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. Our strategy essentially relies on various structural characterizations and dilation properties associated with Lamperti operators, which are of independent interest. More precisely, we give a structural description of Lamperti operators in the noncommutative setting, and obtain a simultaneous dilation theorem for Lamperti contractions. As a consequence we establish the maximal ergodic theorem for the strong closure of the convex hull of corresponding family of positive contractions. Moreover, in conjunction with a newly-built structural theorem, we also obtain the maximal ergodic inequalities for positive power bounded doubly Lamperti operators.

We also observe that the concrete examples of positive contractions without Akcoglu's dilation, which were constructed by Junge-Le Merdy [39], still satisfy the maximal ergodic inequalities. We also discuss some other examples, showing sharp contrast to the classical situation.

Introduction

In classical ergodic theory, one of the earliest pointwise ergodic theorems was obtained by Birkhoff [START_REF] Birkhoff | Proof of the ergodic theorem[END_REF] in 1931. In many situations, it is well-known that establishing a maximal ergodic inequality is enough to obtain a pointwise ergodic theorem. For example, the Birkhoff ergodic theorem can be derived from a weak (1, 1) type estimate of the maximal operator corresponding to the time averages, which was obtained by Wiener [START_REF] Wiener | The ergodic theorem[END_REF]. Dunford and Schwartz [START_REF] Dunford | Convergence almost everywhere of operator averages[END_REF] greatly generalized the previous situation; they established the strong (p, p) maximal inequalities for all 1 < p < ∞ for time averages of positive L 1 -L ∞ contractions. However, the most general result in this direction was obtained by Akcoglu [START_REF] Akcoglu | A pointwise ergodic theorem in Lp-spaces[END_REF], who established a maximal ergodic inequality for general positive contractions on L p -spaces for a fixed 1 < p < ∞. The proof is based on an ingenious dilation theorem (see also [START_REF] Akcoglu | Dilations of positive contractions on Lp spaces[END_REF]) which reduces the problem to the case of positive isometries, and the latter was already studied by Ionescu Tulcea [START_REF] Tulcea | Ergodic properties of isometries in L p spaces, 1 < p < ∞[END_REF]. Akcoglu's dilation theorem has found numerous applications in various directions; let us mention (among others) Peller's work on Matsaev's conjecture for contractions on L p -spaces [START_REF] Peller | An analogue of J. von Neumann's inequality for the space L p[END_REF][START_REF] Peller | Estimates of operator polynomials in an L p space in terms of the multiplier norm[END_REF][START_REF] Peller | von Neumann's inequality, isometric dilation of contractions and approximation by isometries in spaces of measurable functions[END_REF][START_REF] Peller | Estimates of operator polynomials on the Schatten-von Neumann classes[END_REF], Coifman-Rochberg-Weiss' approach to Stein's Littlewood-Paley theory [START_REF] Coifman | Applications of transference: the L p version of von Neumann's inequality and the Littlewood-Paley-Stein theory[END_REF], g-function type estimates on compact Riemannian manifolds by Coifman-Weiss [START_REF] Coifman | Transference methods in analysis[END_REF], as well as functional calculus of Ritt and sectorial operators (see [START_REF] Arhancet | Dilation of Ritt operators on L p -spaces[END_REF][START_REF] Merdy | H ∞ functional calculus and square function estimates for Ritt operators[END_REF][START_REF] Merdy | H ∞ -functional calculus and applications to maximal regularity[END_REF] and references therein). On the other hand, we would like to remark that the Lamperti contractions consist of a typical class of general L p -contractions. Moreover, Kan [START_REF] Kan | Ergodic properties of Lamperti operators[END_REF] established a maximal ergodic inequality for power bounded Lamperti operators whose adjoints are also Lamperti. Many more results for positive operators and Lamperti operators in the context of ergodic theory were studied further by various authors. We refer to [START_REF] Jones | Subsequence ergodic theorems for L p contractions[END_REF][START_REF] Jones | Subsequence pointwise ergodic theorems for operators in L p[END_REF][START_REF] Sato | On the ergodic Hilbert transform for Lamperti operators[END_REF][START_REF] Merdy | Maximal theorems and square functions for analytic operators on L p -spaces[END_REF][START_REF] Merdy | Strong q-variation inequalities for analytic semigroups[END_REF] and references therein for interested readers.

Motivated by quantum physics, noncommutative mathematics have advanced in a rapid speed. The connection between ergodic theory and von Neumann algebras is intimate and goes back to the earlier development of the theory of rings of operators. However, the study of pointwise ergodic theorems only took off with the pioneering work of Lance [START_REF] Lance | Ergodic theorems for convex sets and operator algebras[END_REF]. The topic was then stupendously studied in a series of works due to Conze, Dang-Ngoc [START_REF] Conze | Ergodic theorems for noncommutative dynamical systems[END_REF], Kümmerer [START_REF] Kümmerer | A non-commutative individual ergodic theorem[END_REF], Yeadon [START_REF] Yeadon | Ergodic theorems for semifinite von Neumann algebras. I[END_REF] and others. However, the maximal inequalities and pointwise ergodic theorems in L p -spaces remained out of reach for many years until the path-breaking work of Junge and Xu [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF]. In [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF], the authors established a noncommutative analogue of Dunford-Schwartz maximal ergodic theorem. This breakthrough motivated further research to develop various noncommutative ergodic theorems. We refer to [START_REF] Bekjan | Noncommutative maximal ergodic theorems for positive contractions[END_REF][START_REF] Anantharaman-Delaroche | On ergodic theorems for free group actions on noncommutative spaces[END_REF][START_REF] Hu | Maximal ergodic theorems for some group actions[END_REF][START_REF] Hong | Noncommutative multi-parameter Wiener-Wintner type ergodic theorem[END_REF][START_REF] Hong | Noncommutative maximal ergodic inequalities associated with doubling conditions[END_REF] and references therein. Notice that the general positive contractions considered by Akcoglu do not fall into the category of Junge-Xu [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF]. In the noncommutative setting, there are very few results for operators beyond L 1 -L ∞ contractions except some isolated cases studied in [START_REF] Hong | Noncommutative maximal ergodic inequalities associated with doubling conditions[END_REF]. In particular, the following noncommutative analogue of Akcoglu's maximal ergodic inequalities, which is more general than Junge-Xu's results [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF], remains open. We refer to Section 2 for a precise presentation of the notation appearing here and below. In this article, we answer Question 1.1 for a large class of positive contractions which do not fall into the category of aforementioned works. Indeed, this class recovers all positive contractions concerned in Question 1.1 if M is the classical space L ∞ ([0, 1]). To introduce our main results we set some notation and definitions. Definition 1.2. Let 1 ≤ p < ∞. Let T : L p (M, τ ) → L p (M, τ ) be a bounded linear map. We say that T is a Lamperti operator (or say that T separates supports) if for any two τ -finite projections e, f ∈ M with ef = 0, we have (T e) * T f = T e(T f ) * = 0.

By standard approximation arguments, it is easy to observe that the above definition of Lamperti operators agrees with the known one in the commutative setting (also called "separation-preserving operators" or "disjoint operators" in some references); the study of the latter goes back to Banach [11, Section XI.5], and have subsequently been considered in various works (see e.g. [START_REF] Asmar | Transference of strong type maximal inequalities by separationpreserving representations[END_REF][START_REF] Fendler | Dilations of one parameter semigroups of positive contractions on L p spaces[END_REF][START_REF] Fendler | On dilations and transference for continuous one-parameter semigroups of positive contractions on L p -spaces[END_REF][START_REF] Kan | Ergodic properties of Lamperti operators[END_REF][START_REF] Peller | An analogue of J. von Neumann's inequality for the space L p[END_REF][START_REF] Peller | von Neumann's inequality, isometric dilation of contractions and approximation by isometries in spaces of measurable functions[END_REF][START_REF] Peller | Estimates of operator polynomials on the Schatten-von Neumann classes[END_REF]). We refer the readers to Section 3 for related properties of Lamperti operators in the noncommutative setting.

The following is one of our main results. Throughout the paper, we will denote by C p a fixed distinguished constant depending only on p, which is given by the best constant of Junge-Xu's maximal ergodic inequality [42, It is worth noticing that the class introduced in (1) is quite large in the classical setting. Indeed, together with [START_REF] Grząślewicz | Approximation theorems for positive operators on L p -spaces[END_REF]Theorem 2] and [START_REF] Fackler | A toolkit for constructing dilations on Banach spaces[END_REF], we know that for M = L ∞ ([0, 1]) equipped with the Lebesgue measure, we have

{S : L p ([0, 1]) → L p ([0, 1]) positive contractions} = conv sot {S : L p ([0, 1]) → L p ([0, 1]) positive Lamperti contractions},
which does recover the classical Akcoglu's ergodic theorem on L p ([0, 1]). Moreover, our methods also help to establish a completely bounded version of Ackoglu's ergodic theorem in Corollary 5. [START_REF] Arhancet | On Matsaev's conjecture for contractions on noncommutative L p -spaces[END_REF].

As mentioned earlier, Akcoglu's arguments for ergodic theorem essentially rely on the study of dilations of positive contractions. In spite of various works on dilations on von Neumann algebras (see [START_REF] Kümmerer | Markov dilations on W * -algebras[END_REF][START_REF] Haagerup | Factorization and dilation problems for completely positive maps on von Neumann algebras[END_REF][START_REF] Junge | Noncommutative diffusion semigroups and free probability[END_REF][START_REF] Arhancet | Dilations of Markovian semigroups of Fourier multipliers on locally compact groups[END_REF][START_REF] Arhancet | Dilations of semigroups on von Neumann algebras and noncommutative L p -spaces[END_REF] and references therein), Junge and Le Merdy showed in their remarkable paper [START_REF] Junge | Dilations and rigid factorisations on noncommutative L p -spaces[END_REF] that there is no 'reasonable' analogue of Akcoglu's dilation theorem on noncommutative L p -spaces. This becomes a serious difficulty in establishing a noncommutative analogue of Akcoglu's ergodic theorem. Our proof of the above theorem is based on the study of structural properties and dilations of convex combinations of Lamperti operators as in [START_REF] Akcoglu | A pointwise ergodic theorem in Lp-spaces[END_REF]. This route seems to be different from that of Akcoglu's original one. Let us mention some of the key steps and new ingredients in the proof, which might be of independent interest. (i) Noncommutative ergodic theorem for positive isometries (Theorem 5.1): Following the classical case, the first natural step would be to establish a maximal ergodic inequality for positive isometries (see e.g. [START_REF] Kan | Ergodic properties of Lamperti operators[END_REF][START_REF] Tulcea | Ergodic properties of isometries in L p spaces, 1 < p < ∞[END_REF]). In this paper we give an analogue of this result in the noncommutative setting. The key ingredient is to extend positive isometries on L p (M) to the vector-valued space L p (M; ∞ ) (Proposition 5.3). This fact seems to be non-obvious if the isometry is not completely isometric. Then based on the methods recently developed in [START_REF] Hong | Noncommutative maximal ergodic inequalities associated with doubling conditions[END_REF] combined with [42, Theorem 0.1], we may obtain the desired maximal inequalities. (ii) Structural theorems for Lamperti operators (Theorem 3.3, Theorem 3.6): In the classical setting, Peller [START_REF] Peller | Estimates of operator polynomials in an L p space in terms of the multiplier norm[END_REF] and Kan [START_REF] Kan | Ergodic properties of Lamperti operators[END_REF] obtained a dilation theorem for Lamperti contractions. Their constructions are different from Akcoglu's and rely on structural descriptions of Lamperti operators. In the noncommutative setting, we first prove a similar characterization for Lamperti operators by using techniques from [START_REF] Yeadon | Isometries of noncommutative L p -spaces[END_REF]. Also, it is natural to consider the completely Lamperti operators in the noncommutative setting, and in this part we also prove a characterization theorem for these operators. This completes the second step for the proof of Theorem 1.3. (iii) Dilation theorem for the convex hull of Lamperti contractions (Theorem 4.6): In order to establish ergodic theorems for a large class beyond Lamperti contractions, we first prove a simultaneous dilation theorem for tuples of Lamperti contractions, which is a stronger version of Peller-Kan's dilation theorem. The final step towards proving Theorem 1.3 is to deploy tools from [START_REF] Fackler | A toolkit for constructing dilations on Banach spaces[END_REF] to obtain an N -dilation theorem for the convex hull of Lamperti contractions for all N ∈ N. Our approach also establishes validity of noncommutative Matsaev's conjecture for the strong closure of the closed convex hull of Lamperti contractions for 1 < p = 2 < ∞ whenever the underlying von Neumann algebra has QWEP (see Corollary 4.10 for details).

It is worth mentioning that the dilatable contractions studied prior to our work are mostly those acting on the von Neumann algebra itself, except 'loose dilation' results in [START_REF] Arhancet | Dilation of Ritt operators on L p -spaces[END_REF][START_REF] Arhancet | Isometric dilations and H ∞ calculus for bounded analytic semigroups and Ritt operators[END_REF]. Also, our result might have some applications along the line of [START_REF] Asmar | Transference of strong type maximal inequalities by separationpreserving representations[END_REF][START_REF] Coifman | Applications of transference: the L p version of von Neumann's inequality and the Littlewood-Paley-Stein theory[END_REF][START_REF] Fendler | Dilations of one parameter semigroups of positive contractions on L p spaces[END_REF][START_REF] Jones | Subsequence ergodic theorems for L p contractions[END_REF]. We leave this research direction open. Note that Theroem 1.3 only applies to contractive operators. As the classical case, the study for non-contractive power bounded operators requires additional efforts. In the following we also establish a general ergodic theorem for power bounded Lamperti operators as soon as their adjoints are also Lamperti (usually called doubly Lamperti operators), which is the other main result of the paper.

Theorem 1.4. Let 1 < p < ∞, 1/p + 1/p = 1 and let M be a finite von Neumann algebra. Assume that T : L p (M) → L p (M) is a positive Lamperti operator such that the adjoint operator T * : L p (M) → L p (M) is also Lamperti and sup n≥1 T n Lp(M)→Lp(M) = K < ∞. Then sup n≥0 + 1 n + 1 n k=0 T k x p ≤ KC p x p for all x ∈ L p (M).
The above theorem is the noncommutative analogue of a classical result of Kan [START_REF] Kan | Ergodic properties of Lamperti operators[END_REF]. It essentially relies on a structural theorem for positive doubly completely Lamperti operators (Theorem 6.6), which reduces the problem to the setting of Theorem 1.3. To prove this structural result, we follow the path of Kan. However, since the structures and orthogonal relations of von Neumann subalgebras are completely different from those in classical measure theory, our proof is much more lengthy and numerous adjustments are needed in this new setting. Also, due to these technical reasons, we restrict our study to the case of finite von Neumann algebras only.

Moreover, we observe that the maximal ergodic inequalities also hold for several other classes of operators outside the scope of Theorem 1.3 or Theorem 1.4.

(i) Positive invertible operators which are not Lamperti (Example 7.2): Kan [START_REF] Kan | Ergodic properties of Lamperti operators[END_REF] discussed various examples of Lamperti operators. He showed that any positive invertible operator with positive inverse is Lamperti in the classical setting. As a consequence, he reproved that any power bounded positive operator with positive inverse admits a maximal ergodic inequality; this generalized the ergodic theorem of de la Torre [START_REF] De La | A simple proof of the maximal ergodic theorem[END_REF]. A noncommutative analogue of this theorem, in a much general form, was achieved in [START_REF] Hong | Noncommutative maximal ergodic inequalities associated with doubling conditions[END_REF] (see Theorem 7.3).

However, in this article we provide examples of positive invertible operators on noncommutative L p -spaces with positive inverses which are not even Lamperti. Therefore, Kan's method does not immediately deduce de la Torre's ergodic theorem [START_REF] De La | A simple proof of the maximal ergodic theorem[END_REF] in the noncommutative setting. Nevertheless, these examples fall into the category of the aforementioned result of [START_REF] Hong | Noncommutative maximal ergodic inequalities associated with doubling conditions[END_REF], and hence satisfy the maximal ergodic theorem. We would like to remark that Kan's aforementioned examples of Lamperti operators play an important role in many other papers such as [START_REF] Berkson | Mean-boundedness and Littlewood-Paley for separation-preserving operators[END_REF][START_REF] Jones | Subsequence pointwise ergodic theorems for operators in L p[END_REF][START_REF] Jones | Subsequence ergodic theorems for L p contractions[END_REF] and references therein. Kan [START_REF] Kan | Ergodic properties of Lamperti operators[END_REF] also showed that any positive invertible operator on a finite dimensional (commutative) L p -space with sup n∈Z T n Lp→Lp < ∞ is Lamperti. Our example shows that this is again not true in the noncommutative setting. All these phenomena seem to be new.

(ii) Junge-Le Merdy's non-dilatable example: As mentioned earlier, there exist concrete examples of completely positive complete contractions which fail to admit a noncommutative analogue of Akcoglu's dilation, constructed by Junge and Le Merdy [START_REF] Junge | Dilations and rigid factorisations on noncommutative L p -spaces[END_REF]. In this paper we show that these operators still satisfy a maximal ergodic inequality. In particular we establish the following fact. Proposition 1.5. Let 1 < p = 2 < ∞. Then for all k ∈ N large enough, there exists a completely positive complete contraction T : S k p → S k p such that

sup n≥0 + 1 n + 1 n k=0 T k x p ≤ (C p + 1) x p , x ∈ L p (M),

but T does not have a dilation (in the sense of Definition 2.5).

The proof is very short and elementary; indeed it still relies on Akcoglu's ergodic theorem [START_REF] Akcoglu | A pointwise ergodic theorem in Lp-spaces[END_REF] in the classical setting. The above theorem illustrates again that the noncommutative situation is significantly different from the classical one.

We end our introduction by briefly mentioning the organization of the paper. In Section 2 we recall the necessary background including all the requisite definitions. In Section 3, we prove the characterization theorems for Lamperti and completely Lamperti operators. In Section 4, we prove the dilation theorem for the convex hull of Lamperti contractions, and establish the validity of noncommutative Matsaev's conjecture for this class of contractions. In Section 5, we prove the maximal ergodic inequalities for positive isometries and then deduce Theorem 1.3 by applying the dilation theorem in Section 4. Section 6 is devoted to the proof of Theorem 1.4, which involves some additional properties of Lamperti operators as well as an useful characterization theorem for doubly Lamperti operators. In Section 7, we consider noncommutative ergodic theorems for various interesting operators which are out of the scope of Theorem 1.3 and Theorem 1.4. In the end, in Section 8, we discuss individual ergodic theorems for completeness.

After we finished the preliminary version of this paper, we learned that some partial results in Section 3 were also obtained independently in [START_REF] Merdy | 1 -contractive maps on noncommutative L p -spaces[END_REF][START_REF] Merdy | On factorization of separating maps on noncommutative L p -spaces[END_REF] at the same time; a related study was also given in [START_REF] Huang | Logarithmic submajorisation and order-preserving linear isometries[END_REF]. However, both the main results and the arguments of this paper are quite different and independent, which cannot be recovered from their works.

Preliminaries

2.1. Noncommutaive L p -spaces. For any closed densely defined linear map T on a Banach space, we denote by ker T and ran T the kernel and range of T respectively. Let M be a von Neumann algebra equipped with a normal semifinite faithful trace τ M , which acts on a Hilbert space H. We also simply denote the trace τ M by τ if no confusion will occur. Unless specified, we always work with von Neumann algebras of this kind. The unit in M is denoted by 1 M or simply by 1 and the extended positive cone of M is denoted by M + . Let L 0 (M) be the * -algebra of all closed densely defined operators on H measurable with respect to (M, τ ). For a subspace A ⊆ L 0 (M), we denote by A + the cone of positive elements in A, and by Z(A) the center of A if A is a subalgebra. The trace τ can be extended to L 0 (M) + and

M + . A sequence (x n ) n≥1 ⊆ L 0 (M) is said to converge in measure to x ∈ L 0 (M) if ∀ ε > 0, lim n→∞ τ (e ⊥ ε (|x n -x|)) = 0,
where e ⊥ ε (y) := χ (ε,∞) (y) for any y ∈ L 0 (M) + and χ denotes the usual characteristic function. We denote by s(x) the support of x for a positive element x ∈ L 0 (M) + . For any projection e ∈ M we denote e ⊥ = 1 -e.

Let S(M) be the linear span of all positive elements in M such that τ (s(x)) < ∞. Let P(M) denote the set of all projections in M. A projection e ∈ M is said to be τ -finite if e ∈ S(M). For 1 ≤ p < ∞, we define the noncommutative L p -space L p (M, τ ) to be the completion of S(M) with respect to the norm

x Lp(M) := τ (|x| p ) 1 p , where |x| = (x * x) 1 2 .
The Banach lattice structure of L p (M, τ ) does not depend on the choice of τ and we often simply denote the space by L p (M) if no ambiguity will occur. We set L ∞ (M) = M. It is well-known that L p (M) can be viewed as a subspace of L 0 (M). For any σ-finite measure space (Ω, µ), we have a natural identification for L p (L ∞ (Ω)⊗M) as the Bochner space L p (Ω; 

L p (M)) for 1 ≤ p < ∞. If M = B(
p (M) → L p (M) is completely bounded if T cb,Lp(M)→Lp(M) := sup n≥1 I S n p ⊗ T Lp(Mn⊗M,T r⊗τ )→Lp(Mn⊗M,T r⊗τ ) < ∞,
and the above quantity is called the completely bounded (in short c.b.) norm of T . Also, T is a complete contraction (resp. complete isometry) if I S n p ⊗ T is a contraction (resp. isometry) for all n ≥ 1. We say that T is n-contractive (resp. n-isometry) for some n if I S n p ⊗ T is a contraction (resp. isometry). We refer to [START_REF] Pisier | Non-commutative L p -spaces[END_REF] for a comprehensive study of noncommutative L p -spaces and related topics.

2.2. Noncommutative vector-valued L p -spaces and pointwise convergence. It is wellknown that maximal norms on noncommutative L p -spaces require special definitions. This is mainly because the notion sup n≥1 |x n | makes no reasonable sense for a sequence of arbitrary operators (x n ) n≥1 . This difficulty can be overcome by using the theory of noncommutative vector-valued L p -spaces which was initiated by Pisier [START_REF] Pisier | Non-commutative vector valued Lp-spaces and completely p-summing maps[END_REF] and improved by Junge [START_REF] Junge | Doob's inequality for non-commutative martingales[END_REF]. For 1 ≤ p ≤ ∞, let L p (M; ∞ ) be the space of all sequences x = (x n ) n≥1 admitting the following factorization: there are a, b ∈ L 2p (M) and a bounded sequence (y n ) n≥1 ⊆ M such that x n = ay n b for n ≥ 1. One defines

(x n ) n≥1 Lp(M; ∞) = inf a 2p sup n≥1 y n ∞ b 2p
where the infimum is taken over all possible factorizations. Adopting the usual convention, we write x Lp(M; ∞) = sup n≥1 + x n p . Let us remark that for any positive sequence x ∈ L p (M)

given by x = (x n ) n≥1 , x belongs to L p (M; ∞ ) if and only if there exists a ∈ L p (M) + such that x n ≤ a for all n ≥ 1. In this case, we have sup n≥1

+ x n p = inf{ a p : x n ≤ a, a ∈ L p (M) + }.
The following folkloric truncated description of the maximal norm is often useful. A proof can be found in [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF].

Proposition 2.1. Let 1 ≤ p ≤ ∞. A sequence (x n ) n≥1 ⊆ L p (M) belongs to L p (M; ∞ ) if and only if sup N⊇J is finite sup i∈J + x i p < ∞. Moreover, (x n ) n≥1 Lp(M; ∞) = sup N⊇J is finite sup i∈J + x i p .
Let 1 ≤ p < ∞. We define L p (M; 1 ) to be the space of all sequences x = (x n ) n≥1 ⊆ L p (M) which admits a decomposition

x n = k≥1 u * kn v kn for all n ≥ 1, where (u kn ) k,n≥1 and (v kn ) k,n≥1 are two families in L 2p (M) such that k,n≥1 u * kn u kn ∈ L p (M), k,n≥1 v * kn v kn ∈ L p (M).
In above all the series are required to converge in L p -norm. We equip the space L p (M; 1 ) with the norm

x Lp(M; 1 ) = inf k,n≥1 u * kn u kn 1 2 p k,n≥1 v * kn v kn 1 2 p ,
where infimum runs over all possible decompositions of x described as above. For any positive sequence x = (x n ) n≥1 ∈ L p (M; 1 ) we have a simpler description of the norm as follows

x Lp(M; 1 ) = n≥1 x n p .
It is known that both L p (M; ∞ ) and L p (M; 1 ) are Banach spaces. Moreover, we have the following duality fact.

Proposition 2.2 ([37]

). Let 1 < p < ∞. Let 1 p + 1 p = 1. Then we have isometrically L p (M; 1 ) * = L p (M; ∞ ), with the duality relation given by

x, y = n≥1 τ (x n y n )
for all x ∈ L p (M; 1 ) and y ∈ L p (M; ∞ ). Also, we define L p (M; c ∞ ) to be the space of all sequences x = (x n ) n≥1 ⊆ L p (M) which admits a factorization x n = y n a for all n ≥ 1, where a ∈ L p (M) and (y n

) n≥1 ⊆ L ∞ (M) with sup n≥1 y n ∞ < ∞. We define x Lp(M; c ∞ ) = inf a p sup n≥1 y n ∞ ,
where the infimum is taken over all possible factorizations. We denote by L p (M; c 0 ) the closure of all finite sequences in L p (M; ∞ ), and denote by L p (M; c c 0 ) the similar closure in L p (M; c ∞ ). We refer to [START_REF] Musat | Interpolation between non-commutative BMO and non-commutative Lp-spaces[END_REF] and [START_REF] Defant | Maximal theorems of Menchoff-Rademacher type in non-commutative Lq-spaces[END_REF] for more information on these spaces. For the study of noncommutative individual ergodic theorems, we will also consider the a.u. and b.a.u. convergence which were first introduced in [START_REF] Lance | Ergodic theorems for convex sets and operator algebras[END_REF] (also see [START_REF] Jajte | Strong limit theorems in noncommutative probability[END_REF]). Definition 2.3. Let (x n ) n≥1 ⊆ L 0 (M) be a sequence and x ∈ L 0 (M). We say that the sequence (x n ) n≥1 converges to x almost uniformly (in short a.u.) if for any ε > 0 there exists a projection e ∈ M such that τ (e ⊥ ) < ε and lim n→∞ (x n -x)e ∞ = 0.

We say that (x n ) n≥1 converges to x bilaterally almost uniformly (in short b.a.u.) if for any ε > 0 there exists a projection e ∈ M such that τ (e ⊥ ) < ε and lim n→∞ e(x n -x)e ∞ = 0.

It follows from Egorov's theorem that in the case of classical probability spaces, the above definitions are equivalent to the usual notion of almost everywhere convergence.

We mention the following proposition which is very useful for checking b.a.u. and a.u. convergence of sequences in noncommutative L p -spaces.

Proposition 2.4 ([20]). (i)

Let 1 ≤ p < ∞ and (x n ) n≥1 ∈ L p (M, c 0 ). Then x n → 0 b.a.u. as n → ∞. (ii) Let 2 ≤ p < ∞ and (x n ) n≥1 ∈ L p (M, c c 0 ). Then x n → 0 a.u. as n → ∞.

Various notions of dilation.

In this subsection, we turn our attention to various notions of dilations. The study of dilations and N -dilations have a long history already for operators on Hilbert spaces (see [START_REF] Nagy | Harmonic analysis of operators on Hilbert space[END_REF][START_REF] Mccarthy | Unitary N -dilations for tuples of commuting matrices[END_REF]), whereas the notion of simultaneous dilation was only recently introduced in [START_REF] Fackler | A toolkit for constructing dilations on Banach spaces[END_REF] in the setting of general Banach spaces.

Definition 2.5. Let 1 ≤ p ≤ ∞. Let T : L p (M, τ M ) → L p (M, τ M ) be a contraction. We say that T has a dilation (resp. complete dilation) if there exist a von Neumann algebra N with a normal faithful semifinite trace τ N , contractive (resp. completely contractive) linear maps

Q : L p (N , τ N ) → L p (M, τ M ), J : L p (M, τ M ) → L p (N , τ N )
, and an isometry (resp. complete isometry) U :

L p (N , τ N ) → L p (N , τ N ) such that (2) T n = QU n J, ∀n ∈ N ∪ {0}.
In terms of commutative diagrams, we have

L p (M, τ M ) T n / / J L p (M, τ M ) L p (N , τ N ) U n / / L p (N , τ N ) Q O O
for all n ≥ 0. We say that T has an N -dilation if (2) is true for all n ∈ {0, 1, . . . , N }. We say that T has a complete N -dilation if (2) is true for all n ∈ {0, 1, . . . , N } and the isometry U as in ( 2) is a complete isometry. Definition 2.6. Let 1 ≤ p ≤ ∞. Let S ⊆ B(L p (M, τ M )). We say that S has a simultaneous dilation (resp. complete simultaneous dilation) if there exist a von Neumann algebra N with a normal faithful semifinite trace τ N , contractive (resp. completely contractive) linear maps Q : L p (N , τ N ) → L p (M, τ M ), J : L p (M, τ M ) → L p (N , τ N ), and a set of isometries (resp. complete isometries) U ⊆ L p (N , τ N ) such that for all n ∈ N ∪ {0} and

T i ∈ S, 1 ≤ i ≤ n, there exist U T 1 , U T 2 , . . . , U Tn ∈ U such that (3) T 1 T 2 . . . T n = QU T 1 U T 2 . . . U Tn J.
In terms of commutative diagrams, we have

L p (M, τ M ) T 1 ...Tn / / J L p (M, τ M ) L p (N , τ N ) U T 1 ...U Tn / / L p (N , τ N ). Q O O
The empty product (i.e. n = 0) corresponds to the identity operator. We say that S has a simultaneous N -dilation if (3) is true for all n ∈ {0, 1, . . . , N }. We say that S has a complete simultaneous N -dilation if (3) is true for all n ∈ {0, 1, . . . , N } and the family U consists of complete isometries.

Remark 2.7. Let 1 ≤ p ≤ ∞. If S ⊆ B(L p (M, τ M )) has a simultaneous (resp. complete simultaneous) N -dilation for any N ∈ N, then for any n ≥ 1 and T 1 , . . . , T n ∈ S, the operator T 1 . . . T n has a simultaneous (resp. complete simultaneous) N -dilation for any N ∈ N. 2 and J(x * ) = J(x) * for all x ∈ M. It is well-known that in this case J(xyx) = J(x)J(y)J(x) for all x, y ∈ M. Lemma 2.8 ([71]). Let J : M → N be a normal Jordan * -homomorphism. Let N denote the von Neumann subalgebra generated by J(M) in N . Then there exist two central projections e, f ∈ Z( N ) with e + f = 1 N such that x → J(x)e is a * -homomorphism and x → J(x)f is a * -anti-homomorphism.

Characterization theorems for isometries and complete isometries. We recall the definition of a Jordan homomorphism. A complex linear map

J : M → N is called a Jordan * -homomorphism if J(x 2 ) = J(x)
We should warn the reader that in the above theorem, J(M) is in general not necessarily a von Neumann subalgebra of N . However it is stable under the usual Jordan product and is still a w * -closed subspace of N . We refer to [28, Section 4.5] and the references therein for more details.

The following structural description of isometries and complete isometries will be frequently used. We refer to [START_REF] Lamperti | On the isometries of certain function-spaces[END_REF] for the classical case. Theorem 2.9 ([77, 41]). Let

1 ≤ p = 2 < ∞. Let T : L p (M, τ M ) → L p (N , τ N ) be a bounded operator.
Then T is an isometry if and only if there exist uniquely a normal Jordan *monomorphism J : M → N , a partial isometry w ∈ N , and a positive self-adjoint operator b affiliated with N , such that the following hold:

(i) w * w = s(b) = J(1); (ii) Every spectral projection of b commutes with J(x) for all x ∈ M; (iii) T (x) = wbJ(x) for all x ∈ S(M); (iv) τ N (b p J(x)) = τ M (x) for all x ∈ M + .

Moreover, T is a complete isometry if and only if the Jordan * -monomorphism J as above is multiplicative.

The following property is kindly communicated to us by Arhancet, which will appear in his forthcoming paper.

Theorem 2.10 (Arhancet). Let 1 ≤ p < ∞. Let T : L p (M, τ M ) → L p (N , τ N )
be a positive isometry of the form T = wbJ where w, b, J are objects as in Theorem 2.9. Then T is completely positive if and only if it is 2-positive if and only if the Jordan * -monomorphism J is multiplicative.

Lamperti operators on noncommutative L p -spaces

In this section, we establish some elementary properties and prove two structural theorems for Lamperti and completely Lamperti operators respectively. Our study is motivated by the argument for the particular case of isometries, see for instance [START_REF] Yeadon | Isometries of noncommutative L p -spaces[END_REF].

Let us start with some useful properties of Lamperti operators. In the commutative setting, similar results were established in [START_REF] Kan | Ergodic properties of Lamperti operators[END_REF] (see [START_REF] Kan | Ergodic properties of operator averages[END_REF] for detailed proofs). Before the discussion we recall the following elementary fact.

Lemma 3.1. Let 1 ≤ p < ∞. Let x ∈ L p (M) + . Then there exists a sequence (x n ) n≥1 ⊆ S(M) + such that x n ≤ x, lim n→∞ x n -x p = 0 and s(x n ) ↑ s(x). Moreover, if y ∈ L p (M) + satisfies xy = 0, then we can choose a sequence (y n ) n≥1 ⊆ S(M) as described for x such that x n y n = 0 for all n ≥ 1.
Proof. The first assertion follows from the corresponding commutative case by considering the abelian von Neumann subalgebra generated by the spectral resolution of x. For the second assertion, it suffices to notice that if xy = 0 for x, y ∈ L p (M) + , then s(x)s(y) = 0 by a standard argument of functional calculus, and vice versa.

The lemma immediately yields the following property.

Proposition 3.2. Let 1 ≤ p < ∞. A positive bounded linear map T : L p (M) → L p (M) is
Lamperti if and only if for any x, y ∈ L p (M) + with xy = 0, we have T xT y = 0. In this case we have

|T x| = T (|x|), x = x * , x ∈ L p (M).
In particular, if both T 1 and T 2 are positive Lamperti operators on L p (M), then T 1 T 2 is also positive Lamperti.

Proof. One direction is clear. Now let us begin with a positive Lamperti operator T :

L p (M) → L p (M). Let x, y ∈ L p (M) + with xy = 0. Using Lemma 3.1, we obtain sequences (x n ) n≥1 , (y n ) n≥1 in S(M) + such that x n -x p →
0 and y n -y p → 0 and x n y n = 0 for all n ≥ 1. Since T is Lamperti, we can easily verify that T x n T y n = T y n T x n = 0 for all n ∈ N. Therefore, by [START_REF] Yeadon | Isometries of noncommutative L p -spaces[END_REF]Theorem 1] for p = 2 and by the parallelogram law for p = 2 we have

T x n + T y n p p + T x n -T y n p p = 2( T x n p p + T y n p p ).
Taking limit, we have

T x + T y p p + T x -T y p p = 2( T x p p + T y p p )
. For p = 2, again applying [77, Theorem 1] we obtain that T xT y = T yT x = 0. For p = 2, the above equality in turn implies τ (T xT y) = 0. Thus, (T x)

1 2 T y(T x) 1 2 = 0.
In other words we have ((T y)

1 2 (T x) 1 2 ) * ((T y) 1 2 (T x) 1 2 ) = 0, whence (T y) 1 2 (T x) 1 2 = 0. Therefore, we conclude T xT y = 0. Let x ∈ L p (M) be a self-adjoint element. Decompose x as x = x + -x -. Since x + x -= 0, we see that T (x + )T (x -) = 0. This implies that |T (x)| = T (x + ) + T (x -) = T (|x|).
This completes the proof of the proposition. Now we state the main result of this section. if J is additionally a normal * -homomorphism) Indeed, recall that by Lemma 2.8, J : M → M can be written as a direct sum J = J 1 + J 2 , where J 1 is a * -homomorphism, J 2 is a * -antihomomorphism and the images of J 1 and J 2 commute. Without loss of generality, assume C = 1 and note that for x ∈ S(M), we have ( 4)

Theorem 3.3. Let 1 ≤ p < ∞. Let T : L p (M, τ ) → L p (M,
|T (x)| p = b p |J(x)| p = b p (J 1 (|x| p ) + J 2 (|x * | p )). Note also that τ (b p J 1 (|x| p )) = τ (b p J(|x| p )e) ≤ τ (b p J(|x| p
)) and similar inequality holds for J 2 . Therefore, by (iv) we have

τ (|T (x)| p ) = τ (b p J 1 (|x| p ) + τ (b p J 2 (|x * | p )) ≤ 2 x p p .
Thus T can be extended to a bounded operator on L p (M). On the other hand, take two τ -finite projections e, f with ef = 0. Then we have

(T e) * T f = J(e)bw * wbJ(f ) = J(e)bJ(1)bJ(f ) = b 2 J(ef ) = 0.
In above, we have used the fact that for a Jordan * -homomorphism, J(xy) = J(x)J(y) whenever x and y commutes. So T is also Lamperti. Now we give the proof of Theorem 3.3. Our strategy is adapted from [START_REF] Yeadon | Isometries of noncommutative L p -spaces[END_REF]. However, a few key steps such as the verification of normality of J turn out to be different in our new setting, so we would like to include a complete proof for this result.

Proof. Without loss of generality, assume that T is a Lamperti contraction. We first construct the related objects for self-adjoint elements in S(M). To begin with, for any projection e ∈ S(M), we choose a partial isometry w e ∈ M, a positive operator b e ∈ L 0 (M) and a projection J(e) ∈ M by using the polar decomposition: 

J(e + f ) = J(e) + J(f ), J(e)J(f ) = J(f )J(e) = 0.
Moreover if we denote by x -1 ∈ L 0 (M) the element given by the functional calculus associated with

t → t -1 χ {t>0} , then b -1 e+f = b -1 e + b -1 f . So we may write T (e + f )b -1 e+f = w e b e b -1 e+f + w f b f b -1 e+f = w e s(b e ) + w f s(b f ) = w e + w f , which means that (7) w e+f = w e + w f . More generally, if a self-adjoint element x ∈ S(M) is of the form (8) x = n i=1 λ i e i , λ i ∈ R,
where e i 's are some τ -finite projections in M with e i e j = 0 for i = j, then we define

J(x) = n i=1 λ i J(e i ).
From [START_REF] Arhancet | Dilations of Markovian semigroups of Fourier multipliers on locally compact groups[END_REF] we see that for any two commuting self-adjoint operators x, y of the above form, we have (a

) J(x 2 ) = J(x) 2 ; (b) J(x) ∞ ≤ x ∞ ; (c) J(λx + y) = λJ(x) + J(y), λ ∈ R.
Moreover, for a self-adjoint element x = x * ∈ S(M), we take a sequence of step functions f n with f n (0) = 0 converging uniformly to the identity function 1(λ) = λ on the spectrum of x, then the element f n (x) is of the form (8) and we define

J(x) = lim n J(f n (x)) in • ∞ norm in M.
This limit exists and is independent of the choice of the sequence because of the above property (b) of the map J. Note that now the assertions (a), (b) and (c) also hold for all self-adjoint elements in S(M).

We will check that J is real linear and hence we may extend J as a complex linear map to the whole space S(M). Let f ≤ e be two projections in S(M). Note that T (f )J(f ) = T (f ) and T (e-f )J(f ) = 0. Therefore T (f ) = T (e)J(f ). Thus by the linearity of T and the assertion (c), we have T (x) = T (e)J(x) for all self-adjoint elements x ∈ S(M) of the form (8) with s(x) ≤ e. Using the approximation by step functions f n as before, we obtain

T (e)(J(x) -J(f n (x))) p ≤ T (e) p J(x) -J(f n (x)) ∞
and hence [START_REF] Arhancet | Dilation of Ritt operators on L p -spaces[END_REF] w e b e J(x) = T (e)J(x) = lim n→∞

T (e)J(f n (x)) = lim n→∞ T (f n (x)) = T (x),
where the limit is taken in • p norm and we have used the fact that x = lim n→∞ f n (x) in • p norm for x ∈ S(M). Thus for any two self-adjoint operators x, y ∈ S(M) with e = s(x) ∨ s(y), we have

T (e)(J(x + y) -J(x) -J(y)) = T (x + y) -T (x) -T (y) = 0.
Note that J(x + y) -J(x) -J(y) has the range projection contained in the support projection J(e) of T (e), which yields

J(x + y) = J(x) + J(y),
as desired. By the real linearity, we may extend J as a continuous complex linear map (in

• ∞ norm) on S(M) as J(x + iy) = J(x) + iJ(y), x, y ∈ S(M) self-adjoint.
Note that in this setting we also have

(10) J(x * ) = J(x) * , J(x 2 ) = J(x) 2 , x ∈ S(M).
Now we check the commutativity of b e and J(x) for x ∈ S(M) with s(x) ≤ e. For τ -finite projections e, f ∈ M with f ≤ e, by definition we see that b e-f J(f ) = 0 and b f J(f ) = b f . Together with [START_REF] Arhancet | Dilations of semigroups on von Neumann algebras and noncommutative L p -spaces[END_REF] we get b e J(f ) = b f = J(f )b e . As a consequence b e commutes with J(x) for all x of the form [START_REF] Arhancet | Projections, multipliers and decomposable maps on noncommutative L p -spaces[END_REF]. By an approximation argument as before, we may find a sequence of elements (x n ) of the form (8) so that [START_REF] Banach | Théorie des opérations linéaires[END_REF] b

e J(x) = lim n→∞ b e J(x n ) = lim n→∞ J(x n )b e = J(x)b e ,
where the limit has been taken in • p norm. Therefore, we obtain the desired commutativity. Moreover, we see that [START_REF] Bekjan | Noncommutative maximal ergodic theorems for positive contractions[END_REF] τ (b p e J(x)) ≤ τ (x), whenever s(x) ≤ e, x ∈ M + and the equality holds if T is an isometry. Indeed, by [START_REF] Arhancet | Dilation of Ritt operators on L p -spaces[END_REF] and the commutativity between b e and J(x), we see that τ

(|T (x)| p ) = τ (b p e J(x) p ) = τ (b p e J(x p )). However τ (|T (x)| p ) ≤ τ (x p ) since T is a contraction. Thus we obtain τ (b p e J(x p )) ≤ τ (x p
). Note that x is arbitrarily chosen, so the inequality ( 12) is proved.

The rest of the proof splits into the following two steps:

(1) Case where τ is finite: In this case we have S(M) = M and we take w = w 1 and b = b 1 . Together with the construction and the properties ( 9)-( 12), the proof is complete except the normality of J, which we prove now. Take a bounded increasing net of positive operators (x α ) strongly converging to x, and let a be the supreme of (J(x α )). By [START_REF] Bekjan | Noncommutative maximal ergodic theorems for positive contractions[END_REF], we have τ (b p J(x -x α )) ≤ τ (x -x α ) → 0. Therefore, we obtain [START_REF] Berkson | Mean-boundedness and Littlewood-Paley for separation-preserving operators[END_REF] lim

α τ (b p J(x α )) = τ (b p J(x)).
Also, note that b p ∈ L 1 (M) + since by [START_REF] Bekjan | Noncommutative maximal ergodic theorems for positive contractions[END_REF] we have ( 14)

τ (b p ) = τ (b p s(b)) = τ (b p J(1)) ≤ τ (1) < ∞. Thus x → τ (b p x) is a normal functional.
Therefore by the definition of a, we also have

lim α τ (b p J(x α )) = τ (b p a).
Together with [START_REF] Berkson | Mean-boundedness and Littlewood-Paley for separation-preserving operators[END_REF] this implies that τ (b p a) = τ (b p J(x)). Note that J is positive according to [START_REF] Asmar | Transference of strong type maximal inequalities by separationpreserving representations[END_REF], so J(x α ) ≤ J(x) and consequently a ≤ J(x). In other words, we obtain

b p 2 (J(x) -a)b p 2 ≥ 0 but τ (b p 2 (J(x) -a)b p 2 ) = 0, which yields b p 2 (J(x) -a)b p 2 =
0 by the faithfulness of τ . Recall that J(1) = s(b), so we have J(1)(J(x) -a)J(1) = 0, that is, J(x) = J(1)aJ [START_REF] Akcoglu | A pointwise ergodic theorem in Lp-spaces[END_REF]. However, we observe that

J(1)aJ(1) = lim α J(1)J(x α )J(1) = lim α J(x α ) = a.
Thus, we obtain a = J(x) which implies that J is normal.

(2) Case where τ is not finite: Denote by F the net of all τ -finite projections in M equipped with the usual upward partial order. Then this net converges to 1 in the strong operator topology. For any x ∈ M, if e, f ∈ F with e ≤ f , then

J(exe) = J(e)J(f xf )J(e)
since we have already proved in Case (1) that the restriction of J on the reduced von Neumann subalgebra f Mf is a Jordan * -homomorphism. Note that by the construction of J, (J(e)) e∈F is also an increasing net of projections, so it converges to J(1) := sup e J(e) in the strong operator topology. Thus the above relation shows that the net (J(exe)) e∈F converges in the strong operator topology. We denote this limit by

J(x) = lim e∈F J(exe).
Note that this also yields [START_REF] Brown | C * -algebras and finite-dimensional approximations[END_REF] J(exe) = J(e)J(x)J(e), e ∈ F, x ∈ M.

We obtain a linear map J : M → M. We show that it is a normal Jordan * -homomorphism.

It is normal since for any bounded monotone net (x i ) i∈I ⊆ M + and for any e ∈ F,

J(e)(sup i J(x i ))J(e) = sup i J(ex i e) = J(e(sup i x i )e) = J(e)J(sup i x i )J(e),
where we have used [START_REF] Brown | C * -algebras and finite-dimensional approximations[END_REF] and the fact that J is normal on the finite von Neumann subalgebra eMe proved in Case [START_REF] Akcoglu | A pointwise ergodic theorem in Lp-spaces[END_REF]. Hence sup

i J(x i ) = J(sup i x i ). Similarly J(x) * = J(x * ) for all x ∈ M.
On the other hand, we note that for a self-adjoint element x ∈ M, the net (xex) e∈F is increasing and bounded. Hence by the normality of J and the relations ( 15) and ( 10), we obtain that for any f ∈ F,

J(f )J(x 2 )J(f ) = sup e∈F J(f )J(xex)J(f ) = lim e∈F J(f e)J(xex)J(ef ) = lim e∈F J(f )J(exexe)J(f ) = lim e∈F J(f )J(exe) 2 J(f ) = J(f )J(x) 2 J(f ),
where the limit is taken with respect to the strong operator topology. Hence J(x 2 ) = J(x) 2 . Also, note that by [START_REF] Arhancet | Isometric dilations and H ∞ calculus for bounded analytic semigroups and Ritt operators[END_REF] and the definition of w e and J, we have w e = w f J(e) for e ≤ f in F, so we may define similarly w = lim e∈F w(e)

where the limit is taken with respect to the strong operator topology. Thus we also have w e = wJ(e) and w * w = J [START_REF] Akcoglu | A pointwise ergodic theorem in Lp-spaces[END_REF].

For the definition of b, we consider the spectral resolution b e = ∞ 0 λdP e (λ). Clearly, J(e) = 1 -P e (0). As mentioned earlier, b f = b e J(f ) for two τ -finite projections f ≤ e. Therefore, for λ ≥ 0 and τ -finite projections f ≤ e, we have 1 -P f (λ) = (1 -P e (λ))J(f ). As before, we can define P (λ) to be the limit of P e (λ) in the strong operator topology. We set

b = ∞ 0 λdP (λ),
which is obviously a positive self-adjoint operator affiliated with M. Therefore, we can deduce that 1 -P e (λ) = (1 -P (λ))J(e) and b e = bJ(e) as well.

As a result we have constructed a partial isometry w, a positive self-adjoint operator b and a normal Jordan * -homomorphism J. Let us check that they satisfy the properties (i)-(iv) stated in the theorem. The assertion (i) follows simply from an approximation argument and the fact

s(b) = 1 -P (0) = 1 -lim e∈F P e (0) = lim e∈F s(b e ) = lim e∈F J(e) = J(1).
The assertion (ii) follows again by an approximation argument and from the fact that P (λ) commutes with J(e) for all λ and e ∈ F. To see the assertion (iii), it suffices to recall w e = wJ(e), b e = bJ(e) and the relation ( 9) for e = s(x). For the assertion (iv), note that the weight x → τ (b p J(x)) is well-defined on M + and is normal since τ extends to M + with the property τ (sup i x i ) = sup i τ (x i ) for all increasing net (x i ) in M + (see e.g. [73, Chap.IX, Corollary 4.9]). Now let us take an increasing sequence of spectral projections of x, (e n ) n∈N ⊆ F so that e n converges to s(x) strongly. Then we have for all n,

(16) τ (b p J(x)J(e n )) = τ (b p J(e n )J(x)J(e n )) = τ (b p en J(e n xe n )) ≤ τ (e n xe n ).
Letting n tend to infinity, we have τ (b p J(x)) ≤ τ (x), where the equality holds if additionally T is isometric. So (iv) is proved.

If in addition T is positive, then for any projection e ∈ S(M), by definition we have b e = |T e| = T e and w e is the orthogonal projection onto ran (T e). Hence w = lim e w e is also an orthogonal projection and therefore w = w * w = J(1) = s(b).

The uniqueness of w, b and J is proved in the same way as in [START_REF] Yeadon | Isometries of noncommutative L p -spaces[END_REF]. We omit the details. This completes the proof of the theorem. Remark 3.5. We may also observe that a similar characterization of Lamperti operators

T : L p (M, τ M ) → L p (N , τ N ) between different L p -spaces (1 ≤ p < ∞)
can be obtained easily from the above proof.

The following theorem is an adaption of the argument presented in [START_REF] Junge | A classification for 2-isometries of noncommutative Lp-spaces[END_REF] in the case of complete isometries. A Lamperti operator T :

L p (M) → L p (M) is said to be 2-Lamperti or 2-support separating if the linear map I S 2 p ⊗ T : L p (M 2 ⊗M) → L p (M 2 ⊗M
) also extends to a Lamperti operator; it is said to be completely Lamperti (or completely support separating) if for all n ∈ N, the linear map

I S n p ⊗ T : L p (M n ⊗M, T r n ⊗ τ ) → L p (M n ⊗M, T r n ⊗ τ ) extends to a Lamperti operator. Theorem 3.6. Let 1 ≤ p < ∞. Let T : L p (M, τ ) → L p (M,
τ ) be a Lamperti operator. Then the following assertions are equivalent:

(1) T is completely Lamperti;

(2) T is 2-Lamperti;

(3) The map J in Theorem 3.3 is actually a * -homomorphism.

In this case we have T cb, Lp(M)→Lp(M) = T Lp(M)→Lp(M) .

Proof. Note that (i)⇒(ii) is trivial.

We now prove (ii)⇒(iii). Let us denote By the definition of J as in the proof of Theorem 3.3 and by uniqueness, we must have

T 2 = I S 2 p ⊗ T : L p (M 2 ⊗M) → L p (M 2 
J( e 1 0 0 e 2 ) = J(e 1 ) 0 0 J(e 2 ) .
From this we can easily conclude that J( x 0 0 y ) = J(x) 0 0 J(y) for all x, y ∈ S(M).

Note that T 2 is an M 2 -bimodule morphism. Therefore, we have

T 2 0 x y 0 = T 2 0 1 1 0 y 0 0 x = 0 1 1 0 T (y) 0 0 T (x) .
In other words,

w 0 0 w b 0 0 b J 0 x y 0 = w 0 0 w b 0 0 b 0 J(x) J(y) 0 .
Together with the relation w * w = s(b) = J(1), we obtain J(

0 x y 0 ) = 0 J(x) J(y) 0 .
As a result,

J(xy) 0 0 J(xy) = J xy 0 0 yx = J 0 x y 0 2 = J(x)J(y) 0 0 J(y)J(x) .
Together with the normality of J, we deduce that J is a * -homomorphism. Now we prove (iii)⇒(i). Note that if J : M → M is a normal * -homomorphism, then so is J n = I Mn ⊗ J : M n ⊗M → M n ⊗M for all n ≥ 1, and in particular J n is a Jordan * -homomorphism. In this case I S n p ⊗ T : L p (M n ⊗M) → L p (M n ⊗M) can be written as 

I S n p ⊗ T = w n b n J n ,
(T 1 T 2 x) * T 1 T 2 y = T 1 T 2 x(T 1 T 2 y) * = 0.
Therefore, T 1 T 2 is again Lamperti. This completes the proof. Remark 3.9. We will keep in mind throughout the paper the following particular cases of Lamperti and completely Lamperti operators.

(1) For 1 ≤ p = 2 < ∞, any isometry (resp. complete isometry) T :

L p (M) → L p (M)
is Lamperti (resp. completely Lamperti). Moreover, if T is positive isometry (resp. positive complete isometry) on L 2 (M), then T is Lamperti (resp. completely Lamperti). Indeed, for p = 2, the claim immediately follows from Remark 3.4 and Theorem 2.9.

For p = 2 and T a positive isometry, we take two τ -finite projections e, f with ef = 0. Note that as T is an isometry,

T e + T f 2 2 = e + f 2 2 , T e + iT f 2 2 = e + if 2 2 .
Therefore, we obtain τ (T eT f ) = τ (ef ) = 0. Thus, (T e)

1 2 T f (T e) 1 2 = 0.
In other words we have, (2) Let 1 ≤ p < ∞. Let (Ω, Σ, µ) be a σ-finite measure space. For any nonsigular automorphism Φ of (Ω, Σ, µ), it is well-known that Φ extends to a map on the set of all finite-valued measurable functions such that Φ(χ E ) = χ Φ(E) for E ∈ Σ (see [START_REF] Kan | Ergodic properties of operator averages[END_REF]). Any Lamperti operator T :

((T f ) 1 2 (T e) 1 2 ) * ((T f ) 1 2 (T e) 1 2 ) = 0, Thus we obtain (T f ) 1 2 (T e)
L p (Ω, Σ, µ) → L p (Ω, Σ, µ) is of the form T (f )(x) = h(x)(Φf )(x)
for some measurable function h and for some Φ as described above (see [START_REF] Kan | Ergodic properties of Lamperti operators[END_REF]). Moreover, it follows from Remark 3.4 and Theorem 3.6 that T is indeed completely Lamperti.

Remark 3.10. By the proof of Theorem 3.3 and Theorem 3.6, we see that Theorem 2.9 is also true for Lamperti isometries for p = 2. In particular, it also holds for positive isometries on L 2 (M) according to Remark 3.9 (i).

Dilation theorem for the convex hull of Lamperti contractions

In this section, we prove an N -dilation theorem for the convex hull of Lamperti contractions (tautologically, contractions that separate supports) for all N ≥ 1. For notational simplicity, in this and next sections we will denote by SS(L p (M)) the class of all support separating contractions on L p (M), and by CSS(L p (M)) the class of all completely support separating contractions on L p (M). Also, let SS + (L p (M)) (resp. CSS + (L p (M))) be the subclass of positive and support separating (resp. positive completely support separating) contractions. Moreover, given a family S of operators on L p (M), we denote by conv(S) the usual convex hull of S consisting of all operators of the form

n i=1 λ i T i , T i ∈ S, n i=1 λ i = 1, λ i ∈ R + , n ∈ N.
And we denote by conv sot (S) the closure of conv(S) with respect to the strong operator topology.

Before the proof, we first give the following useful lemma. (i) Let e, f be the two projections in the center of the von Neumann algebra N generated by J(M) with e + f = 1 N given by Lemma 2.8, such that J(•)e is a * -homomorphism and J(•)f is a * -anti-homomorphism. Then the weights defined by

τ (x) = τ (b p J(x)), τ 1 (x) = τ (b p J(x)e), τ 2 (x) = τ (b p J(x)f ), x ∈ M +
are normal and tracial.

(ii) We have a positive element 0 ≤ ρ ≤ 1 with ρ ∈ Z(M) and

T (x) p p = τ (ρ|x| p ) = τ (|x| p ) for all x ∈ S(M).
Proof. Notice that all the weights τ , τ 1 , τ 2 are normal, as explained previously in the proof of Theorem 3.3. For x ∈ M, by the traciality of τ and the commutativity between J(M) and spectral projections of b, we have

τ 1 (x * x) = τ (b p J(x * )J(x)e) = τ (b p J(x)J(x * )e) = τ (b p J(xx * )e) = τ 1 (xx * ).
So τ 1 is also tracial. Similarly we have the traciality for τ 2 and hence for τ = τ 1 + τ 2 . In particular, τ 2 (|x * | p ) = τ 2 (|x| p ). Together with (4) we see that Proof. Let T : L p (M) → L p (M) be a Lamperti contraction and let ρ be given as in the previous lemma. Then we have ( 17)

T x p p = τ 1 (|x| p ) + τ 2 (|x * | p ) = τ 1 (|x| p ) + τ 2 (|x| p ) = τ (|x| p ).
T (x) p p -x p p = τ (|x| p ) -τ (|x| p ) = τ ((ρ -1)|x| p ) for all x ∈ S(M). Define S T : L p (M) → L p (M), S T (x) = (1 -ρ) 1 p x, x ∈ S(M).
Thus we see from ( 17) that [START_REF] Coifman | Transference methods in analysis[END_REF] T (x) p p + S T (x) p p = x p p for all x ∈ L p (M). Consider the linear map

U T : p (L p (M)) → p (L p (M))
defined as the following U T (x 0 , x 1 , . . . ) = (T (x 0 ), S T (x 0 ), x 1 , x 2 , . . . ).

By (18) U T becomes an isometry. We also define the maps i : L p (M) → p (L p (M)), i(x) = (x, 0, . . . ) and j : p (L p (M)) → L p (M), j(x 0 , x 1 . . . ) = x 0 .

Clearly, i is a complete isometry and j is a complete contraction. Note that if T = w T b T J T as in Theorem 3.3 then

U T = w U T b U T J U T ,
where

w U T : = (w T , s((1 -ρ) 1 p ), 1, . . . ), is a partial isometry, b U T : = (b, (1 -ρ) 1 p , 1, . . .
) is a self-adjoint positive operator affiliated with the von Neumann algebra ⊕ ∞ n=0 M and We remark that these dilations also allow to improve Theorem 3.6 for positive Lamperti operators. Some part of the results have been pointed out to us by Cédric Arhancet. Proposition 4.5. Let 1 ≤ p < ∞. Let T : L p (M) → L p (M) be a positive Lamperti operator. Then the following assertions are equivalent:

J U T (x 0 , x 1 , x 2 , . . . ) := (J(x 0 ), x 0 s((1 -ρ) 1 p ), x 1 , . . . ), x i ∈ M, i ≥ 0 is a normal Jordan * -homomorphism on ⊕ ∞ n=0 M.
(1) T is completely Lamperti;

(2) T is completely positive;

(3) T is 2-positive;

(4) The map J in Theorem 3.3 is actually a * -homomorphism.

Proof. By Theorem 3.6, it suffices to prove the equivalence between (ii), (iii) and (iv). If (iv) holds, then J U T in the proof of Proposition 4.2 is also a * -homomorphism. Thus according to Theorem 2.10, U T is completely positive, and hence so is T = jU T i. Conversely, if T is 2-positive, then U T is is also 2-positive. Therefore by Theorem 2.10, J U T is multiplicative. In particular so is J.

In the following we will use some tools from [START_REF] Fackler | A toolkit for constructing dilations on Banach spaces[END_REF] to enlarge our class of dilatable operators.

Theorem 4.6. Let 1 < p < ∞. Suppose that S ⊆ B(L p (M)) has a simultaneous (resp. complete simultaneous) dilation. Then each operator T ∈ conv(S) has an N -dilation (resp. complete N -dilation) for all N ∈ N.

Proof. We will use the construction given in [23, Proof of Theorem 4.1]. We take a tuple of scalars λ := (λ 1 , . . . , λ n ) with n i=1 λ i = 1 and λ i ≥ 0 for all 1 ≤ i ≤ n. Also take T = n i=1 λ i T i where T i ∈ S. As in [START_REF] Fackler | A toolkit for constructing dilations on Banach spaces[END_REF], without loss of generality, we may assume that each T i is an isometry as S admits a simultaneous dilation for 1 < p < ∞. Let us define the set of tuples

I = {i := (i 1 , . . . , i N ) : ∀ 1 ≤ k ≤ N, i k ∈ {1, . . . , n}}. Denote λ i = N k=1 λ i k , i ∈ I. Note that i∈I λ i = 1. Define Y = #I p ( N p (L p (M)))
. Endowed with the p -direct sum norm, Y becomes a noncommutative L p -space equipped with a normal faithful semifinite trace. Define

Q : Y → L p (M) as Q((x k,i ) k∈{1,...,N },i∈I ) = i∈I ( λ i N ) 1 p N k=1
x k,i ,

where 1 p + 1 p = 1. Define J : L p (M) → Y as Jx = (J i x) i ,
where

J i x = ( λ i N ) 1 p (x, . . . , x).
Obviously J is completely positive; it is a complete isometry since i λ i = 1. As in [START_REF] Fackler | A toolkit for constructing dilations on Banach spaces[END_REF], one can use Hölder's inequality to check that Q is completely contractive. Moreover Q is completely positive.

For each i ∈ I, define the linear map

U i : N p (L p (M)) → N p (L p (M)) as U i ((x k ) 1≤k≤N ) = (T i k x σ(k) ) 1≤k≤N ,
where σ : {1, . . . , N } → {1, . . . , N } is the N -cycle. Note that the map (x k ) → (x σ(k) ) is completely isometric and completely positive, and that T i k is also isometric. Let us define the linear map

U : Y → Y, U = ⊕ i∈I U i .
Then U is isometric, and it is moreover completely isometric if so are T i k 's. The identity

T n = QU n J
for n ∈ {0, . . . , N } has been proved in [START_REF] Fackler | A toolkit for constructing dilations on Banach spaces[END_REF]Proof of Theorem 4.1]. This completes the proof of the theorem.

Together with Proposition 4.2, we immediately obtain the following result in our particular setting.

Corollary 4.7. Let 1 < p < ∞. Each operator T ∈ conv(SS(L p (M))) has an N -dilation for all N ∈ N, and each T ∈ conv(CSS(L p (M))) has a complete N -dilation for all N ∈ N. Moreover, if this operator T is positive, then all the maps Q, U and J as in Definition 2.6 can be taken to be positive. Remark 4.8. We may also consider dilations instead of N -dilations in Theorem 4.6; moreover we may consider dilations for the strong operator closures conv sot (SS(L p (M))) and conv sot (CSS(L p (M))). To this end we need to allow the appearance of Haagerup's noncommutative L p -spaces instead of the usual tracial L p -spaces L p (N , τ N ) in Definition 2.5 and 2.6. It is known from [START_REF] Raynaud | On ultrapowers of non commutative Lp spaces[END_REF] that the class of all Haagerup L p -spaces (over arbitrary von Neumann algebras) is stable under ultraproducts, which fulfills [23, Assumption 2.1]. Thus by [START_REF] Fackler | A toolkit for constructing dilations on Banach spaces[END_REF]Theorem 2.9], we can extend Corollary 4.7 to obtain dilations and complete dilations. This is out of the scope of the paper, and we will leave the details to the reader and restrict ourselves in the semifinite cases. The above Corollary 4.7 for complete N -dilations is sufficient for our further purpose. Remark 4.9 (mixed unitary quantum channels). It is indeed natural to consider the above dilation theory for conv(SS(L p (M)) in view of various related works on quantum Birkhoff conjectures. For instance, consider the family Aut(B(H)) of all automorphisms of the von Neumann algebra B(H) for a finite dimensional Hilbert space H. It is well-known that any T ∈ Aut(B(H)) is of the form T x = u * xu for all x ∈ B(H) with a fixed unitary u ∈ B(H), which is in particular a completely positive complete isometry on S p (H) for all 1 < p < ∞, and hence is completely Lamperti. The convex hull of Aut(B(H)) can be naturally included into the set of all unital completely positive trace preserving maps on B(H), and the inclusion is strict if dim H ≥ 3; this is applied in [START_REF] Landau | On Birkhoff's theorem for doubly stochastic completely positive maps of matrix algebras[END_REF] (also see [START_REF] Mendl | Unital quantum channels-convex structure and revivals of Birkhoff's theorem[END_REF]) to obtain a negative solution to the quantum Birkhoff conjecture. The operators in this inclusion of conv(Aut(B(H))) are referred to as mixed unitary quantum channels in the quantum information theory (see e.g. [START_REF] Chen | A note on the extreme points of positive quantum operations[END_REF]). It follows from Corollary 4.7 that every mixed unitary quantum channel, realized as an operator on S p (H), has a complete N -dilation for any N ≥ 1 and 1 < p < ∞. Also, the particular case of unital completely positive Schur multipliers is studied in [START_REF] O'meara | Self-dual maps and symmetric bistochastic matrices[END_REF] and [START_REF] Haagerup | Factorization and dilation problems for completely positive maps on von Neumann algebras[END_REF]. A matrix m ∈ M n defines a Schur multiplier T m ((a i,j ) 1≤i,j≤n ) : = (m ij a ij ) 1≤i,j≤n for all n × n matrices ((a ij ) 1≤i,j≤n ). It is shown in [START_REF] O'meara | Self-dual maps and symmetric bistochastic matrices[END_REF] that T m is a mixed unitary quantum channel iff m belongs to the convex hull of rank one positive definite matrices with diagonal entries equal to 1. Note that if m is such a matrix of rank one, then it is of the form m = (z i zj ) n i,j=1 with |z i | = 1 and consequently T m (x) = uxu * for x ∈ M n with u = n i=1 z i e ii ; in particular T m ∈ Aut(M n ) and it is completely Lamperti and completely isometric on S n p . These observations recover partially some dilation theorems of [START_REF] Arhancet | On Matsaev's conjecture for contractions on noncommutative L p -spaces[END_REF].

In the following we give a quick application of the previous results. Let 1 < p = 2 < ∞. For any complex polynomial P (z) = n k=0 a k z k , define a P = (. . . , 0, a 0 , . . . , a n , 0, . . .

) ∈ 1 (Z)
with a 0 in the 0-th position. Define the linear operator C(a P ) : p (Z) → p (Z) as

C(a P )(b) = a P * b,
for b ∈ p (Z). Also, recall that a von Neumann algebra is said to have QWEP if it is a quotient of a C * -algebra having weak expectation property (see [START_REF] Ozawa | About the QWEP conjecture[END_REF] for details). for all complex polynomials P . Moreover, if T ∈ conv sot (CSS(L p (M))), then we have

P (T ) cb,Lp(M)→Lp(M) ≤ C(a P ) ⊗ I Sp p(Z;Sp)→ p(Z;Sp)
for all complex polynomials P .

Proof. Note that each T ∈ conv(SS(L p (M))) admits an N -dilation for all N ≥ 1. By [START_REF] Brown | C * -algebras and finite-dimensional approximations[END_REF]Lemma 13.3.3], it is easy to see that the von Neumann algebra ⊕ ∞ n=1 M has again the QWEP. Therefore, by [START_REF] Arhancet | On Matsaev's conjecture for contractions on noncommutative L p -spaces[END_REF] we have ( 19)

P (T ) Lp(M)→Lp(M) ≤ C(a P ) ⊗ I Sp p(Z;Sp)→ p(Z;Sp)
for all complex polynomials P . For any T ∈ conv sot (SS(L p (M))) there exists a sequence of operators T j ∈ conv(SS(L p (M))) such that T j → T in strong operator topology. Therefore, for all x ∈ L p (M), we have ( 20)

P (T )x Lp(M) ≤ lim j→∞ P (T j )x -P (T )x Lp(M) + lim sup j→∞ P (T j )x Lp(M) .
The required conclusion follows from [START_REF] Conze | Ergodic theorems for noncommutative dynamical systems[END_REF] and [START_REF] Defant | Maximal theorems of Menchoff-Rademacher type in non-commutative Lq-spaces[END_REF]. The remaining part of the proof for T ∈ conv sot (CSS(L p (M))) is similar.

Ergodic theorems for the convex hull of Lamperti contractions

In this section, we prove the maximal ergodic inequality for operators in the closed convex hull of positive Lamperti contractions, or more precisely in the class conv sot (SS + (L p (M))). Based on the dilation theorem established in the previous section, we first need a maximal ergodic inequality for positive isometries. Recall that throughout the paper C p always denotes the best constant of Junge-Xu's maximal ergodic inequality [42, Theorem 0.1], which is a fixed distinguished constant depending only on p.

Theorem 5.1. Let 1 < p < ∞. Let T : L p (M) → L p (M) be a positive isometry. Then sup n≥0 + 1 n + 1 n k=0 T k x p ≤ C p x p , ∀ x ∈ L p (M).
We will first consider the following auxiliary facts. Then T extends to a contraction on L p (M; ∞ ).

Proof. Let (x n ) n≥1 ∈ L p (M; ∞ ). Given ε > 0, let us choose a factorization x n = a 1 y n a 2 such that sup n y n ∞ ≤ 1 and a 1 2 2p = a 2 2 2p ≤ (x n ) n≥1 Lp(M; ∞) + ε.
By density and without loss of generality, we assume that the elements x n , y n , a 1 and a 2 always belong to S(M).

Let b, J as be given in Theorem 3.3 and let the projections e, f and the traces τ , τ 1 , τ 2 be as in Lemma 4.1. Note that we have

T (x n ) = b(J(a 1 y n a 2 )e + J(a 1 y n a 2 )f ) = b(J(a 1 )J(y n )J(a 2 )e + J(a 2 )J(y n )J(a 1 )f ) = b(J(a 1 )e + J(a 2 )f )J(y n )(J(a 2 )e + J(a 1 )f ).
We write therefore T (x n ) = ã1 ỹn ã2 with ã1 = b 1 2 (J(a 1 )e + J(a 2 )f ), ỹn = J(y n ) and ã2 = b 1 2 (J(a 2 )e + J(a 1 )f ). Note that

ã1 2p 2p = τ (J(a * 1 )e + J(a * 2 )f )b(J(a 1 )e + J(a 2 )f ) p = τ b(J(|a 1 | 2 )e + J(|a * 2 | 2 )f ) p = τ b p J(|a 1 | 2p )e + J(|a * 2 | 2p )f = τ 1 (|a 1 | 2p ) + τ 2 (|a * 2 | 2p ),
and similarly, ã2

2p 2p = τ 1 (|a 2 | 2p ) + τ 2 (|a * 1 | 2p ). Thus we have ã1 2p 2p ã2 2p 2p = τ 1 (|a 1 | 2p ) + τ 2 (|a * 2 | 2p ) τ 1 (|a 2 | 2p ) + τ 2 (|a * 1 | 2p ) = τ 1 (|a 1 | 2p ) + τ 2 (|a 2 | 2p ) τ 1 (|a 2 | 2p ) + τ 2 (|a 1 | 2p ) ,
where the last equality follows from the traciality and normality of τ 1 and τ 2 . Recall that we have taken a 1 2p = a 2 2p . Together with Lemma 4.1 we have further 

ã1 2p 2p ã2 2p 2p = τ 1 (|a 1 | 2p ) + T (|a 2 | 2 ) p p -τ 1 (|a 2 | 2p ) τ 1 (|a 2 | 2p ) + T (|a 1 | 2 ) p p -τ 1 (|a 1 | 2p ) ≤ τ 1 (|a 1 | 2p ) + a 2 2p 2p -τ 1 (|a 2 | 2p ) a 1 2p 2p -τ 1 (|a 1 | 2p ) + τ 1 (|a 2 | 2p ) = a 1 2p 2p + ( τ 1 (|a 1 | 2p ) -τ 1 (|a 2 | 2p )) a 1 2p 2p -( τ 1 (|a 1 | 2p ) -τ 1 (|a 2 | 2p )) = a 1 4p 2p -( τ 1 (|a 1 | 2p ) -τ 1 (|a 2 | 2p )) 2 ≤ a 1 4p 2p ≤ ( (x n ) n≥1 Lp(M; ∞) + ε) 2p . In other words ã1 2p ã2 2p ≤ (x n ) n≥1 Lp(M; ∞) + ε. Clearly sup n≥1 J(y n ) ∞ ≤ 1. This proves that (T (x n )) n≥1 Lp(M; ∞) ≤ (x n ) n≥1 Lp(M; ∞) + ε for arbitrary ε > 0. In particular T extends to a contraction on L p (M; ∞ ). Proposition 5.3. Let 1 < p < ∞. Let T : L p (M, τ ) → L p (M,
J = J 1 + J 2 such that J 1 : M → N 1 is a normal * -homomorphism and J 2 : M → N 2 is a normal * -anti-homomorphism. Let σ : N 2 → N op
2 be the usual opposite map and define Σ :

N → N 1 ⊕ N op 2 , Σ = Id N 1 ⊕σ. Then Σ • J is a normal * -homomorphism and in particular its image Σ(J(M)) is a von Neumann subalgebra of N 1 ⊕ N op 2 .
We consider the faithful weight

ϕ : Σ(J(M)) + → [0, ∞], x → τ (b p Σ -1 x).
We claim that ϕ is a normal semifinite trace on Σ(J(M)). Indeed, for x ∈ M, we have

ϕ((ΣJx * )(ΣJx)) = ϕ((J 1 x * )(J 1 x)) + ϕ((σJ 2 x * )(σJ 2 x)) = ϕ(J 1 (x * x)) + ϕ(σ((J 2 x)(J 2 x * ))) = ϕ(J 1 (x * x)) + ϕ(σ(J 2 (x * x))) = τ (b p J 1 (x * x)) + τ (b p J 2 (x * x)).
Thus by Lemma 4.1 we see that ϕ is tracial. We consider the associated noncommutative L p -space L p (Σ(J(M)), ϕ). Note that Σ • J extends to a positive surjective isometry

J : L p (M, τ ) → L p (Σ(J(M)), ϕ), x → Σ(Jx), since for x ∈ S(M), Jx p Lp(Σ(J(M)),ϕ) = ϕ(|Σ(Jx)| p ) = τ (b p Σ -1 (|Σ(Jx)| p )) = τ (b p |Jx| p ) = τ (|bJx| p ) = T x p Lp(M,τ ) = x p Lp(M,τ ) .
As a result we see that J-1 is well-defined, positive and isometric on L p (Σ(J(M)), ϕ). Therefore, for any positive sequence (x n ) n≥1 ⊂ L p (M) and any a ∈ L p (Σ(J(M)), ϕ) + , we see that Jx n ≤ a if and only if

x n ≤ J-1 a. Recall that (x n ) n≥1 Lp(M,τ ; ∞) = inf{ a p : x n ≤ a, a ∈ L p (M, τ ) + }.
We see that J extends to an isometry from L p (M, τ ; ∞ ) onto L p (Σ(J(M)), ϕ; ∞ ).

It remains to prove that the embedding

L p (Σ(J(M)), ϕ; ∞ ) → L p (M, τ ; ∞ ), (x n ) n≥1 → (bΣ -1 x n ) n≥1 is isometric. Let 1 < p < ∞ with 1 p + 1 p = 1. For y ∈ Σ(J(M)) + , we have b p/p Σ -1 y p L p (M,τ ) = τ (b p Σ -1 (y p )) = ϕ(y p ) = y p L p (Σ(J(M),ϕ) . So the map ι : L p (Σ(J(M)), ϕ; 1 ) → L p (M, τ ; 1 ), (y n ) n≥1 → (b p/p Σ -1 y n ) n≥1 is isometric. Note that for (x n ) n≥1 ∈ L p (Σ(J(M)), ϕ; ∞ ), (y n ) n≥1 ∈ L p (Σ(J(M)), ϕ; 1 ), ι * ((bΣ -1 x n ) n≥1 ), (y n ) n≥1 = (bΣ -1 x n ) n≥1 , ι((y n ) n≥1 ) = n≥1 τ (b(Σ -1 x n )b p/p (Σ -1 y n )) = n≥1 τ (b p (Σ -1 x n )(Σ -1 y n ))
We write x n = (x

(1) n , x (2) n ) ∈ L p (N 1 ) ⊕ L p (N op
2 ) and y n = (y

n , y

(2)

n ) ∈ L p (N 1 ) ⊕ L p (N op 2 ).
Then by the traciality of τ and the property of b,

τ (b p (Σ -1 x n )(Σ -1 y n )) = τ (b p x (1) n y (1) n ) + τ (b p (σ -1 x (2) n )(σ -1 y (2) n )) = τ (b p x (1) n y (1) n ) + τ (b p (σ -1 y (2) n )(σ -1 x (2) n )) = τ (b p x (1) n y (1) n ) + τ (b p σ -1 (x (2) n y (2) n )) = τ (b p (Σ -1 x n y n )) = ϕ(x n y n ).
Thus combined with the previous equalities we obtain

ι * ((bΣ -1 x n ) n≥1 ), (y n ) n≥1 = n≥1 ϕ(x n y n ) = (x n ) n≥1 , (y n ) n≥1 .
Therefore, we have ι * ((bΣ -1 x n ) n≥1 ) = (x n ) n≥1 . Recall that T always extends to a contraction on L p (M, τ ; ∞ ) by Lemma 5.2. Hence, we observe that

(x n ) n≥1 Lp(Σ(J(M)),ϕ; ∞) = ι * ((bΣ -1 x n ) n≥1 ) Lp(Σ(J(M)),ϕ; ∞) ≤ (bΣ -1 x n ) n≥1 Lp(M,τ ; ∞) = (T J-1 x n ) n≥1 Lp(M,τ ; ∞) ≤ ( J-1 x n ) n≥1 Lp(M,τ ; ∞) = J(( J-1 x n ) n≥1 ) Lp(Σ(J(M)),ϕ; ∞) = (x n ) n≥1 Lp(Σ(J(M)),ϕ; ∞) . Therefore (x n ) n≥1 Lp(Σ(J(M)),ϕ; ∞) = (bΣ -1 x n ) n≥1 Lp(M,τ ; ∞)
, as desired. Now Theorem 5.1 follows from the noncommutative transference principle adapted from [29, Theorem 3.1] and Junge-Xu's maximal ergodic inequality [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF].

Proof of Theorem 5.1. In this proof we fix an arbitrary positive integer N ≥ 1. We write

A n = 1 n+1 n k=0 T k and A n : L p (N; L p (M)) → L p (N; L p (M)), A n f (k) = 1 n n l=1 f (l + k), ∀k ∈ N.
We consider (A n f ) 1≤n≤N ∈ L p ( ∞ (N)⊗M; ∞ ), and for any ε > 0 we take a factorization

A n f = aF n b such that a, b ∈ L 2p ( ∞ (N)⊗M), F n ∈ ∞ (N)⊗M and
a 2p sup 1≤n≤N F n ∞ b 2p ≤ (A n f ) 1≤n≤N Lp( ∞(N)⊗M; ∞) + ε.
Then we have

k≥1 sup + 1≤n≤N A n f (k) p p ≤ k≥1 a(k) p 2p sup 1≤n≤N F n (k) p ∞ b(k) p 2p ≤ a p 2p sup 1≤n≤N F n p ∞ b p 2p ≤ (A n f ) 1≤n≤N Lp( ∞(N) ⊗M; ∞) + ε p .
Since ε is arbitrarily chosen, we obtain

k≥1 sup + 1≤n≤N A n f (k) p p ≤ sup + 1≤n≤N A n f p p . Fix x ∈ L p (M). We define a L p (M)-valued function f m on N as f m (l) = T l x, if l ≤ m + N ; f m (l) = 0 otherwise. (21) 
Then for all 1 ≤ k ≤ m and 1 ≤ n ≤ N ,

T k A n x = 1 n n l=1 T k+l x = 1 n n l=1 f m (l + k) = A n f m (k).
Note that the previous proposition yields that for all 1 ≤ k ≤ m, we have

sup + 1≤n≤N A n x p = sup + 1≤n≤N T k A n x p = sup + 1≤n≤N A n f m (k) p ,
and hence for any m ≥ 1,

sup + 1≤n≤N A n x p p = 1 m m k=1 sup + 1≤n≤N A n f m (k) p p ≤ 1 m sup + 1≤n≤N A n f m p p .
Recall that by [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF],

sup + 1≤n≤N A n f m p ≤ C p f m p
for a constant C p depending only on p since f → f (• + 1) is a Dunford-Schwartz operator on ∞ (N)⊗M. Thus together with [START_REF] Dixmier | Les algèbres d'opérateurs dans l'espace hilbertien (algèbres de von Neumann)[END_REF] we see that

sup + 1≤n≤N A n x p p ≤ C p p m f m p p = C p p m m+N l=1 f m (l) p p = C p p m m+N l=1 T l x p p = C p p (m + N ) m x p p .
Since m is arbitrarily chosen, we get

sup + 1≤n≤N A n x p ≤ C p x p .
This completes the proof of the theorem by using Proposition 2.1.

Based on the maximal ergodic theorem for isometries and the dilation theorem, now we can conclude the proof of Theorem 1.3, that is, the maximal ergodic theorem for contractions in conv sot (SS + (L p (M))).

Proof of Theorem 1.3. We write A n (T ) = 1 n+1 n k=0 T k . Fix an arbitrary N ≥ 1. Take a sequence (T j ) ⊆ conv(SS + (L p (M))) so that T j converges to T strongly. By Corollary 4.7, there exist positive contractions Q N,j , J N,j and positive isometries U N,j such that we have T n j = Q N,j U n N,j J N,j for all 0 ≤ n ≤ N. Therefore, as each U N,j admits a maximal ergodic inequality with constant C p by Theorem 5.1 and Q N,j , j N,j extend to contractions on L p (M; N +1 ∞ ) (see e.g. [START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF]), we have

(A n (T j )x) N n=0 Lp(M; N +1 ∞ ) ≤ (A n (U N,j )x) N n=0 Lp(M; N +1 ∞ ) ≤ C p x p , x ∈ L p (M)
. Then for any x ∈ L p (M), and N ≥ 1 we have

(A n (T )x) N n=0 Lp(M; N +1 ∞ ) ≤ (A n (T j )x) N n=0 Lp(M; N +1 ∞ ) + (A n (T )x -A n (T j )x) N n=0 Lp(M; N +1 ∞ ) ≤ C p x Lp(M) + N n=0 A n (T )x -A n (T j )x Lp(M) .
The result follows by taking j → ∞ and using Proposition 2.1.

As mentioned previously, for M = L ∞ ([0, 1]), our result recovers Ackoglu's ergodic theorem. In the following we remark that we may also obtain the general operator-valued version of Ackoglu's theorem. Corollary 5.4. Let 1 < p < ∞ and (Ω, µ) be a σ-finite measure space. Then for any positive contraction T : L p (Ω) → L p (Ω) and any semifinite von Neumann algebra M, we have

sup n≥0 + 1 n + 1 n k=0 (T ⊗ I Lp(M) ) k x p ≤ C p x p , ∀ x ∈ L p (L ∞ (Ω)⊗M).
Proof. By Ackoglu's dilation theorem [START_REF] Akcoglu | A pointwise ergodic theorem in Lp-spaces[END_REF][START_REF] Akcoglu | Dilations of positive contractions on Lp spaces[END_REF], we may write T k = QU k J for all k ≥ 1, where J :

L p (Ω) → L p (Ω ) and Q : L p (Ω ) → L p (Ω)
are positive contractions, and U : L p (Ω ) → L p (Ω ) is a positive invertible isometry, and Ω is a certain measure space. Also, U is positive Lamperti by Remark 3.9 and Remark 3.10, and consequently completely positive and completely Lamperti isometry by Remark 3.9. Therefore by Theorem 1.3, we have

sup n≥0 + 1 n + 1 n k=0 (U ⊗ I Lp(M) ) k x p ≤ C p x p , ∀ x ∈ L p (L ∞ (Ω )⊗M).
Note that T ⊗ I Lp(M) , J ⊗ I Lp(M) and Q ⊗ I Lp(M) are again positive contractions (see for instance [8, Theorem 2.17 and Proposition 2.21] and [START_REF] Junge | Fubini's theorem for ultraproducts of noncommutative Lp-spaces[END_REF]). Thus the proof is complete.

Ergodic theorem for power bounded doubly Lamperti operators

This section is devoted to the proof of our main result, i.e., Theorem 1.4. Our key ingredient is Theorem 6.6, which is a technical structural theorem for the doubly Lamperti operators (i.e. a Lamperti operator whose adjoint is also Lamperti). The proof is quite lengthy compared to that of the classical one. We start off with a refined study of the structure of Lamperti operators.

To this end we fix some notation. Let 1 ≤ p < ∞ and T : L p (M) → L p (M) be a positive Lamperti contraction with the representation T (x) = bJ(x) for x ∈ S(M) given in Theorem 3.3. Recall that by Lemma 4.1 there exists a positive operator 0

≤ ρ T ≤ 1 with ρ T ∈ Z(M) such that (22) T (x) p p = τ (ρ T x p ) = τ (b p J(x p
)) for all x ∈ M + . Denote by p 0 ∈ Z(M) the projection onto ker ρ T (in other words we set p 0 = 1 -s(ρ T )) and write p 1 = p ⊥ 0 = s(ρ T ). Also take p0 to be projection onto ker(1 -ρ T ) or equivalently p0 = 1 -s(1 -ρ T ). Throughout the rest of this paper, we maintain the notation introduced here. Proof. (i) Note that for any x ∈ S(M) + , by [START_REF] Dunford | Convergence almost everywhere of operator averages[END_REF] we see that T (p 0 xp 0 ) p p = τ (ρ T p 0 (p 0 xp 0 ) p p 0 ) = 0. Therefore, we have T (p 0 xp 0 ) = 0. This shows that L p (p 0 Mp 0 ) ⊆ ker T.

On the other hand, for any x ∈ S(M), we have (1 -ρ T )p 0 |p 0 xp 0 | p = 0. Therefore, we obtain ρ T |p 0 xp 0 | p = |p 0 xp 0 | p . By using [START_REF] Dunford | Convergence almost everywhere of operator averages[END_REF], this shows that T Lp(p 0 Mp 0 ) is an isometry.

(ii) By (i), L p (p 0 Mp 0 ) ⊆ ker T , so it is clear that (a) implies (b).

Recall that τ (b p J(x)) = τ (ρ T x) for x ∈ M + by [START_REF] Dunford | Convergence almost everywhere of operator averages[END_REF]. If J(x) = 0 for some nonzero x ∈ M, then J(|x|) = 0 and hence τ (ρ T |x|) = 0. By the faithfulness of τ we obtain ρ To see that (c) implies (a), we suppose that T (y) = 0 for some y ∈ L p (M). By the decomposition T (y) = bJ(y), we see that T (y * ) = T (y) * = 0. Thus T (Re y) = T (Im y) = 0, where Re y and Im y denote the real and imaginary part of y respectively. By Lemma 3.2 we see that T (| Re y|) = T (| Im y|) = 0. Write x = | Re y| and take a positive sequence (x n ) n≥1 ⊆ S(M) + as in Lemma 3.1. Since T is positive and x n ≤ x, we have T (x n ) ≤ 0. Thus T (x n ) = 0 for all n ≥ 1. Since s(x n ) ↑ s(x), we have J(s(x n )) ↑ J(s(x)) by the normality of J. Note that by the construction of J we have [START_REF] Fackler | A toolkit for constructing dilations on Banach spaces[END_REF] s(T

(x n )) = s(bJ(x n )) = s(b) ∧ s(J(x n )) = J(1) ∧ J(s(x n )) = J(s(x n )) = 0
for all n ≥ 1, where the second equality follows from the fact that spectral projections of b commute with J(x n ) and the third equality follows from the fact that J(e) ≤ J(1) for any projection e ∈ M as J is positive. Thus, we have J(s(x)) = 0. Since J is injective, this means s(x) = 0. Therefore, x = | Re y| = 0. Similarly | Im y| = 0 and hence y = 0. (iii) We first prove the surjectivity of J. Note that by the surjectivity of T , for any τ -finite projection e there exists some x ∈ L p (M) with T (x) = e. As in the proof of (c)⇒(a) in (ii), it suffices to consider the case where T (x) = e for some positive x. Take a sequence (x n ) n≥1 as in Lemma 3.1. We claim that s(T (x n )) ↑ e. Indeed, since T is positive and x n ≤ x, we have T x n ≤ e for all n ≥ 1. Therefore, T x n is bounded for each n ≥ 1. Note that s(T

x n ) ≤ e. Now (e -∨ n≥1 s(T x n ))(e -T x n ) = e -∨ n≥1 s(T x n ).
Therefore, we have

e -∨ n≥1 s(T x n ) p ≤ e -∨ n≥1 s(T x n ) ∞ e -T x n p ≤ 2 e -T x n p → 0, as n → ∞.
This implies that e -∨ n≥1 s(T x n ) = 0. So we obtain our claim. We have J(s(x n )) ↑ J(s(x)) by the normality of J and s(T x n ) = J(s(x n )) for all n ≥ 1 as in [START_REF] Fackler | A toolkit for constructing dilations on Banach spaces[END_REF]. Thus J(s(x)) = e. Since the span of τ -finite projections is w * -dense in M, we see that J(M) is w * -dense in M. Thus J(M) = M.

Clearly, we have that J(1) ≤ 1. Therefore, by surjectivity there exists x ∈ M such that

J(x) = 1 -J(1). Then J(x) = J(1)J(x) = J(1)(1 -J(1)) = 0. Thus s(b) = J(1) = 1.
Now we prove that T is injective on L p (p 1 Mp 1 ). First, note that the operator T Lp(p 1 Mp 1 ) also separates supports and has the representation p 1 xp 1 → J(p 1 )bJ(p 1 )J(p 1 xp 1 ). Therefore, by (ii), it is enough to show that the map p 1 xp 1 → J(p 1 xp 1 ) is injective. Now if J(p 1 xp 1 ) = 0 for some positive x, then by [START_REF] Dunford | Convergence almost everywhere of operator averages[END_REF], τ (ρ T p 1 xp 1 ) = 0. Recall that p 1 = s(ρ T ). By the faithfulness of τ we obtain that (ρ T ) 1/2 x(ρ T ) 1/2 = 0 and p 1 xp 1 = 0. Note that the equality T (x) p p = τ (ρ T |x| p ) can be extended by density to all x ∈ L p (M) by [START_REF] Dunford | Convergence almost everywhere of operator averages[END_REF]. So by a similar argument we see that T Lp(p 1 Mp 1 ) is also injective and ker T = L p (p 0 Mp 0 ).

Since T Lp(p 1 Mp 1 ) is bounded, so is T -1 Lp(p 1 Mp 1 )
by the open mapping theorem. So we may find some constant C > 0 such that for all x ∈ S(M) + ,

T (p 1 xp 1 ) p ≥ C p 1 xp 1 p .
This implies that τ (ρ T p 1 xp 1 ) ≥ Cτ (p 1 xp 1 ) for all x ∈ S(M) + . In particular p 1 ρ T ≥ Cp 1 , as desired.

The following lemma is elementary. We include here for the convenience of the reader. Lemma 6.2. Let p, q ∈ M be two projections with pqp = p. Then we have p ≤ q.

Proof. We write the decomposition q = x + y + y * + z, x = pqp, y = pq(1 -p), z = (1 -p)q(1 -p).

By our assumption x = p. Note that q is a projection. Hence x = pqp = pq 2 p = p(x + y + y * + z) 2 p = x + yy * . Thus y = 0 and q -p = z ≥ 0.

To this end we need the following proposition. For technical simplicity, we will only consider the case of finite von Neumann algebras, where the operator b becomes measurable and is in L 1 . Proposition 6.3. Let 1 < p < ∞ and 1/p+1/p = 1. Assume that M is a finite von Neumann algebra equipped with a normal faithful tracial state τ and that T : L p (M) → L p (M) is a positive Lamperti operator. If the adjoint operator T * : L p (M) → L p (M) is also Lamperti, then J(M) = J(1)MJ [START_REF] Akcoglu | A pointwise ergodic theorem in Lp-spaces[END_REF].

Proof. Assume by contradiction J(M) = J( 1)MJ [START_REF] Akcoglu | A pointwise ergodic theorem in Lp-spaces[END_REF]. Then there exists a nonzero projection f 1 ∈ J( 1)MJ(1) \ J(M) (if not, then J(M) contains the span of all projections in J( 1)MJ [START_REF] Akcoglu | A pointwise ergodic theorem in Lp-spaces[END_REF] which is a w * -dense subspace). Let us define e 1 = ∧{J(e) : f 1 ≤ J(e) ≤ J( 1), e ∈ P(M)}.

Then f 1 ≤ e 1 . Recall that J is a normal Jordan * -homomorphism. According to Lemma 2.8, we may write J as a direct sum J = J 1 + J 2 , where J 1 is a normal * -homomorphism and J 2 is a normal * -anti-homomorphism. Then for a finite family of projections q 1 , . . . , q n , we have

J 1 (∨ 1≤i≤n q ⊥ i ) = J 1 (s( n i=1 q ⊥ i )) = s(J 1 ( n i=1 q ⊥ i )) = ∨ 1≤i≤n J 1 (q ⊥ i ),
whence J 1 (∧ 1≤i≤n q i ) = ∧ 1≤i≤n J 1 (q i ). Similarly J 2 (∧ 1≤i≤n q i ) = ∧ 1≤i≤n J 2 (q i ). Hence we have

J(∧ 1≤i≤n q i ) = ∧ 1≤i≤n J(q i ).
By the w * -closeness of J(M), we see that there exists a projection e 1 ∈ M with e 1 = J( e 1 ).

Denote

f 2 = e 1 -f 1 .
Clearly, f 2 is a projection in J( 1)MJ(1) \ J(M). Now, choose e 2 and e 2 similarly as before corresponding to f 2 . Note that we have 0 = e 1 -f 1 = f 2 ≤ e 2 . Therefore, we have e 1 ∧ e 2 = 0. Thus, e 1 e 2 = 0. Note that by construction, ( 24)

f 1 f 2 = f 2 f 1 = 0.
Since T is positive, so is T * . Note that τ is finite and hence all projections are τ -finite. Thus for i = 1, 2, T * (f i ) is well-defined and T * (f i ) ≥ 0. Denote e i = s(T * (f i )) for = 1, 2. We claim that J(e i ) = e i for i = 1, 2. To establish our claim, we first observe that

τ (T * (f i ) e i ) = τ (f i be i ) = τ (e i f i b) = τ (f i b) = τ (f i bJ(1)) = τ (T * (f i )),
and therefore

τ (T * (f i ) -T * (f i ) 1 2 e i T * (f i ) 1 2 ) = 0, T * (f i ) = T * (f i ) 1 2 e i T * (f i ) 1 2 , i = 1, 2.
By using the functional calculus for t → χ σ(T * (f i )) (t)t -1/2 , we see that e i = e i e i e i for i = 1, 2. Therefore, by Lemma 6.2 we have e i ≤ e i for i = 1, 2. Hence, we obtain [START_REF] Fendler | On dilations and transference for continuous one-parameter semigroups of positive contractions on L p -spaces[END_REF] J(e i ) ≤ e i for i = 1, 2. Note that we have

0 = τ (T * (f i )e i ⊥ ) = τ (f i T (e i ⊥ )) = τ (f i bJ(e i ⊥ )).
Together with the fact that b commutes with the projection J(e i ⊥ ), we get

b 1 2 J(e i ⊥ )f i J(e i ⊥ )b 1 2 = 0. Therefore s(b)J(e i ⊥ )f i J(e i ⊥ )s(b) = J(1)J(e i ⊥ )f i J(e i ⊥ )J(1) = J(e i ⊥ )f i J(e i ⊥ ) = 0. Thus 0 = τ (J(e i ⊥ )f i J(e i ⊥ )) = τ (f i J(e i ⊥ )) = τ (f i J(e i ⊥ )f i ).
Therefore f i J(e i ⊥ )f i = 0 for i = 1, 2. Note that f i ≤ J(1). So we have

f i = f i J(1)f i = f i J(e i )f i for i = 1, 2.
Hence by Lemma 6.2 we have f i ≤ J(e i ) for i = 1, 2. From this, using ( 25) and the minimality of e i we conclude that J(e i ) = e i for i = 1, 2. Now we obtain

J 1 (s(T * (f 1 ))s(T * (f 2 ))) + J 2 (s(T * (f 2 ))s(T * (f 1 ))) = J(s(T * (f 1 )))J(s(T * (f 2 ))) = e 1 e 2 = 0
by the above claim. This yields that s(T * (f 1 ))s(T * (f 2 )) = 0, and in particular we have T * (f 1 )T * (f 2 ) = 0. However we have f 1 f 2 = 0 by [START_REF] Fendler | Dilations of one parameter semigroups of positive contractions on L p spaces[END_REF]. So T * is not Lamperti, which leads to a contradiction.

We need the following lemma which was proved in [START_REF] Kan | Ergodic properties of operator averages[END_REF] in the classical case. The proof of our lemma is completely different from [START_REF] Kan | Ergodic properties of operator averages[END_REF] but again restricted to finite von Neumann algebras only. Proof. First we show that J : M → M is continuous in the topology of convergence of measure on L 0 (M). Take a sequence (x n ) n≥1 ⊆ M + which converges to 0 in measure, that is, τ (e ⊥ ε (x n )) → 0 as n → ∞ for all ε > 0. For any x ∈ M + , the restriction of J on the abelian von Neumann subalgebra generated by x is a classical normal * -homomorphism. Note that J(x) ≥ ε iff J(x) = J(1)J(x)J(1) ≥ εJ [START_REF] Akcoglu | A pointwise ergodic theorem in Lp-spaces[END_REF]. It follows that J(e ⊥ ε (x)) = e ⊥ ε (J(x)) for all ε > 0. We also have τ [START_REF] Grząślewicz | Approximation theorems for positive operators on L p -spaces[END_REF] we have [START_REF] Hanche-Olsen | Jordan operator algebras[END_REF] τ (J(e ⊥ ε (x n ))f k ) → 0 as n → ∞ for all k ∈ Z. Note that since J(e ⊥ ε (x n )) is a projection and contained in s(b p ), we have [START_REF] Hong | Noncommutative maximal ergodic inequalities associated with doubling conditions[END_REF] J

(b p J(e ⊥ ε (x n ))) ≤ Cτ (e ⊥ ε (x n )). This shows that (26) lim n→∞ τ (b p J(e ⊥ ε (x n ))) = 0. Let f k denote the spectral projection χ [2 k ,2 k+1 ) (b p ), k ∈ Z. Note that we have (27) b p J(e ⊥ ε (x n )) ≥ 2 k J(e ⊥ ε (x n ))f k . Therefore, by
(e ⊥ ε (x n )) = k J(e ⊥ ε (x n ))f k .
Let us fix δ > 0. Note that k f k ≤ J(1) and τ is finite so that k τ (f k ) < ∞. Using (28) we choose n large enough so that τ (J(e ⊥ ε (x n ))f k ) ≤ δ 2s for |k| ≤ s and |k|>s τ (f k ) < δ. Then by ( 29) and [START_REF] Haagerup | Factorization and dilation problems for completely positive maps on von Neumann algebras[END_REF] we have [START_REF] Hong | Noncommutative multi-parameter Wiener-Wintner type ergodic theorem[END_REF] 

τ (J(e ⊥ ε (x n )) = |k|≤s τ (J(e ⊥ ε (x n ))f k ) + |k|>s τ (J(e ⊥ ε (x n ))f k ) ≤ δ + |k|>s τ (J(e ⊥ ε (x n ))f k ). Also note that (31) |k|>s τ (J(e ⊥ ε (x n ))f k ) ≤ |k|>s J(e ⊥ ε (x n ) ∞ τ (f k ) ≤ |k|>s τ (f k ) < δ
as J is a contraction. Together with [START_REF] Hong | Noncommutative multi-parameter Wiener-Wintner type ergodic theorem[END_REF] and [START_REF] Hu | Maximal ergodic theorems for some group actions[END_REF] this establishes that lim n→∞ τ (J(e ⊥ ε (x n )) = 0. Therefore, J is continuous in the topology of measure. Since M is dense in L 0 (M), we can extend uniquely J to a map on L 0 (M), which is also continuous. Now we may extend T to a linear map on L 0 (M) by setting T x = b J(x). This completes the proof of the lemma.

Kan [START_REF] Kan | Ergodic properties of Lamperti operators[END_REF] showed that the converse of Proposition 6.3 is also true in the classical setting. Though we could not establish the analogue for the noncommutative setting, we may prove a partial result. Proof. Since T is onto, it follows from Proposition 6.1 that J is unital and onto, and moreover the restriction J : p 1 Mp 1 → M is a normal Jordan * -isomorphism. Consider a normal faihtful tracial state τ on M; together with Lemma 2.8, we note that ϕ := τ •J is a normal tracial state on M. Thus we may write ϕ = τ (t•) for some positive element t ∈ L 1 (M, τ ) which commutes with M. By Lemma 6.4, the elements b = J| -1 L 0 (p 1 Mp 1 ) (b)t and S(y) = bJ| -1 L 0 (p 1 Mp 1 ) (y) can be well-defined for y ∈ M. We claim that the adjoint operator of T :

L p (M, τ ) → L p (M, τ ) is S. Indeed, note that τ (xS(y)) = τ (x bJ| -1 L 0 (p 1 Mp 1 ) (y)) = τ (xJ| -1 L 0 (p 1 Mp 1 ) (b)tJ| L 0 (p 1 Mp 1 ) (y)) = τ (txJ| -1 L 0 (p 1 Mp 1 ) (b)J| L 0 (p 1 Mp 1 ) (y)) = ϕ(xJ| -1 L 0 (p 1 Mp 1 ) (b)J| L 0 (p 1 Mp 1 ) (y)) = τ (J(xJ| -1 L 0 (p 1 Mp 1 ) (b)J| -1 L 0 (p 1 Mp 1 ) (y))) = τ (J(x)by) = τ (T (x)y)
for all x ∈ M, y ∈ M. This establishes the claim. Clearly, S is a Lamperti operator by Theorem 3.3. This completes the proof.

We are ready to prove the following key description of doubly Lamperti operators on noncommutative L p spaces. 

L p (p 1 Mp 1 ); (2) θ n is a positive element in M of the form θ n = θJ(θ) • • • J n-1 (θ) and θ n S n (x) = S n (x)θ n for all n ≥ 1 and x ∈ M; (3) for all n ≥ 1, T n Lp(M)→Lp(M) ≤ θ n ∞ .
Moreover, the equality holds if the adjoint operator T * : L p (M) → L p (M) for 1/p + 1/p = 1 is also Lamperti. Proof. Without loss of generality we assume T Lp(M)→Lp(M) ≤ 1. The general case follows by considering the contraction T / T in the proof.

(i) Recall that p 0 , p 1 ∈ Z(M), p 0 + p 1 = 1, and ρ T = p 1 ρ T p 1 . Note that we may see from the proof of (ii) in Proposition 6.1 that T and J are injective on L p (p 1 Mp 1 ) and p 1 Mp 1 respectively. Clearly, (p 1 ρ T p 1 ) -1 is well-defined as a densely defined operator in L 0 (p 1 Mp 1 ) + . We use Lemma 6.4 and define

ρ T = J (p 1 ρ T p 1 ) -1 p , b = b ρ T .
Then the spectral projections of b commute with J(M) since the operators p 1 and ρ T belong to the center of M. Also, we observe that

s( b) = s(b) ∧ s( ρ T ) = J(1) ∧ J(s((p 1 ρ T p 1 ) -1 p )) = J(p 1 ) = J(1)
as we have J(p 0 ) = 0, according to the fact T (p 0 ) = 0 in Proposition 6.1(i). Define the positive linear operator S(x) = bJ(x), x ∈ M.

By Theorem 3.3 and Remark 3.4, S is a Lamperti operator. Applying [START_REF] Dunford | Convergence almost everywhere of operator averages[END_REF] to S, we have

τ (ρ S p 0 xp 0 ) = τ ( b p J(p 0 xp 0 )) = τ b p J (p 1 ρ T p 1 ) -1 p 0 xp 0 = 0
for all x ∈ M + , which means that p 0 ρ S p 0 = 0. Similarly, for all x ∈ M + we have

τ (ρ S p 1 xp 1 ) = τ ( b p J(p 1 xp 1 )) = τ b p J (p 1 ρ T p 1 ) -1 p 1 xp 1 = τ (ρ T (p 1 ρ T p 1 ) -1 p 1 xp 1 ) = τ (p 1 xp 1 ).
This shows that p 1 ρ S p 1 = p 1 . Applying [START_REF] Dunford | Convergence almost everywhere of operator averages[END_REF] to S again, we see that S| Lp(p 1 Mp 1 ) is an isometry and S| Lp(p 0 Mp 0 ) = 0. This completes the proof for (i).

(ii) Define θ = J(ρ T )

1 p and θ n = θJ(θ) • • • J n-1 (θ).
Recall that ρ T is in the center of M, so ρ T commutes with J k (θ) for all k ≥ 0, and applying the Jordan homomorphism J we see that θ commutes with all J k (θ). In particular {ρ T , θ, J(θ)} is a commuting family. We see easily by induction that (J k (θ)) k≥0 is a commuting family. In particular θ n ≥ 0. Note that θS(x) = S(x)θ for all x ∈ L 0 (M). We claim that T n = θ n S n , for all n ≥ 1. Indeed, for n = 1, recalling that we have observed J(1) = J(p 1 ) in (i), we see that

θS(p 1 xp 1 ) = J(ρ T ) 1 p b ρ T J(p 1 xp 1 ) = J(ρ T ) 1 p J (p 1 ρ T p 1 ) -1 p p 1 xp 1 = bJ(1)J(x) = T (x).
Assume by induction that T n = θ n S n . Then

T n+1 (x) = T (θ n S n (x)) = bJ(θ n )J(S n (x)) = bJ(θ n ) b -1 S n+1 (x) = J(θ n ) ρ T -1 S n+1 (x) = J(θ n )J(ρ 1 p T )S n+1 (x) = θJ(θ n )S n+1 (x) = θ n+1 S n+1 (x). (iii) It is obvious that T n L p (M)→L p (M) ≤ θ n ∞ . Assume that T * is Lamperti.
Then by Proposition 6.3, J(M) = J(1)MJ( 1) and we see inductively J n (M) = J n (1)MJ n (1). On the other hand, we have proved in (ii) that (J k (θ)) k≥0 is a commuting family, so we obtain θ n ∈ J n (1)MJ n (1), whence θ n ∈ J n (M).

Recall moreover that J(p 0 ) = 0. Thus we may write θ n = J n (x n ) for some x n ∈ p 1 M + p 1 . Let θ n ∞ > A and take a spectral projection q = e ⊥ A (θ n ) ∈ J n (M) so that qθ n ≥ Aθ n . Note that J(x) ≥ ε iff J(x) = J(1)J(x)J(1) ≥ εJ [START_REF] Akcoglu | A pointwise ergodic theorem in Lp-spaces[END_REF]. It follows that J(e ⊥ ε (x)) = e ⊥ ε (J(x)) for all ε > 0. So we may write q

= e ⊥ A (θ n ) = J n (e ⊥ A (x n )). Denote e = e ⊥ A (x n ). Note that J n (e)S n (e) = J n (e)J n (e) bJ( b) • • • J n ( b) = S n (e).
Therefore, using T n (e) = θ n S n (e) = S n (e)θ n we obtain that

T n (e) p = θ n J n (e)S n (e) p ≥ A S n (e) p .
This implies that T n Lp(M)→Lp(M) ≥ A as S is an isometry on L p (p 1 Mp 1 ). This completes the proof of the theorem.

Based on Theorem 1.3 and the above result, we conclude the proof of the main result.

Proof of Theorem 1.4. By Theorem 6.6, there is a positive Lamperti contraction S such that for all x ∈ M + and n ∈ N, we have

T n (x) = θ n S n (x) ≤ θ n ∞ S n (x) = T n S n (x) ≤ KS n (x). Hence 1 n + 1 n k=0 T k x ≤ K 1 n + 1 n k=0 S k x.
The proof is complete according to Theorem 1.3.

Ergodic theorems beyond Lamperti operators

As pointed out previously, Theorem 1.3 and Theorem 1.4 apply to quite general classes of positive operators on classical L p -spaces. However in the noncommutative setting, we may explore other novel and natural examples beside these categories, showing sharp contrast to the classical setting. In this section, we will illustrate two ergodic theorems outside the scope of Theorem 1.3 or Theorem 1.4. (ii) Let T be an invertible nonnegative n × n matrix such that the set {T k : k ∈ Z} is uniformly bounded in any equivalent matrix norm. Then T is periodic and Lamperti. We provide the following example which illustrates that there is no reasonable analogue of Kan's above examples for the noncommutative setting. Clearly, T is completely positive map, and so is the inverse map T -1 (x) = r -1 x(r -1 ) * . Note that e = 1 0 0 0 and f = 0 0 0 1 are two orthogonal projections with ef = f e = 0. But if we take r = 1 1 α β with α, β ∈ R and 1 + αβ = 0, it is easy to see that T (e)T (f ) = 0. So T is not Lamperti. Moreover, consider α = 0, β = -1. Then r -1 = r and r 2 = 1 M 2 . So

sup n∈Z T n cb,S 2 ∞ →S 2 ∞ ≤ sup n∈Z r n 2 ∞ < ∞.
Since the operator space of linear operators on M 2 is finite dimensional, so (T k ) is uniformly bounded with respect to any equivalent operator norm. So we obtain an analogue of operators satisfying (i) and (ii) of Proposition 7.1 for the noncommutative setting, but they are not Lamperti. Moreover, we can observe that T (f ) p = 2. Therefore, T is not a contraction for all 1 ≤ p ≤ ∞.

Denote K = sup n∈Z T n S 2 p →S 2 p . The above discussions also mean that Theorem 1.3 is not applicable to obtain the crucial constant KC p for the maximal ergodic inequality associated with T since T is not a contraction on S 2 p . Moreover Theorem 1.4 is not applicable neither since T is not Lamperti. However, this example still satisfies the maximal ergodic inequalities with crucial constant KC p according to the following result in [START_REF] Hong | Noncommutative maximal ergodic inequalities associated with doubling conditions[END_REF]. The crucial constant KC p is not stated explicitly in [START_REF] Hong | Noncommutative maximal ergodic inequalities associated with doubling conditions[END_REF] but is implicitly contained in the proof. 7.2. Junge-Le Merdy's example. In this subsection, we take Junge-Le Merdy's examples [START_REF] Junge | Dilations and rigid factorisations on noncommutative L p -spaces[END_REF] and establish the noncommutative ergodic theorem for them. That is, we prove Proposition 1.5. We can choose k to be large enough so that T does not admit a dilation (see [START_REF] Junge | Dilations and rigid factorisations on noncommutative L p -spaces[END_REF]). This completes the proof.

Remark 7.4. Note that we cannot directly apply Theorem 1.3 to the non-dilatable operator T : S k p → S k p (see Remark 4.8). However, the following property is applicable, which can be easily deduced from above arguments together with Theorem 1.3: Let 1 < p < ∞. Let T : L p (M) → L p (M) be a positive contraction such that for some positive integer k, we have ran (T k ) ⊆ L p (N ) where N ⊆ M is a von Neumann subalgebra and T Lp(N ) ∈ conv sot (SS + (L p (N ))), then T admits a maximal ergodic inequality as above.

Individual ergodic theorems

For completeness we include in this section the realted results on pointwise convergence, which are immediate consequences of maximal inequalities obtained previously. Let 1 < p < ∞. For any power bounded positive operator T : L p (M) → L p (M), the mean ergodic theorem (see e. The theorem can be deduced from the following fact and our main results. The argument below is given in [START_REF] Hong | Noncommutative maximal ergodic inequalities associated with doubling conditions[END_REF] and we include the proof just for completeness. Then we have the following properties.

(1) For all x ∈ L p (M), A n x converge to P x b.a.u. as n → ∞;

(2) If moreover p ≥ 2, then A n x converge to P x a.u. as n → ∞.

Proof. (i) Let x = y -T y where y ∈ L p (M) + . Then we have

A n x = 1 n (T y -T n+1 y).
Clearly, the sequence ( as m, n → ∞. This shows that (B j y) m≤j≤n Lp(M;c 0 ) → 0 as m, n → ∞. Therefore, we have that (B n y) n≥1 ∈ L p (M; c 0 ). Thus A n x ∈ L p (M; c 0 ) for all x ∈ ran (I -T ). Now for any x 0 ∈ ran (I -T ) we may find a sequence x k → x 0 in L p (M) with x k ∈ ran (I -T ) for all k ≥ 1. By the maximal inequality in our assumption, we have

(A n x 0 ) n≥1 -(A n x k ) n≥1 Lp(M; ∞) ≤ C 1 x 0 -x k p → 0
as k → ∞. Therefore, we also have (A n x 0 ) n≥0 ∈ L p (M; c 0 ). Then the desired b.a.u. convergence follows from Proposition 2.4.

(ii) We keep the same notation x, y and B j as in the beginning of the proof of the first part, we observe that for any m ≤ j ≤ n, we have by operator monotonicity of t → t 

Question 1 . 1 .≤

 11 Let M be a von Neumann algebra equipped with a normal faithful semifinite trace τ. Let 1 < p < ∞ and T : L p (M) → L p (M) be a positive contraction. Does there exist a positive constant C, such that sup n≥0 C x p for all x ∈ L p (M)?

Theorem 1 . 3 .≤

 13 Theorem 0.1]. Let 1 < p < ∞. Assume that T : L p (M) → L p (M) belongs to the family (1) conv sot {S : L p (M) → L p (M) positive Lamperti contractions},that is, the closed convex hull of all positive Lamperti contractions on L p (M) with respect to the strong operator topology. Then sup C p x p for all x ∈ L p (M).

1 . 3 . 4 . 1 p

 1341 τ ) be a Lamperti operator with norm C. Then there exist, uniquely, a partial isometry w ∈ M, a positive self-adjoint operator b affiliated with M and a normal Jordan * -homomorphism J : M → M, such that (1) w * w = J(1) = s(b); moreover we have w = J(1) = s(b) if additionally T is positive; (2) Every spectral projection of b commutes with J(x) for all x ∈ M; (3) T (x) = wbJ(x), x ∈ S(M); (4) We have τ (b p J(x)) ≤ Cτ (x) for all x ∈ M + ; if additionally T is isometric, then the equality holds with C = Remark Note that any operator T defined on S(M) satisfying (i)-(iv) in Theorem 3.3 can be extended to a Lamperti operator with T Lp(M)→Lp(M) ≤ (2C) (or ≤ C 1 p

  T e = w e b e , b e = |T e|, J(e) = w * e w e = s(b e ). Note that for two finite projections e, f ∈ M with ef = 0, we have (T e) * T f = T e(T f ) * = 0 by the Lamperti property of T , whence b e w * e w f b f = w e b e b f w * f = 0. Multiplying w * e and w f , we get b e b f = 0. Then it is routine to check (T e + T f ) * (T e + T f ) = (|T e| + |T f |) 2 . In other words we get (5) b e+f = b e + b f . Recall that b e b f = b f b e = 0. By considering the commutative von Neumann subalgebra generated by the spectral projections, we see that the supports of b e and b f are also disjoint and additive, that is,(6)

T 2 (e 2 b e 1 0 0 b e 2 .= w e 1 0 0 w e 2 and b e = b e 1 0 0 b e 2 .

 2222 ⊗M).Since T 2 separates supports, by Theorem 3.3 there exists a partial isometry w ∈ M 2 ⊗M, a positive self-adjoint operator b affiliated with M 2 ⊗M and a normal Jordan * -homomorphismJ : M 2 ⊗M → M 2 ⊗M such that w * w = J(1 M 2 ⊗ 1) = s( b),every spectral projection of b commutes with J( x) for all x ∈ M 2 ⊗M, and T 2 ( x) = w b J( x), x ∈ S(M 2 ⊗M). Also, T separates supports. Thus, again by Theorem 3.3, T x = wbJ(x), x ∈ S(M) with w, b and J as in Theorem 3.3. Let us consider two τ -finite projections e 1 , e 2 in M. Clearly, e = e 1 0 0 e 2 is a T r ⊗ τ -finite projection in M 2 ⊗M. Let T 2 ( e) = w e b e with |T 2 ( e)| = b e be the polar decomposition of T 2 ( e) and T (e i ) = w e i b e i with |T (e i )| = b e i be that of T (e i ) for i ∈ {1, 2}. Note that By the uniqueness of the polar decomposition, we have w e

where w n = 1 Proposition 3 . 7 .Proposition 3 . 8 .

 13738 Mn ⊗ w and b n = 1 Mn ⊗ b with w and b given as in the proof of Theorem 3.3. If T is contractive, it is easy to check that the objects w n , b n and J n satisfy the conditions (i) to (iv) in Theorem 3.3 with C = 1, and by Remark 3.4, I S n p ⊗ T is also Lamperti and contractive. This completes the proof. Based on the previous characterizations, we also provide the following properties of completely Lamperti operators. Let 1 ≤ p < ∞ and T : L p (M) → L p (M) be a completely Lamperti operator. Then for all x, y ∈ L p (M) with x * y = xy * = 0, we have (T x) * T y = T x(T y) * = 0. Proof. Note that x * y = xy * = 0 implies that |x| 2 |y| 2 = |y| 2 |x| 2 = 0. This implies |x||y| = |y||x| = 0. Let w, b, J be as in Theorem 3.3. Define S(x) = bJ(x), x ∈ S(M). Clearly, S extends to a positive completely Lamperti operator. By Theorem 3.6, J is a normal * -homomorphism. Thus |T x| = S(|x|) for all x ∈ S(M). Note that the map x → |x| is continuous with respect to the p -norm (see e.g. [45, Theorem 4.4]). Hence by an approximation argument we also have |T x| = S(|x|) for any x ∈ L p (M). By Proposition 3.2 we have S(|x|)S(|y|) = 0. Therefore, |T x||T y| = 0. Now multiplying the partial isometry w in the polar decomposition of T x from the left we obtain T x|T y| = 0. Taking adjoint and applying the same trick again we obtain T y(T x) * = 0. By a similar way we obtain (T x) * T y = 0. This completes the proof of the proposition. The following proposition shows that compositions of completely Lamperti operators are again completely Lamperti. Let 1 ≤ p < ∞. Let T i : L p (M) → L p (M), i = 1, 2 be two completely Lamperti operators. Then T 1 T 2 : L p (M) → L p (M) is also completely Lamperti. Proof. By replacing T i by I S n p ⊗ T i without loss of generality, it suffices to show that T 1 T 2 is Lamperti. Let x, y ∈ L p (M) with x * y = xy * = 0. Then by Proposition 3.7 we have (T 2 x) * T 2 y = T 2 x(T 2 y) * = 0. Since T 1 is completely Lamperti we have by Proposition 3.7 again

1 2

 1 = 0 and hence T eT f = 0.

Lemma 4 . 1 .

 41 Let 1 ≤ p < ∞ and T : L p (M) → L p (M) be a Lamperti contraction with the representation T (x) = wbJ(x) for x ∈ S(M) given inTheorem 3.3. 

Proposition 4 . 2 .

 42 Also, recall that by Theorem 3.3 we haveτ (b p J(x)) ≤ τ (x), x ∈ M + .Therefore, by the noncommutative Radon-Nikodym theorem [21, Chap. I, §6.4, Théorème 3], there exists a positive element ρ in the center of M such that 0 ≤ ρ ≤ 1 and τ (x) = τ (ρx) for all x ∈ M + . The proof is complete. Now we give the following simultaneous dilation theorem for support separating contractions. Let 1 ≤ p < ∞. Then the set SS(L p (M)) has a simultaneous dilation, and the set CSS(L p (M)) has a complete simultaneous dilation.

Corollary 4 . 10 .

 410 Let 1 < p = 2 < ∞ and assume that the von Neumann algebra M has the QWEP. Let T ∈ conv sot (SS(L p (M))). Then T satisfies the noncommutative Matsaev's conjecture, i.e. P (T ) Lp(M)→Lp(M) ≤ C(a P ) ⊗ I Sp p(Z;Sp)→ p(Z;Sp)

Lemma 5 . 2 .

 52 Let 1 ≤ p < ∞. Let T : L p (M, τ ) → L p (M, τ ) be a positive Lamperti contraction.

  τ ) be a positive isometry. Then T extends to an isometry on L p (M; ∞ ).Proof. By Theorem 2.9, Theorem 3.3 and Remark 3.10 we have T = bJ, where J : M → M is an injective normal Jordan * -homomorphism and b is a positive self-adjoint operator affiliated with M such that b commutes with J(M). Denote by N the von Neumann algebra generated by J(M). By Lemma 2.8, we may write N = N 1 ⊕ N 2 where N 1 and N 2 are two von Neumann subalgebras of N , and write

Proposition 6 . 1 .

 61 Let 1 ≤ p < ∞ and T : L p (M) → L p (M) be a positive Lamperti contraction. Then the following statements hold. (1) T Lp(p 0 Mp 0 ) = 0 and T Lp(p 0 Mp 0 ) is an isometry; (2) The following statements are equivalent: (a) T is injective; (b) p 0 = 0; (c) J is injective. (3) Suppose that T is surjective. Then we have (a) J is surjective and s(b) = J(1) = 1, moreover T and J are injective on L p (p 1 Mp 1 ) and p 1 Mp 1 respectively; (b) for some constant C > 0, p 1 ρ T ≥ Cp 1 .

2 T

 2 = 0. Hence p 1 |x|p 1 = 0, which means that p 1 = 1 and p 0 = 0. Thus (b) implies (c).

Lemma 6 . 4 .

 64 Let M be a finite von Neumann algebra and τ be a normal faithful tracial state on M. Let 1 ≤ p < ∞. Let T : L p (M) → L p (M) be a positive Lamperti operator with the representation T (x) = bJ(x) for all x ∈ M. Then J and T can be extended continuously to maps on L 0 (M) with respect to the topology of convergence of measure. Moreover, T x = bJ(x) for all x ∈ L 0 (M).

Proposition 6 . 5 .

 65 Let 1 < p < ∞ and M be a finite von Neumann algebra. Let T : L p (M) → L p (M) be a positive and surjective Lamperti operator. Then T * is again Lamperti.

Theorem 6 . 6 .

 66 Let M be a finite von Neumann algebra. Let 1 < p < ∞. Suppose that T : L p (M) → L p (M) is a positive Lamperti operator with the representation T x = bJ(x) as in Theorem 3.3. Then there exist an element θ ∈ M and a positive Lamperti contraction S : L p (M) → L p (M) such that T n = θ n S n , where (1) S is a positive Lamperti contraction which vanishes on L p (p 0 Mp 0 ) and is isometric on

7. 1 .

 1 Positive invertible operators which are not Lamperti. In the classical setting we have the following examples of Lamperti operators. Proposition 7.1 ([43]).(i) Let 1 < p < ∞.Let Ω be a σ-finite measure space. Let T : L p (Ω) → L p (Ω) be a bounded positive operator with positive inverse. Then T is Lamperti.

Example 7 . 2 .

 72 Let 1 ≤ p < ∞ and r be an invertible matrix 2 × 2 matrix. Define T : S 2 p → S 2 p , T (x) = rxr * .

Theorem 7 . 3 (≤≤

 73 [START_REF] Hong | Noncommutative maximal ergodic inequalities associated with doubling conditions[END_REF]). Let 1 < p < ∞. Let M be a von Neumann algebra with a normal semifinite faithful trace. Suppose T : L p (M) → L p (M) be a bounded invertible positive operator with positive inverse, such thatsup n∈Z T n Lp(M)→Lp(M) = K < ∞. Then sup KC p x p for all x ∈ L p (M).Note that S 2 p and S 2 ∞ are isomorphic as finite dimensional Banach spaces, so the positive invertible operator T given in Example 7.2 with positive inverse associated with α = 0, β = -1 satisfies K p := sup n∈Z K p C p x p , x ∈ S 2 p .

Proof of Proposition 1 . 5 .T 1 ( 1 2p e 1i for 1 ≤ 1 +≤+

 151111 Let (e ij ) k i,j=1 be the standard basis of S k p . Following the examples in [39, Section 5], we define the operators on S k p asxb i , x ∈ S k p ,where a i = e ii and b i = ki ≤ k. By [39] each T i is a contraction for 1 ≤ i ≤ 4T 2 + T 3 + T 4 ).Then T is completely positive and completely contractive. For any positive element x, a straightforward calculation yields(T (x)) ij = 0, ∀ i = j.Let D k p be the diagonal L p -subspace of S k p . Then D k p becomes a commutative p -space and ran(T ) ⊆ D k p . In particular, the restrictionT | D k p : D k p → D k p isa positive contraction on the commutative p space D k p . Therefore, by Akcoglu's ergodic theorem [1], we have sup C p y p for all y ∈ D k p . Putting y = T x with x ≥ 0 in above, we have sup x p ≤ (C p + 1) x p .

Theorem 8 . 1 .

 81 g. [46, Subsection 2.1.1]) yields a decomposition L p (M) = ker(I -T ) ⊕ ran (I -T ). Let us denote by P the bounded positive projection P : L p (M) → ker(I -T ). Let 1 < p < ∞ and T : L p (M) → L p (M) be the operator as in Theorem 1.3 or Theorem 1.4. Then for all x ∈ L p (M), the sequence ( 1 n+1 n k=0 T k x) n≥0 converges to P x a.u. as n → ∞ if p ≥ 2, and it converges to P x b.a.u. if 1 < p < 2.

Theorem 8 . 2 .

 82 Let 1 < p < ∞ and T : L p (M) → L p (M) be a positive power bounded operator. Let A n = 1 n+1 n k=0 T k . Assume that there exists a constant C > 0 with sup n≥0 + A n x p ≤ C x p , x ∈ L p (M).

1 p.

 1 1 n T y) n≥1 belongs to L p (M; c 0 ) as sup n≥k + 1 n T y p = 1 k T y p → 0 as k → ∞. Denote B j y = 1 j T j+1 y.By the operator monotonicity of t → t , we have for any m ≤ j ≤ n,B j y = [(B j y) p ]Therefore, as T is power bounded, for some fixed positive constant K > 0, we also have

2 p(

 2 B j y) 2 = [(B j y) p ] can find contractions u j ∈ L ∞ (M) such that B j y = u j n j=m (B j y) p m, n → ∞. This shows that (B j y) m≤j≤n Lp(M,c c 0 ) → 0 as m, n → ∞.The rest of the proof is similar to what we did in (i).

  L p (M) → L p (M) is said to be positive if T maps L p (M) + to L p (M) + . We say that T is completely positive if the linear mapI S n p ⊗ T : L p (M n ⊗M, T r ⊗ τ ) → L p (M n ⊗M, T r ⊗ τ) is positive for all n ∈ N. The set of positive and completely positive operators on L p (M) are closed under strong operator limits. A linear map T : L

	H) for a Hilbert space H and if τ is the usual trace T r on it, then the
	corresponding noncommutative L p -spaces are usually called Schatten-p classes and denoted
	by S p (H) for 1 ≤ p < ∞. When H is n 2 or 2 we denote S p (H) by S n p and S p respectively and we identify B( n 2 ) with the set of n × n matrices which we also denote by M n . The set of all compact operators on 2 and n 2 are denoted by S ∞ and S n ∞ respectively. A linear map
	T :

  Therefore, by Theorem 3.6 if T is completely Lamperti, then J T and J U T are multiplicative and U T is a complete isometry by Theorem 2.9 and Remark 3.10.

Note that for any Lamperti contractions T 1 , . . . , T n on L p (M), we have

T 1 . . . T n = jU T 1 . . . U Tn i

for all n ≥ 0. This completes the proof. Remark 4.3. In Proposition 4.2, if T is positive, then U T is again positive. Moreover, it is clear that i and j are always completely positive. Remark 4.4. Notice that in Proposition 4.2 each U T is actually a Lamperti isometry for all 1 ≤ p < ∞. Moreover it is completely Lamperti if so is T .
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