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POINTWISE CONVERGENCE OF NONCOMMUTATIVE FOURIER SERIES

This paper is devoted to the study of pointwise convergence of Fourier series for non-abelian compact groups, group von Neumann algebras and quantum groups. It is well-known that a number of approximation properties of groups can be interpreted as summation methods and mean convergence of the associated noncommutative Fourier series. Based on this framework, this work studies the refined counterpart of pointwise convergence of these Fourier series. As a key ingredient, we develop a noncommutative bootstrap method and establish a general criterion of maximal inequalities for approximative identities of noncommutative Fourier multipliers. Based on this criterion, we prove that for any countable discrete amenable group, there exists a sequence of finitely supported positive definite functions tending to 1 pointwise, so that the associated Fourier multipliers on noncommutative Lp-spaces satisfy the pointwise convergence for all p > 1. In a similar fashion, we also obtain results for a large subclass of groups (as well as quantum groups) with the Haagerup property and the weak amenability. We also consider the analogues of Fejér means and Bochner-Riesz means in the noncommutative setting. Our approach heavily relies on the noncommutative ergodic theory in conjunction with abstract constructions of Markov semigroups, inspired by quantum probability and geometric group theory. Even back to the Fourier analysis on Euclidean spaces and non-abelian compact groups, our results are novel and yield new insights and problems. On the other hand, we obtain as a byproduct the dimension free bounds of the noncommutative Hardy-Littlewood maximal inequalities associated with convex bodies.

Introduction and main results

The study of convergence of Fourier series goes back to the very beginning of Fourier analysis. Recall that for an integrable function f on the unit circle T, the Dirichlet summation method is defined as

(D N f )(z) = N k=-N f (k)z k , z ∈ T, N ∈ N,
where f denotes the Fourier transform of f . This summation method is quite intuitive, but very intricate to deal with. Indeed, the mean convergence of these sums is equivalent to the boundedness of the Hilbert transform, which is a typical example of Calderón-Zgymund singular integral operators; the corresponding pointwise convergence problem is much more complicated and was solved by Carleson and Hunt, which is now well-known as the Carleson-Hunt theorem. In order to study these Dirichlet means and their higher-dimensional version, there have appeared numerous related problems together with other summation methods, which have always been motivating the development of harmonic analysis. For instance, as averages of Dirichlet means, the Fejér means stand out

(F N f )(z) = N k=-N 1 - |k| N f (k)z k , z ∈ T, N ∈ N.
It is well-known that F N defines a positive and contractive operator on L p (T), and F N f converges almost everywhere to f for all 1 ≤ p ≤ ∞ (see e.g. [START_REF] Grafakos | Classical Fourier analysis[END_REF]). In the case of higher dimensions, the ball multiplier problem was solved negatively by Fefferman [START_REF] Fefferman | The multiplier problem for the ball[END_REF]; and people considered instead the Bochner-Riesz means which can be viewed as fractional averages of ball multipliers. However, that whether the Bochner-Riesz means with critical index still have the desired mapping properties remains one of the famous open problems in three and higher dimensions, which is closely related to many other open problems in harmonic analysis, PDEs, additive combinatorics, number theory etc (see e.g. [KT02, Tao99b, Tao99a, Tao04] and the references therein). These problems have been stimulating the further development of analysis and beyond.

In recent decades, similar topics have been fruitfully developed in the setting of operator algebras and geometric group theory. The study was initiated in the groundbreaking work of Haagerup [START_REF] Haagerup | An example of a nonnuclear C * -algebra, which has the metric approximation property[END_REF], motivated by the approximation properties of group von Neumann algebras. Indeed, let Γ be a countable discrete group with left regular representation λ : Γ → B( 2 (Γ)) given by λ(g)δ h = δ gh , where the δ g 's form the unit vector basis of 2 (Γ). The corresponding group von Neumann algebra V N (Γ) is defined to be the weak operator closure of the linear span of λ(Γ). For f ∈ V N (Γ) we set τ (f ) = δ e , f δ e where e denotes the identity of Γ. Then τ is a faithful normal tracial state on V N (Γ). Any such f admits a formal Fourier series g∈Γ f (g)λ(g) with f (g) = τ (f λ(g -1 )).

The convergence and summation methods of these Fourier series at the operator algebraic level (i.e. at the L ∞ (V N (Γ)) level) are deeply linked with the geometric and analytic properties of Γ, and in the noncommutative setting they are usually interpreted as various approximation properties for groups (see e.g. [BO08, CCJ + 01]). More precisely, for a function m : Γ → C we may formally define the corresponding Fourier multiplier by

(1.1) T m : g∈Γ f (g)λ(g) → g∈Γ m(g) f (g)λ(g).

We may consider among others the following approximate properties:

(1) Γ is amenable if there exists a family of finitely supported functions (m N ) N ∈N on Γ so that T m N defines a unital completely positive map on V N (Γ) and T m N f converges to f in the w*-topology for all f ∈ V N (Γ) (equivalently, m N converges pointwise to 1).

(2) Γ has the Haagerup property if there exists a family of c 0 -functions (m N ) N ∈N on Γ so that T m N defines a unital completely positive map on V N (Γ) and m N converges pointwise to 1.

(3) Γ is weakly amenable if there exists a family of finitely supported functions (m N ) N ∈N on Γ so that T m N defines a completely bounded map on V N (Γ) with sup N T m N cb < ∞ and m N converges pointwise to 1.

If we take Γ = Z (in this case V N (Z) = L ∞ (T)) and m N (k) = (1 -|k|/N ) + , then T m N recovers the Fejér means F N and obviously satisfies the above conditions. These approximation properties play an essential role in the modern theory of von Neumann algebras, as well as in geometric group theory. For example, the work of Cowling-Haagerup [START_REF] Cowling | Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one[END_REF] on the weak amenability solves the isomorphism problems of various group von Neumann algebras; the Haagerup property and its opposite Kazhdan property (T) are amongst the central tools in Popa's deformation/rigidity theory [START_REF] Popa | Deformation and rigidity for group actions and von Neumann algebras[END_REF]; also, the weak amenability is a key ingredient in the modern approach to the strong solidity and uniqueness of Cartan subalgebras [OP10, [START_REF] Chifan | On the structural theory of II1 factors of negatively curved groups[END_REF][START_REF] Popa | Unique Cartan decomposition for II1 factors arising from arbitrary actions of free groups[END_REF]. Despite the remarkable progress in this field, it is worthy mentioning that only the convergence of T m N f in the w*-topology was studied in the aforementioned work. A standard argument also yields the convergence in norm in the corresponding noncommutative L p -spaces L p (V N (Γ)) for 1 ≤ p < ∞. On the other hand, the analogue of almost everywhere convergence in the noncommutative setting was introduced by Lance in his study of noncommutative ergodic theory [START_REF] Lance | Ergodic theorems for convex sets and operator algebras[END_REF]; this type of convergence is usually called the almost uniform convergence (abbreviated as a.u. convergence; see Section 2.2). Keeping in mind the aforementioned impressive results already obtained from the mean convergence, it is natural to develop a refined theory of pointwise convergence of noncommutative Fourier series, and to seek applications in geometric group theory, operator algebras and harmonic analysis. More precisely, it is known that for the previous maps T m N and for f ∈ L p (V N (Γ)), there exists a subsequence (N k ) k (possibly depending on f and p) such that T m N k f converges a.u. to f . From the viewpoint of analysis, the following problem naturally arises: can we choose N k to be independent of f , or even can we choose N k to be k? If G is abelian, this is exactly the classical pointwise convergence problem. As mentioned previously, the study of the pointwise convergence problem is much more difficult than the mean convergence problem as in the case of Dirichlet means; it still remains one of the major subjects of harmonic analysis nowadays, for instance the study of Bochner-Riesz means and maximal Schrödinger operators, see e.g. [START_REF] Tao | On the maximal Bochner-Riesz conjecture in the plane for p < 2[END_REF][START_REF] Lee | On radial Fourier multipliers and almost everywhere convergence[END_REF][START_REF] Du | Sharp L 2 estimates of the Schrödinger maximal function in higher dimensions[END_REF][START_REF] Li | New estimates of maximal bochner-riesz operator in the plane[END_REF] and the references therein. So the above problem should be regarded as one of the initial steps to develop Fourier analysis on noncommutative L p -spaces.

However, compared to the classical setting, the pointwise convergence problem on noncommutative L p -spaces remains essentially unexplored, up to sporadic contributions [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF][START_REF] Chen | Harmonic analysis on quantum tori[END_REF]. The reason for this lack of development might be explained by numerous difficulties one may encounter when dealing with maximal inequalities for noncommutative Fourier multipliers. Indeed, in the commutative setting, the pointwise convergence problem almost amounts to the validity of maximal inequalities [START_REF] Stein | On limits of seqences of operators[END_REF], and the arguments for maximal inequalities depend in their turn on the explicit expressions or the pointwise estimates of the kernels. However, the kernels of noncommutative Fourier multipliers are only formal elements in a noncommutative L 1 -space, which are in general no longer related to classical functions and cannot be pointwisely comparable, so the usual methods for classical maximal inequalities do not apply to the noncommutative setting any more. Although the notion of noncommutative maximal inequality has been formulated successfully thanks to the theory of vector-valued noncommutative L p spaces [START_REF] Pisier | Non-commutative vector valued Lp-spaces and completely p-summing maps[END_REF][START_REF] Junge | Doob's inequality for non-commutative martingales[END_REF], the approaches to these inequalities are very limited, except the noncommutative Doob inequality in martingale theory [START_REF] Junge | Doob's inequality for non-commutative martingales[END_REF] and its analogue in ergodic theory [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF][START_REF] Hong | Noncommutative maximal ergodic inequalities associated with doubling conditions[END_REF], where some additional nice properties of the underlying operators are available.

In this paper we would like to provide a new approach to the maximal inequalities and pointwise convergence theorems for noncommutative Fourier series. To our best knowledge, the current trend of investigation on noncommutative Fourier multipliers mainly relies on various transference methods and quantum probability theory (see e.g. [START_REF] Neuwirth | Transfer of Fourier multipliers into Schur multipliers and sumsets in a discrete group[END_REF][START_REF] Chen | Harmonic analysis on quantum tori[END_REF][START_REF] Junge | Smooth Fourier multipliers on group von Neumann algebras[END_REF][START_REF] Junge | Noncommutative Riesz transforms-dimension free bounds and Fourier multipliers[END_REF]). The method presented in this paper is completely independent of all these preceding works, so is entirely new. The strategy turns out to be efficient in a very general setting; roughly speaking, it allows us to deal with all Fourier-like structures including quantum groups, twisted crossed products and free Gaussian systems. In many cases, we may give an explicit answer to the pointwise convergence problem raised previously. Back to the classical setting, this approach also yields new results, insights and problems.

In the following part of this section we will present some of our main results.

Criteria for maximal inequalities of Fourier multipliers. Our key technical theorem gives a criterion for maximal inequalities of noncommutative Fourier multipliers. This criterion only focuses on the regularity and decay information of symbols of multipliers in terms of length functions. Hence it is relatively easy to verify. As mentioned previously, the theorem can be extended to all Fourier-like expansions in general von Neumann algebras. For simplicity we only present the results for group von Neumann algebras V N (Γ) as illustration, and we refer to Theorem 4.2, Theorem 4.3 and Theorem 4.18 for a complete statement.

Let Γ be a discrete group and let : Γ → [0, ∞) be a conditionally negative definite function on it. We consider a family of real valued unital positive definite functions (m t ) t∈R + . It is known that the associated operators (T mt ) t∈R + defined as in (1.1) extend to contractive maps on L p (V N (Γ)) for all 1 ≤ p ≤ ∞ (see Section 4 for more details). In this framework we present the following result. We refer to Section 2 for the notions of noncommutative L p -spaces L p (V N (Γ)) and noncommutative maximal norms sup + n x n p for (x n ) n ⊂ L p (V N (Γ)).

Theorem 1.1. Let Γ, and (T mt ) t∈R + be as above. Assume that there exist α, β > 0 and η ∈ N + such that for all g ∈ Γ and 1 ≤ k ≤ η we have

|1 -m t (g)| ≤ β (g) α t , |m t (g)| ≤ β t (g) α , d k m t (g) dt k ≤ β 1 t k ,
then for all 1 + 1 2η < p ≤ ∞ there exists a constant c such that for all f ∈ L p (V N (Γ)), sup

t∈R + + T mt f p ≤ c f p and T mt f → f a.u. as t → ∞,
and for all 1 < p ≤ ∞ there exists a constant c such that for all f ∈ L p (V N (Γ)),

sup

N ∈N + T m 2 N f p ≤ c f p and T m 2 N f → f a.u. as N → ∞,
Similar results hold for uniformly bounded (but not necessarily positive) Fourier multipliers (T mt ) if we restrict ourselves to the case p ≥ 2. The study of Theorem 1.1 relies on the analysis of lacunary subsequences (T m 2 N ) N ∈N . This type of lacunarity seems to be insufficient in the further study of abstract analysis on groups. The theorem below is more suitable for the abstract setting, which applies to other sequences without being of the form (T m 2 N ) N ∈N in Theorem 1.1 and will play a prominent role in the remaining part of this work.

Theorem 1.2. Let Γ and be as above. Let (m N ) N ∈N be a sequence of real valued unital positive definite functions. If there exist α, β > 0 such that for all g ∈ Γ,

|1 -m N (g)| ≤ β (g) α 2 N , |m N (g)| ≤ β 2 N (g) α ,
then for all 1 < p ≤ ∞ there exists a constant c > 0 such that for all f ∈ L p (V N (Γ)), sup

N ∈N + T m N f p ≤ c f p and T m N f → f a.u. as N → ∞.
The main idea of the proof will be to compare the Fourier multipliers with certain quantum Markov semigroups, and then apply the ergodic theory of the latter developed by [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF]. This is first loosely inspired by the study of variational inequalities (in particular the comparison between averaging operators and martingales in [CDHX17, DHL17, HM17]), and then by Bourgain's approach to the dimension-free bounds of Hardy-Littlewood maximal inequalities [START_REF] Bourgain | On high-dimensional maximal functions associated to convex bodies[END_REF][START_REF] Bourgain | On the L p -bounds for maximal functions associated to convex bodies in R n[END_REF][START_REF] Bourgain | On dimension free maximal inequalities for convex symmetric bodies in R n[END_REF][START_REF] Deleaval | Dimension free bounds for the Hardy-Littlewood maximal operator associated to convex sets[END_REF]]. Bourgain's work is based on a careful study of the L p ( ∞ )-norm estimate of differences between ball averaging operators and Poisson semigroups on Euclidean spaces. In this paper we will develop similar techniques for noncommutative Fourier multipliers and abstract quantum Markov semigroups. This method based on ergodic theory seems to be new even for the study of pointwise convergence of commutative Fourier multipliers; see in particular Corollaries 1.7 and 1.8.

As a key point of the proof, we will develop a bootstrap argument in the noncommutative setting for the first time. The so-called bootstrap methods have had a deep impact on classical harmonic analysis since the original work [START_REF] Nagel | Differentiation in lacunary directions[END_REF]; see e.g. [START_REF] Duoandikoetxea | Maximal and singular integral operators via Fourier transform estimates[END_REF][START_REF] Carbery | An almost-orthogonality principle with applications to maximal functions associated to convex bodies[END_REF][START_REF] Bourgain | On dimension-free variational inequalities for averaging operators in R d[END_REF]. Though not explicitly mentioned in the original papers, the aforementioned work by Bourgain [START_REF] Bourgain | On high-dimensional maximal functions associated to convex bodies[END_REF][START_REF] Bourgain | On the L p -bounds for maximal functions associated to convex bodies in R n[END_REF][START_REF] Bourgain | On dimension free maximal inequalities for convex symmetric bodies in R n[END_REF] can be essentially compared with the previous ones and recognized with hindsight as a certain bootstrap argument with independent techniques. Motivated by Bourgain's method, we will develop a bootstrap argument based on the almost orthogonality principle: deducing the desired L p -estimates for p < 2 from the L 2 -estimates by a delicate study of suitable decompositions of (T m N f -T e -t N √ f ) N and certain differences of (T m N f ) N .

It is relevant to remark that there is no straightforward way to extend the classical bootstrap arguments directly to the noncommutative setting. In particular, as a noncommutative variant of the vector-valued L p -space L p (Ω; 2 ) for the study of noncommutative square functions, the space L p (M; cr 2 ) (to be defined in Subsection 3) does not coincide with the interpolation space of the form (L p (M; q 1 ), L p (M; q 2 )) θ unless the underlying von Neumann algebra M is commutative, but the corresponding interpolation method for the commutative case plays a key role in realizing classical bootstrap arguments; also, as a fundamental tool, the Littlewood-Paley-Stein square function estimate of sharp growth order for p < 2 is itself a quite involved topic in noncommutative analysis. Our proof is consequently more intricate than the classical ones, and involves more modern techniques or ideas from operator space theory, maximal inequalities and noncommutative square function estimates.

Approximation properties, pointwise convergence of Fourier series and explicit examples. Based on the preceding theorems, we may provide answers to the noncommutative pointwise convergence problems for a wide class of Fourier multipliers on quantum groups. Again we only present here the particular case of group von Neumann algebras for simplicity; the general version for quantum groups can be found in Thereom 5.9 and Corollary 5.11. We refer to Section 5 for the notion of groups with the ACPAP, which form a large subclass of groups with the Haagerup property and the weak amenability.

Theorem 1.3. (1) Any countable discrete amenable group Γ admits a sequence of finitely supported unital positive definite functions

(m N ) N ∈N so that T m N f converges to f a.u. for all f ∈ L p (V N (Γ)) with 1 < p ≤ ∞.
More generally, for any sequence of finitely supported unital positive definite functions (m N ) N ∈N on Γ pointwise converging to 1, there exists a subsequence (m N k ) k∈N such that T m N k f converges to f a.u. for all f ∈ L p (V N (Γ)) with 1 < p ≤ ∞.

(2) Any countable discrete group Γ with the ACPAP admits a sequence of completely contractive Fourier multipliers (T m N ) N ∈N on V N (Γ) so that m N are finitely supported and T m N f converges to f a.u. for all f ∈ L p (V N (Γ)) with 2 ≤ p ≤ ∞.

Our approach to the above theorem differs greatly from usual strategies in the study of pointwise convergence problems. The key idea is to construct an abstract Markov semigroup whose symbols are sufficiently close to (m N ) N so that Theorem 1.2 becomes applicable. In hindsight, the construction is essentially inspired by geometric group theory and operator algebras; in particular we would like to mention several related works in this setting [START_REF] Jolissaint | Algèbres de von Neumann finies ayant la propriété de Haagerup et semi-groupes L 2 -compacts[END_REF][START_REF] Caspers | The Haagerup approximation property for von Neumann algebras via quantum Markov semigroups and Dirichlet forms[END_REF][START_REF] Daws | The Haagerup property for locally compact quantum groups[END_REF][START_REF] Cipriani | Amenability and subexponential spectral growth rate of Dirichlet forms on von Neumann algebras[END_REF], where an interplay between Fourier multipliers, approximation properties and abstract Markov semigroups has been highlighted. Our method applies to quite general classes of Fourier multipliers as soon as the symbols satisfy a suitable convergence rate. Together with the comments after Theorem 1.2, our approach might be viewed as an application of ergodic theory of genuinely abstract semigroups to pointwise convergence problems, which is novel even in the classical setting (see Theorem 1.6 and Corollary 1.8).

Our method is also useful for the study of pointwise convergence of Dirichlet means in the noncommutative setting. Taking an increasing sequence (K N ) N ∈N of finite subsets of Γ, one may consider the partial sums

D N f = g∈K N f (g)λ(g) for f ∈ V N (Γ).
As in the classical case, in general f cannot be approximated by D N f in the uniform norm ∞ even for elements f in the reduced C*-algebra C * r (Γ) generated by λ(Γ). On the other hand, the problem of convergence of D N f in L p -norms in the noncommutative setting is also very subtle (see e.g. [START_REF] Junge | C OLp spaces-the local structure of noncommutative Lp spaces[END_REF][START_REF] Bożejko | A note on certain partial sum operators[END_REF]). In [BC09, BC12, CWW15], the uniform convergence of (D N ) N ∈N on some smooth dense subalgebras of C * r (Γ) was studied. However, if we replace the uniform convergence by the almost uniform one and choose appropriately the family (K N ) N ∈N , it seems that the result can be largely improved; in particular we may obtain the almost uniform convergence for more general measurable operators contained in L 2 (V N (Γ)). The proof will be given in the general setting of quantum groups in Proposition 5.12.

Theorem 1.4. Any countable discrete group Γ with the ACPAP admits an increasing sequence (K N ) N ∈N of finite subsets of Γ such that the series g∈K N f (g)λ(g) converges a.u. to f as N tends to infinity for all f ∈ L 2 (V N (Γ)).

As in the classical setting, it would be interesting to deal with more explicit examples of Fourier multipliers. Apart from the above abstract result, our method is also useful for the study of concrete multipliers in the noncommutative setting.

Example 1.5. i) Generalized Fejér means: We may introduce the following analogue of Fejér means on non-abelian discrete amenable groups. Let (K N ) N ∈N be a Følner sequence, that is,

K N ⊂ Γ are subsets so that m N (g) := 1 K N * 1 K N (g) |K N | = |K N ∩ gK N | |K N | → 1, as N → ∞,
where |K N | denotes the cardinality of K N . Then m N is finitely supported and the associated multiplier T m N is unital completely positive with m N finitely supported. And there is a subsequence (N k ) k∈N such that

T m N k f → f a.u. f ∈ L p (V N (Γ))
for all 1 < p ≤ ∞. For instance if Γ is a group of polynomial growth with finite generating set S, we may take K N = S N . If moreover Γ is a 2-step nilpotent group and p > 3/2, we may take N j = j. We refer to Section 6.1 for more details.

ii) Noncommutative Bochner-Riesz means: Let Γ be a hyperbolic group so that the word length function | | is conditionally negative definite. For example we may take Γ to be a non-abelian free group or a hyperbolic Coxeter group. The following Bochner-Riesz means are introduced in [MdlS17]: for a fixed δ > 1 we take

B δ N f = g∈Γ:|g|≤N 1 - |g| 2 N 2 δ f (g)λ(g), f ∈ L p (V N (Γ)).
We have B δ N f → f almost uniformly for all 2 ≤ p ≤ ∞. We refer to Section 6.3.1 for more details.

iii) Smooth positive definite radial kernels on free groups: Let F be a non-abelian free group. As before, | | denotes its natural word length function. Let ν be an arbitrary positive Borel measure supported on [-1, 1] with ν([-1, 1]) = 1 and write dν t (x) = dν(tx) for all t > 0. For any t > 0, set

m t (g) = R x |g| dν t (x -e -2 t ) = 1 -1 y t + e -2 t |g| dν(y), g ∈ F.
Then for all 1 < p ≤ ∞ and all f ∈ L p (V N (F)),

T mt f → f a.u. as t → ∞.
The proof can be founded in Section 6.3.2. Note that if ν is the Dirac measure on 0, then this statement amounts to the almost uniform convergence of Poisson semigroups on V N (F) proved in [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF].

Applications to classical analysis on compact groups. As mentioned previously, we will indeed establish Theorem 1.3 in the general setting of Woronowicz's compact quantum groups. As a particular case our result applies to Fourier series of non-abelian compact groups. Recall that for a compact group G, any function f ∈ L p (G) admits a Fourier series

f (x) ∼ π∈Irr(G) dim(π)Tr( f (π)π(x)), x ∈ G with f (π) = G f (x)π(x -1 )dx,
where Irr(G) denotes the collection of equivalence classes of irreducible unitary representations of G. The study of pointwise summability of above Fourier series is much more intricate than the abelian case. To our best knowledge, the pointwise convergence theorems in this setting were studied for differentiable or continuous functions in [START_REF] Harish-Chandra | Discrete series for semisimple Lie groups. II. Explicit determination of the characters[END_REF][START_REF] Sugiura | Fourier series of smooth functions on compact Lie groups[END_REF][START_REF] Huang | A generalized Fejér's theorem for locally compact groups[END_REF], and for some p-integrable functions on compact Lie groups for example in [START_REF] Clerc | Sommes de Riesz et multiplicateurs sur un groupe de Lie compact[END_REF][START_REF] Stanton | Polyhedral summability of Fourier series on compact Lie groups[END_REF]. However, from the viewpoint of amenable quantum groups, our approach easily establishes the following pointwise convergence theorem for general p-integral functions. The summation method does not rely on the Lie algebraic structure, which is a novel aspect compared to previous works; moreover it can be extended to the general setting of compact quantum groups.

Theorem 1.6. Let G be a compact second countable group. There exists a sequence of finitely supported functions m N : Irr(G) → R so that

(F N f )(x) := π∈Irr(G) m N (π) dim(π)Tr( f (π)π(x)), x ∈ G, f ∈ L p (G)
defines unital positive operators on L p (G) and

lim N →∞ F N f = f a.e., f ∈ L p (G)
for all 1 < p ≤ ∞. Moreover, there exists an increasing sequence of finite subsets K N ⊂ Irr(G) such that for all f ∈ L 2 (G) we have

f (x) = lim N →∞ π∈K N dim(π)Tr( f (π)π(x)), a.e. x ∈ G.
The functions m N can be explicitly determined by the representation theory of G. More details and examples will be given in Section 6.2. Note that though the above result is stated in a totally classical setting, the role of noncommutative analysis on quantum groups is still non-avoidable in the proof.

The classical Euclidean setting. In the classical Euclidean setting, our approach provides the following new type of approximate identities. We refer to Section 6.4 for more details.

Corollary 1.7. Let B be a symmetric convex body in R d with volume 1. Let Φ be the inverse Fourier transform of the convolution 1 B * 1 B , where 1 B denotes the characteristic function of B, and let Φ t = t -d Φ(t -1 •) for t > 0. Then we have

lim t→0 Φ t * f = f a.e., f ∈ L p (R d ) with 3/2 < p < ∞, and lim j→∞ Φ 2 -j * f = f a.e., f ∈ L p (R d ) with 1 < p < ∞.
These approximate identities might be regarded as generalized Fejér means; in particular, if B is the unit cube, the convergence of (Φ t * f ) t>0 also holds for 1 < p < ∞ and we recover the classical Fejér means. We can alternatively deal with the problem by using classical estimate of Φ if the boundary of B satisfies some smooth conditions (see Remark ??), but our approach based on Theorem 1.1 seems more efficient for general convex bodies without smooth boundaries. To our knowledge, these approximate identities have not yet been widely studied by harmonic analysts. However, from the viewpoint of geometric theory of amenable groups, they arise very naturally when we study Følner sets in R d other than cubes, such as balls and rectangles. It seems that one needs more efforts and new tools to obtain further results, which suggests new challenges to classical harmonic analysts and (convex) geometers. We will give the proof and mention a few problems in Section 6.4.

On the other hand, Theorem 1.3 (1) and Theorem 1.4 indeed provide the following general abstract answers to the classical pointwise convergence problems. Indeed, if we take Γ = Z d , then L p (V N (Γ)) coincides with L p (T d ) and the theorems amount to the following facts:

Corollary 1.8. (1) Let (Φ N ) N ∈N ⊂ L 1 (T d ) be an arbitrary sequence of positive trigonometric polynomials with lim N Φ N * f -f 1 = 0 for all f ∈ L 1 (T d ).
Then there exists a subsequence (N k ) k∈N such that for all 1 < p ≤ ∞ and all f ∈ L p (T d ), we have

lim k→∞ Φ N k * f = f a.e.
(2) There exists a subsequence (N k ) k∈N such that

j∈Z d : √ |j 1 | 2 +•••+|j d | 2 ≤N k f (j)e 2πi j,•
converges a.e. to f as k tends to infinity for all f ∈ L 2 (T d ).

From the proof of Theorem 1.4, the number N k in the above assertion (2) can be actually chosen to be 2 k , which partially recovers [CRdFV88, Theorem B]; while the problem whether N k can be equal to k, was solved by Carleson when d = 1 -known as the Carleson theoremand is still a well-known open problem in classical harmonic analysis for d ≥ 2.

Note that when reduced to this classical setting, our method is still novel, which unavoidably involves the ergodic theory and the bootstrap method in Theorem 1.2 as well as the aforementioned genuinely abstract Markov semigroups.

Dimension free bounds of noncommutative Hardy-Littlewood maximal inequalities. We remark that Theorem 1.1 also implies as a byproduct the dimension free bounds of noncommutative Hardy-Littlewood maximal operators. The noncommutative version of Hardy-Littlewood maximal inequalities was studied in [START_REF] Mei | Operator valued Hardy spaces[END_REF] for balls respect to Euclidean metrics and in [START_REF] Hong | Noncommutative maximal ergodic inequalities associated with doubling conditions[END_REF] for general doubling metric spaces. The dimension free bounds in this noncommutative setting were studied by the first author in [START_REF] Hong | Non-commutative ergodic averages of balls and spheres over euclidean spaces[END_REF] for Euclidean balls; because of various difficulties in noncommutative analysis as mentioned before, the general case for convex bodies remained unexplored before our work. Our following result establishes the desired maximal inequalities for general convex bodies in R d with dimension free estimates.

Theorem 1.9. Let B be a symmtric convex body in R d and N a semifinite von Neumman algebra. Define Φ r :

L p (R d ; L p (N )) → L p (R d ; L p (N )) by Φ r (f )(x) = 1 µ(B) B f (x -ry)dy.
Then there exist constants C p > 0 independent of d and B such that the following holds:

(1) For any 1 < p < ∞,

sup j∈Z + Φ 2 j (f ) p ≤ C p f p , f ∈ L p (R d ; L p (N )).
(2) For any 3 2 < p < ∞,

sup r∈R + + Φ r (f ) p ≤ C p f p , f ∈ L p (R d ; L p (N )).
(

) If B is the q -ball {(x i ) d i=1 : d i=1 |x i | q ≤ 1} with q ∈ 2N, then for any 1 < p < ∞, sup r∈R + + Φ r (f ) p ≤ C p f p , f ∈ L p (R d ; L p (N )). 3 
Before ending the introduction, we would like to mention the following order estimate for square function inequalities, which is of independent interest. This order of constants (p-1) -6 is of crucial use in the proof of Theorem 1.1. The following remarkable result is established in [START_REF] Junge | H ∞ functional calculus and square functions on noncommutative L p -spaces[END_REF] without specifying the order of the constants. Our proof is based on a slight adaption of the arguments in [START_REF] Junge | H ∞ functional calculus and square functions on noncommutative L p -spaces[END_REF], which will be given in Section 3.

Theorem 1.10. Let M be a finite von Neumann algebra. Let (P t ) t∈R + be the subordinate Poisson semigroup of a semigroup (S t ) t∈R + of unital completely positive trace preserving and symmetric operators on M. Then there exists an absolute positive constant c such that for all 1 < p < 2 and x ∈ L p (M) we have inf (

∞ 0 |t∂P t (x c )| 2 dt t ) 1 2 p + ( ∞ 0 |(t∂P t (x r )) * | 2 dt t ) 1 2 p ≤ c(p -1) -6 x p
where the infimum runs over all

x c , x r ∈ L p (M) such that x = x c + x r .
The rest of the paper is divided as follows. In Section 2 we will recall the background and prove some preliminary results on noncommutative vector-valued L p -spaces and pointwise convergences. Section 3 is devoted to the proof of square function estimates in Theorem 1.10. In Section 4 we will establish the key criterion for maximal inequalities of Fourier multipliers, i.e., Theorem 1.1. Lastly, in Section 5 we will prove Theorem 1.3 and in Section 6 we will establish various examples of maximal inequalities and pointwise convergence theorems of noncommutative Fourier multipliers, including Theorem 1.6 and Theorem 1.9.

Notation:

In all what follows, we write X Y if X ≤ CY for an absolute constant C > 0, and X α,β,••• Y if X ≤ CY for a constant C > 0 depending only on the parameters indicated. Also, we write X Y if C -1 Y ≤ X ≤ CY for an absolute constant C > 0.

Preliminaries

Let M denote a semifinite von Neumann algebra equipped with a normal semifinite faithful trace τ . Let S M+ denote the set of all x ∈ M + such that τ (supp x) < ∞, where supp x denotes the support projection of x. Let S M be the linear span of S M+ . Then S M is a w*-dense * -subalgebra of M. Given 1 ≤ p < ∞, we define

x p = [τ (|x|) p ] 1/p , x ∈ S M ,
where |x| = (x * x) [START_REF] Junge | Doob's inequality for non-commutative martingales[END_REF]. See also [JX07, Section 2] for more details. Given 1 ≤ p ≤ ∞, we define L p (M; ∞ ) to be the space of all sequences x = (x n ) n∈N in L p (M) which admit a factorization of the following form: there exist a, b ∈ L 2p (M) and a bounded sequence y = (y n ) ⊂ M such that

x n = ay n b, n ∈ N.
The norm of x in L p (M; ∞ ) is given by

x Lp(M; ∞) = inf a 2p sup n∈N y ∞ b 2p
where the infimum runs over all factorizations of x as above. We will adpot the convention that the norm x Lp(M; ∞) is denoted by sup + n x n p . As an intuitive description, it is worth remarking that a selfadjoint sequence (x n ) n∈N of L p (M) belongs to L p (M; ∞ ) if and only if there exists a positive element a ∈ L p (M) such that -a ≤ x n ≤ a for any n ∈ N. In this case, we have (2.1)

sup n∈N + x n p = inf{ a p : a ∈ L p (M) + , -a ≤ x n ≤ a, ∀n ∈ N}.
The subspace L p (M, c 0 ) of L p (M; ∞ ) is defined as the space of all family (x n ) n∈N ⊂ L p (M) such that there are a, b ∈ L 2p (M) and (y n ) ⊂ M verifying

x n = ay n b and lim n→∞ y n ∞ = 0.

It is easy to check that L p (M, c 0 ) is a closed subspace of L p (M; ∞ ). It is indeed the closure of the subspace of all finitely supported sequences.

On the other hand, we may also consider the space L p (M; c ∞ ) for 2 ≤ p ≤ ∞. This space L p (M; c ∞ ) is defined to be the family of all sequences (x n ) n∈N ⊂ L p (M) which admits a ∈ L p (M) and (y n ) ⊂ L ∞ (M) such that

x n = y n a and sup n∈N y n ∞ < ∞. (x n ) Lp(M; c ∞ )
is then defined to be the infimum of {sup n∈N y n ∞ a p } over all factorization of (x n ) as above. It is easy to check that

Lp(M; c ∞ ) is a norm, which makes L p (M; c ∞ ) a Banach space. Moreover, (x n ) ∈ L p (M; c ∞ ) iff (x * n x n ) ∈ L p/2 (M; ∞ ). Indeed, we have (2.2) (x n ) Lp(M; c ∞ ) = (x * n x n ) 1/2 L p/2 (M; ∞) . We define similarly the subspace L p (M; c c 0 ) of L p (M; c ∞ ). We define the space L p (M; r ∞ ) := {(x n ) : (x * n ) ∈ L p (M; c ∞ )} for 2 ≤ p ≤ ∞ with the norm (x n ) Lp(M; r ∞ ) = (x * n ) Lp(M; c ∞ ) .
The following interpolation theorem was firsted studied by Pisier in [START_REF] Pisier | The operator Hilbert space OH, complex interpolation and tensor norms[END_REF] and then generalized by Junge and Parcet in [START_REF] Junge | Mixed-norm inequalities and operator space Lp embedding theory[END_REF].

Lemma 2.1 ([JP10, Theorem A]). For any 2 ≤ p ≤ ∞, we have isometrically

L p (M; ∞ ) = (L p (M; c ∞ ), L p (M; r ∞ )) 1/2
. Another Banach space L p (M; 1 ) is also defined in [START_REF] Junge | Doob's inequality for non-commutative martingales[END_REF]. Given 1 ≤ p ≤ ∞, a sequence x = (x n ) n∈N belongs to L p (M; 1 ) if there are u kn , v kn ∈ L 2p (M) such that

x n = k≥0 u * kn v kn , n ≥ 0 and (x n ) n Lp(M; 1 ) := inf      k,n≥0 u * kn u kn 1/2 p k,n≥0 v * kn v kn 1/2 p      < ∞.
Specially, for a positive sequence x = (x n ), we have

x Lp(M; 1 ) = n≥0

x n p .

The following proposition will be useful in this paper.

Proposition 2.2 ([JX07, JP10]). Let 1 ≤ p, p ≤ ∞ and 1/p + 1/p = 1.

(1) L p (M; ∞ ) is the dual space of L p (M; 1 ) when p = ∞. The duality bracket is given by x, y

= n≥0 τ (x n y n ), x ∈ L p (M; ∞ ), y ∈ L p (M; 1 ).
In particular for any positive sequence (x n ) n in L p (M; ∞ ), we have

sup n + x n p = sup{ n τ (x n y n ) : y n ∈ L + p (M) and n y n p ≤ 1}.
(2) Each element in the unit ball of L p (M; ∞ ) (resp. L p (M; 1 )) is a sum of sixteen (resp. eight) positive elements in the same ball.

(3) Let 1 ≤ p 0 < p < p 1 ≤ ∞ and 0 < θ < 1 be such that 1 p = 1-θ p 0 + θ p 1 . Then the following complex interpolation holds: we have isometrically

L p (M; ∞ ) = (L p 0 (M; ∞ ), L p 1 (M; ∞ )) θ .
Similar complex interpolations also hold for L p (M; c ∞ ) with 2 ≤ p ≤ ∞. We remark that we may define the spaces L p (M; ∞ (I)), L p (M; c 0 (I)) and L p (M; c ∞ (I)), L p (M; c c 0 (I)) for any uncountable index set I in the same way. The above properties still hold for these spaces. We will simply denote the spaces by the same notation L p (M; ∞ ), L p (M; c 0 ) and so on if no confusion can occur.

Remark 2.3. It is known that a family (x i ) i∈I ⊂ L p (M) belongs to L p (M; ∞ ) if and only if sup J⊂I finite sup i∈J + x i p < ∞,
and in this case

(2.3) sup i∈I + x i p = sup J finite sup i∈J + x i p .
Similar observations hold for L p (M; c ∞ ). As a conseqeunce, for any 1 ≤ p < ∞ and any

(x t ) t∈R + ∈ L p (M; ∞ ) such that the map t → x t from R + to L p (M) is continuous, we have (x t ) t∈R + Lp(M; ∞) = lim a→1 + (x a j ) j∈Z Lp(M; ∞) .
To see this, we note that (x t ) t∈R + Lp(M; ∞) ≥ lim sup a→1 + (x a j ) j∈Z Lp(M; ∞) ; thus by (2.3) it suffices to show that (x t k ) 1≤k≤n Lp(M; ∞) is dominated by lim inf a→1 + (x a j ) j∈Z Lp(M; ∞) for any (finitely many) elements t 1 , . . . , t n . This is obvious since for any ε > 0, by continuity we may find a scalar a 0 ∈ R + sufficiently close to 1 such that for all 1 ≤ k ≤ n, x t k -x a j k 0 p < ε/n with some j k ∈ Z and (x a j 0 ) j∈Z Lp(M; ∞) ≤ lim inf a→1 + (x a j ) j∈Z Lp(M; ∞) + ε, which implis

(x t k ) 1≤k≤n Lp(M; ∞) ≤ (x a j k 0 ) 1≤k≤n Lp(M; ∞) + 1≤k≤n x t k -x a j k 0 p ≤ lim inf a→1 + (x a j ) j∈Z Lp(M; ∞) + 2ε.
Similarly, for 2 ≤ p < ∞, we have

(x t ) t∈R + Lp(M; c ∞ ) = lim a→1 + (x a j ) j∈Z Lp(M; c ∞ ) . 2.2.
Maximal inequalities and pointwise convergence. The standard tool in the study of pointwise convergence is the following type of maximal inequalities.

Definition 2.4. Let 1 ≤ p ≤ ∞. Consider a family of maps Φ n : L p (M) → L 0 (M) for n ∈ N.
(1) We say that

(Φ n ) n∈N is of strong type (p, p) with constant C if sup n∈N + Φ n (x) p ≤ C x p , x ∈ L p (M).
(2) We say that (Φ n ) n∈N is of weak type (p, p) (p < ∞) with constant C if for any x ∈ L p (M) and any α > 0 there is a projection e ∈ M such that

eΦ n (x)e ∞ ≤ α, n ∈ N and τ (e ⊥ ) ≤ C x p α p .
(3) We say that (Φ n ) n∈N is of restricted weak type (p, p) (p < ∞) with constant C if for any projection f ∈ M and any α > 0, there is a projection e ∈ M such that

eΦ n (f )e ∞ ≤ α n ∈ N and τ (e ⊥ ) ≤ C α p τ (f ).
It is easy to see that for any 1 < p < ∞, strong type (p, p) ⇒ weak type (p, p) ⇒ restricted weak type (p, p).

Here is a simple but useful proposition.

Proposition 2.5. Let (Φ n ) n∈N be a sequence of positive linear maps on L p (M). Then

(Φ n ) n : L p (M; ∞ ) → L p (M; ∞ ) (Φ n ) n : L p (M) → L p (M; ∞ ) .
Proof. By setting x n = x, it is obvious to see that

(Φ n ) n : L p (M) → L p (M; ∞ ) ≤ (Φ n ) n : L p (M; ∞ ) → L p (M; ∞ ) .
For the inverse direction, we consider positive elements first. Let (x n ) n ∈ L p (M; ∞ ) + . For any ε > 0, by (2.1), we can find an element a ∈ L p (M) + such that, 0 ≤ x n ≤ a, ∀n and a p ≤ sup n∈N

+ x n p + ε.
By linearity and positivity of (Φ n ) n , we have 0 ≤ Φ n x n ≤ Φ n a. Therefore

sup n + Φ n x n ≤ sup n + Φ n a ≤ (Φ n ) n : L p (M) → L p (M; ∞ ) ( sup n + x n p + ε).
Thus, by arbitrariness of ε and Proposition 2.2 (2), we get

(Φ n ) n : L p (M; ∞ ) → L p (M; ∞ ) ≤ 16 (Φ n ) n : L p (M) → L p (M; ∞ ) .
The Marcinkiewicz interpolation theorem plays an important role in the study of maximal inequalities. Its analogue for the noncommutative setting was first established by Junge and Xu in [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF], and then was generalized in [START_REF] Bekjan | Noncommutative maximal inequalities associated with convex functions[END_REF] and [START_REF] Dirksen | Weak-type interpolation for noncommutative maximal operators[END_REF]. We present Dirksen's version here.

Theorem 2.6 ([Dir15, Corollary 5.3]). Let 1 ≤ p < r < q ≤ ∞. Let (Φ n ) n∈N be a family of positive linear maps from L p (M) + L q (M) into L 0 (M). If (Φ n ) n∈N is of restricted weak type (p, p) and of strong type (q, q) with constants C p and C q , then it is of strong type (r, r) with constant C r max{C p , C q }( rp r -p

+ rq q -r ) 2 .
We need an appropriate analogue for the noncommutative setting of the usual almost everywhere convergence. This is the notion of almost uniform convergence introduced by Lance It is obvious that the a.u. convergence implies the b.a.u. convergence, so we will be mainly interested in the former. Note that in the commutative case, both notions are equivalent to the usual almost everywhere convergence in terms of Egorov's Theorem in the case of probability space.

It is nowadays a standard method of deducing pointwise convergence from maximal inequalities. We will use the following facts.

Lemma 2.8 ([DJ04]). (1) If a family (x i ) i∈I belongs to L p (M, c 0 ) with some 1 ≤ p < ∞, then x i conveges b.a.u. to 0.

(2) If a family (x i ) i∈I belongs to L p (M, c c 0 ) with some 2 ≤ p < ∞, then x i conveges a.u. to 0.

Proposition 2.9. (1) Let 1 ≤ p < ∞ and (Φ n ) n∈N be a sequence of positive linear maps on L p (M). Assume that (Φ n ) n∈N is of weak type (p, p). If (Φ n x) n∈N converges a.u. to 0 for all elements x in a dense subspace of L p (M), then (Φ n x) n∈N converges a.u. for all x ∈ L p (M).

(2) Let 1 ≤ p < ∞ and (Φ n ) n∈N be a sequence of linear maps on L p (M). Assume that (Φ n ) n∈N satisfies the following one sided weak type (p, p) maximal inequalities, i.e. there exists C > 0 such that for any x ∈ L p (M) and α > 0 there exists a projection e ∈ M such that

(2.4) Φ n (x)e ∞ ≤ α, n ∈ N and τ (e ⊥ ) ≤ C x p α p .
If (Φ n x) n∈N converges a.u. to 0 for all elements x in a dense subspace of L p (M), then (Φ n x) n∈N converges a.u. for all x ∈ L p (M).

Proof. The assertion (1) is given by [CL16, Theorem 3.1]. The second part is standard and is implicitly established in the proof of [JX07, Remark 6.5] and [CXY13, Theorem 5.1] for which we provide a brief argument for the convenience of the reader. Let x ∈ L p (M) and ε > 0. For any m ≥ 1, take y m ∈ L p (M) such that x-y m p < 2 -2m/p C -1 ε 1/p and (Φ n y m ) n converges a.u. to 0 as n → ∞. Denote z m = x-y m . By the estimation of one side weak type (p, p), we may find a projection e m ∈ M such that

sup n Φ n (z m )e m ∞ ≤ 2 -m/p and τ (e ⊥ m ) ≤ C z m p 2 -m/p p < 2 -m ε.
We may also find a projection f m ∈ M such that

τ (f ⊥ m ) < 2 -m ε and lim n→∞ Φ n (y m )f m ∞ = 0. Let e = m (e m ∧ f m ). Then τ (e ⊥ ) ≤ m≥1 (τ (e ⊥ m ) + τ (f ⊥ m )) < ε and for any m ≥ 1, lim sup n→∞ Φ n (x)e ∞ ≤ lim n→∞ ( Φ n (y m )f m + Φ n (z m ) ) ≤ 2 -m/p ,
which means that lim n→∞ Φ n (x)e ∞ = 0. Therefore, Φ n (x) converge a.u. to 0.

We recall the following well-known fact, which is of essential use for our arguments. The following maximal inequalities and the a.u. convergence on dense subspaces are given in [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF], and the a.u. convergence on L p -spaces then follows from Proposition 2.9 (1). We recall that a map T is said to be symmetric if τ (T (x) * y) = τ (x * T (y)) for any x, y ∈ S M . Proposition 2.10. Let (S t ) t∈R + be a semigroup of unital completely positive trace preserving and symmetric maps on M. We have

(S t (x)) t Lp(M; ∞) ≤ c p x p , x ∈ L p (M), 1 < p < ∞, and 
(S t (x)) t Lp(M; c ∞ ) ≤ √ c p x p , x ∈ L p (M), 2 < p < ∞,
where c p ≤ Cp 2 (p -1) -2 with C an absolute constant. Moreover, (S t (x)) t converges a.u. to x as t → 0 for all x ∈ L p (M) with 1 < p < ∞.

3. Noncommutative Hilbert space valued L p -spaces and square function estimates

In this section we will collect some preliminary results on noncommutative square functions, which are among the essential tools in this paper. Some of the results proved in this section might be folkloric for experts, but we include them here for the convenience of the reader.

The noncommutative Hilbert space valued L p -spaces provide a suitable framework for studying square functions in the noncommutative setting. In this paper we will only use the following concrete representations of these spaces; for a more general description we refer to the papers [START_REF] Lust-Piquard | Noncommutative Khintchine and Paley inequalities[END_REF][START_REF] Lust-Piquard | Inégalités de Khintchine dans Cp (1 < p < ∞)[END_REF][START_REF] Junge | H ∞ functional calculus and square functions on noncommutative L p -spaces[END_REF].

First, for a finite sequence (x n ) n ⊂ L p (M), we define

(x n ) Lp(M; c 2 ) = n x * n x n 1/2 p , (x n ) Lp(M; r 2 ) = n x n x * n 1/2 p .
We alert the reader that the two norms above are not comparable at all if p = 2. Let L p (M; c 2 ) (resp. L p (M; r 2 ) ) be the completion of the space of all finite sequences in L p (M) with respect to

Lp(M; c 2 ) (resp. Lp(M; r 2 ) ). The space L p (M; cr 2 ) is defined in the following way. If 2 ≤ p ≤ ∞, we set L p (M; cr 2 ) = L p (M; c 2 ) ∩ L p (M; r 2 ) equipped with the norm (x n ) Lp(M; cr 2 ) = max{ (x n ) Lp(M; c 2 ) , (x n ) Lp(M; r 2 ) }. If 1 ≤ p ≤ 2, we set L p (M; cr 2 ) = L p (M; c 2 ) + L p (M; r 2 ) equipped with the norm (x n ) Lp(M; cr 2 ) = inf{ (y n ) Lp(M; c 2 ) + (z n ) Lp(M; r 2 )
} where the infimum runs over all decompositions

x n = y n + z n in L p (M).
Second, for the Borel measure space (R + \ {0}, dt t ), we may consider the norms

(x t ) t Lp(M;L c 2 ( dt t )) = ∞ 0 x * t x t dt t 1/2 p , (x t ) t Lp(M;L r 2 ( dt t )) = ∞ 0 x t x * t dt t 1/2 p .
We refer to [JLMX06, Section 6.A] for the rigorous meaning of the integral appeared in the above norm. Then we may define the spaces

L p (M; L c 2 ( dt t )), L p (M; L r 2 ( dt t )) and L p (M; L cr 2 ( dt t
)) in a similar way.

We recall the following basic properties.

Proposition 3.1. (1) (Duality) Let 1 ≤ p < ∞ and p such that 1/p + 1/p = 1. Then

(L p (M; c 2 )) * = L p (M; r 2 ), (L p (M; r 2 )) * = L p (M; c 2 ), (L p (M; cr 2 )) * = L p (M; cr 2 ).
The duality bracket is given by

(x n ) n , (y n ) n = n τ (x n y n ), (x n ) n ⊂ L p (M), (y n ) n ⊂ L p (M).
(

) (Complex interpolation [Pis82]) Let 1 ≤ p, q ≤ ∞ and 0 < θ < 1. Let 1 r = 1-θ p + θ q . 2 
Then we have the isomorphism with absolute constants

(L p (M; cr 2 ), L q (M; cr 2 )) θ = L r (M; cr 2 ). Similar complex interpolations also hold for L p (M; c 2 ) and L p (M; r 2 ). A sequence of independent random variables (ε n ) on a probalility space (Ω, P ) is called a Rademarcher sequence if P (ε n = 1) = P (ε n = -1) = 1
2 for any n ≥ 1. The following noncommutative Khintchine inequalities are well-known.

Proposition 3.2 ([LP86, LPP91, Pis98]). Let (ε n ) be a Rademarcher sequence on a probability space (Ω, P ). Let 1 ≤ p < ∞ and (x n ) be a sequence in L p (M; cr 2 ). (1) If 1 ≤ p ≤ 2, then there exists an absolute constant c > 0 such that c (x n ) n Lp(M; cr 2 ) ≤ n ε n x n Lp(Ω;Lp(M)) ≤ (x n ) n Lp(M; cr 2 ) .
(2) If 2 ≤ p < ∞, then there exists an absolute constant c > 0 such that

(x n ) n Lp(M; cr 2 ) ≤ n ε n x n Lp(Ω;Lp(M)) ≤ c √ p (x n ) n Lp(M; cr 2 ) .
The following proposition will be useful for our further studies.

Proposition 3.3. Let (x n ) n∈N ∈ L p (M; ∞ ).
Then there exists an absolute constant c > 0 such that for any 1 ≤ p ≤ ∞,

(x n ) n Lp(M; ∞) ≤ (x n ) n Lp(M; cr 2 ) ; and for any 2 ≤ p ≤ ∞, (x n ) n Lp(M; c ∞ ) ≤ (x n ) n Lp(M; c 2 ) . Proof.
We start with the proof of the first inequality. It is trivial for the case p = ∞:

(x n ) n L∞(M; ∞) = sup n x n ∞ ≤ n x * n x n 1/2 ∞ ≤ (x n ) n L∞(M; cr 2 ) .
Recall that by the Hölder inequality (see also [Jun02, Lemma 3.5]), for any 1 ≤ p ≤ ∞ and for any sequence

(x n ) n in L p (M; 1 ), n x n p ≤ (x n ) n Lp(M; 1 ) .
On the other hand, for any 1 ≤ p ≤ ∞, by the definition of Lp(M; 1 ) , one can easily get

(ε n x n ) Lp(M; 1 ) = (x n ) Lp(M; 1 ) with ε n ∈ {±1}. Now we set (ε n ) n to be a Rademarcher
sequence on a probability space (Ω, P ). It is folkloric that

(x n ) L∞(M; cr 2 ) = (ε n x n ) L∞(M; cr 2 ) ≤ n ε n x n L 2 (Ω;L∞(M)) ≤ n ε n x n L∞(Ω;L∞(M)) = sup ω∈Ω n ε n (ω)x n ∞ ≤ sup ω∈Ω (ε n (ω)x n ) n L∞(M; 1 ) = (x n ) n L∞(M; 1 ) . Let (y n ) n ∈ L 1 (M; ∞ )
. By duality and the above inequality we have

(y n ) n L 1 (M; ∞) = sup n τ (x n y n ) (x n ) L∞(M, 1 ) : (x n ) ∈ L ∞ (M, 1 ) ≤ sup n τ (x n y n ) (x n ) L∞(M; cr 2 ) : (x n ) ∈ L 1 (M; cr 2 ) ≤ (y n ) L 1 (M; cr 2 )
. By interpolation we immediately get the first inequality in the lemma.

The above arguments tell that

Lp(M; ∞) ≤ Lp(M; cr 2 ) for 1 ≤ p ≤ ∞.
As before, by a duality argument we indeed get

Lp(M; ∞) ≤ Lp(M; cr 2 ) ≤ Lp(M; 1 )
. Therefore, we obtain the second inequality:

(x n ) Lp(M; c ∞ ) = (x * n x n ) 1/2 L p/2 (M; ∞) ≤ (x * n x n ) 1/2 L p/2 (M; 1 ) = n x * n ⊗ e 1,n n x n ⊗ e n,1 1/2 L p/2 (M⊗B( 2 )) ≤ n x n ⊗ e n,1 * 1/2 Lp(M⊗B( 2 )) n x n ⊗ e n,1 1/2 Lp(M⊗B( 2 )) = x n Lp(M; c 2 ) .
In the noncommutative setting usually we do not have the analogue of the complex interpolation

(L p ( q 1 ), L p ( q 2 )) θ = L p ( cr 2 ) with 1/2 = (1 -θ)/q 1 + θ/q 2 ,
which is an essential obstruction to generalize many classical methods on maximal inequalities in [START_REF] Bourgain | On high-dimensional maximal functions associated to convex bodies[END_REF][START_REF] Bourgain | On dimension free maximal inequalities for convex symmetric bodies in R n[END_REF][START_REF] Carbery | An almost-orthogonality principle with applications to maximal functions associated to convex bodies[END_REF]. Nevertheless, we still have the following weaker property, which will be enough for our purpose in this paper. More precisely, we will compare the norms of positive symmetric maps on L p (M; cr 2 ) with those on L p 2-p (M; ∞ ). Note that if T is a symmetric and selfadjoint map on M (by selfadjointness we mean that T (x * ) = T (x) * for all x ∈ M), then

(3.1) τ (T (x)y) = τ ([T (x * )] * y) = τ ((x * ) * T (y)) = τ (xT (y)) x, y ∈ S M .
Therefore, T equals its predual operator on L 1 (M). In particular, T extends to L 1 (M) with the same norm, and by interpolation it also extends to a bounded map on L p (M) with 1 < p < ∞. In this context we state the following property (note that a positive map is automatically selfajoint).

Lemma 3.4. Let (Φ j ) j be a sequence of unital positive and symmetric maps on M. Denote Φ : (x j ) j → (Φ j x j ) j . Let 1 < p < 2. Then

Φ : L p (M; cr 2 ) → L p (M; cr 2 ) ≤ 2 Φ : L p 2-p (M; ∞ ) → L p 2-p (M; ∞ ) 1/2 .
Similar inequalities hold for the spaces L p (M; c 2 ) and L p (M; r 2 ) if (Φ j ) j is a sequence of unital 2-positive maps.

Proof. Since Φ j are unital positive maps, by Kadison's Cauchy-Schwarz inequality [START_REF] Kadison | A generalized Schwarz inequality and algebraic invariants for operator algebras[END_REF], for any selfadjoint element x j ∈ L p (M), we have

Φ j (x j ) 2 ≤ Φ j (x 2 j ). Assume that (x j ) j ∈ L p (M; cr
2 ) is a sequence of selfadjoint elements. Then the conjugate index p is greater than 2 and

(Φ j x j ) j L p (M; cr 2 ) =   j (Φ j x j ) 2   1/2 p ≤   j Φ j (x 2 j )   1/2 p = Φ j (x 2 j ) j 1/2 L p /2 (M; 1 ) ≤ Φ : L p /2 (M; 1 ) → L p /2 (M; 1 ) 1/2 (x j ) j L p (M; cr 2 ) . For general (x j ) j ∈ L p (M; cr
2 ), we may decompose it into two sequence of selfadjoint elements. Note that

(x j ) j L p (M; cr 2 ) = (x * j ) j L p (M; cr 2 ) for p > 2. Therefore, Φ : L p (M; cr 2 ) → L p (M; cr 2 ) ≤ 2 Φ : L p /2 (M; 1 ) → L p /2 (M; 1 ) 1/2
. As explained in (3.1), the dual operator of Φ equals itself and we obtain

Φ : L p (M; cr 2 ) → L p (M; cr 2 ) ≤ 2 Φ : L p 2-p (M; ∞ ) → L p 2-p (M; ∞ ) 1/2 ,
as desired.

For the spaces L p (M; c 2 ) and L p (M; r 2 ), similar arguments still work for non selfadjoint elements (x j ) if the maps Φ j are 2-positive, since in this case we can use the following Cauchy-Schwarz inequality

|Φ j (x j )| 2 ≤ Φ j (|x j | 2 ) (see e.g. [Pau02, Proposition 3.3]).
The square function estimates for noncommutative diffusion semigroups has been established in [START_REF] Junge | H ∞ functional calculus and square functions on noncommutative L p -spaces[END_REF]. In this section we will slightly adapt the arguments of [JLMX06] so as to obtain a refined version of this result for our further purpose. Throughout this subsection, (S t ) t∈R + always denotes a semigroup of unital completely positive trace preserving and symmetric maps on M with the negative infinitesimal generator A. Let (P t ) denote the subordinate Poisson semigroup of (S t ), i.e. the negative generator of

P t is -(-A) 1/2 .
For notational simplicity, the vector-valued spaces

L p (M; L c 2 (R; dt t )), L p (M; L r 2 (R; dt t )) and L p (M; L cr 2 (R; dt t )) are denoted respectively by L p (L c 2 ( dt t )), L p (L r 2 ( dt t )) and L p (L cr 2 ( dt t )) in this section.
To state our theorem, we recall the dilation property. Let (M, τ ), (N , τ ) be two von Neumann algebra where τ and τ are normal faithful semifinite traces. If π : (M, τ ) → (N , τ ) is a normal unital faithful trace preserving * -representation, then it (uniquely) extends to an isometry from L p (M) into L p (N ) for any 1 ≤ p < ∞. We call the adjoint E : N → M of the embedding L 1 (M) → L 1 (N ) induced by π the conditional expectation associated with π. Moreover E : N → M is unital and completely positive. Definition 3.5. Let T : M → M be a bounded operator. We say that T satisfies Rota's dilation property if there exist a von Neumann algebra N equipped with a normal semifinite faithful trace, a normal unital faithful * -representation π : M → N which preserves traces, and a decreasing sequence

(N m ) m≥1 of von Neumann subalgebras of N such that (3.2) T m = Ê • E m • π, m ≥ 1,
where E m : N → N m ⊂ N is the canonical conditional expectation onto N m , and where Ê : N → M is the conditional expectation associated with π.

We recall the following typical examples of operators with Rota's dilation property.

Lemma 3.6. (1) ([JRS14, Dab10]) If M is a finite von Neumann algebra and τ is a normal faithful state on M, then for all t ∈ R + , the operator S t satisfies Rota's dilation property.

(2) ([Ste70]) If M is a commutative von Neumann algebra and L is another semifinite von Neumann algebra, then for all t ∈ R + , the operator S t ⊗ Id L on M⊗L satisfies Rota's dialtion property.

We aim to prove the following square function estimates, which are essentially established in [START_REF] Junge | H ∞ functional calculus and square functions on noncommutative L p -spaces[END_REF][START_REF] Jiao | Noncommutative harmonic analysis on semigroups[END_REF], without specifying the order (p -1) -6 . However, we will see that the methods in [START_REF] Junge | H ∞ functional calculus and square functions on noncommutative L p -spaces[END_REF], together with the sharp constants of various martingale inequalities, are enough to obtain this order. The outline of our proof is slightly different from that of [START_REF] Junge | H ∞ functional calculus and square functions on noncommutative L p -spaces[END_REF], but all the ingredients are already available in the latter.

Proposition 3.7. Assume that for all t ∈ R + , the operator S t satisfies Rota's dilation property. Then for all 1 < p < 2 and x ∈ L p (M) we have inf (

∞ 0 |t∂ t P t (x c )| 2 dt t ) 1 2 p + ( ∞ 0 |(t∂ t P t (x r )) * | 2 dt t ) 1 2 p ≤ c(p -1) -6 x p (3.3)
where the infimum runs over all x c , x r ∈ L p (M) such that x = x c + x r , and c > 0 is an absolute constant.

Remark 3.8. When the underlying von Neumann algebra is commutative, it is known from Stein [Ste70] that the optimal order here is (p -1) -1 . In the noncommutative case, we believe that the order (p -1) -6 is not optimal. However, this order is sufficient for our purpose in the sequel.

Our study of the semigroup (P t ) t is based on the analysis of the ergodic averages as follows:

M t = 1 t t 0 S u du.
We will need the following claim.

Lemma 3.9. For any y ∈ L p (M),

(t∂P t y) t Lp(L c 2 ( dt t )) ≤ c (t∂M t y) t Lp(L c 2 ( dt t ))
, where c > 0 is an absolute constant. The inequality remains true if we replace the norm of

L p (L c 2 ( dt t )) by L p (L r 2 ( dt t )) or L p (L cr 2 ( dt t )).
Proof. This claim is well known to experts. We only give a sketch of its arguments. Set

ϕ(s) = 1 2 √ π e -1/4s
s 3/2 . Using integration by parts we have

P t = 1 t 2 ∞ 0 ϕ( s t 2 )(∂(sM s ))ds = - ∞ 0 sϕ (s)M t 2 s ds.
Therefore

t∂P t = -2 ∞ 0 t 2 s 2 ϕ (s)∂M t 2 s ds = -2 ∞ 0 sϕ (s)(t 2 s∂M t 2 s )ds (3.4) which yields the claim by noting that • Lp(L c 2 ( dt t )
) is a norm and sϕ (s) is absolutely integrable.

We need the following auxiliary result.

Proposition 3.10. Assume that for all t ∈ R + , the operator S t satisfies Rota's dialtion property. Then for 1 < p < 2 and x ∈ L p (M), we have

(t∂P t (x)) t>0 Lp(L cr 2 ( dt t )) ≤ c(p -1) -2 x p , (3.5)
where c > 0 is an absolute constant.

Proof. This result has been essentially obtained in [START_REF] Junge | H ∞ functional calculus and square functions on noncommutative L p -spaces[END_REF], together with the optimal estimates for martingale inequalities in [START_REF] Randrianantoanina | Non-commutative martingale transforms[END_REF][START_REF] Junge | On the best constants in some non-commutative martingale inequalities[END_REF]. Indeed, let (E n ) n∈N be a monotone sequence of conditional expectations on M and x n = E n+1 (x) -E n (x) be a sequence of martingale differences with x ∈ L p (M). By the estimate for noncommutative martingale transform in [Ran02, Theorem 4.3] and the Khintchine inequality in Lemma 3.2, we have

(x n ) n∈N Lp( cr 2 ) ≤ c p -1 x p ,
and by the noncommutative Stein inequality [JX05, Theorem 8] we have for any sequence

(y n ) n∈N ⊂ L p (M), (E n y n ) n∈N Lp( cr 2 ) ≤ c p -1 (y n ) n∈N Lp( cr 2 ) 1 < p < 2,
where c > 0 is an absolute constant. Then tracing the order in the proof of [JLMX06, Corollary 10.9], we obtain that for all ε > 0,

( √ mD ε m (x)) m≥1 Lp( cr 2 ) ≤ c (p -1) 2 x p ,
where c > 0 is an absolute constant, and where

D ε m = ρ ε m -ρ ε m-1 and ρ ε m = 1 m + 1 m k=0 S kε .
By a standard discretization argument (see e.g. [JLMX06, Lemma 10.11]), we get the following inequality

(t∂M t x) t Lp(L cr 2 ( dt t )) ≤ c (p -1) -2 x p .
Then the desired result follows from Lemma 3.9. Estimate (3.5) is weaker than (3.3). The remaining task for proving Proposition 3.7 is to show

inf ( ∞ 0 |t∂P t (x c )| 2 dt t ) 1 2 p + ( ∞ 0 |(t∂P t (x r )) * | 2 dt t ) 1 2 p (3.6) (p -1) -4 (t∂P t (x)) t>0 Lp(L cr 2 ( dt t ))
where the infimum runs over all decompositions x = x c + x r in L p (M). This inequality is essentially proved in [JLMX06, Theorem 7.8]; the order (p -1) -4 is not stated there, but it follows from a careful computation on all the related constants appearing in the argument therein. For the convenience of the reader, we will recall some parts of the proof and clarify all the constants in the proof which are concerned with the precise order.

For notational simplicity, we say that a family

F ⊂ B(L p (M)) is Col-bounded (resp. Row- bounded) if there is a constant C such that for any sequence (T k ) k ⊂ F, we have (3.7) (T k ) k : L p (M; c 2 ) → L p (M; c 2 ) ≤ C (resp. (T k ) k : L p (M; r 2 ) → L p (M; r 2 ) ≤ C
) , and the least constant C will be denoted by Col(F) (resp. Row(F)).

We quote a useful result from [CdPSW00, Lemma 3.2] (see also [JLMX06, Lemma 4.2]).

Lemma 3.11. Let F ⊂ B(L p (M)) be a Col-bounded (resp. Row-bounded) collection with Col(F) = M (resp. Row(F) = M ).
Then the closure of the complex absolute convex hull of F in the strong operator topology is also Col-bounded (resp. Row-bounded) with the constant

Col(F) ≤ 2M (resp. Row(F) ≤ 2M ).
For any θ ∈ (0, π), we let

Σ θ = {z ∈ C * : |Arg(z)| < θ}.
Without the concrete order of growth of the constant on p, the following lemma is contained in [JLMX06, Theorem 5.6]. Note that the present area C\Σ νp in the following lemma is contained in the optimal area C\Σ ωp described in [JLMX06, Theorem 5.6].

Lemma 3.12. Let 1 < p < 2. Let (S t ) t be a semigroup of unital completely positive trace preserving and symmetric maps. Let A be the negative infinitesimal generator of (S t ) t . Then the set

F p = {z(z -A) -1 : z ∈ C\Σ νp } ⊂ B(L p (M)) with ν p = (p+1)π 4p
is Col-bouneded and Row-bounded with constants

Col(F p ) ≤ c(p -1) -2 and Row(F p ) ≤ c(p -1) -2 ,
where c is an absolute constant.

Proof. Let s 1 , • • • , s n be some nonnegative real numbers. For any z ∈ C * with 0 ≤ Arg(z) ≤ π 2 , we define a map U (z) with U (z) : L 2 (M; c 2 ) ∩ L q (M; c 2 ) → L 2 (M; c 2 ) + L q (M; c 2 ) (x k ) k → (S zs k (x k )) k .
Note that for any x ∈ L 2 (M), the function z → U (z)x is continuous and bounded in the area {z ∈ C * : 0 ≤ Arg(z) ≤ π/2} by [JLMX06, Proposition 5.4 and Lemma 3.1]. This U (z) is well defined. On the one hand, for any t > 0, we have

U (te i π 2 ) : L 2 (M; c 2 ) → L 2 (M; c 2 ) ≤ 1.
On the other hand, by duality and Lemma 3.4 and Proposition 2.10, we may find an absolute constant c such that for any t > 0, 2 < q < ∞,

U (t) : L q (M; c 2 ) → L q (M; c 2 ) = U (t) : L q q-1 (M; c 2 ) → L q q-1 (M; c 2 ) ≤ U (t) : L q q-2 (M; ∞ ) → L q q-2 (M; ∞ ) 1/2 ≤ cq.
Let p = p p-1 be the conjugate number of p. We fix

β p = π 2p . Let q = p ( π-2βp π-p βp ) = 2(p -1) and α = 2βp π = 1 p . These numbers satisfy 1-α q + α 2 = 1 p . By complex interpolation, we know that L p (M; c 2 ) = [L q (M; c 2 ), L 2 (M; c 2 )] α . By the 'sectorial' form of Stein's interpolation principle (see for instance [JLMX06, Lemma 5.3]), we have U (e iβp ) : L p (M; c 2 ) → L p (M; c 2 ) ≤ (cq) 1-α ≤ cq. Thus, (S s k e iβp (x k )) k L p (M; c 2 ) ≤ cq (x k ) L p (M; c 2 ) . Similarly, we have (S s k e -iβp (x k )) k L p (M; c 2 ) ≤ cq (x k ) L p (M; c 2 )
. Namely, (S z ) z∈∂Σ βp is Col-bounded with constant cq. Then we get that the set

{S z : L p (M) → L p (M) : z ∈ Σ βp }
is also Col-bounded. Indeed, by a standard argument (see e.g. [Wei01, Proposition 2.8]), we see that any S z with z ∈ Σ βp can be approximated by convex combinations of {S z : z ∈ ∂Σ βp }. Therefore, by Lemma 3.11 we get that

Col({S z : L p (M) → L p (M) : z ∈ Σ βp }) ≤ 2cq = 2cp ( π -2β p π -p β p ) ≤ 2c(p -1) -1 .
By duality, we have

(3.8) Row {S z : L p (M) → L p (M) : z ∈ Σ βp } ≤ 2c(p -1) -1 . Set ω p = π p -π 2 and ν p = (p+1)π 4p . Then 0 < π 2 -ν p < β p < π p = π 2 -ω p .
By the Laplace formula, we have that for any z ∈ C\Σ π/2 ,

(z -A) -1 = - ∞ 0 e tz S t dt. Denote Γ + βp = {u = te iβp : t ∈ R + }. By [JLMX06, Proposition 5.4 and Lemma 3.1], u → S u is analytic on the area Σ π 2 -ωp . Note that Γ + βp ⊂ Σ π 2 -ωp .
Then by the Cauchy theorem, we have that for any z ∈ C\Σ π/2 , (3.9)

z(z -A) -1 = - ∞ 0 ze tz S t dt = - Γ + βp ze uz S u du.
Note that for any z ∈ C with ν p ≤ Arg(z) ≤ π/2, we have

Re(uz) = |z|t cos(Arg(z) + β p ) = -|z|t sin(Arg(z) -π/2p),
and hence,

Γ + βp ze uz S u du ≤ sup u∈Γ + βp S u ∞ 0 re -rt sin(Arg(z)-π/2p) dt ≤ sup u∈Γ + βp S u sin(ν p -π/2p) < ∞.
Hence, (3.9) holds for any z ∈ C\Σ νp . Note that νp-π/2p sin(νp-π/2p) 1 since 0 < ν p -π/2p < π 8 . By Lemma 3.11 and (3.8), we get

Row(F p ) ≤ 2 Γ + βp ze uz du • Row({S z : L p (M) → L p (M) : z ∈ Σ βp }) (p -1) -1 sin(ν p -π/2p) (p -1) -1 ν p -π/2p (p -1) -2 .
A similar proof shows that Col(F p ) (p -1) -2 . Now let us prove the desired proposition.

Proof of (3.6) and Proposition 3.7. A) 1/2 be the negative infinitesimal generator of (P t ) t . We have

Set F (z) = ze -z , G(z) = 4F (z) and G(z) = G(z). Let B = -(-
F (tB)x = tBe -tB x = -t ∂ ∂t (P t (x)).
Let ω p = π p -π 2 , ν p = (p+1)π 4p and ξ p = (3p+1)π 8p

. These numbers satisfy ω p < ν p < ξ p < π 2 . Note that (P t ) t∈R + is again a semigroup of unital completely positive trace preserving and symmetric maps. By [JLMX06, Corollary 11.2], B : L p (M) → L p (M) admits a bounded H ∞ (Σ ξp ) functional calculus. By [JLMX06, Theorem 7.6 (1)], B satisfies the dual square function estimate

(S * G), since G ∈ H ∞ 0 (Σ ξp ). Note that F ∈ H ∞ 0 (Σ ξp ) and ∞ 0 G(t)F (t) dt t = 1. By the proof of [JLMX06, Theorem 7.8], we get that (3.10) inf ( ∞ 0 |t∂P t (x c )| 2 dt t ) 1 2 p + ( ∞ 0 |(t∂P t (x r )) * | 2 dt t ) 1 2 p ≤ 2C (t∂P t (x)) t>0 Lp(L cr 2 ( dt t ))
where the infimun runs over all decompositions of x = x c +x r in L p (M) and C = max{ T c , T r }, with T c and T r being defined as

T c : L p (L c 2 ( dt t )) → L p (L c 2 ( dt t )) (x t ) t → ( ∞ 0 F (sB)G(tB)x t dt t ) s and T r : L p (L r 2 ( dt t )) → L p (L r 2 ( dt t )) (x t ) t → ( ∞ 0 F (sB)G(tB)x t dt t ) s . Let ν p < γ < ξ p . Denote f γ (t) = -te iγ , t ∈ R -, te -iγ , t ∈ R + ,
and let

Γ γ = {f γ (t) : t ∈ R} ⊂ C. Set T Φ : L p (L c 2 (R, dt t )) → L p (L c 2 (R, dt t )) (x t ) t∈R → f γ (t)(f γ (t) -B) -1 x t 2πi t∈R . Denote K 1 = Γγ |F (z)| dz z and K 2 = Γγ |G(z)| dz z .
By the proof of [JLMX06, Theorem 4.14], we have

T c ≤ K 1 K 2 T Φ . And the proof of [JLMX06, Proposition 4.4] shows that T Φ ≤ Col(O) where O = 1 µ(I) I f γ (t)(f γ (t) -B) -1 dµ(t) : I ⊂ R, 0 < µ(I) < ∞ . Moreover, by Lemma 3.11, Col(O) ≤ 2 Col({z(z -B) -1 : z ∈ Γ γ }).
Since γ > ν p , by Lemma 3.12,

Col({z(z -B) -1 : z ∈ Γ γ }) (p -1) -2 .
On the other hand,

K 1 = Γγ |F (z)| dz z = 2 ∞ 0 |te -iγ e -t(cos(γ)-i sin(γ)) | dt t = 2 ∞ 0 e -t cos(γ) dt 1 cos(γ) ,
and

K 2 = 4K 1 . Note that γ < ξ p = (3p+1)π 8p and 0 < π 2 -ξ p < π 16 . We have 1 cos(γ) ≤ 1 sin( π 2 -ξ p ) (p -1) -1 .
Therefore, T c (p -1) -4 . Similarly, T r (p -1) -4 . Thus C (p-1) -4 and we obtain (3.6). As mentioned previously, this implies Proposition 3.7. The proof is complete.

Proof of Theorem 1.1 and Theorem 1.2

This section is devoted to the study of general criteria for maximal inequalities and pointwise convergences given by Theorem 1.1. Our argument does not essentially rely on the group theoretic structure. Note that there are a number of typical structures with Fourier-like expansions in noncommutative analysis, which are not given by group algebras. Hence instead of the framework in Theorem 1.1, we would like to state and prove results in a quite general setting.

To proceed with our study, we will only require the following simple framework. In the sequel, we fix a von Neumann algebra M equipped with a normal semifinite faithful trace τ , and an isometric isomorphism of Hilbert spaces U : L 2 (M) → L 2 (Ω, µ; H) for some distinguished regular Borel measure space (Ω, µ) and Hilbert space H. Assume additionally that U -1 (C c (Ω; H)) is a dense subspace in L p (M) for all 1 ≤ p ≤ ∞ (for p = ∞ we refer to the w*-density), where C c (Ω; H) denotes the space of H-valued continuous functions with compact supports. Given a measurable function m ∈ L ∞ (Ω; C), we denote by T m the linear operator on L 2 (M) determined by (4.1)

T m : L 2 (M) → L 2 (M), U (T m x) = mU (x), x ∈ L 2 (M).
We call m the symbol of T m . The operator T m is obviously a generalization of a classical Fourier multiplier. Moreover, for a discrete group Γ, taking

M = V N (Γ), (Ω, µ) = (Γ, counting measure), H = C, U : λ(g) → δ g ,
the above framework coincides with that considered in Theorem 1.1.

Example 4.1. Apart from group von Neumann algebras, this framework applies to various typical models in the study of noncommutative analysis. As an illustration we recall briefly some of them.

(1) Twisted crossed product ([BC09, BC12]): Let Γ be a discrete group with a twisted dynamical system Σ on a von Neumann algebra N ⊂ B(L 2 (N )). Then we may consider the von Neumann algebra M generated by the associated regular covariant representation of Γ and the natural representation of N on 2 (Γ; L 2 (N )). Each x ∈ M admits a Fourier series g∈Γ x(g)λ Σ (g) with x(g) ∈ N . Take Ω = Γ, H = L 2 (N ) and U : x → x. It is easy to see that for any m ∈ ∞ (Γ), the multiplier in (4.1) is given by

T m : g∈Γ x(g)λ Σ (g) → g∈Γ m(g)x(g)λ Σ (g),
which is the usual Fourier multiplier considered in [START_REF] Bédos | On twisted Fourier analysis and convergence of Fourier series on discrete groups[END_REF]. As a particular case, this also coincides with the Fourier multipliers on quantum tori studied by [START_REF] Chen | Harmonic analysis on quantum tori[END_REF].

( (3) Clifford algebras, free semicircular systems and q-deformations: Let M = Γ q (H) be a q-deformed von Neumann algebra in the sense of Bożejko and Speicher [START_REF] Bożejko | An example of a generalized Brownian motion[END_REF][START_REF] Bożejko | Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces[END_REF]. The case q = 0 corresponds to Voiculescu's free Gaussian von Neumann algebra and the case q = -1 to the usual Clifford algebras. We choose the canonical orthonormal basis of L 2 (M) with index set Ω according to the Fock representation n H ⊗n , and denote by U the corresponding isomorphism. We view m : N → C naturally as a function on Ω by setting the value m(n) on indexes of basis in H ⊗n . Then for any such m, the operator T m coincides with the radial Fourier multiplier studied in [JLMX06, Section 9].

(4) Quantum Euclidean spaces [START_REF] González-Pérez | Singular integrals in quantum Euclidean spaces[END_REF]: Let M = R Θ be the quantum Euclidean space associated with an antisymmetric n×n-matrix Θ. Take Ω = R n and let U : L 2 (R Θ ) → L 2 (R n ) be the canonical isomorphism. Then the operator T m coincides with a usual quantum Fourier multiplier on R Θ .

(5) The framework also applies to non-abelian compact groups, compact quantum groups and von Neumann algebras of locally compact groups, where we may take U to be the usual Fourier transform. We will discuss some of them in more details in the next sections.

Our criterion is based on comparisons with symbols of a symmetric Markov semigroup. To state our results, we fix a semigroup (S t ) t∈R + of unital completely positive trace preserving and symmetric maps on M of the form

S t = T e -t : L 2 (M) → L 2 (M), U (S t x) = e -t (•) (U x), x ∈ L 2 (M),
for a distinguished continuous function : Ω → [0, ∞). We will also consider the subordinate Poisson semigroup (P t ) t of (S t ) t , that is,

P t = T e -t √ : L 2 (M) → L 2 (M), U (P t x) = e -t √ (•) (U x), x ∈ L 2 (M).
We will consider the family of operators (T m N ) N ∈N (resp. (T mt ) t∈R + ) induced by a sequence of measurable functions (m N ) N ∈N (resp. (m t ) t∈R + ) on Ω. Recall that we are interested in the following types of conditions for the symbols (m N ) N ∈N (resp. (m t ) t∈R + ) in Theorem 1.1: (A1) There exist α > 0 and β > 0 such that for all N ∈ N and almost all ω ∈ Ω, we have

(4.2) |1 -m N (ω)| ≤ β (ω) α 2 N , |m N (ω)| ≤ β 2 N (ω) α .
(A2) There exist α > 0, β > 0 and η ∈ N + such that t → m t (ω) is piecewise η-differentiable for almost all ω ∈ Ω, and for all 1 ≤ k ≤ η, all t ∈ R + and almost all ω ∈ Ω we have

(4.3) |1 -m t (ω)| ≤ β (ω) α t , |m t (ω)| ≤ β t (ω) α , d k m t (ω) dt k ≤ β 1 t k .
Intuitively, (A1) is motivated by considering the subsequence (m 2 N ) N ∈N of (m t ) t∈R + in (A2), but the present form in (A1) is slightly more general. Indeed we will see in Section 5 other abstract and important constructions of symbols satisfying (A1) but without being of the aforementioned form (m 2 N ) N ∈N .

We split our study into two parts. The first part mainly deals with the L 2 -theory of the above multipliers. Note that (A1) (resp. (A2)) implies that (m N ) N ∈N (resp. (m t ) R + ) is uniformly bounded with respect to the ∞ -norm: for any N ∈ N and almost all ω ∈ Ω,

|m N (ω)| ≤ min{|m N (ω)| + 1, |1 -m N (ω)| + 1} ≤ β + 1.
Similar arguments hold for (m t ) t∈R + . This implies that the operators (T m N ) N ∈N and (T mt ) t∈R + are uniformly bounded on L 2 (M). In this section we will always assume that the operators (T m N ) N ∈N and (T mt ) t∈R + extend to uniformly bounded maps on M and for notational convenience we set γ = T m N : M → M , (resp. γ = T mt : M → M ). Then by complex interpolation they also extend to uniformly bounded maps on L p (M) for all 2 ≤ p ≤ ∞. In this setting we have the following result. A more precise estimate on the endpoint case p = 2 can be found in Subsection 4.1.

Theorem 4.2. Let (T m N ) N ∈N and (T mt ) t∈R + be the uniformly bounded maps on M given above.

(1) If (m N ) N satisfies (A1), then for any 2 ≤ p < ∞ there exists a constant c > 0 depending only on p, α, β and γ, such that for all x ∈ L p (M),

(T m N x) N Lp(M; ∞) ≤ c x p , and 
T m N x → x a.u. as N → ∞.
(2) If (m t ) t satisfies (A2), then for any 2 ≤ p < ∞ there exists a constant c > 0 depending only on p, α, β and γ, such that for all x ∈ L p (M), (T mt x) t Lp(M; ∞) ≤ c x p , and T mt x → x a.u. as t → ∞.

In order to obtain similar results for general p > 1, we need to assume the positivity of the maps (T m N ) N ∈N and (T mt ) t∈R + . Note that if the maps extend to positive and symmetric contractions on M, then by the argument before Lemma 3.4, they also extend to contractions on L p (M) for all 1 ≤ p ≤ ∞. In this framework we have the following results.

Theorem 4.3. Assume that the operators (T m N ) N ∈N and (T mt ) t∈R + extend to positive and symmetric contractions on M. Assume additionally that for all t ∈ R + , the operator S t satisfies Rota's dialtion property.

(1) If (m N ) N satisfies (A1), then for any 1 < p < ∞ there is a constant c > 0 depending only on p, α, β such that for all x ∈ L p (M),

(T m N x) N Lp(M; ∞) ≤ c x p and T m N x → x a.u. as N → ∞.
(2) If (m t ) t satisfies (A2), then for any 1 + 1 2η < p < ∞ there is a constant c > 0 depending only on p, α, β, η such that for all x ∈ L p (M)

(T mt x) t Lp(M; ∞) ≤ c x p and T mt x → x a.u. as t → ∞.
The above theorems recover Theorem 1.1 and Theorem 1.2. Indeed, if M is a finite von Neumann algebra, the additional assumption on Rota's dilation property is fulfilled by Lemma 3.6 (1). Note that for any positive definite function m on Γ, the associated map T m on V N (Γ) is completely positive (see e.g. [BO08, Theorem 2.5.11]). Also, by the Schoenberg theorem, for any conditionally negative definite function : Γ → [0, ∞), the associated map λ(g) → e -t (g) λ(g) forms a semigroup of unital completely positive trace preserving and symmetric maps on V N (Γ). On the other hand, for any function m : Γ → C with m(e) = 1, the map T m is τ -preserving; if T m is unital positive on V N (Γ), then it extends to positive contractions to L p (V N (Γ)) for all 1 ≤ p ≤ ∞ (see e.g. [JX07, Lemma 1.1]). Moreover, if m is real-valued, then one may easily check that T m is a symmetric map. So the assumptions of Theorem 1.1 coincide with those of the above theorems.

Before starting the proof, we give several remarks on the statement of the above theorems.

Remark 4.4. Instead of continuous families (m t ) t∈R + in (A2), we may also consider maximal inequalities of families (m N ) N ∈N with suitable conditions on their differences, which we will frequently use in further discussions. Let (m N ) N ∈N be a family of measurable functions on Ω satisfying the following assumption: there exist α > 0 and β > 0 such that for almost all ω ∈ Ω we have

(4.4) |1 -m N (ω)| ≤ β (ω) α N , |m N (ω)| ≤ β N (ω) α , |m N +1 (ω) -m N (ω)| ≤ β 1 N .
Then for any 2 ≤ p < ∞, there exists a constant c > 0 depending only on p, α, β and γ, such that for all x ∈ L p (M), we have

(T m N x) N Lp(M; ∞) ≤ c x p , and 
T m N x → x a.u. as N → ∞.
If moreover the operators (T m N ) N ∈N extend to positive and symmetric contractions on M, then the assertion holds for all 3/2 < p < ∞ as well.

This follows immediately from the previous theorems since (4.4) leads to a special case of (A2). Indeed, for 0 ≤ t < 1 , set m t = m 0 = 0. For t ≥ 1, we write t = N t + r t with N t ∈ N and 0 ≤ r t < 1, and we define

m t = (1 -r t )m Nt + r t m Nt+1 .
It is obvious that (m t ) t∈R + satisfies (A2) with η = 1.

One may also study more general conditions associated with higher order differences, which might be parallel to the case η > 1 in (A2). However the computation seems to be much more intricate and we would like to leave it to the reader.

Remark 4.5. The statement in (A1) and (A2) can be flexibly adjusted, which we will frequently use in further discussions:

(1) For α ≥ 1 and for the maps (T m N ) N ∈N and (T mt ) t∈R + given in Theorem 4.2 or Theorem 4.3, we will indeed establish the corresponding maximal inequalities under the following weaker conditions (4.5) or (4.6). Indeed, for α ≥ 1, (A1) implies that for almost all ω ∈ Ω we have

(4.5) |1 -m N (ω)| β (ω) 2 N/α , |m N (ω)| β 2 N/α
(ω) .

To see this, recall that we have |m N (ω)| ≤ β + 1, so we see that

(β + 1) -1 |m N (ω)| ≤ ((β + 1) -1 |m N (ω)|) 1 α ≤ (β + 1) -1 α β 1 α 2 N/α (ω) .
Similarly, using |1 -m N (ω)| ≤ β + 1 and repeating the above argument, we see that

|1 -m N (ω)| β (ω) 2 N/α .
In the same way, (A2) implies

(4.6) |1 -m t (ω)| β,γ (ω) t 1/α , |m t (ω)| β,γ t 1/α (ω) , d k m t (ω) dt k ≤ β 1 t k .
On the other hand, the proof of the above theorems for the case of 0 < α < 1 can be always reduced to that of α ≥ 1. To see this it suffices to take ˜ = α for 0 < α < 1 and consider the new semigroup of unital completely positive trace preserving and symmetric maps given by St := T e -t ˜ (see [START_REF] Yosida | Functional analysis[END_REF]); if the multipliers satisfy (A1) or (A2) with respect to for 0 < α < 1, then they also satisfy the same condition with respect to ˜ for α = 1.

(2) Theorem 4.2 (1) and Theorem 4.3 (1) still hold with the index set N replaced by Z in (A1). This can be seen from their proofs; alternatively, we may deduce this easily from a standard re-indexation argument. Indeed, let (m N ) N ∈Z be a sequence of measurable functions on Ω satisfying (4.2) for all N ∈ Z. Take N 0 ∈ Z and write m j = m N 0 +j for j ∈ N. Then (4.2) implies that for all j ∈ N and almost all ω ∈ Ω,

|1 -m j (ω)| ≤ β 2 N 0 (ω) α 2 j , | m j (ω)| ≤ β 2 j 2 N 0 (ω) α .
Note that ˜ = 2 N 0 /α yields again a semigroup of unital completely positive trace preserving and symmetric maps S(N 0 ) t := T e -t ˜ . Then applying Theorem 4.2 (1) or Theorem 4.3 (1) to m and ˜ , we see that ( m j ) j∈N = (m N ) N ≥N 0 satisfies the corresponding maximal inequality with constant independent of and N 0 . Thus the similar maximal inequalities and a.u. convergence still hold for (m N ) N ∈Z .

Remark 4.6. The completely bounded version of the above two theorems holds true as well. In other words, if N is another semifinite von Neumann algebra and if we replace T m N by T m N ⊗ Id N , T mt by T mt ⊗ Id N and M by M = M⊗N , then the above two theorems still hold true. Indeed, it suffices to consider a larger Hilbert space H = H ⊗ L 2 (N ) and apply the above theorems to M and H.

The following result on mean convergences is an easy consequence of our assumptions.

Proposition 4.7. Let (T m N ) N , (T mt ) t and 1 < p < ∞ be given as in Theorem 4.2 or Theorem 4.3 which satisfy (A1) or (A2) correspondingly.

(1) The family (T mt ) t is strongly continuous on L p (M), i.e., for any x ∈ L p (M) the function t → T mt x is continuous from R + to L p (M).

(2) We have

lim N →∞ T m N x -x p = 0, lim t→∞ T mt x -x p = 0, x ∈ L p (M). Proof. Let x ∈ U -1 (C c (Ω; H)) and E = supp(U (x)) ⊂ Ω.
By the Hölder inequality, for any t 0 ≥ 0 and 2 ≤ p < ∞,

T mt x -T mt 0 x p ≤ T mt x -T mt 0 x 2/p 2 T mt x -T mt 0 x 1-2/p ∞ (m t -m t 0 )1 E 2/p ∞ x 2/p 2 x 1-2/p ∞ .
By the continuity of m t and the compactness of E, the above quantity tends to 0 as t → t 0 . Similar arguments work for p < 2 by using the Hölder inequality with endpoints p = 1, 2.

Similarly, by the continuity of and the compactness of E, we have

lim N →∞ T m N x -x p = 0, lim t→∞ T mt x -x p = 0.
For general elements x ∈ L p (M), it suffices to note that the operators (T m N ) N and (T mt ) t extend to uniformly bounded operators on L p (M). Thus the desired results follow from a standard density argument. Now we are ready to proceed with the proof of the previous theorems. 4.1. L 2 -estimates under lacunary conditions. Proposition 4.8. Let (m N ) N ∈Z ⊂ L ∞ (Ω). Assume that there exist a function f : Ω → [0, ∞) and a positive number a > 1 such that for almost all ω ∈ Ω,

(4.7) |m N (ω)| ≤ β a N f (ω) (a N + f (ω)) 2 .
Then,

(T m N x) N ∈Z L 2 (M; cr 2 ) β a 2 a 2 -1 x 2 , x ∈ L 2 (M).
Proof. We have

(T m N x) N 2 L 2 (M; cr 2 ) =τ N ∈Z |T m N x| 2 = N ∈Z T m N x 2 L 2 (M) = N ∈Z m N U (x) 2 L 2 (Ω;H) = Ω N ∈Z m N (ω)(U x)(ω) 2 H dµ(ω) ≤ N ∈Z |m N | 2 L∞(Ω) U x 2 L 2 (Ω;H) = N ∈Z |m N | 2 L∞(Ω) x 2 L 2 (M) .
However, by (4.7) we see that for almost all ω ∈ Ω with f (ω) > 0,

N ∈Z |m N (ω)| 2 ≤ N <log a f (ω) β 2 a 2N f (ω) 2 + N ≥log a f (ω) β 2 f (ω) 2 a 2N β 2 a 2 a 2 -1 , while m N (ω) = 0 if f (ω) = 0 by (4.7
). Thus we obtain the desired inequality.

Below we show a more precise L 2 -estimate.

Lemma 4.9. Assume that t → m t (ω) is differentiable for almost all ω ∈ Ω. Choose an arbitrary measurable function f : Ω → [0, ∞). For j ∈ Z, define

a j = sup t    sup 2 j-2 < f (ω) t ≤2 j |m t (ω)|    , b j = sup t    sup 2 j-2 < f (ω) t ≤2 j t • ∂m t (ω) ∂t    . Assume K = j∈Z a 1/2 j (a 1/2 j + b 1/2 j ) < ∞.
Then for x ∈ L 2 (M), we have the following maximal inequalities

(T mt x) t L 2 (M; ∞) K x 2 and (T mt x) t L 2 (M; c ∞ ) K x 2 .
Proof. We prove the second assertion first. Let {η j } j∈Z be a partition of unity of R + satisfying

j η j = 1, supp η j ⊂ [2 j-2 , 2 j ], 0 ≤ η j ≤ 1 and |η j | < C2 -j . Define m t,j (ω) = m t (ω)η j ( f (ω) t ) ∈ L ∞ (Ω).
For notational simplicity, denote by T t,j the operators with symbols m t,j ; that is,

U (T t,j x) = m t,j U (x), x ∈ L 2 (M).
Then we have (4.8)

(T mt x) t L 2 (M; c ∞ ) =   j∈Z T t,j x   t L 2 (M; c ∞ ) ≤ j∈Z (T t,j x) t L 2 (M; c ∞ ) .
From now on we fix an arbitrary j ∈ Z. In the sequel of this proof we denote

U k (x)(ω) = U (x)(ω) • 1 [2 k-2 ,2 k+1 ] (f (ω)), ω ∈ Ω and x k = U * (U k (x)), x ∈ L 2 (M). Since supp η j ⊂ [2 j-2 , 2 j ], for v ∈ Z and t ∈ [2 v , 2 v+1 ) we have m t,j (ω)U (x)(ω) = m t (ω)η j ( f (ω) t )U (x)(ω) = m t (ω)η j ( f (ω) t )U v+j (x)(ω).
We may rewrite the above equality as

T t,j x = T t,j x v+j , t ∈ [2 v , 2 v+1 ).
Choose an integer A j such that

a j +b j a j ≤ A j ≤ 2(a j +b j ) a j
and we divide the interval [2 v , 2 v+1 ] into A j parts:

2 v = γ 0 < γ 1 < γ 2 • • • < γ A j = 2 v+1 with γ k+1 -γ k = 2 v • A -1 j . For any t ∈ [2 v , 2 v+1 ), there exists 0 ≤ k(t) ≤ A j -1 such that t ∈ [γ k(t) , γ k(t)+1
). By the convexity of the operator square function, we have

|T t,j x v+j | 2 = |U * (m t,j U v+j (x))| 2 = U * t γ k(t) ∂m s,j ∂s U v+j (x)ds + m γ k(t) ,j • U v+j (x) 2 ≤ 2(t -γ k(t) ) t γ k(t)
∂T s,j (x v+j ) ∂s

2 ds + 2|T γ k(t) ,j (x v+j )| 2 ≤ 2 2 v A j γ k(t)+1 γ k(t)
∂T s,j (x v+j ) ∂s

2 ds + |T γ k(t) ,j (x v+j )| 2 ≤ 2 A j -1 k=0 2 v A j γ k+1 γ k ∂T s,j (x v+j ) ∂s 2 ds + |T γ k ,j (x v+j )| 2 = 2 v+1 A j 2 v+1 2 v ∂T s,j (x v+j ) ∂s 2 ds + 2 A j -1 k=0 |T γ k ,j (x v+j )| 2 .
We denote

y v = 2 v+1 A j 2 v+1 2 v ∂T s,j (x v+j ) ∂s 2 ds + 2 A j -1 k=0 |T γ k ,j (x v+j )| 2 . Then (4.9) |T t,j x v+j | 2 ≤ y v .
Similarly, we have

|(T t,j x v+j ) * | 2 ≤ y v = 2 v+1 A j 2 v+1 2 v ∂T s,j (x v+j ) ∂s * 2 ds + 2 A j -1 k=0 |T γ k ,j (x v+j ) * | 2 .
Let us estimate the quantities y v 1 and y v 1 . We have

y v 1 = τ (y v ) = 2 v+1 A j 2 v+1 2 v ∂T s,j (x v+j ) ∂s 2 2 ds + 2 A j -1 k=0 T γ k ,j (x v+j ) 2 2 , y v 1 = τ (y v ) = 2 v+1 A j 2 v+1 2 v ∂T s,j (x v+j ) ∂s * 2 2 ds + 2 A j -1 k=0 T γ k ,j (x v+j ) * 2 2 .
Hence, y v 1 = y v 1 . Note that

2 v+1 2 v ∂m s,j (ω) ∂s 2 ds = 2 v+1 2 v ∂ ∂s m s (ω)η j ( f (ω) s ) 2 ds = 2 v+1 2 v ∂m s (ω) ∂s • η j f (ω) s -η j f (ω) s f (ω) s 2 • m s (ω) 2 ds 2 v+1 2 v b j s + a j s 2 ds (since supp η j ⊂ [2 j-2 , 2 j ]) 1 2 v+1 (b j + a j ) 2 .
By the Fubini theorem, we have

2 v+1 A j 2 v+1 2 v ∂T s,j (x v+j ) ∂s 2 2 ds = 2 v+1 A j 2 v+1 2 v ∂m s,j ∂s U v+j (x) 2 L 2 (Ω;H) ds = 2 v+1 A j Ω 2 v+1 2 v ∂m s,j (ω) ∂s 2 ds |U v+j (x)(ω)| 2 dµ(ω) (b j + a j ) 2 A j x v+j 2 2 ,
and

2 A j -1 k=0 T γ k ,j (x v+j ) 2 2 = A j -1 k=0 Ω |m γ k (ω)| 2 η j f (ω) γ k 2 |U v+j (x)(ω)| 2 dµ(ω) ≤ 2A j a 2 j x v+j 2 2 .
Therefore,

y v 1 = y v 1 (b j + a j ) 2 A j + A j a 2 j x v+j 2 2 .
Recall that (4.9) asserts that |T t,j x v+j | 2 ≤ y v ≤ u∈Z y u . So

(T t,j x) t L 2 (M; c ∞ ) = (|T t,j x v+j | 2 ) t 1/2 L 1 (M; ∞) ≤ u∈Z y u 1/2 1 ≤ u∈Z y u 1 1/2 (4.10) u∈Z (b j + a j ) 2 A j + A j a 2 j x u+j 2 2 1 2
.

Note that

[2 j+u-2 , 2 j+u+1 ] = ∪ 2 l=0 [2 j+u+l-2 , 2 j+u+l-1 ].
We have

u∈Z x u+j 2 2 = u∈Z Ω U (x)(ω) • 1 [2 j+u-2 ,2 j+u-2 ] (f (ω)) 2 dµ(ω) ≤ 2 l=0 Ω U (x)(ω) • u∈Z 1 [2 j+u+l-2 ,2 j+u+l-1 ] (f (ω)) 2 dµ(ω) = 2 l=0 U (x) 2 2
where the last equality holds since

u∈Z 1 [2 j+u+l-2 ,2 j+u+l-1 ] (f (ω)) = 1.
Thus,

u∈Z x u+j 2 2 ≤ 3 x 2 2 .
Recall that

a j +b j a j ≤ A j ≤ 2(a j +b j ) a j
. Together with (4.10), we have

(T t,j x) t L 2 (M; c ∞ ) a 1/2 j (a j + b j ) 1/2 u∈Z x u+j 2 2 1/2 a 1/2 j (a j + b j ) 1/2 x 2 .
By (4.8), the proof is complete for the second maximal inequality. Similarly, we have

(T mt x) t L 2 (M; r ∞ ) K x 2 .
Let us recall Lemma 2.1 which shows that the space L 2 (M; ∞ ) is the complex interpolation space of L 2 (M; c ∞ ) and L 2 (M; r ∞ ). Therefore we have

(T mt ) : L 2 (M) → L 2 (M; ∞ ) ≤ (T mt ) : L 2 (M) → L 2 (M; c ∞ ) 1/2 (T mt ) : L 2 (M) → L 2 (M; r ∞ ) 1/2 K.
4.2. Proof of Theorem 4.2. Now we are ready to conclude Theorem 4.2.

First assume that (m

N ) N ∈N satisfies (A1). Set T φ N = T m N -P 2 -N/α with the symbol φ N = m N -e - √ 2 N/2α
.By Remark 4.5 (1) and (A1), we can easily see that Applying Proposition 2.10, we also get the strong type (p, p) estimate for T m N with a constant c depending only on α, β, γ, p.

|φ N (ω)| ≤ |1 -m N (ω)| + |1 -e - √ (ω) 2 N/2α | β (ω) 2 N/2α , (4.11) |φ N (ω)| ≤ |m N (ω)| + |e - √ (ω) 2 N/2α | β 2 N/2α (ω) , (4.12) Therefore, |φ N (ω)| ≤ 2 N/2α √ (ω) 2 N/2α + √ (ω)
Assume that (m t ) t∈R + satisfies (A2). Again set T φt = T mt -P t -1/α with φ t = m t -e -√ t 1/2α . We have the following estimates similar to (4.11) and (4.12): for almost all ω ∈ Ω

|φ t (ω)| β min (ω) α t 1/2α , t (ω) α 1/2α , | ∂φ t (ω) ∂t | ≤ β 1 t + 1 t • ( (ω) αt 1/2α e - √ (ω) t 1/2α ) α,β 1 t .
Applying Lemma 4.9, we get

sup t + T φt x 2 ≤ K x 2 x ∈ L 2 (M),
where

K α,β j∈Z (2 -|j|/2α (2 -|j|/2α + 1)) 1/2 α,β 1.
By Proposition 2.2 (3), for any 2 ≤ p < ∞, (T φt ) t∈R + is of strong type (p, p) with constant c depending only on α, β, γ, p. Similarly, for any 2 ≤ p < ∞, we have

(4.13) (T φt (x)) t∈R + Lp(M; c ∞ ) α,β,γ,p x p x ∈ L p (M).
Therefore, we conclude the strong type (p, p) estimate for (T mt ) t thanks to Proposition 2.10. Now the desired a.u. convergence follows immediately from the above maximal inequalities by an argument in [START_REF] Hong | Noncommutative maximal ergodic inequalities associated with doubling conditions[END_REF]. For instance, we consider the symbols (m t ) t∈R + satisfying (A2). Let x ∈ U -1 (C c (Ω; H)) and set E = supp U (x). Note that E is a compact set. We consider the maps T ψt = T mt -id with ψ t = m t -1. As the proof of Proposition 4.7, by (A2), we have

T ψt x p ≤ 2γ 1-(2/p) (m t -1)1 E 2/p L∞(E) x 2/p 2 x 1-2/p ∞ α,γ α 1 E 2/p L∞(E) t 2/p x 2/p 2 x 1-2/p ∞ .
By the continuity of and the compactnesss of E, we have

lim M →∞ ∞ M T ψt x p p dt α,γ lim M →∞ ∞ M α 1 E 2 L∞(E) t 2 x 2 2 x p-2 ∞ dt (4.14) α,γ lim M →∞ α 1 E 2 L∞(E) x 2 2 x p-2 ∞ M = 0.
Thus, as M tends to ∞,

(T ψt x) t≥M p Lp(M; c ∞ ) ≤ (|T ψt x| 2 ) t≥M p/2 L p/2 (M; ∞) ≤ t≥M |T ψt x| p dt 2 p p/2 p/2 ≤ ∞ M T ψt x p p dt → 0.
As a result, for any x ∈ U -1 (C c (Ω; H)), T ψt (x) converges a.u. to 0 as t → ∞ according to [JX07 So (P t ) t also satisfies the one-sided weak type (p, p) maximal inequality for p ≥ 2. Thus (T mt ) t also satisfies the same inequality and by Proposition 2.9 (2), we see that T ψt (x) = T mt (x) -x converges a.u. to 0 as t → ∞ for all x ∈ L p (M). The case of (A1) can be dealt with similarly. Thus the proof of Theorem 4.2 is complete.

Proof of Theorem 4.3 (1).

In this subsection we study the maximal inequalitities for 1 < p < 2 in Theorem 4.3 (1). To approach this we need to develop several interpolation methods.

Lemma 4.10. Let (Φ j ) j∈Z be a sequence of uniformly bounded linear maps on M and write γ = sup j Φ j : M → M < ∞. Let 1 < p < q < 2 and θ ∈ (0, 1) be determined by

1 q = 1-θ p + θ 2 .
Assume that there exist c 1 , c 2 > 0 such that for any s ∈ N + , there is a decomposition of maps

Φ j = Φ (s,1) j + Φ (s,2) j
where (Φ (s,1) j

) j extends to a family of maps of weak type (p, p) with constant C p ≤ s θ c 1 and (Φ (s,2) j

) j extends to a family of maps of weak type (2, 2) with constant C 2 ≤ s -(1-θ) c 2 . Then for any x ∈ S M and λ > 0, there exists a projection e ∈ M such that sup j eΦ j (x)e ∞ < λ and τ (e ⊥ ) γ (c p 1 + c 2 2 )

x 1-θ p x θ 2 λ q .
In particular, (Φ j ) j∈Z is of restricted weak type (q, q) with constant C q γ (c p 1 + c 2 2 ) 1/q . Proof. Let x ∈ S M+ . Consider a positive integer s ∈ N + . By the weak type estimates of (Φ (s,1) j ) j and (Φ (s,2) j ) j , for any λ > 0, we take two projections e 1 , e 2 ∈ M, such that

sup j e 1 Φ (s,1) j (x)e 1 ∞ ≤ λ and τ (e ⊥ 1 ) ≤ c 1 s θ x p λ p , sup j e 2 Φ (s,2) j (x)e 2 ∞ ≤ λ and τ (e ⊥ 2 ) ≤ c 2 s θ-1 x 2 λ 2 . Set e = e 1 ∧ e 2 . Since Φ j = Φ (s,1) j + Φ (s,2) j
we have,

eΦ j (x)e ∞ ≤ 2λ, j ∈ Z, and 
τ (e ⊥ ) ≤ τ (e ⊥ 1 + e ⊥ 2 ) ≤ c 1 s θ x p λ p + c 2 s θ-1 x 2 λ 2 .
We consider x ⊥ λ = x1 (λ,∞) (x) and x λ = x1 [0,λ] (x). Applying the above arguments to x ⊥ λ , we can find a projection e ∈ M such that

eΦ j (x ⊥ λ )e ∞ ≤ 2λ, j ∈ Z. and (4.15) τ (e ⊥ ) ≤ c 1 s θ x ⊥ λ p λ p + c 2 s θ-1 x ⊥ λ 2 λ 2 . Since x = x λ + x ⊥ λ and x λ ≤ λ • 1, for any j ∈ Z, we have e(Φ j x)e ∞ ≤ e(Φ j (x λ ))e ∞ + e(Φ j (x ⊥ λ ))e ∞ ≤ (γ + 2)λ. Note that for 1 < p ≤ 2, t1 (λ,∞) (t) p = t1 (λ,∞) (t) 2 t 2-p ≤ t1 (λ,∞) (t) 2 λ 2-p , t > 0.
Therefore we have

(x ⊥ λ ) p ≤ (x ⊥ λ ) 2 λ 2-p and x ⊥ λ p p λ p ≤ x ⊥ λ 2 2
λ 2 . Hence, we can choose s to be an integer satisfying

s λ p x ⊥ λ 2 2 λ 2 x ⊥ λ p p q 2p
, and by (4.15) we have

τ (e ⊥ )   c 1 λ p x ⊥ λ 2 2 λ 2 x ⊥ λ p p q-p p(2-p) x ⊥ λ p λ   p +   c 2 λ p x ⊥ λ 2 2 λ 2 x ⊥ λ p p q-2 2(2-p) x ⊥ λ 2 λ   2 (c p 1 + c 2 2 )λ -q x ⊥ λ (1-θ)q p x ⊥ λ θq 2 .
(4.16)

Since 0 ≤ x ⊥ λ ≤ x, the above inequality yields

τ (e ⊥ ) (c p 1 + c 2 2 ) x 1-θ p x θ 2 λ q .
In order to obtain the restricted weak type (q, q) estimate, it suffices to take x = f in the above inequality for an arbitrary projection f ∈ S M+ . Then

τ (e ⊥ ) γ (c p 1 + c 2 2 ) τ (f p ) (1-θ)/p τ (f 2 ) θ/2 λ q = (c p 1 + c 2 2 )λ -q τ (f ),
which implies that (Φ j ) j∈Z is of restricted weak type (q, q) with constant

C q γ (c p 1 + c 2 2 ) 1/q
Lemma 4.11. Assume that for all t ∈ R + , the operator S t satisfies Rota's dialtion property. Let s ∈ N, α > 0, j ∈ Z and define ∆ Proof. We may write

∆ (s) α,j x = 2 -(j-2s)/α 2 -(j+2s)/α - ∂ ∂t P t (x) dt, x ∈ L p (M). Let x = x 1 + x 2 for x 1 , x 2 ∈ L p (M)
. By the convexity of the operator square function,

|∆ (s) α,j x 1 | 2 = 2 -(j-2s)/α 2 -(j+2s)/α 1 √ t - √ t ∂ ∂t P t (x 1 ) dt 2 ≤ 2 -(j-2s)/α 2 -(j+2s)/α t ∂ ∂t P t (x 1 ) 2 dt 2 -(j+2s)/α 2 -(j-2s)/α dt t α s α-j+2s α-j-2s t ∂ ∂t P t (x 1 ) 2 dt ,
where α = 2 1/α . Therefore,

∆ (s) α,j x 1 j Lp(M; c 2 ) =   ∞ j=-∞ |∆ (s) α,j x 1 | 2   1/2 α √ s   ∞ j=-∞ α-j+2s α-j-2s t ∂ ∂t P t (x 1 ) 2 dt   1/2 p α √ s   ∞ j=-∞ 2s-1 k=-2s α-j+k+1 α-j+k t ∂ ∂t P t (x 1 ) 2 dt   1/2 p α s ∞ 0 t ∂ ∂t P t (x 1 ) 2 dt 1/2 p Similarly, (∆ (s) α,j x 2 ) j Lp(M; r 2 ) α s ∞ 0 t ∂ ∂t P t (x 2 ) * 2 dt 1/2 p .
On the other hand,

(∆ (s) α,j x) j Lp(M; cr 2 ) ≤ inf{ (∆ (s) α,j x 1 ) j Lp(M; c 2 ) + (∆ (s)
α,j x 2 ) j Lp(M; r 2 ) } where the infimum runs over all x 1 , x 2 ∈ L p (M) such that x = x 1 + x 2 . Then the conclusion follows from Proposition 3.7.

Now, let us prove Theorem 4.3 (1).

Proof. The case p ≥ 2 has been already treated by Theorem 4.2. In this proof, we focus on the case 1 < p < 2.

Fix a finite index set

J ⊂ Z. Denote A(p, ∞) = (T m j ) j∈J : L p (M; ∞ ) → L p (M; ∞ ) , A(p, 1) = (T m j ) j∈J : L p (M; 1 ) → L p (M; 1 ) , A(p, 2) = (T m j ) j∈J : L p (M; cr 2 ) → L p (M; cr 2 ) .
Since J is finite, all these quantities are well-defined and finite. Because the operators (T m j ) j∈J are positive maps, by Proposition 2.5 we have (4.17)

(T m j ) j∈J : L p (M) → L p (M; ∞ ) A(p, ∞).
Let 1 < p < 2. It is sufficient to show that A(p, ∞) is dominated by a positive constant independent of J.

Consider 1 < q 1 < q 2 < 2 and let θ ∈ (0, 1) be the number satisfying

1 q 2 = 1-θ q 1 + θ 2 . For s ∈ N + we write s 0 = [(1 -θ)α log 2 s] + 1. Denote by ∆ (s) j = P 2 -(j+2s 0 )/2α -P 2 -(j-2s 0 )/2α
the difference introduced in Lemma 4.11 asociated with s 0 and 2α. By Proposition 3.3 and Lemma 4.11, we have

sup j∈J + T m j (∆ (s) j x) q 1 ≤ A(q 1 , 2) ∆ (s) j x j Lq 1 (M; cr 2 ) α A(q 1 , 2)s 0 (q 1 -1) -6 x q 1 .
By Proposition 2.10 and Lemma 4.11 , we have

sup j∈J + S 2 -j/α (∆ (s) j x) q 1 (q 1 -1) -2 ∆ (s) j x j Lq 1 (M; cr 2 ) α s 0 (q 1 -1) -8 x q 1 .
We set T φ j = T m j -S 2 -j/α with φ j = m j -e

- (•)
2 j/α . Hence,

sup j∈J + T φ j (∆ (s) j x) q 1 α A(q 1 , 2)(q 1 -1) -8 s 0 x q 1 .
Let us assume (1 -θ)α log 2 s ≥ 1 first. Note that for any s > 0 and δ > 0, we have log 2 s s δ δ . Therefore we get that

s 0 ≤ 2(1 -θ)α log 2 s α s θ θ α (q 2 -q 1 ) -1 s θ . If (1 -θ)α log 2 s < 1, then s 0 = 1 ≤ s θ ≤ (q 2 -q 1 ) -1 s θ . Hence, (4.18) sup j∈J + T φ j (∆ (s) j x) q 1 α A(q 1 , 2)(q 1 -1) -8 (q 2 -q 1 ) -1 s θ x q 1 .
Let ω ∈ Ω and let

δ (s) j (ω) = exp - (ω) 2 (j+2s 0 )/2α -exp - (ω) 2 (j-2s 0 )/2α be the symbol of ∆ (s) j . Note that |1 -δ (s) j (ω)| ≤ 1 -exp - (ω) 2 (j+2s 0 )/2α + exp - (ω) 2 (j-2s 0 )/2α α (ω) 2 (j+2s 0 )/2α + 2 (j-2s 0 )/2α (ω)
.

When 2 j ≥ (ω) α , by the above inequality we have |1 -δ

(s) j (ω)| α 2 -s 0 /α ( 2 j/α (ω) ) 1/2
, and as the computation in (4.11) we have |φ j (ω)| β (ω) 2 j/α . In particular,

|φ j (ω)(1 -δ (s) j (ω))| α,β 2 -s 0 /α (ω) 2 j/α 1/2 α,β 2 -s 0 /α 2 j/α (ω) (2 j/α + (ω)) 2 1/2 . When 2 j < (ω) α , similarly we have |1 -δ (s) j (ω)| α 2 -s 0 /α ( (ω)
2 j/α ) 1/2 , and as the computation in (4.12) we have |φ j (ω)| β 2 j/α (ω) . Therefore

|φ j (ω)(1 -δ (s) j (ω))| α,β 2 -s 0 /α 2 j/α (ω) 1/2 α,β 2 -s 0 /α 2 j/α (ω) (2 j/α + (ω)) 2 1/2
. By Proposition 4.8, we have

(4.19) sup j∈J + T φ j (1 -∆ (s) j )x 2 α,β 2 -s 0 /α x 2 α,β s θ-1 x 2 .
Thus by (4.18), (4.19) and Lemma 4.10, we see that (T φ j ) j∈J is of restricted weak type (q 2 , q 2 ) with constant (4.20)

C q 2 α,β A(q 1 , 2)(q 1 -1) -8 (q 2 -q 1 ) -1 q 1 + 1 1/q 2 α,β A(q 1 , 2)(q 1 -1) -8 (q 2 -q 1 ) -1 .

Set D = sup 1<u≤2 (u -1) 22 A(u, ∞) < ∞. Choose an index 1 < r ≤ 2 such that (r -1) 22 A(r, ∞) > D 2 .
We apply the restricted weak type estimate of (T φ j ) j in (4.20) to the particular case q 1 = 1 2 (r + 1) and q 2 = q 1 + (r -q 1 )/2. Note that by Proposition 2.10, the semigroup (S t ) t is of strong type (q 2 , q 2 ) with constant c(q 2 -1) -2 . Recall that T m j = T φ j + S 2 -j/α , thus (T m j ) j∈J is also of restricted weak type (q 2 , q 2 ) with constant

C q 2 α,β A(q 1 , 2)(q 1 -1) -8 (q 2 -q 1 ) -1 + (q 2 -1) -2 α,β A( q 1 2 -q 1 , ∞) 1/2 (r -1) -9 .
The last inequality above follows from Lemma 3.4 and the values of q 1 and q 2 . Because (T m j ) j is of strong type (∞, ∞) and of restricted weak type of (q 2 , q 2 ), applying Theorem 2.6 we have (4.21)

sup j∈J + T m j x r ≤ max{C q 2 , 1}( rq 2 r -q 2 + r) 2 x r , x ∈ L r (M).
By (4.17), this means that A(r, ∞) C q 2 (r -1) -2 . Therefore,

(4.22) (r -1) -22 D 2 < A(r, ∞) α,β A( q 1 2 -q 1 , ∞) 1/2 (r -1) -11 .
Recall that A( q 1 2-q 1 , ∞) α,β 1 if q 1 2-q 1 ≥ 2 by Theorem 4.2. Without loss of generality we assume that 1 < q 1 2-q 1 < 2. Then (4.22) yields

(r -1) -22 D 2 α,β q 1 2 -q 1 -1 -22 D 1/2 (r -1) -11
Recall that q 1 = 1 2 (r + 1). We have D α,β 1.

In other words, (p -1) 22 A(p, ∞) α,β 1 for any 1 < p ≤ 2. In particular, this estimate is independent of the finite index set J. So we obtain the desired maximal inequality according to Remark 2.3. Note that T m j x converges a.u. to x as j → ∞ for x ∈ L 2 (M) by Theorem 4.2 and that L 2 (M)∩L p (M) is dense in L p (M). Applying Proposition 2.9 (1), we get the a.u. convergence of (T m j x) j for x ∈ L p (M).

Proof of Theorem 4.3 (2).

Our idea is reducing the desired maximal inequalities to those for lacunary subsequences already studied in the preceding subsection.

Lemma 4.12. Assume that the family (m t ) t∈R + satisfies (A2). Then for any 1 ≤ q < 2 and q + q(2-q) q-1+2η < p < 2, we have

(T mt ) t∈R + : L p (M) → L p (M; ∞ ) β,η,p,q sup 1≤δ≤2 (T m δ2 j ) j∈Z : L q (M) → L q (M; ∞ ) 1-θ
provided that the right hand side is finite, where θ is determined by 1 p = 1-θ q + θ 2 . Proof. Our proof is based on the estimate of multi-order differences of (m t ) t . For notational simplicity we denote these differences as follows: we start with setting the first order differences of the following form ψ

[s] t = m 2 2 -s-1 t -m t , s ∈ N, t ∈ R + , and define the higher order ones inductively by

ψ [s 1 ,s 2 ,...,sv] t = ψ [s 1 ,s 2 ,••• ,s v-1 ] 2 2 -sv -1 t -ψ [s 1 ,s 2 ,••• ,s v-1 ] t , s 1 , . . . , s v ∈ N, t ∈ R + , 2 ≤ v ≤ η.
We denote by

Ψ [s 1 ,s 2 ,...,sv] t = T ψ [s 1 ,s 2 ,...,sv ] t the associated multipliers for 1 ≤ v ≤ η.
We will estimate the maximal norms of (T mt ) t by using those of (Ψ

[s 1 ,s 2 ,...,sv] t
) t . To see this, note that by Proposition 4.7, (T mt (x)) t is strongly continuous on L p (M) for all 1 < p < ∞. We consider the dyadic approximations with increasing index sets I s = {2 j/2 s : j ∈ Z} for s ∈ N. By Remark 2.3, we have for x ∈ L p (M),

sup t∈R + + T mt x p = lim s→∞ sup t∈Is + T mt x p ≤ sup t∈I 0 + T mt x p + ∞ s=0 sup + t∈I s+1 T mt x p -sup t∈Is + T mt x p .
Note that we have the bijection J : I s → I s+1 \I s , 2 j/2 s → 2 (2j+1)/2 s+1 = 2 1 2 s+1 2 j/2 s and I s+1 = I s ∪ J(I s ). Hence for

y t = T mt x t ∈ I s T m J -1 (t) x t ∈ J(I s ) ,
we have sup + t∈I s+1 y t = sup + t∈Is T mt x . Then applying the triangle inequality, we get

sup + t∈I s+1 T mt x p -sup t∈Is + T mt x p ≤ sup t∈Is + Ψ [s] t (x) p .
In other words, we obtain

sup t∈R + + T mt x p ≤ sup t∈I 0 + T mt x p + ∞ s=0 sup t∈Is + Ψ [s] t (x) p .
Applying the above arguments to maps of the form

Ψ [s]
t in place of T mt , we see that for each

s 1 ≥ 1, sup t∈Is 1 + Ψ [s 1 ] t (x) p ≤ sup t∈I 0 + Ψ [s 1 ] t (x) p + s 1 -1 s 2 =0 sup t∈Is 2 + Ψ [s 1 ,s 2 ] t (x) p .
Hence,

sup t∈R + + T mt x p ≤ sup j∈Z + T m 2 j x p + ∞ s 1 =0 sup t∈I 0 + Ψ [s 1 ] t (x) p + ∞ s 1 =1 s 1 -1 s 2 =0 sup + t∈Is 2 Ψ [s 1 ,s 2 ] t (x) p .
Repeating this process η times, we get (ω) by virtue of Lemma 4.9. More precisely, we will show that for any 1 ≤ v ≤ η,

sup t∈R + + T mt x p ≤ sup j∈Z + T m 2 j x p + ∞ s 1 =0 sup t∈I 0 + Ψ [s 1 ] t (x) p + ∞ s 1 =1 s 1 -1 s 2 =0 sup t∈I 0 + Ψ [s 1 ,s 2 ] t (x) p + • • • + s 1 >s 2 >•••>s η-1 sup t∈I 0 + Ψ [s 1 ,s 2 ,...s η-1 ] t (x) p + s 1 >s 2 >•••>sη sup t∈Is η + Ψ [s 1 ,
(4.24) ∂ k t ψ [s 1 ,s 2 ,...,sv] t β 2 -(s 1 +s 2 •••+sv) (2k + 2v) v t k 0 ≤ k ≤ η -v.
Let us prove this inequality by induction. For notational simplicity we write ρ v = 2 2 -sv -1 . Note that 1 < ρ v < 2 and that applying the mean value theorem to the function x → 2 x , we get that for any 1 ≤ v ≤ η and k ≥ 0,

(4.25) ρ k v -1 k2 -sv . Consider first v = 1. For any 0 ≤ k ≤ η -1, |∂ k t ψ [s 1 ] t (ω)| = |∂ k t m ρ 1 t (ω) -∂ k t m t (ω)| = ρ k 1 ∂ k γ m γ (ω)| γ=ρ 1 t -∂ k t m t (ω) By (A2), ∂ k γ m γ (ω)| γ=ρ 1 t β 1 (ρ 1 t) k . Hence |∂ k t ψ [s 1 ] t (ω)| β (ρ k 1 -1) 1 (ρ 1 t) k + ∂ k γ m γ (ω)| γ=ρ 1 t -∂ k t m t (ω) .
By the mean value theorem and (A2),

∂ k γ m γ (ω)| γ=ρ 1 t -∂ k t m t (ω) ≤ (ρ 1 t -t) sup t≤γ≤ρ 1 t |∂ k+1 γ m γ (ω)| β ρ 1 t -t t k+1 .
Therefore, according to (4.25), we have

|∂ k t ψ [s 1 ] t (ω)| β (ρ k 1 -1) 1 (ρ 1 t) k + ρ 1 -1 t k β k2 -s 1 t k + 2 -s 1 t k β 2 -s 1 k + 1 t k
. So (4.24) holds for v = 1. Assume that (4.24) holds for some 1 ≤ v ≤ η -1 and consider the case of v + 1. For any 0 ≤ k ≤ η -(v + 1), arguing as above, we have

|∂ k t ψ [s 1 ,s 2 ,••• ,s v+1 ] t (ω)| = |ρ k v+1 ∂ k γ (ψ [s 1 ,s 2 ,••• ,sv] γ (ω))| γ=ρ v+1 t -∂ k t (ψ [s 1 ,s 2 ,••• ,sv] t (ω))| β (ρ k v+1 -1)2 -(s 1 +s 2 •••+sv) (2k + 2v) v (ρ v+1 t) k + (ρ v+1 t -t) sup t≤γ≤ρ v+1 t |∂ k+1 γ (ψ [s 1 ,s 2 ,••• ,sv] γ (ω))| β k2 -s v+1 2 -(s 1 +s 2 •••+sv) (2k + 2v) v t k + (ρ v+1 t -t)2 -(s 1 +s 2 •••+sv) (2k + 2 + 2v) v t k+1 β 2 -(s 1 +s 2 •••+s v+1 ) (2(k + 1 + v)) v+1 t k .
So (4.24) is proved. In particular, setting k = 0 and k = 1 respectively, we get for any

1 ≤ v ≤ η (4.26) ψ [s 1 ,s 2 ,••• ,sv] t (ω) β,η 2 -(s 1 +s 2 •••+sv) ,
and for any 1

≤ v ≤ η -1, (4.27) ∂ t ψ [s 1 ,s 2 ,••• ,sv] t (ω) β,η 2 -(s 1 +s 2 •••+sv) 1 t .
This also yields

∂ t ψ [s 1 ,s 2 ,••• ,sη] t (ω) ≤ ∂ t ψ [s 1 ,s 2 ,••• ,s η-1 ] ρηt (ω) + ∂ t ψ [s 1 ,s 2 ,••• ,s η-1 ] t (ω) β,η 2 -(s 1 +s 2 +•••+s η-1 ) 1 t . (4.28)
On the other hand, by definition

(4.29) ψ [s 1 ,s 2 ,••• ,sv] t = ε∈{0,1} v (-1) (v+ v i=1 ε i) m ρ ε t where ε = (ε 1 , • • • , ε v ) ∈ {0, 1} v and ρ ε = ρ ε 1 1 ρ ε 2 2 • • • ρ εv v . Recall that s 1 < s 2 < • • • s v and s v ≥ v, we have 1 < ρ ε ≤ 2 2 -sv -1 +2 -sv +•••+2 -sv +v-2 < 2 2 -sv -1+v < 2. By (A2), ψ [s 1 ,s 2 ,••• ,sv] t (ω) ≤ ε∈{0,1} v |m ρ ε t (ω)| ≤ ε∈{0,1} v β ρ ε t (ω) α ≤ β2 2v t (ω) α , ψ [s 1 ,s 2 ,••• ,sv] t (ω) ≤ ε∈{0,1} v |1 -m ρ ε t (ω)| ≤ ε∈{0,1} v β (ω) α ρ ε t ≤ 2 v β (ω) α t .
Thus, setting

a [s 1 ,s 2 ,••• ,sv] j := sup t   sup 2 j-2 < (ω) α t ≤2 j ψ [s 1 ,s 2 ,••• ,sv] t (ω)   , and b [s 1 ,s 2 ,••• ,sv] j := sup t   sup 2 j-2 < (ω) α t ≤2 j t ∂ t ψ [s 1 ,s 2 ,••• ,sv] t (ω)   ,
together with (4.26) and (4.27), we have for

1 ≤ v ≤ η -1, a [s 1 ,s 2 ,••• ,sv] j β,η min{2 -(s 1 +s 2 +•••+sv) , 2 -|j| }, b [s 1 ,s 2 ,••• ,sv] j β,η 2 -(s 1 +s 2 +•••+sv) . Then by Lemma 4.9, for 1 ≤ v ≤ η -1, we have (4.30) sup + t∈R + Ψ [s 1 ,s 2 ,••• ,sv] t x 2 K [s 1 ,s 2 ,•••sv] x 2 , with K [s 1 ,s 2 ,••• ,sv] = j∈Z (a [s 1 ,s 2 ,••• ,sv] j ) 1/2 (a [s 1 ,s 2 ,••• ,sv] j + b [s 1 ,s 2 ,••• ,sv] j ) 1/2 β,η   |j|≤s 1 +s 2 +•••+sv 2 -(s 1 +s 2 +•••+sv)/2 + |j|>s 1 +s 2 •••+sv 2 -|j|/2   • 2 -(s 1 +s 2 +•••+sv)/2 β,η s 1 + s 2 + • • • + s v 2 (s 1 +s 2 +•••+sv) .
Similarly, for v = η, by (4.26) and (4.28), (4.31)

sup + t∈R + Ψ [s 1 ,s 2 ,••• ,sη] t x 2 K [s 1 ,s 2 ,••• ,sη] x 2 , with K [s 1 ,s 2 ,•••sη] β,η s 1 + s 2 + • • • + s η 2 (s 1 +s 2 •••+s η-1 )+ sη 2 .
In the following we consider the case 1 ≤ q < 2. Denote

A q = sup 1≤δ≤2 (T m δ2 j ) j∈Z : L q (M) → L q (M; ∞ ) .
For 1 ≤ v ≤ η -1, by (4.29) we have (4.32) sup

t∈I 0 + Ψ [s 1 ,s 2 ,••• ,sv] t x q ≤ ε∈{0,1} v sup t∈I 0 + T m ρ ε t x q ≤ 2 v A q x q .
For v = η, we decompose

I sη = {2 j/2 sη : j ∈ Z} = 2 sη -1 l=0 {2 (2 sη )j+l 2 sη : j ∈ Z} = 2 sη -1 l=0 2 l 2 sη I 0 .
By (4.29) and the triangle inequality, we have

sup + t∈Is η Ψ [s 1 ,s 2 ,...,sη] t (x) q ≤ ε∈{0,1} η sup + t∈Is η T m ρ ε t x q (4.33) ≤ ε∈{0,1} η 2 sη -1 l=0 sup + t∈2 l 2 sη I 0 T m ρ ε t x q ≤ ε∈{0,1} η 2 sη -1 l=0 sup t∈I 0 + T m 2 l 2 sη ρ ε t x q η A q 2 sη x q .
Now the conclusion follows easily from the complex interpolation. Let 1 < p < 2 and 0 < θ < 1 with 1 p = 1-θ q + θ 2 . By (4.30), (4.32) and interpolation, we see that for v ≤ η -1,

sup t∈I 0 + Ψ [s 1 ,s 2 ,••• ,sv] t x p β,η A 1-θ q (s 1 + s 2 • • • + s v ) θ 2 -θ(s 1 +s 2 •••+sv) x p .
By (4.31), (4.33) and interpolation, for v = η,

sup + t∈Is η Ψ [s 1 ,s 2 ,...,sη] t (x) p β,η A 1-θ q 2 (1-θ)sη (s 1 + s 2 • • • + s η ) θ 2 -θ(s 1 +s 2 •••+ sη 2 ) x p .
Thus the above quantity is finite if (1 -θ) < (η -1 2 )θ, i.e. θ > 2 2η+1 , which requires that q + q(2-q) q-1+2η < p ≤ 2. Therefore, together with (4.23), if q + q(2-q) q-1+2η < p ≤ 2,

sup + t∈R + T mt x p β,η,θ A 1-θ q x p .
The proof is complete.

Proof of Theorem 4.3 (2). For any 1 ≤ δ ≤ 2 and j ∈ Z, set t j = 2 j δ. (A2) implies that

|1 -m t j (ω)| ≤ β (ω) α 2 j δ ≤ β (ω) α 2 j and |m t j (ω)| ≤ 2β 2 j (ω) α .
By Thereom 4.3 (1) and Remark 4.5 (2), for any 1 < q ≤ 2, we have sup 1≤δ≤2 sup j∈Z + T mt j x q α,β,q,η x q .

Note that q + q(2-q) q-1+2η tends to 1 + 1 2η as q → 1. Hence, by Lemma 4.12, for any 1 + 1 2η < p ≤ 2, we get sup

+ t∈R + T mt x p α,β,p,η x p .
The a.u. convergence is proved similarly as in (1).

4.5. The case of operator-valued multipliers and nontracial states. Based on the previous arguments, we may extend our results to the setting of operator-valued multipliers and Haagerup's nontracial L p -spaces. This will be particularly essential for our further study of multipliers on quantum groups in the next section. All the previous arguments for p ≥ 2 can be transfered without difficulty into this new setting, and we will leave the details to interesting readers. However, the previous proof for the case p < 2 does not continue to hold for Haagerup's L p -spaces. Based on Haagerup's reduction method, we will rather use our previous results for the tracial setting to deduce the desired properties for the nontracial ones.

4.5.1. Operator-valued multipliers in the tracial setting. Let us first begin with the operatorvalued multipliers on tracial von Neumann algebras. Let R be a von Neumann algebra equipped with a semifinite normal trace. Assume that there is an isometric isomorphism

U : L 2 (R) → i∈I H i
where I is an index set and H i is a Hilbert space for each i ∈ I. For any bounded sequence m := (m(i)) i∈I with m(i) ∈ B(H i ), we can define an operator-valued multiplier on R:

T m : L 2 (R) → L 2 (R) x → U -1 (m(i)(U x)(i)) i∈I . (4.34)
Note that if H i = C for all i ∈ I, then this goes back to our first setting in (4.1) with Ω = I equipped the counting measure. Proposition 4.8 can be adapted to this new setting. Proposition 4.13. Let (T m N ) N ∈Z be a sequence of operator-valued multipliers as above. Assume that there exist a function f : I → [0, ∞) and a positive number a > 1 such that

(4.35) m N (i) B(H i ) ≤ β a N f (ω) (a N + f (ω)) 2 Then, (T m N x) N ∈Z L 2 (R; cr 2 ) ≤ β a 2 a 2 -1 x 2 .
Proof. Repeat the proof of Proposition 4.8.

Using Proposition 4.13, Lemma 4.10, Lemma 3.4 and Lemma 4.11, we may deduce the following result. The proof is the same as that of Theorem 4.2 and Theorem 4.3 (for (A1)). Theorem 4.14. Let := ( (i)) i∈I be a sequence with (i) ∈ B(H i ). Assume that (T e -t ) t∈R + is a semigroup of unital completely positive trace-preserving symmetric maps on R. For any N ∈ N, let m N := (m N (i)) i∈I be a sequence with m N (i) ∈ B(H i ). Assume that (T m N ) N ∈N extends to a family of bounded maps on R with γ := sup N T m N : R → R < ∞. Assume that there exist α > 0 and β > 0 such that for all i ∈ I we have

(4.36) id H i -m N (i) B(H i ) ≤ β (i) α B(H i ) 2 N , m N (i) B(H i ) ≤ β 2 N (i) α B(H i )
.

(1) For all 2 ≤ p < ∞ there is a constant c > 0 depending only on p, α, β, γ such that for all x ∈ L p (R), we have

(T m N x) N Lp(R; ∞) ≤ c x p , and 
T m N x → x a.u. as N → ∞.
(2) Assume additionally that the operators (T m N ) N ∈N extend to positive symmetric contractions on R and that S t satisfies Rota's dialtion property for all t ∈ R + . Then for any 1 < p < ∞, there is a constant c depending only on p, α, β such that for all x ∈ L p (R),

(T m N x) N Lp(R; ∞) ≤ c x p and T m N x → x a.u. as N → ∞.
4.5.2. Operator-valued multipliers on Haagerup noncommutative L p spaces. Let M be a von Neumann algebra acting on a Hilbert space H. Let ϕ be a fixed normal semifinite faithful state on M. Let σ = (σ t ) t = (σ ϕ t ) t be the modular automorphism group with respect to ϕ. Let L p (M, ϕ) be the Haagerup noncommutative L p -spaces associated with (M, ϕ). In the following discussions we will not need the detailed information of these spaces, and we refer to [Ter81, PX03, HJX10] for a detailed presentation. We merely remind the reader that the elements in L p (M, ϕ) can be realized as densely defined closed operators on L 2 (R; H) and that L ∞ (M, ϕ) coincides with M for a certain suitable representation M on L 2 (R; H). If N is a von Neumann subalgebra of M, then the associated Haagerup L p -space L p (N , ϕ| N ) can be naturally embedded as a subspace of L p (M, ϕ) which preserves positivity. There is a distinguished positive element D ϕ ∈ L 1 (M, ϕ) + , usually called the density operator associated with ϕ, such that D

1/2p ϕ MD 1/2p ϕ is dense in L p (M, ϕ) (see e.g. [JX03, Lemma 1.1]
). The space L p (M, ϕ) isometrically coincides with the usual tracial noncommutative L p -space used previously if M is tracial. Indeed, if M is equipped with a normal faithful tracial state τ with ϕ = τ (•ρ) for some ρ ∈ L 0 (M, τ ), then for any x ∈ M, (4.37)

D 1/2p ϕ xD 1/2p ϕ Lp(M,ϕ) = [τ ((ρ 1/2p xρ 1/2p ) p )] 1/p ,
which coincides with the norm of ρ 1/2p xρ 1/2p in the tracial L p -space L p (M, τ ) in the sense of Section 2. In the sequel we will not distinguish the Haagerup L p -spaces and the tracial L p -spaces introduced in Section 2 if ϕ is tracial. In this subsection we set Γ = n≥1 2 -n Z, which is regarded as a discrete subgroup of R. We consider the crossed procuct R = M σ Γ. Recall that R is the von Neumann subalgebra generated by π(M) and id H ⊗λ(Γ) in B( 2 (R; H)), where π : M → B( 2 (Γ; H)) is the *representation given by π(x) = t∈Γ σ -t (x) ⊗ e t,t and λ is the left regular representation of Γ on 2 (Γ). We will identify M with π(M) and denote x λ(t) = π(x)(id H ⊗λ(t)) for x ∈ M and t ∈ Γ. We have

(x λ(t)) • (y λ(s)) = (xσ t (y)) λ(t + s)
for any x, y ∈ M, t, s ∈ Γ. Let τ Γ be the usual trace on V N (Γ) given by τ Γ (λ(t)) = δ t=0 . The dual state ϕ on R is defined by

(4.38) ϕ(x λ(t)) = ϕ(x)τ Γ (λ(t)) x ∈ M, t ∈ Γ.
We set

a k = -i2 n Log(λ(2 -k )) and τ k = ϕ(e -a k •)
with Log the principal branch of the logarithm so that 0 ≤ Im(Log(z)) < 2π. We denote by R k the centralizer of τ k in R. We will use the following two theorems to reduce our problem to the tracial case studied previously.

Theorem 4.15 ([HJX10, Theorem 2.1, Example 5.8, Remark 6.1]). (1) For each k ≥ 1, the subalgebra R k is finite and τ k is a normal faithful tracial state on R k ;

(2) {R k } k≥1 is an increasing sequence of von Neumann subalgebras such that ∪ k≥1 R k is w*-dense in R;

(3) for every k ∈ N, there exists a normal conditional expectation 

E k from R onto R k such that ϕ • E k = ϕ and σ ϕ t • E k = E k • σ ϕ t , t ∈ R. For each 1 ≤ p < ∞ and any k ∈ N, the map E (p) k (D 1/2p ϕ xD 1/2p ϕ ) = D 1/2p ϕ E k (x)D 1/2p ϕ , x ∈ R extends to a conditional expectation from L p (R, ϕ) onto L p (R k , ϕ| R k ), and lim k E (p) k x -x Lp(R, ϕ) = 0, x ∈ L p (R, ϕ).
(4.39) T • σ t = σ t • T, t ∈ R.
Then T admits a unique completely bounded normal extension T on R such that

T cb = T cb and T (x λ(g)) = T (x) λ(g), x ∈ M, g ∈ Γ.
Moreover, T satisfies the following properties:

(1)

σ ϕ t • T = T • σ φ t , t ∈ R; (2) T • E k (x) = E k • T (x) for all x ∈ R, where (E k ) k are conditional expectations given in Theorem 4.15.
Assume in addition that T is completely positive and ϕ-preserving. Then T is also positive and τ k • T = τ k , ϕ • T = ϕ where τ k is the trace given in Theorem 4.15. Moreover, the map

T (p) : D 1/2p ϕ xD 1/2p ϕ → D 1/2p ϕ T (x)D 1/2p ϕ , x ∈ R
extends to a positive bounded maps on L p (R, ϕ) for all 1 ≤ p ≤ ∞.

Convention. In the sequel, for a given map T : M → M, we will denote, by the same symbol T , all the maps T (p) and their extensions to the L p -spaces in the above setting, whenever no confusion can occur.

Let H ϕ be the GNS completion of M with respect to ϕ (we make the convention that x 2 Hϕ = ϕ(x * x) for x ∈ M). Note that x → xD 1/2 ϕ yields an isometric isomorphism from H ϕ to L 2 (M, ϕ). Assume that there is an isometric isomorphism (4.40)

U :

H ϕ → i∈I H i
where I is an index set and H i is a Hilbert space for each i ∈ I. Let m := (m(i)) i be a bounded sequence with m(i) ∈ B(H i ). As in (4.34), we may define the multiplier (4.41)

T m : H ϕ → H ϕ , U (T m x) = (m(i)(U x)(i)) i∈I , x ∈ H ϕ .
Applying the reduction theorems quoted above, we obtain the maximal inequalities for the nontracial setting. The a.u. convergence can be adapted in the setting of Haagerup's L pspaces, usually called Jajte's (bilaterally) almost sure (b.a.s. and a.s. for short) convergence [START_REF] Jajte | Strong limit theorems in noncommutative L2-spaces[END_REF], for which we also refer to [JX07, Section 7.4].

Definition 4.17. (1) Let x n , x ∈ L p (M, ϕ) with 1 ≤ p < ∞. The sequence (x n ) is said to converge almost surely (a.s. in short) to x if for every ε > 0 there is a projection e ∈ M and a family (a n,k ) ⊂ M such that ϕ(e ⊥ ) < ε and

x n -x = k≥1 a n,k D 1 p , lim n→∞ k≥1 (a n,k e) ∞ = 0,
where the two series converge in norm in L p (M, ϕ) and M, respectively.

(2) Let x n , x ∈ L p (M, ϕ) with 1 ≤ p < ∞. The sequence (x n ) is said to converge bilateral almost surely (b.a.s. in short) to x if for every ε > 0 there is a projection e ∈ M and a family (a n,k ) ⊂ M such that ϕ(e ⊥ ) < ε and

x n -x = D 1 2p k≥1 a n,k D 1 2p , lim n→∞ k≥1 (ea n,k e) ∞ = 0,
where the two series converge in norm in L p (M, ϕ) and M, respectively.

As we mentioned at the beginning of this subsection, the space L p (M, ϕ) isometrically coincides with the tracial noncommutative L p -space if the state ϕ is tracial. In this case, one can easily verify that Jajte's a.s. (resp. b.a.s) convergence recovers Lance's a.u. (resp. b.a.u.) convergence defined in Definition 2.7.

We keep the notation introduced previously in this subsection. The following is our main result in this subsection, which generalizes the results for (A1) in Theorem 4.2 and Theorem 4.3. Those for (A2) can be dealt with in a similar manner, and we leave the details to interesting readers.

Theorem 4.18. Let := ( (i)) i∈I be a sequence with (i) ∈ B(H i ) and write S t = T e -t for t ∈ R + .. For any N ∈ N, let m N := (m N (i)) i∈I be a bounded sequence with m N (i) ∈ B(H i ). Assume that the following conditions hold:

(i) (S t ) t∈R + extends to a semigroup of unital completely positive ϕ-preserving maps on M and for any t ∈ R + , r ∈ R,

S t • σ r = σ r • S t , ϕ(S t (x) * y) = ϕ(x * S t (y))
x, y ∈ M.

(ii) (T m N ) N ∈N extends to a family of selfadjoint maps on M with

γ := sup N T m N : M → M < ∞.
(iii) There exist α > 0 and β > 0 such that for all i ∈ I we have

(4.42) id H i -m N (i) B(H i ) ≤ β (i) α B(H i ) 2 N , m N (i) B(H i ) ≤ β 2 N (i) α B(H i ) .
Then there is a constant c > 0 depending only on p, α, β, γ such that for all 2 ≤ p < ∞,

(4.43) (T m N x) N Lp(M; ∞) ≤ c x p x ∈ L p (M, ϕ).
and T m N x → x a.s. (resp. b.a.s.) as N → ∞ for all x ∈ L p (M) with 2 < p < ∞ (resp. p = 2).

If in addition the maps (T m N ) N ∈N are unital completely positive, symmetric and ϕ-preserving on M and commute with the modular automorphism group σ, i.e.

T m N • σ r = σ r • T m N r ∈ R, N ∈ N,
then the above maximal inequality (4.43) also holds for all 1 < p < ∞ and

T m N x → x b.a.s. as N → ∞ for all x ∈ L p (M).
The proof of (4.43) for the case of p ≥ 2 is a mutatis mutandis copy of the arguments in previous subsections. It suffices to note that the proof of Proposition 4.8 and Proposition 4.13 remains valid in the setting of Haagerup's L p -spaces if T m N is selfadjoint on M. We leave the details to interesting readers. The reason why the previous arguments do not adapt to the case of p < 2 is that the weak interpolation (Theorem 2.6) fails for Haagerup's L p -spaces. So we will provide a proof for this case using the reduction theorems. On the other hand, we will only prove the maximal inequalities. The implication from maximal inequalities to a.s. (resp. b.a.s.) convergences, in particular the analogue of Proposition 2.9 (2), remains valid on L p (M, ϕ) if we replace the one sided weak type inequality (2.4) by the strong type one on L p (M; c ∞ ) for p > 2 (resp. on L p (M; ∞ ) for 1 < p ≤ 2) by using [JX07, Lemma 7.10]. Proof of (4.43) for 1 < p < 2 and completely positive T m N . The operator U in (4.40) induces an isometry on L 2 (R k , τ k ) given by

U k : L 2 (R k , τ k ) → i∈I H i ⊗ L 2 (V N (Γ), τ Γ (e -a k •)) x λ(g) → U (x) ⊗ λ(g).
Indeed, U k is an isometry since for any finite sum g x g λ(g) ∈ R, we have

U k ( g x g λ(g)) 2 i∈I H i ⊗L 2 (V N (Γ),τ Γ (e -a k •)) = g,h ϕ(x * g x h )τ Γ (e -a k λ(h -g)) = g,h ϕ(σ -g (x * g x h ))τ Γ (e -a k λ(h -g)) = g,h ϕ σ -g (x * g x h ) λ((h -g)e -a k = g x g λ(g) 2 L 2 (R k ,τ k ) .
Take the Hilbert subspaces

H i ⊂ H i ⊗ L 2 (V N (Γ), τ Γ (e -a k •)) so that ran( U k ) = i H i . Then U k : L 2 (R k , τ k ) → i H i becomes an isometric isomorphism. For any x λ(g) ∈ R k , the element (T m N x) λ(g) = T m N (x λ(g)) also belongs to R k since T m N • E k = E k • T m N by Theorem 4.16. So U k ((T m N x) λ(g)
) is well-defined and moreover, by (iii), we have

U k ((T m N x) λ(g)) = U (T m N (x)) ⊗ λ(g) = (mU (x)) ⊗ λ(g) = (m ⊗ id) U k (x λ(g)).
In particular m N (i) ⊗ id sends H i into H i , and T m N | R k is an operator-valued multiplier in the sense of (4.34) (recall that (R k , τ k ) is tracial). It is straightforward to verify that T m N | R k is unital completely positive τ k -preserving on R k , and therefore it extends to a positive contraction on L p (R k , τ k ). Similarly, the extension S t := T e -t also gives rise to a semigroup of unital completely positive maps on R. It is easy to check that S t is symmetric relative to ϕ. The restriction S t | R k is τ k -preserving and symmetric relative to τ k since S t ((x λ(g))e -a k ) = (S t x) λ(g)e -a k = ( S t (x λ(g)))e -a k for all x ∈ M and g ∈ Γ. Thus applying Theorem 4.14 to

T m N | R k , we obtain (4.44) sup N + T m N (x) Lp(R k ,τ k ) ≤ c x Lp(R k ,τ k ) , x ∈ L p (R k , τ k ),
where c is a constant only depending on α, β, p.

In the following we consider x ∈ L p (M, ϕ) + . Since L p (M, ϕ) can be naturally embedded into L p (R, ϕ), we regard x as an element in L p (R, ϕ) + . By Theorem 4.16, we see that

T m N • E k = E k • T m N and hence T (p) m N • E (p) k = E (p) k • T (p)
m N . By Theorem 4.15, we have

lim k→∞ T (p) m N (E (p) k (x)) = lim k→∞ E (p) k ( T (p) m N (x)) = T (p) m N (x) in L p (R, ϕ).
Thus for any M > 0,

(4.45) lim k→∞ sup + 1≤N ≤M T (p) m N (E (p) k (x)) Lp(R k , ϕ| R k ) = sup + 1≤N ≤M T (p) m N (x) Lp(R, ϕ) .
Without loss of generality, we assume that x = D

1/2p ϕ yD 1/2p ϕ
with some y ∈ R + . By the correspondence in (4.37), we get

sup + 1≤N ≤M T (p) m N (E (p) k (x)) Lp(R k , ϕ| R k ) = sup + 1≤N ≤M e a k 2p T m N (E k (y))e a k 2p Lp(R k ,τ k ) .
Note that e a k 2p belongs to the subalgebra generated by 1 λ(Γ). For any element of the form z = g∈Γ z(g) λ(g) in R k , we have

e a k 2p T m N (z)e a k 2p = g∈Γ T m N (z(g)) (e a k 2p λ(g)e a k 2p ) = T m N (e a k 2p ze a k 2p ).

So the previous equality reads

sup + 1≤N ≤M T (p) m N (E (p) k (x)) Lp(R k , ϕ| R k ) = sup + 1≤N ≤M T m N (e a k 2p E k (y)e a k 2p ) Lp(R k ,τ k ) .
Together with (4.44), (4.45) and (4.37) we obtain

sup + 1≤N ≤M T (p) m N (x) Lp(R, ϕ) ≤ lim k→∞ e a k 2p E k (y)e a k 2p Lp(R k ,τ k ) = lim k→∞ D 1/2p ϕ E k (y)D 1/2p ϕ Lp(R k , ϕ| R k ) = lim k→∞ E (p) k (x) Lp(R k , ϕ| R k ) = x Lp(R, ϕ) .
The proof is complete.

Remark 4.19. Lance's notion of a.u. convergence still makes sense for p = ∞ in the nontracial setting. The above theorem also implies that T m N x → x a.u. as N → ∞ for all x ∈ M, according to [JX07, Lemma 7.13].

Proof of Theorem 1.3

This section will be devoted to the proof of Theorem 1.3. In other words, we will construct Fourier multipliers satisfying the pointwise convergence for groups with suitable approximation properties. As in the previous section, only the framework of the form (4.1) (or the form (4.34)) is involved in the essential part of our arguments. Since the approximation properties of discrete quantum groups have drawn wide interest in recent years, we would like to present the work in a more general setting, that is, Woronowicz's compact quantum groups.

We refer to [Wor87, Wor98, Tim08] for a complete description of compact quantum groups. In this paper, it suffices to recall that each compact quantum group G is an object corresponding to a distinguished von Neumann algebra denoted by 

L ∞ (G), a unital normal * -homomorphism ∆ : L ∞ (G) → L ∞ (G)⊗L ∞ (G) (
(h ⊗ id) • ∆(x) = h(x)1 = (id ⊗h) • ∆(x), x ∈ L ∞ (G).
Second, a unitary n

× n matrix u = (u ij ) n i,j=1 with coefficients u ij ∈ L ∞ (G) is called an n-dimensional unitary representation of G if for any 1 ≤ i, j ≤ n we have ∆(u ij ) = n k=1 u ik ⊗ u kj .
We denote by Irr(G) the collection of unitary equivalence classes of irreducible representations of G, and we fix a representative u (π) on a Hilbert space H π for each class π ∈ Irr(G) and denote by d π its dimension. In particular, we denote by 1 ∈ Irr(G) the trivial representation, i.e. u 1 = 1 G with dimension 1. Then the space

Pol(G) = span{u (π) ij : u (π) = (u (π) ij ) dπ i,j=1 , π ∈ Irr(G)} is a w*-dense * -subalgebra of L ∞ (G).
We denote by L p (G) the Haagerup noncommutative L p -spaces associated with (L ∞ (G), h). Last, there is a linear antihomomorphism S on Pol(G), called the antipode of G, determined by

S(u (π) ij ) = (u (π) ji ) * π ∈ Irr(G), 1 ≤ i, j ≤ d π .
The antipode S has the polar decomposition

S = R • τ -i/2 = τ -i/2 • R where R is a * - antiautomorphism on L ∞ (G) and (τ t
) t∈R is a one-parameter group of * -automorphisms on Pol(G) (called the scaling group). There exists a distinguished sequence of strictly positive matrices Q π ∈ B(H π ) with π ∈ Irr(G) implementing the scaling group (τ t ) t∈R and the modular automorphism group (σ t ) t∈R with respect to h on L ∞ (G), and indeed for all z ∈ C we have (see for instance the computations in [Wan17, Section 2.1.2 and Section 3]),

(5.1)

(τ z ⊗ id)(u (π) ) = Q iz π u (π) Q -iz π , (σ z ⊗ id)(u (π) ) = Q iz π u (π) Q iz π .
We say that G is of Kac type if Q π = id Hπ for all π ∈ Irr(G). In other words, G is of Kac type if and only if the Haar state h is tracial.

Denote by ∞ ( G) = π∈Irr(G) B(H π ) the direct sum of von Neumann algebras B(H π ) and c c ( G) be the finite direct sum in π∈Irr(G) B(H π ), i.e. m ∈ c c ( G) if there are only finite many π such that m(π) = 0. The notation G used above in fact corresponds to the dual discrete quantum group of G (see e.g. [START_REF] Van Daele | An algebraic framework for group duality[END_REF]). We will not involve the detailed quantum group structure of G. For a linear functional ϕ on Pol(G), we define the Fourier transform by

F(ϕ)(π) = (ϕ ⊗ id)((u (π) ) * ), π ∈ Irr(G).
This induces the Fourier transform F : Pol(G) → c c ( G), given by

F(x)(π) = (h(•x) ⊗ id) (u (π) ) * ∈ B(H π ), π ∈ Irr(G). Note that F : Pol(G) → c c ( G) is bijective.
Obviously there exists a Hilbert space completion of c c ( G), denoted by 2 ( G), such that F extends to an isometric isomorphism F :

H h → 2 ( G),
where H h denotes the GNS completion of L ∞ (G) with respect to h as in Section 4.5.2 (see e.g. [START_REF] Podleś | Quantum deformation of Lorentz group[END_REF] and [Wan17, Proposition 3.2]), more precisely,

(5.2) h(x * x) = π∈Irr(G) Tr(Q π )Tr(Q π (F(x)(π)) * F(x)(π)), x ∈ H h ,
where Tr denotes the usual (unnormalized) trace on matrices. Then F is consistent with our framework in Section 4.5.2. For a symbol m = (m(π)) π ∈ ∞ ( G), we can define a multiplier T m by (4.41), i.e.

T m (x) = F -1 (m • F(x)), x ∈ Pol(G),
which extends to a bounded map on H h . This coincides with the multipliers considered in [JNR09, [START_REF] Daws | Completely positive multipliers of quantum groups[END_REF][START_REF] Wang | Lacunary Fourier series for compact quantum groups[END_REF]. By (5.1) and the definition of T m , we have (see e.g. [Wan17, Lemma 3.6])

(5.3) σ r • T m • σ -r = T Q ir mQ -ir , r ∈ R, where Q = ⊕ π Q π .
Remark 5.1. Let Γ be a discrete group. We may define a comultiplication ∆ on the group von Neumann algebra V N (Γ) by

∆(λ(g)) = λ(g) ⊗ λ(g), g ∈ Γ.
The triple (V N (Γ), ∆, τ ) carries a compact quantum group structure G satisfying the aformentioned properties, where we take L ∞ (G) = V N (Γ) and h = τ . In this case we usually denote G = Γ. We remark that in our language of quantum groups, Γ coincides with the dual discrete quantum group G. The set of unitrary equivalence classes of irreducible representations Irr(G) can be indexed by Γ, so that for every g ∈ Γ the associated representation is of dimension 1 and is given by u (g) = λ(g) ∈ V N (Γ). Therefore, the set I defined above becomes Γ, and the Fourier transform sends λ(g) to δ g . Hence, for any m ∈ ∞ (Γ), the associated multiplier is

T m : λ(g) → m(g)λ(g), g ∈ Γ.
This notion coincides with the usual one on groups mentioned in the introduction.

A straightforward computation shows the following proposition (see for instance [Wan17, Section 3]).

Proposition 5.2. Let S be the antipode and Φ be a functional on Pol(G).

(1)

F(Φ • S -1 )(π) = (Φ ⊗ id)(u (π) ). (2) F(Φ * • S -1 )(π) = (F(Φ)(π)) * where Φ * (x) = Φ(x * ) for any x ∈ Pol(G). (3) F((id ⊗Φ)∆(x)) = F(Φ • S -1 ) • F(x).
Remark 5.3. Let Φ be a functional on Pol(G) such that F(Φ • S -1 ) = m. In other words, by Proposition 5.2 (1),

m(π) = [Φ(u (π) ij )] ij . By Proposition 5.2 (3), we have (5.4) T m (x) = F -1 F(Φ • S -1 ) • F(x) = (id ⊗Φ)∆(x).
Therefore, we have the following properties.

(1) T m is a unital completely positive map on Pol(G) if and only if Φ is a state on Pol(G).

(

) T m is selfadjoint if and only if Φ * = Φ. Moreover m(π) * = m(π) if and only if Φ * •S = Φ. 2 
(3) We have

m(π) B(Hπ) = u (π) m(π) L∞(G)⊗B(Hπ) = k u (π) ik Φ(u (π) kj ) ij L∞(G)⊗B(Hπ) = T m (u (π) ij ) ij L∞(G)⊗B(Hπ) ≤ T m cb .
In view of our study in Section 4.5.2, it is essential to consider the case where T m commutes with the modular automorphism group σ.

Proposition 5.4. Let Φ be a functional on Pol(G) with Φ * = Φ and ϕ(π) = [Φ(u (π) ij )] i,j for π ∈ Irr(G). Then the element m(π) = lim a→∞ 1 2a a -a Q ir π φ(π)Q -ir π dr, where φ(π) = [ 1 2 (Φ + Φ • R)(u (π) ij )] i,j
is well-defined in B(H π ), and satisfies:

(i) m(π) is a selfadjoint matrix for any π ∈ Irr(G); (ii) for any t ∈ R, σ t • T m = T m • σ t ;
(iii) m(π) B(Hπ) ≤ ϕ(π) B(Hπ) and id Hπ -m(π) B(Hπ) ≤ id Hπ -ϕ(π) B(Hπ) for any π ∈ Irr(G);

(iv) If T ϕ is unital completely positive on Pol(G), so is T m .

Proof. The construction is implicitly given in the proof of [CS15, Lemma 5.2] and [DFSW16, Proposition 7.17].

The element m is well-defined by the ergodic theorem since

B(H π ) is finite-dimensional. Note that there is a * -antiautomorphism R of ∞ ( G) with R 2 = id such that (R ⊗ R)U = U where U = ⊕ π∈Irr(G) u (π) is regarded as an element in L ∞ (G)⊗ ∞ ( G) (see [Kus01, Proposition 7.2]
), and therefore for any functional Υ on L ∞ (G), the following inequality holds

(Υ • R ⊗ id)(U) -1 ∞( G) ∞( G) ≤ (Υ ⊗ R)(U) -R(1 ∞( G) ) ∞( G) ≤ (Υ ⊗ id)(U) -1 ∞( G) ∞( G) , and 
(Υ • R ⊗ id)(U) ∞( G) ≤ (Υ ⊗ id)(U) ∞( G) . In particular, for π ∈ Irr(G), taking Υ(u (α) ij ) = δ απ Φ(u (π) ij ) for all α ∈ Irr(G), we get ϕ(π) B(Hπ) ≤ ϕ(π) B(Hπ) ,
and taking Υ(u

(α) ij ) = Φ(u (π) ij ), if α = π δ ij , if α = π , we get id Hπ -ϕ(π) B(Hπ) ≤ id Hπ -ϕ(π) B(Hπ) , π ∈ Irr(G).
Then (iii) follows from the definition of m. Also, by Remark 5.3 we see that T φ is unital completely positive if T ϕ is. So in the following part we will assume without loss of generality that ϕ = φ and Φ = Φ • R. By (5.3) we have

(5.5)

T m = lim a→∞ 1 2a a -a σ r • T ϕ • σ -r dr,
so we established the assertions (ii) and (iv). We consider

Ψ(x) = lim a→∞ 1 2a a -a Φ(τ r (x))dr, x ∈ Pol(G).
Then by (5.1),

m(π) = lim a→∞ 1 2a a -a Q ir π ϕ(π)Q -ir π dr = lim a→∞ 1 2a a -a Q ir π [(Φ ⊗ id)(u (π) )]Q -ir π dr = lim a→∞ 1 2a a -a (Φ • τ r ⊗ id)(u (π) )dr = (Ψ ⊗ id)(u (π) ).
Note that Ψ is invariant under τ according to the ergodic theorem. Recall that Φ • R = Φ. So we have Ψ • S = Ψ. By Proposition 5.2 and Φ = Φ * , we get

m(π) = F(Ψ • S -1 )(π) = (F(Ψ)(π)) * = F(Ψ • S -1 )(π) * = m(π) * .
So we obtain (i).

We recall the following approximation properties of quantum groups introduced by De Commer, Freslon and Yamashita in [START_REF] Commer | CCAP for universal discrete quantum groups[END_REF]. For simplicity of exposition, we always assume in this paper that Irr(G) is countable. The general cases can be dealt with by considering the collection of all finitely generated quantum subgroups of G. (3) for any s ∈ N and ε > 0, there is a k = k(s, ε) such that T ψ k -T ϕs cb ≤ ε. Moreover, if for any k ∈ N we may directly choose T ψ k to be unital completely positive, then G is said to be amenable (or to have the completely positive approximation property).

For notational convenience and without loss of generality, in the sequel we will always set ϕ 0 (π) = ψ 0 (π) = δ 1 (π). Note that ϕ s (1) = 1 for all s, therefore we will always assume that ψ k (1) = 1 for all k.

(1) (1) = 0 and for any π = 1,

(π) B(Hπ) √ 2 J(π)
where J(π) := min{j ∈ N : π ∈ E s j }.

(2) S t : x → F -1 e -t (π) F(x) is a semigroup of unital completely positive h-preserving maps on L ∞ (G) and for any t ≥ 0, r ∈ R,

S t • σ r = σ r • S t and h(S t (x) * y) = h(x * S t (y)),
x, y ∈ L ∞ (G).

(

) Denote m N = ψ ks N . Then (m N ) N ∈N satisfies id Hπ -m N (π) B(Hπ) (π) 2 B(Hπ) 2 N , m N (π) B(Hπ) 2 N (π) 2 B(Hπ) , π ∈ Irr(G). 3 
In particular, for any 2 ≤ p < ∞,

sup N ∈N + T m N x p p x p , x ∈ L p (G).
For all x ∈ L p (G) with 2 < p < ∞ (resp. p = 2), T m N (x) converges a.s. (resp. b.a.s.) to x as N → ∞. Moreover, if G is amenable, then the above results hold for all 1 < p < ∞ (with the b.a.s. convergence for p ≤ 2). If G is of Kac type, all the convergences above are a.u. Proof. By Remark 5.6 and (5.3), we have (π)Q π = Q π (π) for any π ∈ Irr(G) and S t • σ r = σ r • S t for any t ∈ R + , r ∈ R.

Recall that for any N , T ϕs N is unital and in particular ϕ s N (1) = 1. As a consequence we get (1) = 0. In the following we consider π = 1 and estimate the quantity (π) B(Hπ) . Recall that k 0 = s 0 = 0 and ϕ 0 (π) = ψ 0 (π) = δ 1 (π), so E 0 = {1}, which implies J(π) ≥ 1 if π = 1. By the definition of J, we have π ∈ E s J(π) ⊂ E s j-1 if j ≥ J(π) + 1. Recall that T ϕs is unital completely positive and hence ϕ s (π) B(Hπ) ≤ 1 by Remark 5.3. Therefore, by (5.6), we have

(π) B(Hπ) ≤ J(π) j=0 √ 2 j id Hπ -ϕ s j (π) B(Hπ) + j≥J(π)+1 √ 2 j id Hπ -ϕ s j (π) B(Hπ) ≤ J(π) j=0 2 √ 2 j + j≥J(π)+1 √ 2 j • 2 -j √ 2 J(π) .
For j ≤ J(π) -1, we have π / ∈ E s j and hence ψ ks j (π) = 0. We also have id Hπ -ϕ s j (π) ≥ 0 for all j since ϕ s (π) is selfadjoint and ϕ s (π) B(Hπ) ≤ 1 as mentioned previously. Also by i.e. π ∈ E s N -1 , then id Hπ -m N (π) B(Hπ) ≤ id Hπ -ϕ s N (π) B(Hπ) + ϕ s N (π) -ψ ks N (π) B(Hπ)

≤ (2 -N + 2 -s N -1 ) 2 J(π)-N (π) 2 B(Hπ) 2 N . If J(π) ≥ N , then id Hπ -m N (π) B(Hπ) ≤ 1 ≤ 2 J(π)-N (π) 2 B(Hπ)
2 N .

On the other hand,

m N (π) B(Hπ) ≤ 1 [0,N ] (J(π)) ≤ 2 N -J(π) 2 N (π) 2 B(Hπ) , π ∈ Irr(G).
A computation similar to (5.7) yields that the map T m N is symmetric and h-preserving for any N . Applying Theorem 4.14 and Theorem 4.18, we obtain the desired maximal inequalities and pointwise convergences

Remark 5.10. The above proof indeed shows that Theorem 5.9 also holds for any subsequence

(s N ) N ∈N + satisfying (5.8) id Hρ -ϕ s N +1 (ρ) B(Hρ) ≤ 2 J(ρ)-N , ρ ∈ E s N
where (E s ) s are determined increasing finite sets and J(ρ) = min{j ∈ N : ρ ∈ E s j }. This more general formulation will be useful in the next section.

In particular, we obtain Theorem 1.3 in the general setting of quantum groups. (2) Assume that G is amenable. Then G admits a sequence of unital completely positive Fourier multipliers (T m N ) N ∈N on L ∞ (G) such that m N are finitely supported and for any 1 < p < ∞ sup

N ∈N + T m N x p p x p , x ∈ L p (G),
and

T m N x converges to x a.s. as N → ∞ for all x ∈ L p (G) with 2 < p < ∞ and T m N x converges to x b.a.s. (a.u. if G is of Kac type) as N → ∞ for all x ∈ L p (G) with 1 < p ≤ 2.
Moreover, we have the following a.s. convergence of Fourier series of Dirichlet type on L 2 (G). Let p π be the projection from Pol(G) onto {u

(π) ij : 1 ≤ i, j ≤ d π }.
It is easy to see that p π can be extended to an orthogonal projection on L 2 (G).

Proposition 5.12. Let G be a discrete quantum group having the ACPAP. Then there exists an increasing sequence of finite subsets (K N ) N ⊂ Irr(G) such that the maps x → π∈K N p π (x) is of strong type (2, 2). Moreover, for all x ∈ L 2 (G),

π∈K N p π (x) → x b.a.s. (a.u. if G is of Kac type)) as N → ∞.
Proof. Let , (k s ) s , (s N ) N , (E s ) s be given by Theorem 5.9. We show that K N = E s N satisfies this proposition. Let N ∈ N and D N = T 1 K N be the multiplier associated with the characteristic function

1 K N (π) = id Hπ , if π ∈ K N ; 0, otherwise. Define φ N (π) = 1 K N (π) -e - (π) 1/2
2 N/4 . For any π ∈ K N , i.e. J(π) ≤ N , we have

φ N (π) B(Hπ) (π) 1/2 B(Hπ) 2 N/4 (π) 1/2 B(Hπ) 2 N/4 (2 N/4 + (π) 1/2 B(Hπ) ) 2
, where the last inequality follows from the fact that (π)

1/2 B(Hπ) (π) 1/2 B(Hπ) 2 N/4 (2 N/4 + (π) 1/2 B(Hπ) ) 2 .
As mentioned previously, Proposition 4.8 remains valid for the nontracial setting. Together with Proposition 3.3, we get

(T φ N (x)) N L 2 (G; ∞)
x 2 , and

(T φ N (x)) N L 2 (G; c ∞ ) x 2 , x ∈ L 2 (G).
Recall that by the choice of (E s ) s , for any finite subset F ⊂ Irr(G) there exists M ≥ 1 with F ⊂ K N for all N ≥ M . Hence for any x ∈ Pol(G), there is an index M large enough such that for any N ≥ M , we have D N (x) = x, and in particular D N (x) → x a.s. Then arguing as in Subsection 4.2, by Proposition 2.9 (2) (or its nontracial analogue for L 2 (G; ∞ ) and L 2 (G; c ∞ ) mentioned after Theorem 4.18) and the density of Pol(G), we obtain the desired pointwise convergence of D N (x) for any x ∈ L 2 (G) as N → ∞.

Note that we also have the corresponding a.u. convergence on L ∞ (G) in all the previous results by Remark 4.19.

More concrete examples

In this last section, we apply our theorems to various explicit examples of multipliers on noncommutative L p -spaces. 6.1. Generalized Fejér means on non-abelian groups and quantum groups.

6.1.1. Case of nilpotent groups and amenable groups. Let Γ be a discrete amenable group. Let (K N ) N ∈N be a Følner sequence of Γ, that is

lim N →∞ |K N ∩ gK N | |K N | = 1, g ∈ Γ.
For convenience we set K 0 = {e}. We define a sequence of multipliers (m N ) N ∈N by (6.1)

m N (g) = |K N ∩ gK N | |K N | . We remark that if Γ = Z d and K N = [-N, N ] d ∩ Z d , then m N (k 1 , k 2 , • • • , k d ) = d i=1 (1 - |k i | 2N + 1 )1 [-2N,2N ] (k i ),
which gives the usual Fejér means on the d-dimensional tori. As a result, we regard the multipliers (T m N ) N as a noncommutative analogue of Fejér means.

It is easy to see that m N is finitely supported, indeed supp m N = K N • K -1 N . By the Følner condition, we have m N → 1 pointwise. For any g ∈ Γ, we have

m N (g) = λ(g) 1 K N |K N | 1/2 , 1 K N |K N | 1/2 2 (Γ) .
As a consequence m N is positive definite and therefore T m N is unital completely positive on V N (Γ) for all N ∈ N (see e.g. [BO08, Theorem 2.5.11]). Note that T m N is also τ -preserving. In particular, by Theorem 5.9, there exists a subsequence (N j ) j∈N , such that for all 1 < p < ∞ and all x ∈ L p (V N (Γ)), sup j∈N + T m N j x p p x p and T m N j x → x a.u. as j → ∞.

In the following, we would like to give a refined study in the case of nilpotent groups. First we consider a 2-step (or 1-step) nilpotent group Γ generated by a finite set S. We assume that e ∈ S and S = S -1 . Due to [START_REF] Stoll | On the asymptotics of the growth of 2-step nilpotent groups[END_REF], we have the following estimates:

(6.2) β -1 N d ≤ |S N | ≤ βN d and β -1 N d-1 ≤ |S N \S N -1 | ≤ βN d-1 ,
where d ≥ 1 is called the degree of Γ, and β < ∞ is a positive constant depending only on Γ and S.

For an element g ∈ Γ, denote by |g| the word length of g with respect to the generator set S, i.e. |g| = min{k : g ∈ S k }. Let (m N ) N be a sequence of symbols given by (6.1) with K N = S N . By (6.2), we have

(6.3) 1 -m N (g) = |gS N \S N | |S N | ≤ |S N +|g| \S N | |S N | ≤ β N +|g| i=N +1 i d-1 N d β |g| N , g ∈ Γ.
In particular, this shows that (S N ) N is a Følner sequence. On the other hand, (6.4)

|m N (g)| ≤ 1 [0,2N ] (|g|) ≤ 2 N |g| , g ∈ Γ.
Set J(g) = min{j ∈ N : g ∈ S 2 j+1 }, i.e. J(g) is the unique integer with 2 J(g) < |g| ≤ 2 J(g)+1 .

We have

|1 -m 2 j (g)| ≤ β |g| 2 j ≤ 2β2 J(g)-j
. This shows that the subsequence (2 j ) j∈N satisfies the inequality in Remark 5.10. Define

(g) = j≥0 √ 2 j |1 -m 2 j (g)|.
By Theorem 5.9, for any g = e,

(g) √ 2 J(g) |g|,
and (S t ) t∈R + : λ(g) → e -t (g) λ(g) is a semigroup of unital completely positive trace preserving and symmetric maps. We remark that there are other natural choices of conditionally negative definite functions with polynomial growth (see e.g. [START_REF] Cipriani | Negative definite functions on groups with polynomial growth[END_REF]), but our above construction is selfcontained and useful for the further purpose. Moreover, for any t ∈ R + , S t satisfies Rota's dilation property according to Lemma 3.6. Inequalities (6.3) and (6.4) can be written as

|1 -m N (g)| β (g) 2 N and |m N (g)| β N (g) 2 . Moreover, m N (g) = 1 S N * 1 S N (g) |S N | .
By (6.2), we obtain

|m N +1 (g) -m N (g)| = 1 |S N +1 | γ∈Γ 1 S N +1 (γ)1 S N +1 (g -1 γ) - 1 |S N | ( γ∈Γ 1 S N (γ)1 S N (g -1 γ)) ≤ 1 |S N +1 |   γ∈Γ 1 S N (γ)[1 S N +1 (g -1 γ) -1 S N (g -1 γ)] + γ∈Γ [1 S N +1 (γ) -1 S N (γ)]1 S N +1 (g -1 γ)   + 1 |S N +1 | - 1 |S N | γ∈Γ 1 S N (γ)1 S N (g -1 γ) ≤ 3 |S N +1 \S N | |S N +1 | β 2 1 N + 1 .
Therefore m N satisfies (4.4). Applying Theorem 4.3, we have the following corollary. . Then (1) (T m 2 j ) j∈N is of strong type (p, p) for all 1 < p < ∞. Moreover, for any x ∈ L p (V N (Γ)) with 1 < p < ∞, T m 2 j (x) converges a.u. to x as j → ∞.

(2) (T m N ) N ∈N is of strong type (p, p) for all 3 2 < p < ∞. Moreover, for any x ∈ L p (V N (Γ)) with 3/2 < p < ∞, T m N (x) converges a.u. to x as N → ∞.

Let us give some remarks on the case of general groups with polynomial growth. Indeed, it is conjectured in [START_REF] Breuillard | Geometry of locally compact groups of polynomial growth and shape of large balls[END_REF] that (6.2) remains true for general groups with polynomial growth. If the conjecture has a positive answer, then the above corollary still holds in this general setting by the same arguments. Moreover a partial result was given in [START_REF] Breuillard | On the rate of convergence to the asymptotic cone for nilpotent groups and subFinsler geometry[END_REF] for a general r-step nilpotent group Γ generated by a finite set S. It asserts that (6.5)

β -1 N d-1 ≤ |S N \S N -1 | ≤ βN d-2 3r
, where β is a constant depending only on Γ and S. Therefore, as in the arguments for the case of 2-step nilpotent groups, we have

1 -m N (g) ≤ |S N +|g| \S N | |S N | β |g| N 2 3r
.

Let k = k(r) be the minimum integer with k ≥ 3r 2 . Then N j (r) = 2 k+k 2 +•••k j satisfies Lemma 5.8. Indeed, let J(g) = min{j ∈ N : g ∈ E N j (r) }, i.e. 2N J(g)-1 (r) < |g| ≤ 2N J(g) (r).

Then for any g ∈ E N j (r) , i.e. J(g) ≤ j,

|1 -m N j+1 (r) (g)| β |g| N j+1 (r) 2 3r β 2 k+k 2 +•••k J(g) 2 2 3r (k+k 2 +•••k j+1 ) β 2 k+k 2 +•••k J(g) 2 1 k (k+k 2 +•••k j+1 ) β2 -(k J(g)+1 +•••k j+1 ) β2 J(g)-j .
Therefore, by Theorem 5.9 and Remark 5.10, we get a conditionally negative definite function on Γ such that

|1 -m N j+1 (r) (g)| β (g) 2 2 j and |m N j+1 (r) (g)| β 2 j (g) 2 .
By Theorem 4.3 (1), we have Corollary 6.2. Let Γ be a r-step nilpotent group generated by a finite symmetric set of elements S. Let m N , k(r) and N j (r) be defined above. Then for all 1 < p < ∞, (T m N j (r) ) j∈N is of strong type (p, p) and for any x ∈ L p (V N (Γ)) with 1 < p < ∞, T m N j (r) (x) converges a.u. to x as j → ∞.

6.1.2. Case of amenable discrete quantum groups. Let G be a compact quantum group of Kac type. As before, we assume that Irr(G) is countable for convenience. We keep the notation introduced in Section 5. We may study the Følner sequences and the corresponding multipliers in this quantum setting as follows.

Recall that for any α, β ∈ Irr(G) we have the decomposition

u (α) u (β) = ⊕ γ∈Irr(G) N γ αβ u (γ) ,
where u (α) u (β) refers to the tensor product representation of the form (u

(α) ij u (β)
kl ) i,j,k,l and N γ αβ ∈ N. We have the following Frobenius reciprocity law (see [START_REF] Woronowicz | Compact matrix pseudogroups[END_REF], [Kye08, Example 2.3]) (6.6)

N γ αβ = N α γβ = N β αγ for all α, β, γ ∈ Irr(G). We write γ ⊂ αβ if N γ αβ > 0.
Denote by π the equivalent class of the representation ((u

(π) ij ) * ) ij . The weighted cardinality of a finite subset F ⊂ Irr(G) is defined to be |F | w = α∈F d 2 α ,
where we recall that d α denotes the dimension of the representation α. On the other hand, for a finite subset F ⊂ Irr(G) and a representation π ∈ Irr(G), the boundary of F related to π is defined by

∂ π F = {α ∈ F : ∃β ∈ F c such that β ⊂ απ} ∪ {β ∈ F c : ∃α ∈ F such that α ⊂ βπ}.
Kyed [START_REF] Kyed | L 2 -Betti numbers of coamenable quantum groups[END_REF] proved that there exists a sequence of finite subsets (K n ) n∈N ⊂ Irr(G) such that for any π ∈ Irr(G), (6.7)

|∂ π K n | w |K n | w → 0 as n → ∞, We denote Θ n π = {α ∈ K n : ∀ β ∈ K c n , N β απ = 0} ⊂ K n . Note that N β απ = N π ᾱβ and that α ∈ Θ n π implies β∈Kn N β απ d β = d α d π by the choice of N β απ . Then ϕ n (π) ≥ α∈Θ n π d α β∈Kn N β απ d β d π ( ξ∈Kn d 2 ξ ) = α∈Θ n π d 2 α ξ∈Kn d 2 ξ = |Θ n π | w |K n | w .
Therefore,

1 -ϕ n (π) ≤ |{α ∈ K n : ∃β ∈ K c n such that β ⊂ απ}| w |K n | w ≤ |∂ π (K n )| w |K n | w .
By the Følner condition (6.7), ϕ n → 1 pointwise.

Therefore, by Theorem 5.9 we get the following result.

Corollary 6.4. Assume that G is of Kac type and that G is amenable. Let (K n ) n∈N ⊂ Irr(G) be a Følner sequence and ϕ n be the symbols given by (6.8). Then there is a subsequence (n j ) j∈N such that (T ϕn j ) j is of strong type (p, p) for any 1 < p < ∞. Moreover for all x ∈ L p (G) with 1 < p < ∞, T ϕn j (x) converges a.u. to x as j → ∞.

6.2. Convergence of Fourier series of L p -functions on compact groups. We would like to emphasize in this subsection that our work indeed brings new ideas to the analysis on classical compact groups. Recall that for a compact second countable group G, any function f ∈ L p (G) admits a Fourier series

f (x) ∼ π∈Irr(G) d π Tr( f (π)π(x)), x ∈ G with f (π) = G f (x)π(x -1 )dx
where Irr(G) denotes the collection of equivalence classes of irreducible unitary representations of G, and d π denotes the dimension of π. The pointwise analysis on these Fourier series is much subtler than the abelian case. A particular difficulty is the lack of obvious order and summation methods on Irr(G) which is suitable for the study of Fourier series. However, from the viewpoint of quantum group theory, the set Irr(G) is nothing but the underlying object of an amenable discrete quantum group. So the difficulty can be overcome by transferring the method on discrete amenable groups and its quantum counterpart. The spirit is also partially inspired by the recent work [START_REF] Huang | Mean ergodic theorem for amenable discrete quantum groups and a Wiener-type theorem for compact metrizable groups[END_REF]. More precisely, the compact group G trivially gives rise to a compact quantum group. Indeed, it suffices to take the triple (L ∞ (G), ∆ G , ) where we define for all

f ∈ L ∞ (G), ∆ G (f )(g, h) = f (gh), g, h ∈ G.
Then G is amenable since L ∞ (G) is a commutative von Neumann algebra (see e.g. [START_REF] Brannan | Approximation properties for locally compact quantum groups[END_REF]). As a result, all arguments in Section 6.1.2 work on G. In particular, there always exists an increasing sequence (K n ) n ⊂ Irr(G) determined by the representation theory of G, such that the following finitely supported symbols

ϕ n (π) = α,β∈Kn N π ᾱβ d α d β d π ( ξ∈Kn d 2 ξ ) , π ∈ Irr(G)
converge to 1 pointwise, where N π ᾱβ is the unique number in the decomposition of the tensor product representation ᾱ β = ⊕ π∈Irr(G) N π ᾱβ π. Moreover

T ϕn f = π∈Irr(G) d π ϕ n (π)Tr( f (π)π(x)), x ∈ G, f ∈ L p (G)
defines a unital completely positive map on L p (G). We may choose a subsequence (n j ) j inductively by the algorithm in Lemma 5.8. Set m j = ϕ n j . We may rewrite Corollary 5.11 and Proposition 5.12 in this setting as follows.

Corollary 6.5. (1) Let 1 < p < ∞. There exists a constant c > 0 such that

sup j |T m j f | p ≤ c f p , f ∈ L p (G).
For all f ∈ L p (G),

f (x) = lim j→∞ π∈Irr(G) d π m j (π)Tr( f (π)π(x)), a.e. x ∈ G.
(

) For all f ∈ L 2 (G), f (x) = lim j→∞ π∈Kn j d π Tr( f (π)π(x)), a.e. x ∈ G. 2 
As an illustration, we consider a concrete example. Let N ≥ 2 and denote by SU (N ) the N × N special unitary group. The irreducible representations of SU (N ) can be labeled by N -1 non-negative integers, and we write set-theoretically Irr(SU (N )) = N N -1 . The representation theory of SU (N ) can be computed in terms of operations on Young diagrams, which yields the following fact.

Proposition 6.6 (Appendix). Let K n = {0, 1, 2, • • • , n} N -1 ⊂ N N -1 . Set ϕ n (π) = α,β∈Kn N π ᾱβ d α d β d π ( ξ∈Kn d 2 ξ ) , π = (t 1 , • • • , t N -1 ) ∈ N N -1 . Then |1 -ϕ n (π)| N |π| n + 1 and |ϕ n+1 (π) -ϕ n (π)| N 1 n + 1 , where |π| = max{t i : 1 ≤ i ≤ N -1}.
As in Section 6.1.1, applying Theorem 5.9 to the subsequence (ϕ 2 j ) j we obtain a function on N N -1 such that (T e -t ) t is a semigroup of unital completely positive trace-preserving and symmetric maps, and for any π = (0, 0,

• • • , 0), (π) √ 2 J(π)
|π| where J(π) = min{j ∈ N : π ∈ Λ 2 j } (Λ n is given by (6.9)). Then combined with Theorem 4.3 and the proof of Proposition 5.12, the above proposition yields the following corollary.

Corollary 6.7.

Let K n = {0, 1, 2, • • • , n} N -1 ⊂ N N -1 . Define ϕ n (π) = α,β∈Kn N π α β d α d β d π ( ξ∈Kn d 2 ξ ) , π ∈ N N -1 .
(1) Let 1 < p < ∞. There exists a constant c > 0 such that

sup j |T ϕ 2 j f | p ≤ c f p , f ∈ L p (G).
For all f ∈ L p (G),

f (g) = lim j→∞ π∈Irr(G) d π ϕ 2 j (π)Tr( f (π)π(g)),
a.e. g ∈ G.

For all f ∈ L 2 (G),

f (g) = lim j→∞ π∈K 2 j d π Tr( f (π)π(g)),
a.e. g ∈ G.

(2) Let 3/2 < p < ∞. There exists a constant c > 0 such that

sup n |T ϕn f | p ≤ c f p , f ∈ L p (G).
For all f ∈ L p (G),

f (g) = lim n→∞ π∈Irr(G) d π ϕ n (π)Tr( f (π)π(g)),
a.e. g ∈ G.

6.3. Smooth radial multipliers on some hyperbolic groups.

6.3.1. Bochner-Riesz means and finitely supported completely bounded multipliers. In this subsection we briefly discuss a noncommutative analogue of Bochner-Riesz means for the setting of hyperbolic groups. We refer to [GdlH90, Gro87] for a complete description of hyperbolic groups. We merely remind that all hyperbolic groups are weakly amenable and the completely bounded radial Fourier multipliers have been characterized in [START_REF] Ozawa | Weak amenability of hyperbolic groups[END_REF][START_REF] Mei | Complete boundedness of heat semigroups on the von Neumann algebra of hyperbolic groups[END_REF]. In particular, we denote by | | the usual word length function on a hyperbolic group Γ, then the Fourier multipliers

B δ N (x) = g∈Γ:|g|≤N 1 - |g| 2 N 2 δ x(g)λ(g), x ∈ V N (Γ)
define a family of completely bounded maps on

V N (Γ) with sup N B δ N cb < ∞ as soon as δ > 1 (see [MdlS17, Example 3.4]). Let b δ N (g) = (1 - |g| 2 N 2 ) δ 1 [0,N ] (|g|) be the corresponding symbols of the maps B δ N . It is easy to check that |1 -b δ N (g)| ≤ c |g| N , |b δ N (g)| ≤ c N |g| , |b δ N +1 (g) -b δ N (g)| ≤ c 1 N , g ∈ Γ
for some constant c > 0. We are interested in the case where the word length function | | is conditionally negative definite. This is the case if Γ is a non-abelian free group or a hyperbolic Coxeter group. Applying Theorem 4.2, we obtain the following corollary.

Corollary 6.8. Let Γ and B δ N be as above with δ > 1. Assume additionally that the word length function | | is conditionally negative definite. Let 2 ≤ p < ∞. Then there exists a constant c such that

sup N ∈N + B δ N (x) p ≤ c x p , x ∈ L p (V N (Γ)),
and for any x ∈ L p (V N (Γ)), B δ N (x) converges a.u. to x as N → ∞. Remark 6.9. Arguing as in Step 2 of the proof of [CXY13, Theorem 6.2], we see that for all δ > 0, there exists a constant C > 0 such that

sup N ∈N + B δ N (x) 2 ≤ C sup N ∈N + B δ+1 N (x) 2 + x 2 , x ∈ L 2 (V N (Γ)).
Thus the results in the above corollary also hold for the case δ > 0 and p = 2. We will systematically study the Bochner-Riesz means in a subsequent paper.

Remark 6.10. The pointwise convergence of the above multipliers for 1 < p < 2 seems more delicate. However, we can still construct some finitely supported multipliers satisfying the pointwise convergence in this case. For any n ∈ N, we define a multiplier p n on V N (Γ) by

p n (x) = |g|=n x(g)λ(g), x ∈ V N (Γ),
which is the projection onto the subspace span{λ(g) : |g| = n}. Ozawa [START_REF] Ozawa | Weak amenability of hyperbolic groups[END_REF] showed that these operators satisfy the following estimate (6.10)

p n : V N (Γ) → V N (Γ) ≤ β(n + 1)
where β is a positive constant independent of n. For any N ∈ N, we set

m N (g) = 1 [0,N 2 ] (|g|)e -|g| N , g ∈ Γ.
On the other hand, for any t ∈ R + , denote S t : λ(g) → e -t|g| λ(g). By assumption (S t ) t∈R + is a semigroup of unital completely positive trace preserving and symmetric maps. We write

e -|g| N -m N (g) = 1 [N 2 +1,∞) (|g|)e -|g| N = ∞ r=N 2 +1 e -r N 1 |g|=r .
Hence, by the estimate (6.10), we have

S 1/N -T m N : V N (Γ) → V N (Γ) ≤ ∞ r=N 2 +1 e -r N p r β ∞ r=N 2 +1 N 6 r 6 (r + 1) β 1 (N + 1) 2 .
By duality and interpolation, for any 1 ≤ p ≤ ∞, we have

S 1/N -T m N : L p (V N (Γ)) → L p (V N (Γ)) β 1 N 2 . By Proposition 2.10, S 1/N is of strong type (p, p) for any 1 < p < ∞. Hence for any selfadjoint element x ∈ L p (V N (Γ)) with 1 < p < ∞, sup N ∈N + T m N (x) p ≤ sup N ∈N + S 1/N (x) p + sup N ∈N + (S 1/N -T m N )(x) p β,p x p + N ≥0 1 (N + 1) 2 x p β,p x p .
Similarly, for any 2 ≤ p < ∞, we have

(T m N (x)) N Lp(M; c ∞ ) β,p x p .
Then by Proposition 2.9 it is easy to check that T m N x converges a.u. to x as N → ∞ for x ∈ L p (V N (Γ)) with 2 ≤ p < ∞ and converges b.a.u. for 1 < p < 2. Note that we may also obtain the weak type (1, 1) estimate and b.a.u. convergence on L 1 (V N (Γ)) for multipliers λ(g) → 1 [0,N ] (|g|)e -

√

|g|/N λ(g) by the same argument, since the subordinated Poisson semigroup λ(g) → e -t √ |g| λ(g) is of weak type (1, 1) according to [JX07, Remark 4.7]. The above arguments work for all groups with the rapid decay property with respect to a conditionally negative definite length function. 6.3.2. Smooth positive definite radial kernels on free groups. Using our main result, we may provide a wide class of completely positive smooth multipliers on free groups satisfying the pointwise convergence apart from Poisson semigroups. To this end we will need the following characterization of radial positive definite functions on free groups. In the following F d will denote the free group with d generators (2 ≤ d ≤ ∞). 

(k) = 1 -1 x k dν(x), k ∈ N.
Then φ(g) := ϕ(|g|) is a positive definite function on F ∞ , where | | is the word length function.

Then we get the following proposition. Note that if ν is the Dirac measure on 0 in this proposition, then this statement amounts to the almost uniform convergence of Poisson semigroups on V N (F d ) proved in [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF]. Proposition 6.12. Let ν be an arbitrary positive Borel measure supported on [-1, 1] with ν([-1, 1]) = 1 and write dν t (x) = dν(tx) for all t > 0. For any t > 0, set

m t (g) = R x |g| dν t (x -e -2 t ), g ∈ F d ,
where | | is the usual word length function. Then there exist an absolute positive number t 0 > 0 and a constant c > 0 such that for all 1 < p < ∞ and all x ∈ L p (V N (F d )), (T mt x) t≥t 0 Lp(M; ∞) ≤ c x p and T mt x → x a.u. as t → ∞.

Proof. Using integration by substitution with y = t(x -e -2 t ), we have

m t (g) = R x |g| dν t (x -e -2 t ) = 1 -1 y t + e -2 t |g| dν(y).
By some fundamental analysis, we can find a number t 0 large enough such that for any t ≥ t 0 ,

e -2 t - 1 t ≥ e -4 t and 1 t + e -2 t < e -2 3t .
Then for any t ≥ t 0 , (6.11)

|m t (g)| ≤ 1 t + e -2 t |g| ≤ e -2|g| 3t t |g| , |1 -m t (g)| ≤ 1 -- 1 t + e -2 t |g| ≤ 1 -e -4|g| t |g| t .
Moreover we note that

d v dt v m t (|g|) = 1 -1 d v dt v y t + e -2 t |g| dν(y).
Set f (t) = y t + e -2 t . By a straightforward computation, (6.12)

| d v dt v f (t)| v 1 t v+1 .
Recall the Faá di Bruno formula:

d v dt v F (f (x)) = P ∈P(v) F (|P |) (f (t)) • B∈P f (|B|) (t)
where P(v) is the set of all partitions of {1, • • • , v}, B ∈ P means that B is a block of the partition P , and |B| denotes the size of the block B and |P | means the number of blocks. Similar as (6.11), |f (t)| ≤ e -2 3t . Then using the Faá di Bruno formula and (6.12), we see that for any v ≥ 1 and y ∈ [-1, 1],

d v dt v y t + e -2 t k = P ∈P(v),|P |≤min{v,k} k(k -1) • (k -|P | + 1)f (t) k-|P | • B∈P f (|B|) (t) v P ∈P(v),|P |≤min{v,k} k(k -1) • (k -|P | + 1)e -2(k-|P |) 3t • B∈P 1 t |B|+1 v P ∈P(v),|P |≤min{v,k} k(k -1) • (k -|P | + 1) t |P | (k -|P |) |P | • 1 t v+|P | v P ∈P(v) 2 |P | 1 t v v 1 t v .
Therefore, (m t ) t≥t 0 satisfies (4.3) in (A2).

Note that F d is a subgroup of F ∞ , and ν t (• -e -t/2 ) is supported in [-1, 1] for large t > 0. So m t is positive definite on F d by Theorem 6.11 for t ≥ t 0 . Also, for any t ≥ t 0 T mt (1) = 1 since ν([-1, 1]) = 1. Thus for any t ≥ t 0 , T mt is unital completely positive and it extends to a contraction on L p (V N (F d )). Moreover, the natural length function | | is conditionally negative definite. On the other hand, for all 1 < p < ∞ we can always find a positive integer η depending on p such that 1+ 1 2η < p. Then the proof is complete by applying Theorem 4.3.

We remark that the totally same argument applies to many other examples of groups acting on homogeneous trees. 6.4. Results and problems on Euclidean spaces. As we mentioned in Subsection 6.1.1, the definition of the symbol given by (6.1), though motivated by the geometric group theory, coincides with the Fejér means in R. From a geometric viewpoint, even in the Euclidean spaces R d it is still natural to consider other Følner sets besides cubes, such as balls and rectangles. In particular, we obtain new interesting Fourier multipliers on classical Euclidean spaces, which might be regarded as generalized Fejér means.

More precisely, let B be a symmetric convex body in R d such that the interior contains 0. We define the functions ϕ t associated with B as (6.13)

ϕ t (ξ) = µ(B t ∩ (ξ + B t )) µ(B t ) ,
where B t = {ξ ∈ R d : ξ/t ∈ B} and µ is Lebesgue measure. Then T ϕt defines a completely positive Fourier multiplier on L p -spaces. Let Φ be the inverse Fourier transform of the convolution µ(B) -1 1 B * 1 B , then for all t > 0,

T ϕt f = Φ t * f, where Φ t = t -d Φ(t -1 •).

The following corollary is obtained similarly using the arguments in Section 6.1.1.

Corollary 6.13. Let B and (ϕ t ) t be as above.

(1) (T ϕ 2 j ) j∈Z is of strong type (p, p) for any 1 < p < ∞, and for any f ∈ L p (R d ) with 1 < p < ∞, T ϕ 2 j (f ) converges a.e. to f as j → ∞.

(2) (T ϕt ) t>0 is of strong type (p, p) for any 3 2 < p < ∞, and for any f ∈ L p (R d ) with 3/2 < p < ∞, T ϕt (f ) converges a.e. to f as t → ∞.

Proof. For any non-zero vector ξ ∈ R d , there is a unique positive number |ξ| B such that ξ/|ξ| B ∈ ∂B since B is convex and its interior contains 0. We make the convention that |0| B = 0. Note that µ(B t ) = t d µ(B). We have Then the remaining arguments are similar to those for nilpotent groups in Section 6.1.1. We skip it here.

Remark 6.14. Let N be a semifinite von Neumann algebra. As in Section 6.5, we may consider the noncommutative maximal inequalities and the a.u. convergence for the sequence of multipliers T ϕt ⊗ id Lp(N ) t on L p (R d ; L p (N )) with symbols (ϕ t ) t given by (6.13). These properties indeed follow from Remark 4.6, and the above corollary still holds for (T ϕt ⊗id Lp(N ) ) t in this noncommutative setting thanks to Lemma 3.6 (2).

The main problem left open at this stage is the following: Problem 6.15. Let B and (ϕ t ) t be as above. Do we have

sup t>0 |T ϕt (f )| L 1,∞ ≤ C d f 1 , f ∈ L 1 (R d )
with a constant C d depending only on d and B? Remark 6.16. (1) The answer is well-known to be affirmative if B is a cube (where T ϕt becomes the classical Fejér mean). See for example [Gra08, Section 3.3.2].

(2) If the boundary of B is sufficiently smooth and has everywhere non-vanishing Gaussian curvature, the answer is still affirmative. To see this, it suffices to note that Φ = ( 1 B ) 2 , and there is a constant C > 0 with (6.14)

| 1 B (ξ)| ≤ C(1 + |ξ|) -(d+1)/2 , ξ ∈ R d .
See for instance [START_REF] Stein | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF].

(3) For general symmetric convex bodies, the best estimate is due to the work [START_REF] Brandolini | Sharp rate of average decay of the Fourier transform of a bounded set[END_REF]: there is a constant C > 0 with

S d-1 | 1 B (rξ)| 2 dξ ≤ Cr -(d+1)
for large r where S d-1 is the unit sphere in R d . This estimate has important applications in the study of distributions of lattice points in convex domains and the Falconer distance problem etc. Compared with (6.14), this estimate is the spherical average of Φ. Can we get the desired maximal inequality by using this spherical average? A positive answer to Problem 6.15 would yield the strong type (p, p) estimate for T ϕt for all p > 1 by interpolation. Recall that the constant C p for the strong type (p, p) estimate can be taken to be independent of d in Theorem 1.9. So it is natural to raise the following question in the present setting: Problem 6.17. Consider the best constant C p,d > 0 with

sup t>0 |T ϕt (f )| p ≤ C p,d f p , f ∈ L p (R d ).
What is the dependence of C p,d on d? When can we choose C p,d independent of d?

6.5. Dimension free bounds of noncommutative Hardy-Littlewood maximal operators. Our results in particular apply to the problem of dimension free estimates for Hardy-Littlewood maximal operators. Let B be a symmetric convex body in R d . We consider the associated averages

Φ t (f )(x) = 1 µ(B) B f (x - y t )dy, f ∈ L p (R d ), x ∈ R d , t > 0.
Let N be a semifinite von Neumann algebra equipped with a normal semifinite trace ν and L p (R d ; L p (N )) be the Bochner L p (N )-valued L p -spaces. Recall that we may view the space L p (R d ; L p (N )) as a noncommutative L p -space associated with the von Neumann algebra L ∞ (R d )⊗N : for any 1 ≤ p < ∞, L p (L ∞ (R d )⊗N , ⊗ν) ∼ = L p (R d ; L p (N )).

We could then extend Bourgain's results for the corresponding Hardy-Littlewood maximal operators on noncommutative L p -spaces L p (R d ; L p (N )).

Proof of Theorem 1.9. Without loss of generality, we assume µ(B) = 1. Let m t (ξ) = t d 1 t -1 B (ξ) = 1 B (ξ/t) be the Fourier transform of the kernel of the above operator Φ t . Then we may view Φ t as the Fourier multiplier so that Φ t f = m t f .

Since the bound of a maximal operator is invariant under invertible linear transforms, thus by a transform, we can assume that B is in the isotropic position with isotropic constant L = L(B) (see Lemma 2 in [START_REF] Bourgain | On high-dimensional maximal functions associated to convex bodies[END_REF]) and 1 B satisfies the following estimates (see the computations in Section 4 of [START_REF] Bourgain | On high-dimensional maximal functions associated to convex bodies[END_REF]): there exists a constant c independent of d and B such that

| 1 B (ξ)| ≤ c 1 |ξ|L , |1 -1 B (ξ)| ≤ cL|ξ| | ∇ 1 B (ξ), ξ | ≤ c, ξ ∈ R d .
On the other hand, setting ζ = ξ/t = (ξ l /t) d l=1 , we have

d dt m t (ξ) = d dt 1 B (ζ) = d l=1 ∂ζ l ∂t • ∂ 1 B (ζ) ∂ζ l = - d l=1 ζ l t ∂ l 1 B (ζ) = - 1 t ∇ 1 B (ζ), ζ .
Therefore, (m t ) t satisfies (A2) with η = 1. Then, applying Theorem 4.3, Remark 4.5 (2), Remark 4.6, and Lemma 3.6 (2) to the modified Poisson semigroup (P tL ) t∈R + on R d , we immediately get the desired assertions (1) and (2) of Theorem 1.9. We use the similar arguments for higher derivatives:

d 2 dt 2 1 B (ζ) = d l=1 ∂ζ l ∂t • ∂ ∂ζ l d l=1 ∂ζ l ∂t • ∂1 B (ζ) ∂ζ l = d l=1 ζ l t • ∂ ∂ζ l d l=1 ζ l t • ∂1 B (ζ) ∂ζ l = 1 t 2   d l=1 ζ l ∂ l (1 B (ζ)) + d l 1 ,l 2 =1 ζ l 1 ζ l 2 ∂ l 1 ∂ l 2 (1 B (ζ))   , and 
d 3 dt 3 1 B (ζ) = 1 t 3   d l=1 ζ l ∂ l 1 B (ζ) + 2 d l 1 ,l 2 =1 ζ l 1 ζ l 2 ∂ l 1 ∂ l 2 1 B (ζ) + d l 1 ,l 2 ,l 3 =1 ζ l 1 ζ l 2 ζ l 3 ∂ l 1 ∂ l 2 ∂ l 3 1 B (ζ)   .
Repeating this process, we get

d v dt v 1 B (ζ) = 1 t v v k=1   c k d l 1 ,l 2 ,...,l k =1 ζ l 1 ζ l 2 • • • ζ l k ∂ l 1 ∂ l 2 • • • ∂ l k   1 B (ζ)
where c k are constants only depending on k. Recall that

∂ l 1 ∂ l 2 • • • ∂ l k 1 B (ζ) = (-2πi) k x l 1 x l 2 • • • x l k 1 B (ζ).
Then

d v dt v m t (ξ) = 1 t v v k=1   c k d l 1 ,l 2 ,...,l k =1 ζ l 1 ζ l 2 • • • ζ l k ∂ l 1 ∂ l 2 • • • ∂ l k 1 B (ζ)   v 1 t v v k=1   d l 1 ,l 2 ••• ,l k =1 ζ l 1 ζ l 2 • • • ζ l k (2πi) k x l 1 x l 2 • • • x l k 1 B (x) (ζ)   v 1 t v v k=1 R d e -2πi x,ζ x, ζ k 1 B (x)dx .
In particular, if B is the q -ball with q ∈ 2N, the computations in [START_REF] Bourgain | On dimension free maximal inequalities for convex symmetric bodies in R n[END_REF] assert that for any k ≥ 0 there exists a constant c k independent of d such that

R d e -2πi x,ζ x, ζ k 1 B (x)dx ≤ c k .
Hence for q -ball with q ∈ 2N, (m t ) t∈R + satisfies (A2) for any η > 0. For any 1 < p ≤ 2, choosing an η large enough (depending on p) and applying Theorem 4.3 (2), Remark 4.6 and Lemma 3.6 (2), we obtain Theorem 1.9 (3).

Remark 6.18. At the moment of writing, it seems that our approach is not enough to establish dimension free bounds for other q -balls with q ∈ [1, ∞] \ 2N and new ideas are certainly required. The corresponding results in the classical setting are given by Müller [START_REF] Müller | A geometric bound for maximal functions associated to convex bodies[END_REF] (for q ∈ [1, ∞) \ 2N) and Bourgain [START_REF] Bourgain | On the Hardy-Littlewood maximal function for the cube[END_REF] (for q = ∞). From Theorem 1.9, it is naturally conjectured that the noncommutative analogues of their results should still hold.

Appendix: Følner sequences in the dual of SU (N )

We will prove Proposition 6.6 in this section. Fisrt, we recall briefly the representation theory of SU (N ). For more details, we refer to [START_REF] Jones | Groups, representations and physics[END_REF]Chapter 8]. The irreducible representations of SU (N ) can be labeled by N -1 non-negative integers, and we write set-theoretically Irr(SU (N )) = N N -1 . And moreover, the decomposition of tensor products into irreducible representations can be described by Young diagrams. Young diagrams consist of boxes: we stick some boxes together so that the number of boxes in each consecutive row (from top to bottom) and each consecutive column (from left to right) does not increase.

Each irreducible representation u (t 1 ,t 2 ,••• ,t N -1 ) corresponds to a Young diagrams of the following form:

N -1                  t N -1 t N -2 • • • t 2 t 1 . . . . . .
Let α, β ∈ Irr(SU (N )). The family of irreducible subrepresentations of the tensor product α β corresponds to all the Young diagrams appeared after the following operations. We denote by X α and X β the corresponding Young diagrams of α and β. We are going to decompose the tensor product of Young diagrams X α X β :

Q 1 Q 1 Q 1 Q 1 Q 2 Q 2 Q 2 Q 3 .
The prescription goes like this:

(R1) Start by filling the boxes in the top row of X β with labels 'Q 1 ' and the boxes in the second row with labels 'Q 2 ' and etc (see the above figure).

(R2) Add boxes

Q 1 • • • Q 1 , Q 2 • • • Q 2 , Q 3 • •
• etc from X β to X α in order according to the following rules:

(a) Each time we add a box Q i from to X β to X α such that the augmented X α diagram must be again a Young diagram which has at most N rows. (b) Boxes with the same label, e.g. Q 1 , must not appear in the same column. (c) At any given box position, define n 1 to be the number of Q 1 's above and to the right of it. Define n 2 for Q 2 in the similar way, etc. Then we must have n 1 ≥ n 2 ≥ n 3 etc.

(R3) If two diagrams of the same shape are produced by this process, they are counted as different only if the labels are differently distributed.

(R4) Cancel columns with N boxes.

For each π ∈ Irr(SU (N )), we denote by X π its corresponding Young diagram. If in the decomposition of X α X β there are at most N different operations of the above form yielding X π , then the multiplicity N π αβ equals to N . Moreover, for an irreducible representation u (t 1 ,t 2 ,••• ,t N -1 ) , the dimension is given by the following formula

d(t 1 , t 2 , • • • , t N -1 ) = (t 1 + 1)(t 2 + 1) • • • (t N -1 + 1) • 1 + t 1 + t 2 2 1 + t 2 + t 3 2 • • • 1 + t N -2 + t N -1 2 • 1 + t 1 + t 2 + t 3 3 1 + t 2 + t 3 + t 4 3 • • • 1 + t N -3 + t N -2 + t N -1 3 . . . • (1 + t 1 + t 2 + • • • + t N -1 N -1
).

(A.1)

We have the following fact.

Lemma A.1. Let N ≥ 2. Set K n = {0, 1, 2, • • • , n} N -1 ⊂ Irr(SU (N )). Then (K n ) n∈N satisfies the following conditions.

(1) We have (n + 1) N 2 -2 N |E n+1 | w N (n + 1) N 2 -2 where E n+1 = K n+1 \K n .

(2) For any t, n ∈ N and any α ∈ K n , π ∈ K t , all the irreducible subrepresentations of α π are contained in the finite set K n+(N -1)t , i.e. N β απ = 0 if β / ∈ K n+(N -1)t .

Proof. We write π = (t 1 , t 2 , • • • , t N -1 ) ∈ N N -1 . The conjugate representation is given by π = (t N -1 , t N -2 , • • • , t 1 ) (1) Denote

J = l = (l 1 , l 2 , • • • , l N -1 ) ∈ N N -1 : ∀ 1 ≤ j ≤ N -1, 1 ≤ l j ≤ j(N -j), N -1 j=0 l j = N (N -1) 2 .
Then we may write

d π = l∈J C l (t 1 + 1) l 1 (t 2 + 1) l 2 • • • (t N -1 + 1) l N -1 ,
for some constants C l depending only on N , and

d 2 π = l∈J C l (t 1 + 1) l 1 (t 2 + 1) l 2 • • • (t N -1 + 1) l N -1
with some constants C l depending only on N and

J =    (l 1 , l 2 , • • • , l N -1 ) ∈ N N -1 : ∀ 2 ≤ l j ≤ 2j(N -j), N -1 j=0 l j = N (N -1)    . Denote E j n+1 = {(k 1 , k 2 , • • • , k N -1 ) ∈ K n+1 : k j = n + 1}
. By definition, E n+1 ⊂ ∪ N -1 j=1 E j n+1 . Therefore,

|E j n+1 | w = k∈E i n+1 d 2 k = k∈E i n+1 l∈J C l (k 1 + 1) l 1 (k 2 + 1) l 2 • • • (n + 2) l i • • • (k N -1 + 1) l N -1 l∈J C l (n + 2) l i (n + 2) l 1 +1 (n + 2) l 2 +1 • • • (n + 2) l i-1 +1 (n + 2) l i+1 +1 • • • (n + 2) l N -1 +1 = ( l∈J C l )(n + 2) N 2 -2 = d 2 0 (n + 2) N 2 -2 ,
where 0 = (0, 0, • • • , 0). Note that d 2 0 is a constant depending only on N . Thus,

(n + 2) N 2 -2 N |E j n+1 | w ≤ |E n | w ≤ N -1 j=1 |E j n+1 | w N (n + 2) N 2 -2 .
(2) This follows directly from the rules of decomposition of tensor product of Young diagrams.

Proposition A.2 (Proposition 6.6). Let (K n ) n and π = (t 1 , • • • , t N -1 ) be as above. Set (k + 1) N 2 -1 N t(n + 1) N 2 -2 .

On the other hand, if n -(N -1)t < 0, then 

|∂ 1 π K n | w ≤ |K n | w N (n + 1) N 2 -1 N t(n + 1) N 2 -

  Let x n , x ∈ L 0 (M). (x n ) n∈N is said to converge almost uniformly (a.u. in short) to x if for any ε > 0 there is a projection e ∈ M such that τ (e ⊥ ) < ε and lim n→∞ (x n -x)e ∞ = 0. (x n ) n∈N is said to converge bilaterally almost uniformly (b.a.u. in short) to x if for any ε > 0 there is a projection e ∈ M such that τ (e ⊥ ) < ε and lim n→∞ e(x n -x)e ∞ = 0.

  ) Rigid C*-tensor category ([PV15, AdLW18]): Let C be a rigid C*-tensor category, A(C) its Fourier algebra and M the von Neumann algebra generated by the image of the left regular representation of C[C]. Set (Ω, µ) = (Irr(C), d) where d denotes the intrinsic dimension, and set U : L 2 (M) → 2 (Ω) by U (α) = δ α for α ∈ Irr(C). Then for any m ∈ ∞ (Ω), it is easy to check that T m is the dual map of the multiplication operator θ → mθ for θ ∈ A(C), which gives the Fourier multiplier studied in [PV15, AdLW18].
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  . By Proposition 3.3, Proposition 4.8 and Proposition 2.2 (3), we get for any 2 ≤ p < ∞ and x ∈ L p (M), (T φ N (x)) N Lp(M; ∞) α,β,γ,p x p , and (T φ N (x)) N Lp(M; c ∞ ) α,β,γ,p x p .

  (s) α,j = P 2 -(j+2s)/α -P 2 -(j-2s)/α . Then for any 1 < p < 2, (∆(s) α,j x) j Lp(M; cr 2 ) α s(p -1) -6 x p ,x ∈ L p (M).

  Theorem 4.16 ([HJX10, Theorem 4.1, Proposition 4.3 and Theorem 5.1]). Assume that T : M → M is a completely bounded normal map such that

  Definition 5.5. Let G be a compact quantum group. G is said to have the almost completely positive approximation property (ACPAP for short) if there are two sequences(ϕ s ) s∈N ⊂ ∞ ( G) and (ψ k ) k∈N ⊂ c c ( G) such that(1) for any s, k ∈ N, T ϕs is a unital completely positive map on L ∞ (G);(2) for any π ∈ Irr(G), we have lim s→∞ id Hπ -ϕ s (π) B(Hπ) = 0 and lim k→∞ id Hπ -ψ k (π) B(Hπ) = 0;

Corollary 5 .

 5 11. (1) Assume that G has the ACPAP. Then G admits a sequence of completely contractive Fourier multipliers (T m N ) N ∈N on L ∞ (G) so that m N are finitely supported and for any 2 ≤ p < ∞, sup N ∈N + T m N x p p x p , x ∈ L p (G), and T m N x converges to x a.s. as N → ∞ for all x ∈ L p (G) with 2 < p < ∞ and T m N x converges to x b.a.s. (a.u. if G is of Kac type) as N → ∞ for all x ∈ L 2 (G).

N 1 .

 1 (π) B(Hπ ) √ 2 Also, for any π / ∈ K N , i.e.J(π) > N , we haveφ N (π) B(Hπ) 2 N/4

Corollary 6. 1 .

 1 Let Γ be a 2-step (or 1-step) nilpotent group generated by a finite symmetric set S. Define m N (g) = |S N ∩gS N | |S N |

  Theorem 6.11 ([HK15, Theorem 1.1] and [Ver20, Theorem 1.2]). Let ν be a positive Borel measure on [-1, 1]. Define a function ϕ on N by ϕ

  ϕ n (π) = α,β∈Kn N π ᾱβ d α d β d π ( ξ∈Kn d 2 ξ ).Then1 -ϕ n (π) N |π| n + 1 and |ϕ n+1 (π) -ϕ n (π)| N 1 n + 1 , where |π| = max{t i : 1 ≤ i ≤ N -1}. Proof. Let E k = E k \E k-1 for all k ≥ 1. Denote t = |π|, i.e. π ∈ E t . Let n ≥ 1. Define ∂ 1 π K n = {α ∈ K n : ∃β ∈ K c n , such that β ⊂ απ}, ∂ 2 π K n = {β ∈ K c n : ∃α ∈ K n , such that α ⊂ βπ}. Assume first n -(N -1)t ≥ 0. By Lemma A.1 (2), we know that if α ∈ K n-(N -1)t , all the irreducible subrepresentations of α π belong to K n , which implies ∂ 1 π K n ∩ K n-(N -1)t = ∅. Therefore (A.2) |∂ 1 π K n | w ≤ | ∪ n k=n-(N -1)t+1 E k | w N n k=n-(N -1)t+1

  1/2 is the modulus of x. Then (S M , • p ) is a normed space, whose completion is the noncommutative L p -space associated with (M, τ ), denoted by L p (M, τ ) or simply by L p (M). As usual, we set L ∞ (M, τ ) = M equipped with the operator norm. Let L 0 (M) denote the space of all closed densely defined operators on H measurable with respect to (M, τ ), where H is the Hilbert space on which M acts. Then the elements of L p (M) can be viewed as closed densely defined operators on H. A more general notion of Haagerup L p -spaces on arbitrary von Neumann algebras can be found in Section 4.5.2. We refer to[START_REF] Pisier | Non-commutative L p -spaces[END_REF] for more information on noncommutative L p -spaces. We say that a map T : L p (M, τ ) → L p (M, τ ) is n-positive (resp. n-bounded ) for some n ∈ N if T ⊗ id Mn extends to a positive (resp. bounded) map on L p (M ⊗ M n , τ ⊗ Tr), where M n denotes the algebra of all n × n complex matrices and Tr denotes the usual trace on it, and we say that T is completely positive (resp. completely bounded ) if it is n-positive (resp. n-bounded) for all n ∈ N. We will denote by T cb the supremum of the norms of T ⊗ id Mn on L p (M ⊗ M n , τ ⊗ Tr) over all n ∈ N.2.1. Noncommutative ∞ -valued L p -spaces. In classical analysis, the pointwise properties of measurable functions are often studied by estimating the norms of maximal functions of the form sup n |f n | p . However, these maximal norms in the noncommutative setting require a specific definition, since sup n |x n | does not make sense for a sequence (x n ) n of operators.

	This difficulty is overcome by considering the spaces L p (M; ∞ ), which are the noncommu-
	tative analogs of the usual Bochner spaces L p (X; ∞ ). These spaces were first introduced by
	Pisier [Pis98] for injective von Neumann algebras and then extended to general von Neumann
	algebras by Junge

  x)e ∞ ≤ α 2 and τ (e ⊥ ) p α -p x * x

		p/2 p/2 = α -p x p p .
	However, since P t is completely positive, we can use Cauchy-Schwarz inequality to get
	sup t	P t (x)e ∞ = eP t (x) * P t (x)e 1/2 ∞ ≤ sup

, Lemma 6.2]. Moreover, (4.13) obviously yields that (T φt ) t∈R + satisfies the onesided weak type (p, p) maximal inequality for p ≥ 2 as in Proposition 2.9 (2). Note that the subordinate Poisson semigroup (P t ) t is of weak type (p, p) for all p ≥ 1 by [JX07, Remark 4.7]. Hence for any p ≥ 2, x ∈ L p (M), we find a projection e ∈ M such that sup t eP t (x * t eP t (x * x)e 1/2 ∞ ≤ α.

  usually called the comultiplication), and a normal faithful state h : L ∞ (G) → C (usually called the Haar state) with the following properties. First, the Haar state h is invariant in the sense that

  1 -ϕ t (ξ) ≤ µ(B t+|ξ| B \B t ) µ(B t ) ≤ (t + |ξ| B ) d -t d

		t d	d	|ξ| B t	.
	Also, we have		
	∂ϕ t ∂t	= lim		

h→0 1 h 1 B t+h * 1 B t+h (ξ) µ(B t+h ) -1 Bt * 1 Bt (ξ) µ(B t ) lim h→0 1 h µ(B t+h ) -µ(B t ) µ(B t ) d 1 t .

  1 . Also by Lemma A.1 (2), we have ∂ 2 π K n ⊂ K n+(N -1)t \K n . Therefore, Moreover, we have|K n | w = n i=1 |E i | w N (n + 1) N 2 -1 and by Lemma A.1 (1) we have n N 2 -1 N |K n | w N n N 2 -1 . Therefore we obtain |∂ π K n | w |K n | w Note that for any α ∈ K n \∂ 1 π K n , we have α π = ⊕ β∈Kn N β απ β.In particular, we see thatβ∈Kn N π ᾱβ d β = d π d α and 1 -ϕ n (π) = α∈Kn d α (d α d π -β∈Kn N π ᾱβ d β ) d π |K n | w Kn d α (d α d π -β∈Kn N π ᾱβ d β ) d π |K n | w |K n | w |K n+1 | w |K n+1 | w ≤ |E n+1 | w α∈Kn d α d α d π d π |K n | w |K n+1 | w |K n+1 | w ≤ |E n+1 | w α∈Kn d α d α d π d π |K n | w |K n+1 | w + β∈E n+1 d β d β d π + α∈E n+1 d α d α d π d π |K n+1 | w

					n+(N -1)t
	|∂ 2 π K n | w ≤ | ∪ n+(N -1)t k=n+1	E i | w N		(k + 1) N 2 -1	N t(n + 1) N 2 -2 .
						k=n+1
				N	t(n + 1) N 2 -2 (n + 1) N 2 -1 N	t n + 1	.
		=		α∈∂ 1 π + 0
		≤	|∂ 1 π K n | w |K n | w	N	t n + 1	.
	=	α∈Kn d α	β∈K c n+1 d π |K n | w	N β απ d β	-	α∈K n+1 d α d π |K n+1 | w β∈K c n+1	N β απ d β
	|E n+1 | w α∈Kn d α α∈Kn d α β∈K c n N β β∈K c n+1 απ d β -α∈K n+1 d α N β απ d β d π + β∈E n+1 d β α∈Kn N α βπ d α -α∈E n+1 d α d π + d π ≤ 3 = |E n+1 | w |K n+1 | w N 1 n + 1 .	β∈K c n+1 β∈K c n+1 N β απ d β N β απ d β

For the second inequality, by Lemma A.1 (3) we have

|ϕ n+1 (π) -ϕ n (π)| = |(1 -ϕ n (π)) -(1 -ϕ n+1 (π))|
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Remark 5.6. Assume that G has the ACPAP. Then we may indeed find two sequences (ϕ s ) s∈N ⊂ ∞ ( G), (ψ k ) k∈N ⊂ c c ( G) satisfying (1)-(3) in Definition 5.5 such that the following assertions also hold:

(4) T ψ k is selfadjoint for all k ∈ N;

(5) ϕ s and ψ k are selfadjoint matrices for all s, k ∈ N;

(6) for any t ∈ R, s ∈ N, k ∈ N, σ t • T φs = T φs • σ t and σ t • T ψ k = T ψ k • σ t . Indeed, for any sequences (ϕ s ) s∈N ⊂ ∞ ( G), (ψ k ) k∈N ⊂ c c ( G) satisfying (1)-(3) in Definition 5.5, by Remark 5.3 we see that the map x → (T ψ k (x * )) * is a multiplier associated with the matrices

Since the operators T ϕs are positive, T ϕs (x) = (T ϕs (x * )) * . Thus ((ψ k + ψ k )/2) k satisfies (3). Therefore we may always assume that T ψ k is selfadjoint, which means that Ψ k = Ψ * k by Remark 5.3 (2). We construct two new sequences (ϕ s ) s∈N ⊂ ∞ ( G), (ψ k ) k∈N ⊂ c c ( G) by the formulas given in Proposition 5.4, then they immediately satisfy (3) by (5.5). It is easy to see that (ϕ s ) s∈N and (ψ k ) k∈N satisfy (1) (2) (4) (5) (6).

Remark 5.7. If G is of Kac type, the multipliers T ϕs and T ψ k can be taken central by a simple averaging argument, that is, ϕ s (π) and ψ k (π) belong to C id Hπ for all π ∈ Pol(G). We refer to [START_REF] Kraus | Approximation properties for Kac algebras[END_REF][START_REF] Brannan | Approximation properties for locally compact quantum groups[END_REF] for details.

Lemma 5.8. For any s ∈ N + , ϕ s = (ϕ s (ρ)) ρ∈I with ϕ s (ρ) ∈ B(H ρ ), where (H ρ ) ρ are Hilbert spaces and I is an infinite countable set. Let (E s ) s≥1 be an increasing sequence of finite subsets of I with ∪ s≥1 E s = I. If lim s→∞ ϕ s (ρ) -id Hρ B(Hρ) = 0 for any ρ ∈ I, then there is a subsequence (s N ) N ≥1 of N such that

Proof. We will construct a sequence (s N ) N ∈N by induction. First we let s 1 = 1. Assume that (s j ) N j=0 has already been defined. For any ρ ∈ E s N , we can find an s N +1 (ρ) > s N large enough, such that for any s ≥ s N +1 (ρ),

Then we may construct the semigroups and multipliers satisfying the assumptions of Theorem 4.18.

Theorem 5.9. Assume that G has the ACPAP and let (ϕ s ) s∈N and (ψ k ) k∈N be the corresponding sequences satisfying (1)-(6) in Definition 5.5 and Remark 5.6. Let (k s ) s∈N + be an increasing subsequence of N such that T ϕs -T ψ ks cb ≤ 1 2 s+1 . Let k 0 = s 0 = 0 and (s N ) N ∈N + be a subsequence of N such that (5.6) holds with

Then the following assertions hold.

Remark 5.3, we have ϕ s (π) -ψ ks (π) B(Hπ) ≤ T ϕs -T ψ ks cb ≤ 1 2 s+1 . So

Hence is well defined and (1) is verified.

Recall that (1) = 0. Therefore S t (1) = e -t (1) 1 = 1. On the other hand, recall that ϕ s (π) is selfadjoint, which means that (π) is also selfadjoint. Thus by (5.2),

In particular, h(S t (x)) = h(S t (1)x) = h(x). Now let us verify the complete positivity of S t . We define the functionals , L and Φ s on Pol(G) by

Note that is a * -homomorphism on Pol(G), usually called the counit. By Remark 5.3, Φ s are states and

with the convergence understood pointwise on Pol(G). In particular

This means that L is a generating functional in the sense of [START_REF] Daws | The Haagerup property for locally compact quantum groups[END_REF] and there is a state µ t with µ t (u

) ij for all t and π by [DFSW16, Lemma 7.14 and Equality (7.4)]. So by Remark 5.3, S t = T e -t is completely positive.

We take

as soon as G is coamenable. Note that the coamenability of G is nothing but a property equivalent to the amenability of the discrete quantum group G (see e.g. [START_REF] Brannan | Approximation properties for locally compact quantum groups[END_REF]). The above sequence (K n ) n∈B is called a Følner sequence. We associate a sequence of multipliers (6.8)

It is easy to see that if G = Γ for a discrete group Γ, then the above function coincides with the symbol introduced in (6.1).

Lemma 6.3.

(1) The maps T ϕn are unital completely positive on L ∞ (G) for all n ∈ N.

(2) The functions ϕ n converge to 1 pointwise.

Proof.

(1) It is obvious that ϕ n (1) = 1 and therefore T ϕn is unital. Denote by χ(π) = i u π ii ∈ Pol(G) the character of π. We have for any α, β ∈ Irr(G),

N γ αβ χ(γ).

We write

Pol 0 (G) = span{χ(π) : π ∈ Irr(G)} and let A 0 be the w*-closure of Pol 0 (G) in L ∞ (G). Let E : L ∞ (G) → A 0 be the canonical conditional expectation preserving the Haar state h. Recall that we have assumed that G is of Kac type. It is well-known that the conditional expectation E can be given by the following explicit formula (see e.g. the proof of [Wan17, Lemma 6.3])

Then, we have

Indeed, by linearity and normality, we only need to check the equality for the case x = u (π) ij . In this case we see that

. Since E and ∆ are completely positive, so is T ϕn .

(2) The support of ϕ n is given by (6.9) Λ n = {π ∈ Irr(G) : ∃α, β ∈ K n such that π ⊂ ᾱβ}.