ≤ J(π) ≤ N − 1,
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i.e. π ∈ EsN−1 , then

‖ idHπ −mN (π)‖B(Hπ) ≤ ‖ idHπ −ϕsN (π)‖B(Hπ) + ‖ϕsN (π)− ψks
N

(π)‖B(Hπ)

≤ (2−N + 2−sN−1) . 2J(π)−N .
‖`(π)‖2B(Hπ)

2N
.

If J(π) ≥ N , then

‖ idHπ −mN (π)‖B(Hπ) ≤ 1 ≤ 2J(π)−N .
‖`(π)‖2B(Hπ)

2N
.

On the other hand,

‖mN (π)‖B(Hπ) ≤ 1[0,N ](J(π)) ≤ 2N−J(π) .
2N

‖`(π)‖2B(Hπ)

, π ∈ Irr(G).

A computation similar to (5.7) yields that the map TmN is symmetric and h-preserving for
any N . Applying Theorem 4.14 and Theorem 4.18, we obtain the desired maximal inequalities
and pointwise convergences �

Remark 5.10. The above proof indeed shows that Theorem 5.9 also holds for any subsequence
(sN )N∈N+ satisfying

(5.8) ‖ idHρ −ϕsN+1
(ρ)‖B(Hρ) ≤ 2J(ρ)−N , ρ ∈ Es

N

where (Es)s are determined increasing finite sets and J(ρ) = min{j ∈ N : ρ ∈ Esj}. This
more general formulation will be useful in the next section.

In particular, we obtain Theorem 1.3 in the general setting of quantum groups.

Corollary 5.11. (1) Assume that Ĝ has the ACPAP. Then Ĝ admits a sequence of completely
contractive Fourier multipliers (TmN )N∈N on L∞(G) so that mN are finitely supported and for
any 2 ≤ p <∞,

‖sup
N∈N

+TmNx‖p .p ‖x‖p, x ∈ Lp(G),

and TmNx converges to x a.s. as N → ∞ for all x ∈ Lp(G) with 2 < p < ∞ and TmNx
converges to x b.a.s. (a.u. if G is of Kac type) as N →∞ for all x ∈ L2(G).

(2) Assume that Ĝ is amenable. Then Ĝ admits a sequence of unital completely positive
Fourier multipliers (TmN )N∈N on L∞(G) such that mN are finitely supported and for any
1 < p <∞

‖sup
N∈N

+TmNx‖p .p ‖x‖p, x ∈ Lp(G),

and TmNx converges to x a.s. as N → ∞ for all x ∈ Lp(G) with 2 < p < ∞ and TmNx
converges to x b.a.s. (a.u. if G is of Kac type) as N →∞ for all x ∈ Lp(G) with 1 < p ≤ 2.

Moreover, we have the following a.s. convergence of Fourier series of Dirichlet type on
L2(G). Let pπ be the projection from Pol(G) onto {u(π)

ij : 1 ≤ i, j ≤ dπ}. It is easy to see that
pπ can be extended to an orthogonal projection on L2(G).

Proposition 5.12. Let Ĝ be a discrete quantum group having the ACPAP. Then there exists
an increasing sequence of finite subsets (KN )N ⊂ Irr(G) such that the maps x 7→

∑
π∈KN pπ(x)

is of strong type (2, 2). Moreover, for all x ∈ L2(G),∑
π∈KN

pπ(x)→ x b.a.s. (a.u. if G is of Kac type)) as N →∞.
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Proof. Let `, (ks)s, (sN )N , (Es)s be given by Theorem 5.9. We show that KN = Es
N

sat-
isfies this proposition. Let N ∈ N and DN = T1KN be the multiplier associated with the
characteristic function

1KN (π) =

{
idHπ , if π ∈ KN ;

0, otherwise.

Define

φN (π) = 1KN (π)− e−
`(π)1/2

2N/4 .

For any π ∈ KN , i.e. J(π) ≤ N , we have

‖φN (π)‖B(Hπ) .
‖`(π)‖1/2B(Hπ)

2N/4
.

‖`(π)‖1/2B(Hπ)2
N/4

(2N/4 + ‖`(π)‖1/2B(Hπ))
2
,

where the last inequality follows from the fact that ‖`(π)‖B(Hπ)√
2
N . 1. Also, for any π /∈ KN , i.e.

J(π) > N , we have

‖φN (π)‖B(Hπ) .
2N/4

‖`(π)‖1/2B(Hπ)

.
‖`(π)‖1/2B(Hπ)2

N/4

(2N/4 + ‖`(π)‖1/2B(Hπ))
2
.

As mentioned previously, Proposition 4.8 remains valid for the nontracial setting. Together
with Proposition 3.3, we get

‖(TφN (x))N‖L2(G;`∞) . ‖x‖2, and ‖(TφN (x))N‖L2(G;`c∞) . ‖x‖2, x ∈ L2(G).

Recall that by the choice of (Es)s, for any finite subset F ⊂ Irr(G) there exists M ≥ 1 with
F ⊂ KN for all N ≥ M . Hence for any x ∈ Pol(G), there is an index M large enough such
that for any N ≥ M , we have DN (x) = x, and in particular DN (x) → x a.s. Then arguing
as in Subsection 4.2, by Proposition 2.9 (2) (or its nontracial analogue for L2(G; `∞) and
L2(G; `c∞) mentioned after Theorem 4.18) and the density of Pol(G), we obtain the desired
pointwise convergence of DN (x) for any x ∈ L2(G) as N →∞. �

Note that we also have the corresponding a.u. convergence on L∞(G) in all the previous
results by Remark 4.19.

6. More concrete examples

In this last section, we apply our theorems to various explicit examples of multipliers on
noncommutative Lp-spaces.

6.1. Generalized Fejér means on non-abelian groups and quantum groups.

6.1.1. Case of nilpotent groups and amenable groups. Let Γ be a discrete amenable group. Let
(KN )N∈N be a Følner sequence of Γ, that is

lim
N→∞

|KN ∩ gKN |
|KN |

= 1, g ∈ Γ.

For convenience we set K0 = {e}. We define a sequence of multipliers (mN )N∈N by

(6.1) mN (g) =
|KN ∩ gKN |
|KN |

.
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We remark that if Γ = Zd and KN = [−N,N ]d ∩ Zd, then

mN (k1, k2, · · · , kd) =
d∏
i=1

(1− |ki|
2N + 1

)1[−2N,2N ](ki),

which gives the usual Fejér means on the d-dimensional tori. As a result, we regard the
multipliers (TmN )N as a noncommutative analogue of Fejér means.

It is easy to see that mN is finitely supported, indeed suppmN = KN ·K−1
N . By the Følner

condition, we have mN → 1 pointwise. For any g ∈ Γ, we have

mN (g) = 〈λ(g)
1KN
|KN |1/2

,
1KN
|KN |1/2

〉`2(Γ).

As a consequence mN is positive definite and therefore TmN is unital completely positive on
V N(Γ) for all N ∈ N (see e.g. [BO08, Theorem 2.5.11]). Note that TmN is also τ -preserving.
In particular, by Theorem 5.9, there exists a subsequence (Nj)j∈N, such that for all 1 < p <∞
and all x ∈ Lp(V N(Γ)),

‖sup
j∈N

+TmNjx‖p .p ‖x‖p and TmNjx→ x a.u. as j →∞.

In the following, we would like to give a refined study in the case of nilpotent groups. First
we consider a 2-step (or 1-step) nilpotent group Γ generated by a finite set S. We assume that
e ∈ S and S = S−1. Due to [Sto98], we have the following estimates:

(6.2) β−1Nd ≤ |SN | ≤ βNd and β−1Nd−1 ≤ |SN\SN−1| ≤ βNd−1,

where d ≥ 1 is called the degree of Γ, and β <∞ is a positive constant depending only on Γ
and S.

For an element g ∈ Γ, denote by |g| the word length of g with respect to the generator
set S, i.e. |g| = min{k : g ∈ Sk}. Let (mN )N be a sequence of symbols given by (6.1) with
KN = SN . By (6.2), we have

(6.3) 1−mN (g) =
|gSN\SN |
|SN |

≤ |S
N+|g|\SN |
|SN |

≤ β
∑N+|g|

i=N+1 i
d−1

Nd
. β
|g|
N
, g ∈ Γ.

In particular, this shows that (SN )N is a Følner sequence. On the other hand,

(6.4) |mN (g)| ≤ 1[0,2N ](|g|) ≤ 2
N

|g|
, g ∈ Γ.

Set J(g) = min{j ∈ N : g ∈ S2j+1}, i.e. J(g) is the unique integer with 2J(g) < |g| ≤ 2J(g)+1.
We have

|1−m2j (g)| ≤ β |g|
2j
≤ 2β2J(g)−j .

This shows that the subsequence (2j)j∈N satisfies the inequality in Remark 5.10. Define

`(g) =
∑
j≥0

√
2
j |1−m2j (g)|.

By Theorem 5.9, for any g 6= e,

`(g) �
√

2
J(g) �

√
|g|,

and (St)t∈R+ : λ(g) 7→ e−t`(g)λ(g) is a semigroup of unital completely positive trace preserving
and symmetric maps. We remark that there are other natural choices of conditionally negative
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definite functions with polynomial growth (see e.g. [CS16]), but our above construction is self-
contained and useful for the further purpose. Moreover, for any t ∈ R+, St satisfies Rota’s
dilation property according to Lemma 3.6. Inequalities (6.3) and (6.4) can be written as

|1−mN (g)| . β `(g)2

N
and |mN (g)| . β N

`(g)2
.

Moreover,

mN (g) =
1SN ∗ 1SN (g)

|SN |
.

By (6.2), we obtain

|mN+1(g)−mN (g)|

=

∣∣∣∣∣∣ 1

|SN+1|
∑
γ∈Γ

1SN+1(γ)1SN+1(g−1γ)− 1

|SN |
(
∑
γ∈Γ

1SN (γ)1SN (g−1γ))

∣∣∣∣∣∣
≤ 1

|SN+1|

∑
γ∈Γ

1SN (γ)[1SN+1(g−1γ)− 1SN (g−1γ)] +
∑
γ∈Γ

[1SN+1(γ)− 1SN (γ)]1SN+1(g−1γ)


+

∣∣∣∣∣∣
(

1

|SN+1|
− 1

|SN |

)∑
γ∈Γ

1SN (γ)1SN (g−1γ)

∣∣∣∣∣∣
≤ 3
|SN+1\SN |
|SN+1|

. β2 1

N + 1
.

Therefore mN satisfies (4.4). Applying Theorem 4.3, we have the following corollary.

Corollary 6.1. Let Γ be a 2-step (or 1-step) nilpotent group generated by a finite symmetric
set S. Define mN (g) = |SN∩gSN |

|SN | . Then
(1) (Tm

2j
)j∈N is of strong type (p, p) for all 1 < p <∞. Moreover, for any x ∈ Lp(V N(Γ))

with 1 < p <∞, Tm
2j

(x) converges a.u. to x as j →∞.
(2) (TmN )N∈N is of strong type (p, p) for all 3

2 < p <∞. Moreover, for any x ∈ Lp(V N(Γ))
with 3/2 < p <∞, TmN (x) converges a.u. to x as N →∞.

Let us give some remarks on the case of general groups with polynomial growth. Indeed, it
is conjectured in [Bre14] that (6.2) remains true for general groups with polynomial growth.
If the conjecture has a positive answer, then the above corollary still holds in this general
setting by the same arguments. Moreover a partial result was given in [BLD13] for a general
r-step nilpotent group Γ generated by a finite set S. It asserts that

(6.5) β−1Nd−1 ≤ |SN\SN−1| ≤ βNd− 2
3r ,

where β is a constant depending only on Γ and S. Therefore, as in the arguments for the case
of 2-step nilpotent groups, we have

1−mN (g) ≤ |S
N+|g|\SN |
|SN |

. β
|g|
N

2
3r

.

Let k = k(r) be the minimum integer with k ≥ 3r
2 . Then Nj(r) = 2k+k2+···kj satisfies

Lemma 5.8. Indeed, let J(g) = min{j ∈ N : g ∈ ENj(r)}, i.e. 2NJ(g)−1(r) < |g| ≤ 2NJ(g)(r).
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Then for any g ∈ ENj(r), i.e. J(g) ≤ j,

|1−mNj+1(r)(g)| . β |g|
Nj+1(r)

2
3r

. β
2k+k2+···kJ(g)

2
2
3r

(k+k2+···kj+1)
. β

2k+k2+···kJ(g)

2
1
k

(k+k2+···kj+1)

. β2−(kJ(g)+1+···kj+1) . β2J(g)−j .

Therefore, by Theorem 5.9 and Remark 5.10, we get a conditionally negative definite function
` on Γ such that

|1−mNj+1(r)(g)| . β `(g)2

2j
and |mNj+1(r)(g)| . β 2j

`(g)2
.

By Theorem 4.3 (1), we have

Corollary 6.2. Let Γ be a r-step nilpotent group generated by a finite symmetric set of ele-
ments S. Let mN , k(r) and Nj(r) be defined above. Then for all 1 < p <∞, (TmNj(r)

)j∈N is
of strong type (p, p) and for any x ∈ Lp(V N(Γ)) with 1 < p < ∞, TmNj(r)

(x) converges a.u.
to x as j →∞.

6.1.2. Case of amenable discrete quantum groups. Let G be a compact quantum group of Kac
type. As before, we assume that Irr(G) is countable for convenience. We keep the notation
introduced in Section 5. We may study the Følner sequences and the corresponding multipliers
in this quantum setting as follows.

Recall that for any α, β ∈ Irr(G) we have the decomposition

u(α) � u(β) = ⊕γ∈Irr(G)N
γ
αβu

(γ),

where u(α) � u(β) refers to the tensor product representation of the form (u
(α)
ij u

(β)
kl )i,j,k,l and

Nγ
αβ ∈ N. We have the following Frobenius reciprocity law (see [Wor87], [Kye08, Example

2.3])

(6.6) Nγ
αβ = Nα

γβ
= Nβ

αγ

for all α, β, γ ∈ Irr(G). We write γ ⊂ αβ if Nγ
αβ > 0. Denote by π the equivalent class of the

representation ((u
(π)
ij )∗)ij . The weighted cardinality of a finite subset F ⊂ Irr(G) is defined to

be
|F |w =

∑
α∈F

d2
α,

where we recall that dα denotes the dimension of the representation α. On the other hand,
for a finite subset F ⊂ Irr(G) and a representation π ∈ Irr(G), the boundary of F related to π
is defined by

∂πF = {α ∈ F : ∃β ∈ F c such that β ⊂ απ} ∪ {β ∈ F c : ∃α ∈ F such that α ⊂ βπ}.

Kyed [Kye08] proved that there exists a sequence of finite subsets (Kn)n∈N ⊂ Irr(G) such that
for any π ∈ Irr(G),

(6.7)
|∂πKn|w
|Kn|w

→ 0 as n→∞,
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as soon as G is coamenable. Note that the coamenability of G is nothing but a property
equivalent to the amenability of the discrete quantum group Ĝ (see e.g. [Bra17]). The above
sequence (Kn)n∈B is called a Følner sequence. We associate a sequence of multipliers

(6.8) ϕn(π) =

∑
α,β∈Kn N

π
ᾱβdαdβ

dπ(
∑

ξ∈Kn d
2
ξ)

, π ∈ Irr(G).

It is easy to see that if Ĝ = Γ for a discrete group Γ, then the above function coincides with
the symbol introduced in (6.1).

Lemma 6.3. (1) The maps Tϕn are unital completely positive on L∞(G) for all n ∈ N.
(2) The functions ϕn converge to 1 pointwise.

Proof. (1) It is obvious that ϕn(1) = 1 and therefore Tϕn is unital.
Denote by χ(π) =

∑
i u

π
ii ∈ Pol(G) the character of π. We have for any α, β ∈ Irr(G),

h(χ(β̄)χ(α)) = δαβ1, χ(α)∗ = χ(ᾱ) and χ(α)χ(β) =
∑

γ∈Irr(G)

Nγ
αβχ(γ).

We write
Pol0(G) = span{χ(π) : π ∈ Irr(G)}

and let A0 be the w*-closure of Pol0(G) in L∞(G). Let E : L∞(G) → A0 be the canonical
conditional expectation preserving the Haar state h. Recall that we have assumed that G is
of Kac type. It is well-known that the conditional expectation E can be given by the following
explicit formula (see e.g. the proof of [Wan17, Lemma 6.3])

E(u
(π)
ij ) =

δij
dπ
χ(π), π ∈ Irr(G).

Set
χn =

1

|Kn|1/2w

∑
α∈Kn

dαχ(α) ∈ Pol(G)0.

Then, we have

Tϕn(x) = (h⊗ id) [(χ∗n ⊗ 1) · [(E⊗ id) ◦∆(x)] · (χn ⊗ 1)] , x ∈ L∞(G).

Indeed, by linearity and normality, we only need to check the equality for the case x = u
(π)
ij .

In this case we see that

(h⊗ id)
[
(χn ⊗ 1) · [(E⊗ id) ◦∆(u

(π)
ij )] · (χ∗n ⊗ 1)

]
=

∑
α,β∈Kn dαdβ · h

(
χ(α)χ(π)χ(β̄)

)
dπ|Kn|w

u
(π)
ij

=

∑
α,β∈Kn dαdβN

β
απ

dπ|Kn|w
u

(π)
ij

=Tϕn(u
(π)
ij ).

Since E and ∆ are completely positive, so is Tϕn .
(2) The support of ϕn is given by

(6.9) Λn = {π ∈ Irr(G) : ∃α, β ∈ Kn such that π ⊂ ᾱβ}.
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We denote Θn
π = {α ∈ Kn : ∀ β ∈ Kc

n, N
β
απ = 0} ⊂ Kn. Note that Nβ

απ = Nπ
ᾱβ and that

α ∈ Θn
π implies

∑
β∈Kn N

β
απdβ = dαdπ by the choice of Nβ

απ. Then

ϕn(π) ≥

∑
α∈Θnπ

dα

(∑
β∈Kn N

β
απdβ

)
dπ(
∑

ξ∈Kn d
2
ξ)

=

∑
α∈Θnπ

d2
α∑

ξ∈Kn d
2
ξ

=
|Θn

π|w
|Kn|w

.

Therefore,

1− ϕn(π) ≤ |{α ∈ Kn : ∃β ∈ Kc
n such that β ⊂ απ}|w
|Kn|w

≤ |∂π(Kn)|w
|Kn|w

.

By the Følner condition (6.7), ϕn → 1 pointwise. �

Therefore, by Theorem 5.9 we get the following result.

Corollary 6.4. Assume that G is of Kac type and that Ĝ is amenable. Let (Kn)n∈N ⊂ Irr(G)
be a Følner sequence and ϕn be the symbols given by (6.8). Then there is a subsequence (nj)j∈N
such that (Tϕnj )j is of strong type (p, p) for any 1 < p <∞. Moreover for all x ∈ Lp(G) with
1 < p <∞, Tϕnj (x) converges a.u. to x as j →∞.

6.2. Convergence of Fourier series of Lp-functions on compact groups. We would
like to emphasize in this subsection that our work indeed brings new ideas to the analysis on
classical compact groups. Recall that for a compact second countable group G, any function
f ∈ Lp(G) admits a Fourier series

f(x) ∼
∑

π∈Irr(G)

dπTr(f̂(π)π(x)), x ∈ G with f̂(π) =

∫
G
f(x)π(x−1)dx

where Irr(G) denotes the collection of equivalence classes of irreducible unitary representations
of G, and dπ denotes the dimension of π. The pointwise analysis on these Fourier series is
much subtler than the abelian case. A particular difficulty is the lack of obvious order and
summation methods on Irr(G) which is suitable for the study of Fourier series. However, from
the viewpoint of quantum group theory, the set Irr(G) is nothing but the underlying object
of an amenable discrete quantum group. So the difficulty can be overcome by transferring the
method on discrete amenable groups and its quantum counterpart. The spirit is also partially
inspired by the recent work [Hua16].

More precisely, the compact group G trivially gives rise to a compact quantum group.
Indeed, it suffices to take the triple (L∞(G),∆G,

∫
) where we define for all f ∈ L∞(G),

∆G(f)(g, h) = f(gh), g, h ∈ G.

Then Ĝ is amenable since L∞(G) is a commutative von Neumann algebra (see e.g. [Bra17]).
As a result, all arguments in Section 6.1.2 work on G. In particular, there always exists an
increasing sequence (Kn)n ⊂ Irr(G) determined by the representation theory of G, such that
the following finitely supported symbols

ϕn(π) =

∑
α,β∈Kn N

π
ᾱβdαdβ

dπ(
∑

ξ∈Kn d
2
ξ)

, π ∈ Irr(G)
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converge to 1 pointwise, where Nπ
ᾱβ is the unique number in the decomposition of the tensor

product representation ᾱ� β = ⊕π∈Irr(G)N
π
ᾱβπ. Moreover

Tϕnf =
∑

π∈Irr(G)

dπϕn(π)Tr(f̂(π)π(x)), x ∈ G, f ∈ Lp(G)

defines a unital completely positive map on Lp(G). We may choose a subsequence (nj)j
inductively by the algorithm in Lemma 5.8. Set mj = ϕnj . We may rewrite Corollary 5.11
and Proposition 5.12 in this setting as follows.

Corollary 6.5. (1) Let 1 < p <∞. There exists a constant c > 0 such that

‖ sup
j
|Tmjf |‖p ≤ c‖f‖p, f ∈ Lp(G).

For all f ∈ Lp(G),

f(x) = lim
j→∞

∑
π∈Irr(G)

dπmj(π)Tr(f̂(π)π(x)), a.e. x ∈ G.

(2) For all f ∈ L2(G),

f(x) = lim
j→∞

∑
π∈Knj

dπTr(f̂(π)π(x)), a.e. x ∈ G.

As an illustration, we consider a concrete example. Let N ≥ 2 and denote by SU(N)
the N × N special unitary group. The irreducible representations of SU(N) can be labeled
by N − 1 non-negative integers, and we write set-theoretically Irr(SU(N)) = NN−1. The
representation theory of SU(N) can be computed in terms of operations on Young diagrams,
which yields the following fact.

Proposition 6.6 (Appendix). Let Kn = {0, 1, 2, · · · , n}N−1 ⊂ NN−1. Set

ϕn(π) =

∑
α,β∈Kn N

π
ᾱβdαdβ

dπ(
∑

ξ∈Kn d
2
ξ)

, π = (t1, · · · , tN−1) ∈ NN−1.

Then

|1− ϕn(π)| .N
|π|
n+ 1

and |ϕn+1(π)− ϕn(π)| .N
1

n+ 1
,

where |π| = max{ti : 1 ≤ i ≤ N − 1}.

As in Section 6.1.1, applying Theorem 5.9 to the subsequence (ϕ2j )j we obtain a function `
on NN−1 such that (Te−t`)t is a semigroup of unital completely positive trace-preserving and
symmetric maps, and for any π 6= (0, 0, · · · , 0),

`(π) �
√

2
J(π) �

√
|π|

where J(π) = min{j ∈ N : π ∈ Λ2j} (Λn is given by (6.9)). Then combined with Theorem 4.3
and the proof of Proposition 5.12, the above proposition yields the following corollary.

Corollary 6.7. Let Kn = {0, 1, 2, · · · , n}N−1 ⊂ NN−1. Define

ϕn(π) =

∑
α,β∈Kn N

π
αβ̄
dαdβ

dπ(
∑

ξ∈Kn d
2
ξ)

, π ∈ NN−1.
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(1) Let 1 < p <∞. There exists a constant c > 0 such that

‖ sup
j
|Tϕ

2j
f |‖p ≤ c‖f‖p, f ∈ Lp(G).

For all f ∈ Lp(G),

f(g) = lim
j→∞

∑
π∈Irr(G)

dπϕ2j (π)Tr(f̂(π)π(g)), a.e. g ∈ G.

For all f ∈ L2(G),

f(g) = lim
j→∞

∑
π∈K

2j

dπTr(f̂(π)π(g)), a.e. g ∈ G.

(2) Let 3/2 < p <∞. There exists a constant c > 0 such that

‖ sup
n
|Tϕnf |‖p ≤ c‖f‖p, f ∈ Lp(G).

For all f ∈ Lp(G),

f(g) = lim
n→∞

∑
π∈Irr(G)

dπϕn(π)Tr(f̂(π)π(g)), a.e. g ∈ G.

6.3. Smooth radial multipliers on some hyperbolic groups.

6.3.1. Bochner-Riesz means and finitely supported completely bounded multipliers. In this sub-
section we briefly discuss a noncommutative analogue of Bochner-Riesz means for the setting
of hyperbolic groups. We refer to [GdlH90, Gro87] for a complete description of hyperbolic
groups. We merely remind that all hyperbolic groups are weakly amenable and the completely
bounded radial Fourier multipliers have been characterized in [Oza08, MdlS17]. In particular,
we denote by | | the usual word length function on a hyperbolic group Γ, then the Fourier
multipliers

Bδ
N (x) =

∑
g∈Γ:|g|≤N

(
1− |g|

2

N2

)δ
x̂(g)λ(g), x ∈ V N(Γ)

define a family of completely bounded maps on V N(Γ) with supN ‖Bδ
N‖cb < ∞ as soon as

δ > 1 (see [MdlS17, Example 3.4]). Let

bδN (g) = (1− |g|
2

N2
)δ1[0,N ](|g|)

be the corresponding symbols of the maps Bδ
N . It is easy to check that

|1− bδN (g)| ≤ c |g|
N
, |bδN (g)| ≤ c N

|g|
, |bδN+1(g)− bδN (g)| ≤ c 1

N
, g ∈ Γ

for some constant c > 0. We are interested in the case where the word length function | | is
conditionally negative definite. This is the case if Γ is a non-abelian free group or a hyperbolic
Coxeter group. Applying Theorem 4.2, we obtain the following corollary.

Corollary 6.8. Let Γ and Bδ
N be as above with δ > 1. Assume additionally that the word

length function | | is conditionally negative definite. Let 2 ≤ p < ∞. Then there exists a
constant c such that

‖sup
N∈N

+Bδ
N (x)‖p ≤ c‖x‖p, x ∈ Lp(V N(Γ)),
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and for any x ∈ Lp(V N(Γ)), Bδ
N (x) converges a.u. to x as N →∞.

Remark 6.9. Arguing as in Step 2 of the proof of [CXY13, Theorem 6.2], we see that for all
δ > 0, there exists a constant C > 0 such that

‖sup
N∈N

+Bδ
N (x)‖2 ≤ C

(
‖sup
N∈N

+Bδ+1
N (x)‖2 + ‖x‖2

)
, x ∈ L2(V N(Γ)).

Thus the results in the above corollary also hold for the case δ > 0 and p = 2. We will
systematically study the Bochner-Riesz means in a subsequent paper.

Remark 6.10. The pointwise convergence of the above multipliers for 1 < p < 2 seems more
delicate. However, we can still construct some finitely supported multipliers satisfying the
pointwise convergence in this case. For any n ∈ N, we define a multiplier pn on V N(Γ) by

pn(x) =
∑
|g|=n

x̂(g)λ(g), x ∈ V N(Γ),

which is the projection onto the subspace span{λ(g) : |g| = n}. Ozawa [Oza08] showed that
these operators satisfy the following estimate

(6.10) ‖pn : V N(Γ)→ V N(Γ)‖ ≤ β(n+ 1)

where β is a positive constant independent of n. For any N ∈ N, we set

mN (g) = 1[0,N2](|g|)e−
|g|
N , g ∈ Γ.

On the other hand, for any t ∈ R+, denote St : λ(g) 7→ e−t|g|λ(g). By assumption (St)t∈R+ is
a semigroup of unital completely positive trace preserving and symmetric maps. We write

e−
|g|
N −mN (g) = 1[N2+1,∞)(|g|)e−

|g|
N =

∞∑
r=N2+1

e−
r
N 1|g|=r.

Hence, by the estimate (6.10), we have

‖S1/N − TmN : V N(Γ)→ V N(Γ)‖ ≤
∞∑

r=N2+1

‖e−
r
N pr‖ . β

∞∑
r=N2+1

N6

r6
(r + 1) . β

1

(N + 1)2
.

By duality and interpolation, for any 1 ≤ p ≤ ∞, we have

‖S1/N − TmN : Lp(V N(Γ))→ Lp(V N(Γ))‖ . β 1

N2
.

By Proposition 2.10, S1/N is of strong type (p, p) for any 1 < p <∞. Hence for any selfadjoint
element x ∈ Lp(V N(Γ)) with 1 < p <∞,

‖sup
N∈N

+TmN (x)‖p ≤ ‖sup
N∈N

+S1/N (x)‖p + ‖sup
N∈N

+(S1/N − TmN )(x)‖p

.β,p ‖x‖p +
∑
N≥0

1

(N + 1)2
‖x‖p

.β,p ‖x‖p.
Similarly, for any 2 ≤ p <∞, we have

‖(TmN (x))N‖Lp(M;`c∞) .β,p ‖x‖p.
Then by Proposition 2.9 it is easy to check that TmNx converges a.u. to x as N → ∞
for x ∈ Lp(V N(Γ)) with 2 ≤ p < ∞ and converges b.a.u. for 1 < p < 2. Note that we
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may also obtain the weak type (1, 1) estimate and b.a.u. convergence on L1(V N(Γ)) for
multipliers λ(g) 7→ 1[0,N ](|g|)e−

√
|g|/Nλ(g) by the same argument, since the subordinated

Poisson semigroup λ(g) 7→ e−t
√
|g|λ(g) is of weak type (1, 1) according to [JX07, Remark 4.7].

The above arguments work for all groups with the rapid decay property with respect to a
conditionally negative definite length function.

6.3.2. Smooth positive definite radial kernels on free groups. Using our main result, we may
provide a wide class of completely positive smooth multipliers on free groups satisfying the
pointwise convergence apart from Poisson semigroups. To this end we will need the following
characterization of radial positive definite functions on free groups. In the following Fd will
denote the free group with d generators (2 ≤ d ≤ ∞).

Theorem 6.11 ([HK15, Theorem 1.1] and [Ver20, Theorem 1.2]). Let ν be a positive Borel
measure on [−1, 1]. Define a function ϕ on N by

ϕ(k) =

∫ 1

−1
xkdν(x), k ∈ N.

Then ϕ̇(g) := ϕ(|g|) is a positive definite function on F∞, where | | is the word length function.

Then we get the following proposition. Note that if ν is the Dirac measure on 0 in this
proposition, then this statement amounts to the almost uniform convergence of Poisson semi-
groups on V N(Fd) proved in [JX07].

Proposition 6.12. Let ν be an arbitrary positive Borel measure supported on [−1, 1] with
ν([−1, 1]) = 1 and write dνt(x) = dν(tx) for all t > 0. For any t > 0, set

mt(g) =

∫
R
x|g|dνt(x− e−

2
t ), g ∈ Fd,

where | | is the usual word length function. Then there exist an absolute positive number t0 > 0
and a constant c > 0 such that for all 1 < p <∞ and all x ∈ Lp(V N(Fd)),

‖(Tmtx)t≥t0‖Lp(M;`∞) ≤ c‖x‖p and Tmtx→ x a.u. as t→∞.

Proof. Using integration by substitution with y = t(x− e−
2
t ), we have

mt(g) =

∫
R
x|g|dνt(x− e−

2
t ) =

∫ 1

−1

(y
t

+ e−
2
t

)|g|
dν(y).

By some fundamental analysis, we can find a number t0 large enough such that for any t ≥ t0,

e−
2
t − 1

t
≥ e−

4
t and

1

t
+ e−

2
t < e−

2
3t .

Then for any t ≥ t0,

(6.11) |mt(g)| ≤
(

1

t
+ e−

2
t

)|g|
≤ e−

2|g|
3t .

t

|g|
,

|1−mt(g)| ≤ 1−
(
−1

t
+ e−

2
t

)|g|
≤
(

1− e−
4|g|
t

)
.
|g|
t
.

Moreover we note that
dv

dtv
mt(|g|) =

∫ 1

−1

dv

dtv

(y
t

+ e−
2
t

)|g|
dν(y).
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Set f(t) = y
t + e−

2
t . By a straightforward computation,

(6.12) | d
v

dtv
f(t)| .v

1

tv+1
.

Recall the Faá di Bruno formula:

dv

dtv
F (f(x)) =

∑
P∈P(v)

F (|P |)(f(t)) ·
∏
B∈P

f (|B|)(t)

where P(v) is the set of all partitions of {1, · · · , v}, B ∈ P means that B is a block of the
partition P , and |B| denotes the size of the block B and |P | means the number of blocks.
Similar as (6.11), |f(t)| ≤ e−

2
3t . Then using the Faá di Bruno formula and (6.12), we see that

for any v ≥ 1 and y ∈ [−1, 1],

dv

dtv

(y
t

+ e−
2
t

)k
=

∑
P∈P(v),|P |≤min{v,k}

k(k − 1) · (k − |P |+ 1)f(t)k−|P | ·
∏
B∈P

f (|B|)(t)

.v
∑

P∈P(v),|P |≤min{v,k}

k(k − 1) · (k − |P |+ 1)e−
2(k−|P |)

3t ·
∏
B∈P

1

t|B|+1

.v
∑

P∈P(v),|P |≤min{v,k}

k(k − 1) · (k − |P |+ 1)
t|P |

(k − |P |)|P |
· 1

tv+|P |

.v
∑

P∈P(v)

2|P |
1

tv
.v

1

tv
.

Therefore, (mt)t≥t0 satisfies (4.3) in (A2).
Note that Fd is a subgroup of F∞, and νt(· − e−t/2) is supported in [−1, 1] for large t > 0.

So mt is positive definite on Fd by Theorem 6.11 for t ≥ t0. Also, for any t ≥ t0 Tmt(1) = 1
since ν([−1, 1]) = 1. Thus for any t ≥ t0, Tmt is unital completely positive and it extends
to a contraction on Lp(V N(Fd)). Moreover, the natural length function | | is conditionally
negative definite. On the other hand, for all 1 < p <∞ we can always find a positive integer η
depending on p such that 1+ 1

2η < p. Then the proof is complete by applying Theorem 4.3. �

We remark that the totally same argument applies to many other examples of groups acting
on homogeneous trees.

6.4. Results and problems on Euclidean spaces. As we mentioned in Subsection 6.1.1,
the definition of the symbol given by (6.1), though motivated by the geometric group theory,
coincides with the Fejér means in R. From a geometric viewpoint, even in the Euclidean spaces
Rd it is still natural to consider other Følner sets besides cubes, such as balls and rectangles. In
particular, we obtain new interesting Fourier multipliers on classical Euclidean spaces, which
might be regarded as generalized Fejér means.

More precisely, let B be a symmetric convex body in Rd such that the interior contains 0.
We define the functions ϕt associated with B as

(6.13) ϕt(ξ) =
µ(Bt ∩ (ξ +Bt))

µ(Bt)
,
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where Bt = {ξ ∈ Rd : ξ/t ∈ B} and µ is Lebesgue measure. Then Tϕt defines a completely
positive Fourier multiplier on Lp-spaces. Let Φ be the inverse Fourier transform of the convo-
lution µ(B)−11B ∗ 1B, then for all t > 0,

Tϕtf = Φt ∗ f, where Φt = t−dΦ(t−1·).
The following corollary is obtained similarly using the arguments in Section 6.1.1.

Corollary 6.13. Let B and (ϕt)t be as above.
(1) (Tϕ

2j
)j∈Z is of strong type (p, p) for any 1 < p < ∞, and for any f ∈ Lp(Rd) with

1 < p <∞, Tϕ
2j

(f) converges a.e. to f as j →∞.
(2) (Tϕt)t>0 is of strong type (p, p) for any 3

2 < p < ∞, and for any f ∈ Lp(Rd) with
3/2 < p <∞, Tϕt(f) converges a.e. to f as t→∞.

Proof. For any non-zero vector ξ ∈ Rd, there is a unique positive number |ξ|B such that
ξ/|ξ|B ∈ ∂B since B is convex and its interior contains 0. We make the convention that
|0|B = 0. Note that µ(Bt) = tdµ(B). We have

1− ϕt(ξ) ≤
µ(Bt+|ξ|B\Bt)

µ(Bt)
≤ (t+ |ξ|B)d − td

td
.d
|ξ|B
t
.

Also, we have
∂ϕt
∂t

= lim
h→0

1

h

(
1Bt+h ∗ 1Bt+h(ξ)

µ(Bt+h)
− 1Bt ∗ 1Bt(ξ)

µ(Bt)

)
. lim

h→0

1

h

µ(Bt+h)− µ(Bt)

µ(Bt)
.d

1

t
.

Then the remaining arguments are similar to those for nilpotent groups in Section 6.1.1. We
skip it here. �

Remark 6.14. Let N be a semifinite von Neumann algebra. As in Section 6.5, we may
consider the noncommutative maximal inequalities and the a.u. convergence for the sequence
of multipliers

(
Tϕt ⊗ idLp(N )

)
t
on Lp(Rd;Lp(N )) with symbols (ϕt)t given by (6.13). These

properties indeed follow from Remark 4.6, and the above corollary still holds for (Tϕt⊗idLp(N ))t
in this noncommutative setting thanks to Lemma 3.6 (2).

The main problem left open at this stage is the following:

Problem 6.15. Let B and (ϕt)t be as above. Do we have

‖ sup
t>0
|Tϕt(f)|‖L1,∞ ≤ Cd‖f‖1, f ∈ L1(Rd)

with a constant Cd depending only on d and B?

Remark 6.16. (1) The answer is well-known to be affirmative if B is a cube (where Tϕt
becomes the classical Fejér mean). See for example [Gra08, Section 3.3.2].

(2) If the boundary of B is sufficiently smooth and has everywhere non-vanishing Gaussian
curvature, the answer is still affirmative. To see this, it suffices to note that Φ = (1̂B)2, and
there is a constant C > 0 with

(6.14) |1̂B(ξ)| ≤ C(1 + |ξ|)−(d+1)/2, ξ ∈ Rd.
See for instance [Ste93].

(3) For general symmetric convex bodies, the best estimate is due to the work [BHI03]:
there is a constant C > 0 with ∫

Sd−1

|1̂B(rξ)|2dξ ≤ Cr−(d+1)
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for large r where Sd−1 is the unit sphere in Rd. This estimate has important applications
in the study of distributions of lattice points in convex domains and the Falconer distance
problem etc. Compared with (6.14), this estimate is the spherical average of Φ. Can we get
the desired maximal inequality by using this spherical average?

A positive answer to Problem 6.15 would yield the strong type (p, p) estimate for Tϕt for all
p > 1 by interpolation. Recall that the constant Cp for the strong type (p, p) estimate can be
taken to be independent of d in Theorem 1.9. So it is natural to raise the following question
in the present setting:

Problem 6.17. Consider the best constant Cp,d > 0 with

‖ sup
t>0
|Tϕt(f)|‖p ≤ Cp,d‖f‖p, f ∈ Lp(Rd).

What is the dependence of Cp,d on d? When can we choose Cp,d independent of d?

6.5. Dimension free bounds of noncommutative Hardy-Littlewood maximal oper-
ators. Our results in particular apply to the problem of dimension free estimates for Hardy-
Littlewood maximal operators. Let B be a symmetric convex body in Rd. We consider the
associated averages

Φt(f)(x) =
1

µ(B)

∫
B
f(x− y

t
)dy, f ∈ Lp(Rd), x ∈ Rd, t > 0.

Let N be a semifinite von Neumann algebra equipped with a normal semifinite trace ν
and Lp(Rd;Lp(N )) be the Bochner Lp(N )-valued Lp-spaces. Recall that we may view the
space Lp(Rd;Lp(N )) as a noncommutative Lp-space associated with the von Neumann algebra
L∞(Rd)⊗N : for any 1 ≤ p <∞,

Lp(L∞(Rd)⊗N ,
∫
⊗ν) ∼= Lp(Rd;Lp(N )).

We could then extend Bourgain’s results for the corresponding Hardy-Littlewood maximal
operators on noncommutative Lp-spaces Lp(Rd;Lp(N )).

Proof of Theorem 1.9. Without loss of generality, we assume µ(B) = 1. Let

mt(ξ) = td1̂t−1B(ξ) = 1̂B(ξ/t)

be the Fourier transform of the kernel of the above operator Φt. Then we may view Φt as the
Fourier multiplier so that Φ̂tf = mtf̂ .

Since the bound of a maximal operator is invariant under invertible linear transforms, thus
by a transform, we can assume that B is in the isotropic position with isotropic constant L =
L(B) (see Lemma 2 in [Bou86a]) and 1̂B satisfies the following estimates (see the computations
in Section 4 of [Bou86a]): there exists a constant c independent of d and B such that

|1̂B(ξ)| ≤ c 1

|ξ|L
, |1− 1̂B(ξ)| ≤ cL|ξ| |〈∇1̂B(ξ), ξ〉| ≤ c, ξ ∈ Rd.

On the other hand, setting ζ = ξ/t = (ξl/t)
d
l=1, we have

d

dt
mt(ξ) =

d

dt
1̂B(ζ) =

d∑
l=1

∂ζl
∂t
· ∂1̂B(ζ)

∂ζl
= −

d∑
l=1

ζl
t
∂l1̂B(ζ) = −1

t
〈∇1̂B(ζ), ζ〉.
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Therefore, (mt)t satisfies (A2) with η = 1. Then, applying Theorem 4.3, Remark 4.5 (2),
Remark 4.6, and Lemma 3.6 (2) to the modified Poisson semigroup (PtL)t∈R+ on Rd, we
immediately get the desired assertions (1) and (2) of Theorem 1.9.

We use the similar arguments for higher derivatives:

d2

dt2
1B(ζ) =

d∑
l=1

∂ζl
∂t
· ∂
∂ζl

(
d∑
l=1

∂ζl
∂t
· ∂1B(ζ)

∂ζl

)
=

d∑
l=1

ζl
t
· ∂
∂ζl

(
d∑
l=1

ζl
t
· ∂1B(ζ)

∂ζl

)

=
1

t2

 d∑
l=1

ζl∂l (1B(ζ)) +
d∑

l1,l2=1

ζl1ζl2∂l1∂l2 (1B(ζ))

 ,

and

d3

dt3
(
1B(ζ)

)
=

1

t3

 d∑
l=1

ζl∂l
(
1B(ζ)

)
+ 2

d∑
l1,l2=1

ζl1ζl2∂l1∂l2
(
1B(ζ)

)
+

d∑
l1,l2,l3=1

ζl1ζl2ζl3∂l1∂l2∂l3
(
1B(ζ)

) .

Repeating this process, we get

dv

dtv
(
1B(ζ)

)
=

1

tv

v∑
k=1

ck d∑
l1,l2,...,lk=1

ζl1ζl2 · · · ζlk∂l1∂l2 · · · ∂lk

(1B(ζ)
)

where ck are constants only depending on k. Recall that

∂l1∂l2 · · · ∂lk 1̂B(ζ) =
(

(−2πi)kxl1xl2 · · ·xlk1B
)̂

(ζ).

Then ∣∣∣∣ dvdtvmt(ξ)

∣∣∣∣ =
1

tv

∣∣∣∣∣∣
v∑
k=1

ck d∑
l1,l2,...,lk=1

ζl1ζl2 · · · ζlk∂l1∂l2 · · · ∂lk 1̂B(ζ)

∣∣∣∣∣∣
.v

1

tv

∣∣∣∣∣∣
v∑
k=1

 d∑
l1,l2··· ,lk=1

ζl1ζl2 · · · ζlk
(

(2πi)kxl1xl2 · · ·xlk1B(x)
)̂

(ζ)

∣∣∣∣∣∣
.v

1

tv

v∑
k=1

∣∣∣∣∫
Rd
e−2πi〈x,ζ〉〈x, ζ〉k1B(x)dx

∣∣∣∣ .
In particular, if B is the `q-ball with q ∈ 2N, the computations in [Bou87] assert that for any
k ≥ 0 there exists a constant c′k independent of d such that∣∣∣∣∫

Rd
e−2πi〈x,ζ〉〈x, ζ〉k1B(x)dx

∣∣∣∣ ≤ c′k.
Hence for `q-ball with q ∈ 2N, (mt)t∈R+ satisfies (A2) for any η > 0. For any 1 < p ≤ 2,
choosing an η large enough (depending on p) and applying Theorem 4.3 (2), Remark 4.6 and
Lemma 3.6 (2), we obtain Theorem 1.9 (3). �
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Remark 6.18. At the moment of writing, it seems that our approach is not enough to
establish dimension free bounds for other `q-balls with q ∈ [1,∞] \ 2N and new ideas are
certainly required. The corresponding results in the classical setting are given by Müller
[Mül90] (for q ∈ [1,∞) \ 2N) and Bourgain [Bou14] (for q = ∞). From Theorem 1.9, it is
naturally conjectured that the noncommutative analogues of their results should still hold.

Appendix: Følner sequences in the dual of SU(N)

We will prove Proposition 6.6 in this section.
Fisrt, we recall briefly the representation theory of SU(N). For more details, we refer

to [Jon98, Chapter 8]. The irreducible representations of SU(N) can be labeled by N − 1
non-negative integers, and we write set-theoretically Irr(SU(N)) = NN−1. And moreover, the
decomposition of tensor products into irreducible representations can be described by Young
diagrams. Young diagrams consist of boxes: we stick some boxes together so that the number
of boxes in each consecutive row (from top to bottom) and each consecutive column (from left
to right) does not increase.

Each irreducible representation u(t1,t2,··· ,tN−1) corresponds to a Young diagrams of the fol-
lowing form:

N − 1



tN−1︷ ︸︸ ︷ tN−2︷ ︸︸ ︷
· · ·

t2︷ ︸︸ ︷ t1︷ ︸︸ ︷
...

...

Let α, β ∈ Irr(SU(N)). The family of irreducible subrepresentations of the tensor product
α � β corresponds to all the Young diagrams appeared after the following operations. We
denote by Xα and Xβ the corresponding Young diagrams of α and β. We are going to
decompose the tensor product of Young diagrams Xα �Xβ :

�

Q1 Q1 Q1 Q1

Q2 Q2 Q2

Q3

.

The prescription goes like this:
(R1) Start by filling the boxes in the top row of Xβ with labels ‘Q1’ and the boxes in the

second row with labels ‘Q2’ and etc (see the above figure).
(R2) Add boxes Q1 · · · Q1 , Q2 · · · Q2 , Q3 · · · etc from Xβ to Xα in order according

to the following rules:

(a) Each time we add a box Qi from to Xβ to Xα such that the augmented Xα diagram
must be again a Young diagram which has at most N rows.

(b) Boxes with the same label, e.g. Q1, must not appear in the same column.
(c) At any given box position, define n1 to be the number of Q1’s above and to the right of

it. Define n2 for Q2 in the similar way, etc. Then we must have n1 ≥ n2 ≥ n3 etc.
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(R3) If two diagrams of the same shape are produced by this process, they are counted as
different only if the labels are differently distributed.
(R4) Cancel columns with N boxes.

For each π ∈ Irr(SU(N)), we denote by Xπ its corresponding Young diagram. If in the
decomposition of Xα�Xβ there are at most N different operations of the above form yielding
Xπ, then the multiplicity Nπ

αβ equals to N .
Moreover, for an irreducible representation u(t1,t2,··· ,tN−1), the dimension is given by the

following formula

d(t1, t2, · · · , tN−1) = (t1 + 1)(t2 + 1) · · · (tN−1 + 1)

·
(

1 +
t1 + t2

2

)(
1 +

t2 + t3
2

)
· · ·
(

1 +
tN−2 + tN−1

2

)
·
(

1 +
t1 + t2 + t3

3

)(
1 +

t2 + t3 + t4
3

)
· · ·
(

1 +
tN−3 + tN−2 + tN−1

3

)
...

· (1 +
t1 + t2 + · · ·+ tN−1

N − 1
).

(A.1)

We have the following fact.

Lemma A.1. Let N ≥ 2. Set Kn = {0, 1, 2, · · · , n}N−1 ⊂ Irr(SU(N)). Then (Kn)n∈N
satisfies the following conditions.

(1) We have

(n+ 1)N
2−2 .N |En+1|w .N (n+ 1)N

2−2 where En+1 = Kn+1\Kn.

(2) For any t, n ∈ N and any α ∈ Kn, π ∈ Kt, all the irreducible subrepresentations of α�π
are contained in the finite set Kn+(N−1)t, i.e. N

β
απ = 0 if β /∈ Kn+(N−1)t.

Proof. We write π = (t1, t2, · · · , tN−1) ∈ NN−1. The conjugate representation is given by
π̄ = (tN−1, tN−2, · · · , t1)

(1) Denote

J ′ =
{
l = (l1, l2, · · · , lN−1) ∈ NN−1 : ∀ 1 ≤ j ≤ N−1, 1 ≤ lj ≤ j(N−j),

N−1∑
j=0

lj =
N(N − 1)

2

}
.

Then we may write

dπ =
∑
l∈J ′

C ′l(t1 + 1)l1(t2 + 1)l2 · · · (tN−1 + 1)lN−1 ,

for some constants C ′l depending only on N , and

d2
π =

∑
l∈J

Cl(t1 + 1)l1(t2 + 1)l2 · · · (tN−1 + 1)lN−1
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with some constants Cl depending only on N and

J =

(l1, l2, · · · , lN−1) ∈ NN−1 : ∀ 2 ≤ lj ≤ 2j(N − j),
N−1∑
j=0

lj = N(N − 1)

 .

Denote
Ejn+1 = {(k1, k2, · · · , kN−1) ∈ Kn+1 : kj = n+ 1} .

By definition, En+1 ⊂ ∪N−1
j=1 E

j
n+1. Therefore,

|Ejn+1|w =
∑

k∈Ein+1

d2
k

=
∑

k∈Ein+1

∑
l∈J

Cl(k1 + 1)l1(k2 + 1)l2 · · · (n+ 2)li · · · (kN−1 + 1)lN−1

�
∑
l∈J

Cl(n+ 2)li(n+ 2)l1+1(n+ 2)l2+1 · · · (n+ 2)li−1+1(n+ 2)li+1+1 · · · (n+ 2)lN−1+1

= (
∑
l∈J

Cl)(n+ 2)N
2−2 = d2

0(n+ 2)N
2−2,

where 0 = (0, 0, · · · , 0). Note that d2
0 is a constant depending only on N . Thus,

(n+ 2)N
2−2 .N |Ejn+1|w ≤ |En|w ≤

N−1∑
j=1

|Ejn+1|w .N (n+ 2)N
2−2.

(2) This follows directly from the rules of decomposition of tensor product of Young dia-
grams.

�

Proposition A.2 (Proposition 6.6). Let (Kn)n and π = (t1, · · · , tN−1) be as above. Set

ϕn(π) =

∑
α,β∈Kn N

π
ᾱβdαdβ

dπ(
∑

ξ∈Kn d
2
ξ)

.

Then

1− ϕn(π) .N
|π|
n+ 1

and |ϕn+1(π)− ϕn(π)| .N
1

n+ 1
,

where |π| = max{ti : 1 ≤ i ≤ N − 1}.

Proof. Let Ek = Ek\Ek−1 for all k ≥ 1. Denote t = |π|, i.e. π ∈ Et. Let n ≥ 1. Define

∂1
πKn = {α ∈ Kn : ∃β ∈ Kc

n, such that β ⊂ απ},

∂2
πKn = {β ∈ Kc

n : ∃α ∈ Kn, such that α ⊂ βπ}.
Assume first n − (N − 1)t ≥ 0. By Lemma A.1 (2), we know that if α ∈ Kn−(N−1)t, all the
irreducible subrepresentations of α � π belong to Kn, which implies ∂1

πKn ∩Kn−(N−1)t = ∅.
Therefore

(A.2) |∂1
πKn|w ≤ | ∪nk=n−(N−1)t+1 Ek|w .N

n∑
k=n−(N−1)t+1

(k + 1)N
2−1 .N t(n+ 1)N

2−2.
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On the other hand, if n− (N − 1)t < 0, then

|∂1
πKn|w ≤ |Kn|w .N (n+ 1)N

2−1 .N t(n+ 1)N
2−1.

Also by Lemma A.1 (2), we have ∂2
πKn ⊂ Kn+(N−1)t\Kn. Therefore,

|∂2
πKn|w ≤ | ∪n+(N−1)t

k=n+1 Ei|w .N
n+(N−1)t∑
k=n+1

(k + 1)N
2−1 .N t(n+ 1)N

2−2.

Moreover, we have |Kn|w =
∑n

i=1 |Ei|w &N (n + 1)N
2−1 and by Lemma A.1 (1) we have

nN
2−1 .N |Kn|w .N nN

2−1. Therefore we obtain

|∂πKn|w
|Kn|w

.N
t(n+ 1)N

2−2

(n+ 1)N2−1
.N

t

n+ 1
.

Note that for any α ∈ Kn\∂1
πKn, we have α � π = ⊕β∈KnN

β
απβ. In particular, we see that∑

β∈Kn N
π
ᾱβdβ = dπdα and

1− ϕn(π) =

∑
α∈Kn dα(dαdπ −

∑
β∈Kn N

π
ᾱβdβ)

dπ|Kn|w

=

∑
α∈∂1

πKn
dα(dαdπ −

∑
β∈Kn N

π
ᾱβdβ)

dπ|Kn|w
+ 0

≤ |∂
1
πKn|w
|Kn|w

.N
t

n+ 1
.

For the second inequality, by Lemma A.1 (3) we have

|ϕn+1(π)− ϕn(π)| = |(1− ϕn(π))− (1− ϕn+1(π))|

=

∣∣∣∣∣∣
∑

α∈Kn dα

(∑
β∈Kc

n+1
Nβ
απdβ

)
dπ|Kn|w

−

∑
α∈Kn+1

dα

(∑
β∈Kc

n+1
Nβ
απdβ

)
dπ|Kn+1|w

∣∣∣∣∣∣
=

∣∣∣∣∣∣
|En+1|w

(∑
α∈Kn dα

(∑
β∈Kc

n+1
Nβ
απdβ

))
dπ|Kn|w|Kn+1|w

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

α∈Kn dα

(∑
β∈Kc

n
Nβ
απdβ

)
−
∑

α∈Kn+1
dα

(∑
β∈Kc

n+1
Nβ
απdβ

)
dπ|Kn+1|w

∣∣∣∣∣∣
≤
|En+1|w

(∑
α∈Kn dαdαdπ

)
dπ|Kn|w|Kn+1|w

+

∣∣∣∣∣∣
∑

β∈En+1
dβ

(∑
α∈Kn N

α
βπdα

)
−
∑

α∈En+1
dα

(∑
β∈Kc

n+1
Nβ
απdβ

)
dπ|Kn+1|w

∣∣∣∣∣∣
≤
|En+1|w

(∑
α∈Kn dαdαdπ

)
dπ|Kn|w|Kn+1|w

+

∑
β∈En+1

dβdβdπ +
∑

α∈En+1
dαdαdπ

dπ|Kn+1|w

≤ 3
|En+1|w
|Kn+1|w

.N
1

n+ 1
.
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