
HAL Id: hal-02954181
https://hal.science/hal-02954181v2

Submitted on 19 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning to solve TV regularized problems with unrolled
algorithms

Hamza Cherkaoui, Jeremias Sulam, Thomas Moreau

To cite this version:
Hamza Cherkaoui, Jeremias Sulam, Thomas Moreau. Learning to solve TV regularized problems with
unrolled algorithms. NeurIPS 2020 - 34th Conference on Neural Information Processing Systems, Dec
2020, Vancouver / Virtuel, Canada. �hal-02954181v2�

https://hal.science/hal-02954181v2
https://hal.archives-ouvertes.fr

Learning to solve TV regularized problems
with unrolled algorithms

Hamza Cherkaoui
Université Paris-Saclay, CEA, Inria

Gif-sur-Yvette, 91190, France
hamza.cherkaoui@cea.fr

Jeremias Sulam
Johns Hopkins University

jsulam1@jhu.edu

Thomas Moreau
Université Paris-Saclay, Inria, CEA,

Palaiseau, 91120, France
thomas.moreau@inria.fr

Abstract

Total Variation (TV) is a popular regularization strategy that promotes piece-wise
constant signals by constraining the `1-norm of the first order derivative of the
estimated signal. The resulting optimization problem is usually solved using
iterative algorithms such as proximal gradient descent, primal-dual algorithms or
ADMM. However, such methods can require a very large number of iterations to
converge to a suitable solution. In this paper, we accelerate such iterative algorithms
by unfolding proximal gradient descent solvers in order to learn their parameters
for 1D TV regularized problems. While this could be done using the synthesis
formulation, we demonstrate that this leads to slower performances. The main
difficulty in applying such methods in the analysis formulation lies in proposing
a way to compute the derivatives through the proximal operator. As our main
contribution, we develop and characterize two approaches to do so, describe their
benefits and limitations, and discuss the regime where they can actually improve
over iterative procedures. We validate those findings with experiments on synthetic
and real data.

1 Introduction

Ill-posed inverse problems appear naturally in signal and image processing and machine learning,
requiring extra regularization techniques. Total Variation (TV) is a popular regularization strategy
with a long history (Rudin et al., 1992), and has found a large number of applications in neuro-imaging
(Fikret et al., 2013), medical imaging reconstruction (Tian et al., 2011), among myriad applications
(Rodríguez, 2013; Darbon and Sigelle, 2006). TV promotes piece-wise constant estimates by
penalizing the `1-norm of the first order derivative of the estimated signal, and it provides a simple,
yet efficient regularization technique.

TV-regularized problems are typically convex, and so a wide variety of algorithms are in principle
applicable. Since the `1 norm in the TV term is non-smooth, Proximal Gradient Descent (PGD) is
the most popular choice (Rockafellar, 1976). Yet, the computation for the corresponding proximal
operator (denoted prox-TV) represents a major difficulty in this case as it does not have a closed-form
analytic solution. For 1D problems, it is possible to rely on dynamic programming to compute prox-
TV, such as the taut string algorithm (Davies and Kovac, 2001; Condat, 2013a). Another alternative
consists in computing the proximal operator with iterative first order algorithm (Chambolle, 2004;
Beck and Teboulle, 2009; Boyd et al., 2011; Condat, 2013b). Other algorithms to solve TV-regularized

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

problems rely on primal dual algorithms (Chambolle and Pock, 2011; Condat, 2013b) or Alternating
Direction Method of Multipliers (ADMM) (Boyd et al., 2011). These algorithms typically use one
sequence of estimates for each term in the objective and try to make them as close as possible while
minimizing the associated term. While these algorithms are efficient for denoising problems – where
one is mainly concerned with good reconstruction – they can result in estimate that are not very well
regularized if the two sequences are not close enough.

When on fixed computational budget, iterative optimization methods can become impractical as
they often require many iterations to give a satisfactory estimate. To accelerate the resolution of
these problems with a finite (and small) number of iterations, one can resort to unrolled and learned
optimization algorithms (see Monga et al. 2019 for a review). In their seminal work, Gregor and
Le Cun (2010) proposed the Learned ISTA (LISTA), where the parameters of an unfolded Iterative
Shrinkage-Thresholding Algorithm (ISTA) are learned with gradient descent and back-propagation.
This allows to accelerate the approximate solution of a Lasso problem (Tibshirani, 1996), with a fixed
number of iteration, for signals from a certain distribution. The core principle behind the success
of this approach is that the network parameters can adaptively leverage the sensing matrix structure
(Moreau and Bruna, 2017) as well as the input distribution (Giryes et al., 2018; Ablin et al., 2019).
Many extensions of this original idea have been proposed to learn different algorithms (Sprechmann
et al., 2012, 2013; Borgerding et al., 2017) or for different classes of problem (Xin et al., 2016; Giryes
et al., 2018; Sulam et al., 2019). The motif in most of these adaptations is that all operations in the
learned algorithms are either linear or separable, thus resulting in sub-differentials that are easy to
compute and implement via back-propagation. Algorithm unrolling is also used in the context of
bi-level optimization problems such as hyper-parameter selection. Here, the unrolled architecture
provides a way to compute the derivative of the inner optimization problem solution compared to
another variable such as the regularisation parameter using back-propagation (Bertrand et al., 2020).

The focus of this paper is to apply algorithm unrolling to TV-regularized problems in the 1D case.
While one could indeed apply the LISTA approach directly to the synthesis formulation of these
problems, we show in this paper that using such formulation leads to slower iterative or learned
algorithms compared to their analysis counterparts. The extension of learnable algorithms to the
analysis formulation is not trivial, as the inner proximal operator does not have an analytical or
separable expression. We propose two architectures that can learn TV-solvers in their analysis form
directly based on PGD. The first architecture uses an exact algorithm to compute the prox-TV and we
derive the formulation of its weak Jacobian in order to learn the network’s parameters. Our second
method rely on a nested LISTA network in order to approximate the prox-TV itself in a differentiable
way. This latter approach can be linked to inexact proximal gradient methods (Schmidt et al., 2011;
Machart et al., 2012). These results are backed with numerical experiments on synthetic and real
data. Concurrently to our work, Lecouat et al. (2020) also proposed an approach to differentiate the
solution of TV-regularized problems. While their work can be applied in the context of 2D signals,
they rely on smoothing the regularization term using Moreau-Yosida regularization, which results in
smoother estimates from theirs learned networks. In contrast, our work allows to compute sharper
signals but can only be applied to 1D signals.

The rest of the paper is organized as follows. In Section 2, we describe the different formulations for
TV-regularized problems and their complexity. We also recall central ideas of algorithm unfolding.
Section 3 introduces our two approaches for learnable network architectures based on PGD. Finally,
the two proposed methods are evaluated on real and synthetic data in Section 4.

Notations For a vector x ∈ Rk, we denote ‖x‖q its `q-norm. For a matrix A ∈ Rm×k, we
denote ‖A‖2 its `2-norm, which corresponds to its largest singular value and A† denotes its pseudo-
inverse. For an ordered subset of indices S ⊂ {1, . . . , k}, xS denote the vector in R|S| with element
(xS)t = xit for it ∈ S. For a matrix A ∈ Rm×k, A:,S denotes the sub-matrix [A:,i1 , . . . A:,i|S|]
composed with the columns A:,it of index it ∈ S of A. For the rest of the paper, we refer to the
operators D ∈ Rk−1×k, D̃ ∈ Rk×k, L ∈ Rk×k and R ∈ Rk×k as:

D =

−1 1 0 . . . 0

0 −1 1
. . .

...
...

. 0
0 . . . 0 −1 1

 D̃ =

1 0 . . . 0

−1 1
. . .

...
. 0
0 −1 1

 L =

1 0 . . . 0

1 1
. . .

...
...

. 0
1 . . . 1 1

 R =

0 0 . . . 0

0 1
. . .

...
...

. 0
0 . . . 0 1

2

2 Solving TV-regularized problems

We begin by detailing the TV-regularized problem that will be the main focus of our work. Consider
a latent vector u ∈ Rk, a design matrix A ∈ Rm×k and the corresponding observation x ∈ Rm.
The original formulation of the TV-regularized regression problem is referred to as the analysis
formulation (Rudin et al., 1992). For a given regularization parameter λ > 0, it reads

min
u∈Rk

P (u) =
1

2
‖x−Au‖22 + λ‖u‖TV , (1)

where ‖u‖TV = ‖Du‖1, and D ∈ Rk−1×k stands for the first order finite difference operator, as
defined above. The problem in (1) can be seen as a special case of a Generalized Lasso problem
(Tibshirani and Taylor, 2011); one in which the analysis operator is D. Note that problem P is
convex, but the TV -norm is non-smooth. In these cases, a practical alternative is the PGD, which
iterates between a gradient descent step and the prox-TV. This algorithm’s iterates read

u(t+1) = proxλ
ρ ‖·‖TV

(
u(t) − 1

ρ
A>(Au(t) − x)

)
, (2)

where ρ = ‖A‖22 and the prox-TV is defined as

proxµ‖·‖TV (y) = arg min
u∈Rk

Fy(u) =
1

2
‖y − u‖22 + µ‖u‖TV . (3)

Problem (3) does not have a closed-form solution, and one needs to resort to iterative techniques to
compute it. In our case, as the problem is 1D, the prox-TV problem can be addressed with a dynamic
programming approach, such as the taut-string algorithm (Condat, 2013a). This scales as O(k) in all
practical situations and is thus much more efficient than other optimization based iterative algorithms
(Rockafellar, 1976; Chambolle, 2004; Condat, 2013b) for which each iteration is O(k2) at best.

With a generic matrix A ∈ Rm×k, the PGD algorithm is known to have a sublinear convergence rate
(Combettes and Bauschke, 2011). More precisely, for any initialization u(0) and solution u∗, the
iterates satisfy

P (u(t))− P (u∗) ≤ ρ

2t
‖u(0) − u∗‖22, (4)

where u∗ is a solution of the problem in (1). Note that the constant ρ can have a significant effect.
Indeed, it is clear from (4) that doubling ρ leads to consider doubling the number of iterations.

2.1 Synthesis formulation

An alternative formulation for TV-regularized problems relies on removing the analysis operator D
from the `1-norm and translating it into a synthesis expression (Elad et al., 2007). Removing D from
the non-smooth term simplifies the expression of the proximal operator by making it separable, as in
the Lasso. The operator D is not directly invertible but keeping the first value of the vector u allows
for perfect reconstruction. This motivates the definition of the operator D̃ ∈ Rk×k, and its inverse
L ∈ Rk×k, as defined previously. Naturally, L is the discrete integration operator. Considering the
change of variable z = D̃u, and using the operator R ∈ Rk×k, the problem in (1) is equivalent to

min
z∈Rk

S(z) =
1

2
‖x−ALz‖22 + λ‖Rz‖1. (5)

Note that for any z ∈ Rk, S(z) = P (Lz). There is thus an exact equivalence between solutions
from the synthesis and the analysis formulation, and the solution for the analysis can be obtained
with u∗ = Lz∗. The benefit of this formulation is that the problem above now reduces to a Lasso
problem (Tibshirani, 1996). In this case, the PGD algorithm is reduced to the ISTA with a closed-form
proximal operator (the soft-thresholding). Note that this simple formulation is only possible in 1D
where the first order derivative space is unconstrained. In larger dimensions, the derivative must be
constrained to verify the Fubini’s formula that enforces the symmetry of integration over dimensions.
While it is also possible to derive synthesis formulation in higher dimension (Elad et al., 2007), this
does not lead to simplistic proximal operator.

3

101 102 103

Dimension k

101

103

105

‖A
L
‖2 2
/‖
A
‖2 2

Mean E
[
‖AL‖22
‖A‖22

]
Proposition 2.1 Conjecture 2.2

Figure 1: Evolution of E
[
‖AL‖22
‖A‖22

]
w.r.t the

dimension k for random matrices A with i.i.d
normally distributed entries. In light blue is
the confidence interval [0.1, 0.9] computed
with the quantiles. We observe that it scales as
O(k2) and that our conjectured bound seems
tight.

For this synthesis formulation, with a generic matrix A ∈ Rm×k, the PGD algorithm has also a
sublinear convergence rate (Beck and Teboulle, 2009) such that

P (u(t))− P (u∗) ≤ 2ρ̃

t
‖u(0) − u∗‖22, (6)

with ρ̃ = ‖AL‖22 (see Subsection F.1 for full derivation). While the rate of this algorithm is the same
as in the analysis formulation – in O(1

t) – the constant ρ̃ related to the operator norm differs. We
now present two results that will characterize the value of ρ̃.

Proposition 2.1. [Lower bound for the ratio ‖AL‖
2
2

‖A‖22
expectation] Let A be a random matrix in Rm×k

with i.i.d normally distributed entries. The expectation of ‖AL‖22/‖A‖22 is asymptotically lower
bounded when k tends to∞ by

E
[‖AL‖22
‖A‖22

]
≥ 2k + 1

4π2
+ o(1)

The full proof can be found in Subsection F.3. The lower bound is constructed by using
ATA � ‖A‖22u1u

>
1 for a unit vector u1 and computing explicitely the expectation for rank one

matrices. To assess the tightness of this bound, we evaluated numerically E
[
‖AL‖22
‖A‖22

]
on a set of 1000

matrices sampled with i.i.d normally distributed entries. The results are displayed w.r.t the dimension
k in Figure 1. It is clear that the lower bound from Proposition 2.1 is not tight. This is expected as we
consider only the leading eigenvector of A to derive it in the proof. The following conjecture gives a
tighter bound.

Conjecture 2.2 (Expectation for the ratio ‖AL‖
2
2

‖A‖22
). Under the same conditions as in Proposition 2.1,

the expectation of ‖AL‖22/‖A‖22 is given by

E
[‖AL‖22
‖A‖22

]
=

(2k + 1)2

16π2
+ o(1) .

We believe this conjecture can potentially be proven with analogous developments as those in
Proposition 2.1, but integrating over all dimensions. However, a main difficulty lies in the fact that
integration over all eigenvectors have to be carried out jointly as they are not independent. This is
subject of current ongoing work.

Finally, we can expect that ρ̃/ρ scales as Θ(k2). This leads to the observation that ρ̃2 � ρ in large
enough dimension. As a result, the analysis formulation should be much more efficient in terms of
iterations than the synthesis formulation – as long as the prox-TVcan be dealt with efficiently.

2.2 Unrolled iterative algorithms

As shown by Gregor and Le Cun (2010), ISTA is equivalent to a recurrent neural network (RNN)
with a particular structure. This observation can be generalized to PGD algorithms for any penalized
least squares problem of the form

u∗(x) = arg min
u

L(x, u) =
1

2
‖x−Bu‖22 + λg(u) , (7)

4

Wxx proxµg u∗

Wu

(a) PGD - Recurrent Neural Network

x

W
(0)
x

proxµ(1)g W
(1)
u

W
(1)
x

proxµ(2)g W
(2)
u

W
(2)
x

proxµ(3)g u(3)

(b) LPGD - Unfolded network for Learned PGD with T = 3

Figure 2: Algorithm Unrolling - Neural network representation of iterative algorithms. The param-
eters Θ(t) = {W (t)

x ,W
(t)
u , µ(t)} can be learned by minimizing the loss (10) to approximate good

solution of (7) on average.

where g is proper and convex, as depicted in Figure 2a. By unrolling this architecture with
T layers, we obtain a network φΘ(T)(x) = u(T) – illustrated in Figure 2b – with parameters
Θ(T) = {W (t)

x ,W
(t)
u , µ(t)}Tt=1, defined by the following recursion

u(0) = B†x ; u(t) = proxµ(t)g(W
(t)
x x+W (t)

u u(t−1)) . (8)

As underlined by (4), a good estimate u(0) is crucial in order to have a fast convergence toward u∗(x).
However, this chosen initialization is mitigated by the first layer of the network which learns to set a
good initial guess for u(1). For a network with T layers, one recovers exactly the T -th iteration of
PGD if the weights are chosen constant equal to

W (t)
x =

1

ρ
B>, W (t)

u = (Id−1

ρ
B>B) , µ(t) =

λ

ρ
, with ρ = ‖B‖22 . (9)

In practice, this choice of parameters are used as initialization for a posterior training stage. In many
practical applications, one is interested in minimizing the loss (7) for a fixed B and a particular
distribution over the space of x, P . As a result, the goal of this training stage is to find parameters
Θ(T) that minimize the risk, or expected loss, E[L(x, φΘ(T)(x))] over P . Since one does not have
access to this distribution, and following an empirical risk minimization approach with a given
training set {x1, . . . xN} (assumed sampled i.i.d from P), the network is trained by minimizing

min
Θ(T)

1

N

N∑

i=1

L(xi, φΘ(T)(xi)) . (10)

Note that when T → +∞, the presented initialization in (9) gives a global minimizer of the loss for
all xi, as the network converges to exact PGD. When T is fixed, however, the output of the network
is not a minimizer of (7) in general. Minimizing this empirical risk can therefore find a weight
configuration that reduces the sub-optimality of the network relative to (7) over the input distribution
used to train the network. In such a way, the network learns an algorithm to approximate the solution
of (7) for a particular class or distributions of signals. It is important to note here that while this
procedure can accelerate the resolution the problem, the learned algorithm will only be valid for
inputs xi coming from the same input distribution P as the training samples. The algorithm might
not converge for samples which are too different from the training set, unlike the iterative algorithm
which is guaranteed to converge for any sample.

This network architecture design can be directly applied to TV regularized problems if the synthesis
formulation (5) is used. Indeed, in this case PGD reduces to the ISTA algorithm, with B = AL
and proxµg = ST(·, µ) becomes simply a soft-thresholding operator (which is only applied on the
coordinates {2, . . . k}, following the definition of R). However, as discussed in Proposition 2.1,
the conditioning of the synthesis problem makes the estimation of the solution slow, increasing the
number of network layers needed to get a good estimate of the solution. In the next section, we will
extend these learning-based ideas directly to the analysis formulation by deriving a way to obtain
exact and approximate expressions for the sub-differential of the non-separable prox-TV.

3 Back-propagating through TV proximal operator

Our two approaches to define learnable networks based on PGD for TV-regularized problems in the
analysis formulation differ on the computation of the prox-TV and its derivatives. Our first approach

5

consists in directly computing the weak derivatives of the exact proximal operator while the second
one uses a differentiable approximation.

3.1 Derivative of prox-TV

While there is no analytic solution to the prox-TV, it can be computed exactly (numerically) for 1D
problems using the taut-string algorithm (Condat, 2013a). This operator can thus be applied at each
layer of the network, reproducing the architecture described in Figure 2b. We define the LPGD-Taut
network φΘ(T)(x) with the following recursion formula

φΘ(T)(x) = proxµ(T)‖·‖TV

(
W (T)
x x+W (T)

u φΘ(T−1)(x)
)

(11)

To be able to learn the parameters through gradient descent, one needs to compute the derivatives of
(10) w.r.t the parameters Θ(T). Denoting h = W

(t)
x x+W

(t)
u φΘ(t−1)(x) and u = proxµ(t)‖·‖TV (h),

the application of the chain rule (as implemented efficiently by automatic differentiation) results in
∂L
∂h

= Jx(h, µ(t))>
∂L
∂u

, and
∂L
∂µ(t)

= Jµ(h, µ(t))>
∂L
∂u

, (12)

where Jx(h, µ) ∈ Rk×k and Jµ(h, µ) ∈ Rk×1 denotes the weak Jacobian of the output of the
proximal operator u with respect to the first and second input respectively. We now give the analytic
formulation of these weak Jacobians in the following proposition.
Proposition 3.1. [Weak Jacobian of prox-TV] Let x ∈ Rk and u = proxµ‖·‖TV (x), and denote by S
the support of z = D̃u. Then, the weak Jacobian Jx and Jµ of the prox-TV relative to x and µ can
be computed as

Jx(x, µ) = L:,S(L>:,SL:,S)−1L>:,S and Jµ(x, µ) = −L:,S(L>:,SL:,S)−1 sign(Du)S

The proof of this proposition can be found in Subsection G.1. Note that the dependency in the inputs
is only through S and sign(Du), where u is a short-hand for proxµ‖·‖TV (x). As a result, computing
these weak Jacobians can be done efficiently by simply storing sign(Du) as a mask, as it would be
done for a RELU or the soft-thresholding activations, and requiring just 2(k − 1) bits. With these
expressions, it is thus possible to compute gradient relatively to all parameters in the network, and
employ them via back-propagation.

3.2 Unrolled prox-TV

As an alternative to the previous approach, we propose to use the LISTA network to approximate the
prox-TV (3). The prox-TV can be reformulated with a synthesis approach resulting in a Lasso i.e.

z∗ = arg min
z

1

2
‖h− Lz‖22 + µ‖Rz‖1 (13)

The proximal operator solution can then be retrieved with proxµ‖·‖TV (h) = Lz∗. This problem can
be solved using ISTA, and approximated efficiently with a LISTA network Gregor and Le Cun (2010).
For the resulting architecture – dubbed LPGD-LISTA – proxµ‖·‖TV (h) is replaced by a nested LISTA
network with a fixed number of layers Tin defined recursively with z(0) = Dh and

z(`+1) = ST

(
W (`,t)
z z(`) +W

(`,t)
h ΦΘ(t) ,

µ(`,t)

ρ

)
. (14)

Here, W (`,t)
z ,W

(`,t)
h , µ(`,t) are the weights of the nested LISTA network for layer `. They are

initialized with weights chosen as in (9) to ensure that the initial state approximates the prox-TV.
Note that the weigths of each of these inner layers are also learned through back-propagation during
training.

The choice of this architecture provides a differentiable (approximate) proximal operator. Indeed,
the LISTA network is composed only of linear and soft-thresholding layers – standard tools for
deep-learning libraries. The gradient of the network’s parameters can thus be computed using classic
automatic differentiation. Moreover, if the inner network is not trained, the gradient computed with
this method will converge toward the gradient computed using Proposition 3.1 as Tin goes to∞ (see
Proposition G.2). Thus, in this untrained setting with infinitely many inner layers, the network is
equivalent to LPGD-Taut as the output of the layer also converges toward the exact proximal operator.

6

0 1 2 3 5 7 11 17 26 40
Layers t

10−2

10−1
E
[P

x
(u

(t
))
−
P
x
(u
∗)
]

0 1 2 3 5 7 11 17 26 40
Layers t

10−4

10−2

100

FISTA - synthesis

LISTA - synthesis

PGD - analysis

Accelerated PGD - analysis

LPGD-Taut

LPGD-LISTA[50]

Figure 3: Performance comparison for different regularisation levels (left) λ = 0.1, (right) λ = 0.8.
We see that synthesis formulations are outperformed by the analysis counter part. Both our methods
are able to accelerate the resolution of (20), at least in the first iterations.

Connections to inexact PGD A drawback of approximating the prox-TV via an iterative procedure
is, precisely, that it is not exact. This optimization error results from a trade-off between computational
cost and convergence rate. Using results from Machart et al. (2012), one can compute the scaling
of T and Tin to reach an error level of δ with an untrained network. Proposition G.3 shows that
without learning, T should scale as O(1

t) and Tin should be larger than O(ln(1
δ)). This scaling gives

potential guidelines to set these parameters, as one can expect that learning the parameters of the
network would reduce these requirement.

4 Experiments

All experiments are performed in Python using PyTorch (Paszke et al., 2019). We used the imple-
mentation1 of Barbero and Sra (2018) to compute TV proximal operator using taut-string algorithm.
The code to reproduce the figures is available online2.

In all experiments, we initialize u0 = A†x. Moreover, we employed a normalized λreg as a penalty
parameter: we first compute the value of λmax (which is the minimal value for which z = 0 is
solution of (5)) and we refer to λ as the ratio so that λreg = λλmax, with λ ∈ [0, 1] (see Appendix D).
As the computational complexity of all compared algorithms is the same except for the proximal
operator, we compare them in term of iterations.

4.1 Simulation

We generate n = 2000 times series and used half for training and other half for testing and comparing
the different algorithms. We train all the network’s parameters jointly – those to approximate the
gradient for each iteration along with those to define the inner proximal operator. The full training
process is described in Appendix A. We set the length of the source signals (ui)

n
i=1 ∈ Rn×k to

k = 8 with a support of |S| = 2 non-zero coefficients (larger dimensions will be showcased in the
real data application). We generate A ∈ Rm×k as a Gaussian matrix with m = 5, obtaining then
(ui)

n
i=1 ∈ Rn×p. Moreover, we add Gaussian noise to measurements xi = Aui with a signal to noise

ratio (SNR) of 1.0.

We compare our proposed methods, LPGD-Taut network and the LPGD-LISTA with Tin = 50 inner
layers to PGD and Accelerated PGD with the analysis formulation. For completeness, we also add
the FISTA algorithm for the synthesis formulation in order to illustrate Proposition 2.1 along with its
learned version.

Figure 3 presents the risk (or expected function value, P) of each algorithm as a function of the
number of layers or, equivalently, iterations. For the learned algorithms, the curves in t display the
performances of a network with t layer trained specifically. We observe that all the synthesis formula-
tion algorithms are slower than their analysis counterparts, empirically validating Proposition 2.1.

1Available at https://github.com/albarji/proxTV
2Available at https://github.com/hcherkaoui/carpet.

7

https://github.com/albarji/proxTV
https://github.com/hcherkaoui/carpet

0 1 2 3 5 7 11 17 26 40
Layers t

10−3

10−2

10−1

E
[F

u
(t

)
(z

(L
))
−
F
u

(t
)
(z
∗)
]

Trained

Untrained

20 inner layers

50 inner layers

0 1 2 3 5 7 11 17 26 40
Layers t

10−6

10−4

10−2

Figure 4: Proximal operator error comparison for different regularisation levels (left) λ = 0.1,
(right) λ = 0.8. We see that learn the trained unrolled prox-TV barely improve the performance.
More interestingly, in a high sparsity context, after a certain point, the error sharply increase.

Moreover, both of the proposed methods accelerate the resolution of (20) in a low iteration regime.
However, when the regularization parameter is high (λ = 0.8), we observe that the performance of
the LPGD-LISTA tends to plateau. It is possible that such a high level of sparsity require more than
50 layers for the inner network (which computes the prox-TV). According to Section 3.2, the error
associated with this proximity step hinders the global convergence, making the loss function decrease
slowly. Increasing the number of inner layers would alleviate this issue, though at the expense of
increased computational burden for both training and runtime. For LPGD-Taut, while the Taut-string
algorithm ensures that the recovered support is exact for the proximal step, the overall support can be
badly estimated in the first iterations. This can lead to un-informative gradients as they greatly depend
on the support of the solution in this case, and explain the reduced performances of the network in
the high sparsity setting.

Inexact prox-TV With the same data (xi)
n
i=1 ∈ Rn×m, we empirically investigate the error of

the prox-TV ε
(t)
k = Fu(t)(z(t)) − Fu(t)(z∗) and evaluate it for c with different number of layers

(T ∈ [20, 50]). We also investigate the case where the parameter of the nested LISTA in LPGD-LISTA
are trained compared to their initialization in untrained version.

Figure 4 depicts the error εk for each layer. We see that learning the parameters of the unrolled
prox-TV in LPGD-LISTA barely improves the performance. More interestingly, we observe that in a
high sparsity setting the error sharply increases after a certain number of layers. This is likely cause
by the high sparsity of the estimates, the small numbers of iterations of the inner network (between 20
and 50) are insufficient to obtain an accurate solution to the proximal operator. This is in accordance
with inexact PGD theory which predict that such algorithm has no exact convergence guarantees
(Schmidt et al., 2011).

4.2 fMRI data deconvolution

Functional magnetic resonance imaging (fMRI) is a non-invasive method for recording the brain
activity by dynamically measuring blood oxygenation level-dependent (BOLD) contrast, denoted here
x. The latter reflects the local changes in the deoxyhemoglobin concentration in the brain Ogawa et al.
(1992) and thus indirectly measures neural activity through the neurovascular coupling. This coupling
is usually modelled as a linear and time-invariant system and characterized by its impulse response,
the so-called haemodynamic response function (HRF), denoted here h. Recent developments propose
to estimate either the neural activity signal independently (Fikret et al., 2013; Cherkaoui et al., 2019b)
or jointly with the HRF (Cherkaoui et al., 2019a; Farouj et al., 2019). Estimating the neural activity
signal with a fixed HRF is akin to a deconvolution problem regularized with TV-norm,

min
u∈Rk

P (u) =
1

2
‖h ∗ u− x‖22 + λ‖u‖TV (15)

To demonstrate the usefulness of our approach with real data, where the training set has not the
exact same distribution than the testing set, we compare the LPGD-Taut to Accelerated PGD for
the analysis formulation on this deconvolution problem. We choose two subjects from the UK Bio
Bank (UKBB) dataset (Sudlow et al., 2015), perform the usual fMRI processing and reduce the
dimension of the problem to retain only 8000 time-series of 250 time-frames, corresponding to a
record of 3 minute 03 seconds. The full preprocessing pipeline is described in Appendix B. We train

8

the LPGD taut-string network solver on the first subject and Figure 5 reports the performance of
the two algorithms on the second subject for λ = 0.1. The performance is reported relatively to the
number of iteration as the computational complexity of each iteration or layer for both methods is
equivalent. It is clear that LPGD-Taut converges faster than the Accelerated PGD even on real data.
In particular, acceleration is higher when the regularization parameter λ is smaller. As mentioned
previously, this acceleration is likely to be caused by the better learning capacity of the network in a
low sparsity context. The same experiment is repeated for λ = 0.8 in Figure C.1.

0 5 10 15 20 25
Layers t

10−3

E
[P

x
(u

(t
))
−
P
x
(u
∗)
] Accelerated PGD - analysis

LPGD-Taut

Figure 5: Performance comparison (λ =
0.1) between our analytic prox-TV derivative
method and the PGD in the analysis formula-
tion for the HRF deconvolution problem with
fMRI data. Our proposed method outperform
the FISTA algorithm in the analysis formula-
tion.

5 Conclusion

This paper studies the optimization of TV-regularized problems via learned PGD. We demonstrated,
both analytically and numerically, that it is better to address these problems in their original analysis
formulation rather than resort to the simpler (alas slower) synthesis version. We then proposed two
different algorithms that allow for the efficient computation and derivation of the required prox-TV,
exactly or approximately. Our experiments on synthetic and real data demonstrate that our learned
networks for prox-TV provide a significant advantage in convergence speed.

Finally, we believe that the principles presented in this paper could be generalized and deployed in
other optimization problems, involving not just the TV-norm but more general analysis-type priors. In
particular, this paper only apply for 1D TV problems because the equivalence between Lasso and TV
is not exact in higher dimension. In this case, we believe exploiting a dual formulation (Chambolle,
2004) for the problem could allow us to derive similar learnable algorithms.

Broader Impact

This work attempts to shed some understanding into empirical phenomena in signal processing – in
our case, piecewise constant approximations. As such, it is our hope that this work encourages fellow
researchers to invest in the study and development of principled machine learning tools. Besides
these, we do not foresee any other immediate societal consequences.

Acknowledgement

We gratefully acknowledge discussions with Pierre Ablin, whose suggestions helped us completing
some parts of the proofs. H. Cherkaoui is supported by a CEA PhD scholarship. J. Sulam is partially
supported by NSF Grant 2007649.

References
P. Ablin, T. Moreau, M. Massias, and A. Gramfort. Learning step sizes for unfolded sparse coding. In

Advances in Neural Information Processing Systems (NeurIPS), pages 13100–13110, Vancouver,
BC, Canada, 2019.

F. Alfaro-Almagro, M. Jenkinson, N. K. Bangerter, J. L. R. Andersson, L. Griffanti, G. Douaud,
S. N. Sotiropoulos, S. Jbabdi, M. Hernandez-Fernandez, D. Vidaurre, M. Webster, P. McCarthy,
C. Rorden, A. Daducci, D. C. Alexander, H. Zhang, I. Dragonu, P. M. Matthews, K. L. Miller, and
S. M. Smith. Image Processing and Quality Control for the first 10,000 Brain Imaging Datasets
from UK Biobank. NeuroImage, 166:400–424, 2018.

9

À. Barbero and S. Sra. Modular proximal optimization for multidimensional total-variation regular-
ization. The Journal of Machine Learning Research, 19(1):2232–2313, Jan. 2018.

A. Beck and M. Teboulle. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse
Problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

Q. Bertrand, Q. Klopfenstein, M. Blondel, S. Vaiter, A. Gramfort, and J. Salmon. Implicit differen-
tiation of Lasso-type models for hyperparameter optimization. In International Conference on
Machine Learning (ICML), volume 2002.08943, pages 3199–3210, online, Apr. 2020.

M. Borgerding, P. Schniter, and S. Rangan. AMP-Inspired Deep Networks for Sparse Linear Inverse
Problems. IEEE Transactions on Signal Processing, 65(16):4293–4308, 2017.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed Optimization and Statistical
Learning via the Alternating Direction Method of Multipliers. Foundations and Trends in Machine
Learning, 3(1):1–122, 2011.

A. Chambolle. An Algorithm for Total Variation Minimization and Applications. Journal of
Mathematical Imaging and Vision, 20(1/2):89–97, Jan. 2004.

A. Chambolle and T. Pock. A First-Order Primal-Dual Algorithm for Convex Problems with
Applications to Imaging. Journal of Mathematical Imaging and Vision, 40(1):120–145, May 2011.

P. L. Chebyshev. Théorie Des Mécanismes Connus Sous Le Nom de Parallélogrammes. Imprimerie
de l’Académie impériale des sciences, 1853.

H. Cherkaoui, T. Moreau, A. Halimi, and P. Ciuciu. Sparsity-based Semi-Blind Deconvolution of
Neural Activation Signal in fMRI. In IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Brighton, UK, 2019a.

H. Cherkaoui, T. Moreau, A. Halimi, and P. Ciuciu. fMRI BOLD signal decomposition using a
multivariate low-rank model. In European Signal Processing Conference (EUSIPCO), Coruña,
Spain, 2019b.

P. L. Combettes and H. H. Bauschke. Convex Analysis and Monotone Operator Theory in Hilbert
Spaces. Springer, 2011.

L. Condat. A Direct Algorithm for 1D Total Variation Denoising. IEEE Signal Processing Letters,
20(11):1054–1057, 2013a.

L. Condat. A Primal–Dual Splitting Method for Convex Optimization Involving Lipschitzian,
Proximable and Linear Composite Terms. Journal of Optimization Theory and Applications, 158
(2):460–479, Aug. 2013b.

J. Darbon and M. Sigelle. Image Restoration with Discrete Constrained Total Variation Part I: Fast
and Exact Optimization. Journal of Mathematical Imaging and Vision, 26(3):261–276, Dec. 2006.

P. L. Davies and A. Kovac. Local Extremes, Runs, Strings and Multiresolution. The Annals of
Statistics, 29(1):1–65, Feb. 2001.

C. A. Deledalle, S. Vaiter, J. Fadili, and G. Peyré. Stein Unbiased GrAdient estimator of the Risk
(SUGAR) for multiple parameter selection. SIAM Journal on Imaging Sciences, 7(4):2448–2487,
2014.

M. Elad, P. Milanfar, and R. Rubinstein. Analysis versus synthesis in signal priors. Inverse Problems,
23(3):947–968, June 2007.

Y. Farouj, F. I. Karahanoglu, and D. V. D. Ville. Bold Signal Deconvolution Under Uncertain
HÆModynamics: A Semi-Blind Approach. In IEEE 16th International Symposium on Biomedical
Imaging (ISBI), pages 1792–1796, Venice, Italy, Apr. 2019. IEEE.

I. K. Fikret, C. Caballero-gaudes, F. Lazeyras, and V. D. V. Dimitri. Total activation: fMRI deconvo-
lution through spatio-temporal regularization. NeuroImage, 73:121–134, 2013.

10

R. Giryes, Y. C. Eldar, A. M. Bronstein, and G. Sapiro. Tradeoffs between Convergence Speed and
Reconstruction Accuracy in Inverse Problems. IEEE Transaction on Signal Processing, 66(7):
1676–1690, 2018.

K. Gregor and Y. Le Cun. Learning Fast Approximations of Sparse Coding. In International
Conference on Machine Learning (ICML), pages 399–406, 2010.

B. Lecouat, J. Ponce, and J. Mairal. Designing and Learning Trainable Priors with Non-Cooperative
Games. In Advances in Neural Information Processing Systems (NeurIPS), Vancouver, BC, Canada,
June 2020.

P. Machart, S. Anthoine, and L. Baldassarre. Optimal Computational Trade-Off of Inexact Proximal
Methods. preprint ArXiv, 1210.5034, 2012.

V. Monga, Y. Li, and Y. C. Eldar. Algorithm Unrolling: Interpretable, Efficient Deep Learning for
Signal and Image Processing. preprint ArXiv, 1912.10557, Dec. 2019.

T. Moreau and J. Bruna. Understanding Neural Sparse Coding with Matrix Factorization. In
International Conference on Learning Representation (ICLR), Toulon, France, 2017.

S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle, and K. Ugurbil. Intrinsic
signal changes accompanying sensory stimulation: Functional brain mapping with magnetic
resonance imaging. Proceedings of the National Academy of Sciences, 89(13):5951–5955, July
1992.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing Systems (NeurIPS), page 12,
Vancouver, BC, Canada, 2019.

R. T. Rockafellar. Monotone Operators and the Proximal Point Algorithm. SIAM Journal on Control
and Optimization, 14(5):877–898, 1976.

P. Rodríguez. Total Variation Regularization Algorithms for Images Corrupted with Different Noise
Models: A Review. Journal of Electrical and Computer Engineering, 2013:1–18, 2013.

L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms.
Physica D: Nonlinear Phenomena, 60(1-4):259–268, Nov. 1992.

M. Schmidt, N. Le Roux, and F. R. Bach. Convergence Rates of Inexact Proximal-Gradient Methods
for Convex Optimization. In Advances in Neural Information Processing Systems (NeurIPS), pages
1458–1466, Grenada, Spain, 2011.

J. W. Silverstein. On the eigenvectors of large dimensional sample covariance matrices. Journal of
Multivariate Analysis, 30(1):1–16, July 1989.

P. Sprechmann, A. M. Bronstein, and G. Sapiro. Learning Efficient Structured Sparse Models. In
International Conference on Machine Learning (ICML), pages 615–622, Edinburgh, Great Britain,
2012.

P. Sprechmann, R. Litman, and T. Yakar. Efficient Supervised Sparse Analysis and Synthesis
Operators. In Advances in Neural Information Processing Systems (NeurIPS), pages 908–916,
South Lake Tahoe, United States, 2013.

C. Sudlow, J. Gallacher, N. Allen, V. Beral, P. Burton, J. Danesh, P. Downey, P. Elliott, J. Green,
M. Landray, B. Liu, P. Matthews, G. Ong, J. Pell, A. Silman, A. Young, T. Sprosen, T. Peakman,
and R. Collins. UK Biobank: An Open Access Resource for Identifying the Causes of a Wide
Range of Complex Diseases of Middle and Old Age. PLOS Medicine, 12(3):e1001779, Mar. 2015.

J. Sulam, A. Aberdam, A. Beck, and M. Elad. On Multi-Layer Basis Pursuit, Efficient Algorithms and
Convolutional Neural Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 2019.

11

Z. Tian, X. Jia, K. Yuan, T. Pan, and S. B. Jiang. Low-dose CT reconstruction via edge-preserving
total variation regularization. Physics in Medicine and Biology, 56(18):5949–5967, Sept. 2011.

R. Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical
Society: Series B (statistical methodology), 58(1):267–288, 1996.

R. J. Tibshirani and J. Taylor. The solution path of the generalized lasso. The Annals of Statistics, 39
(3):1335–1371, June 2011.

B. Xin, Y. Wang, W. Gao, and D. Wipf. Maximal Sparsity with Deep Networks? In Advances in
Neural Information Processing Systems (NeurIPS), pages 4340–4348, 2016.

12

A Network training process strategy

Here, we give a more detailed description of the training procedure used in Section 4.

Optimization algorithm for training In our experiments, all networks are trained using Gradi-
ent Descent (GD) with back-tracking line search. The gradients are computed using automatic
differentiation in Pytorch (Paszke et al., 2019) for most layers and the weak Jacobian proposed
in Subsection 3.1 for the back-propagation through the prox-TV. The learning is stopped once a
step-size of ηlimit = 10−20 is reached in the back-tracking step. For LPGD-LISTA, the weights of
the inner LISTA computing the prox-TV are trained jointly with the parameters of the outer unrolled
PGD.

Weight initialization All layers for an unrolled algorithm are initialized using the values of weights
in (9) that ensure the output of the layer with T layers corresponds to the output of T iterations of the
original algorithm. To further stabilize the training, we use a layer-wise approach. When training a
network with T1 + T2 layers after having trained a network with T1 layers, the first T1 layers in the
new network are initialized with the weights of the one trained previously, and the remaining layers
are initialized using weights value from (9). This ensures that the initial value of the loss for the new
network is smaller than the one from the shallower one if the unrolled algorithm is monotonous (as it
is the case for PGD).

B Real fMRI data acquisition parameters and preprocessing strategy

In this section, we complete the description of the resting-state fMRI (rs-fMRI) data used for the
experiment of Fig. 5. For this experiment, we investigate the 6 min long rs-fMRI acquisition
(TR=0.735 s) from the UK Bio Bank dataset (Sudlow et al., 2015). The following pre-processing
steps were applied on the images: motion correction, grand-mean intensity normalisation, high-pass
temporal filtering, Echo planar imaging unwarping, Gradient Distortion Correction unwarping and
structured artefacts removal by Independant Components Analysis. More details on the processing
pipeline can found in Alfaro-Almagro et al. (2018).

On top of this preprocessing, we perform a standard fMRI preprocessing proposed in the python
package Nilearn3. This standard pipeline includes to detrend the data, standardize it and filter high
and low frequencies to reduce the presence of noise.

C Real fMRI data experiment addition results

Here, we provide an extra experiment for Subsection 4.2 with λ = 0.8λmax and recall the previous
one with λ = 0.1λmax to help performance comparison in different regularization regime.

0 5 10 15 20 25
Layers t

10−3

E
[P

x
(u

(t
))
−
P
x
(u
∗)
] Accelerated PGD - analysis

LPGD-Taut

(a) λ = 0.1λmax

0 5 10 15
Layers t

10−8

E
[P

x
(u

(t
))
−
P
x
(u
∗)
] Accelerated PGD - analysis

LPGD-Taut

(b) λ = 0.8λmax

Figure C.1: Performance comparison between LPGD-Taut and iterative PGD for the analysis
formulation for the HRF deconvolution problem with fMRI data. Our proposed method outperform
the FISTA algorithm in the analysis formulation. We notice a slight degradation of the acceleration in
this high sparsity context.

3https://nilearn.github.io

13

We can see that the performance drop in the higher sparsity setting compared to the performances
with λ = 0.1λmax but LPGD-Taut still outperforms iterative algorithms for this task on real data.

D Computing λmax for the TV regularized problem

The definition of λmax is the smallest value for the regularisation parameter λ such that the solution
of the TV -regularized problem is constant. This corresponds to the definition of λmax in the Lasso,
which is the smallest regularisation parameter such that 0 is solution. We here derive its analytic
value which is used to rescale all experiments. This is important to define an equiregularisation set
for the training and testing samples, to have a coherent and generalizable training.
Proposition D.1. The value of λmax for the TV-regularized problem is

λmax = ‖A>(Ac1− x)‖∞

where c =

∑p
i=1 Sixi∑p
i=1 S

2
i

and Si =
∑k
j=1Ai,j .

Proof. We first derive the constant solution of the `2-regression problem associated to (1). For c ∈ R,
we consider a constant vector c1. The best constant solution for the `2-regression problem is obtained
by solving

min
c∈R

fx(c) =
1

2
‖x− cA1‖22 . (16)

The first order optimality condition in c reads

∇fx(c) =

n∑

i=1

(

k∑

j=1

Ai,j)(c

k∑

j=1

Ai,j − xi) =

n∑

i=1

Si(cSi − xi) = 0 , (17)

and thus c =

∑p
i=1 Sixi∑p
i=1 S

2
i

.

Then, we look at the conditions on λ to ensure that the constant solution c1 is solution of the
regularized problem. The first order conditions on the regularized problem reads

0 ∈ ∂Px(c1) = A>(Ac1− x) + λ∂‖Dc1‖1 (18)

Next, we develop the previous equality:

∀j ∈ {2, . . . k}, A>j (Ac1− x) ∈ λ∂(‖Dc1‖1)j = [−λ, λ] since Dc1 = 0 (19)

Thus, the constrains are all satisfied for λ ≥ λmax, with λmax = ‖A>(Ac1 − x)‖∞ and as c is
solution for the unregularized problem reduced to a constant, c1 is solution of the TV-regularized
problem for all λ ≥ λmax.

E Dual formulation

In this work, we devote our effort in the analysis formulation depicted in (1). In this section, we
propose to investigate the dual formulation corresponding to (1) in order to rationalize our choice to
focus on approaches that solve the prox-TV with an iterative method.

Dual derivation First, we derive the dual of the analysis formulation for the prox-TV.
Proposition E.1. [Dual re-parametrization for the analysis formulation TV problem (1)]

Considering the primal analysis problem (with operator and variables defined as previously)

Px(u) =
1

2
‖x−Au‖22 + λ‖Du‖1 (20)

14

Then, the dual formulation reads:

p = −min
v

1

2
‖A†>D>v‖22 − v>DA†x (21)

s.t. ‖v‖∞ ≤ λ (22)

Proof. Defining, f and g, such as f(u) = 1
2‖x − Au‖22 and g(u) = λ‖u‖1 and by denoting p the

minimum of (20) w.r.t u, the problem reads:

p = min
u

f(u) + g(Du) (23)

With the Fenchel-Rockafellar duality theorem, we derive the dual re-parametrization:

p = −min
v

f∗(−D>v) + g∗(v) (24)

Note, that in this case we have the equality with p since the problem (1) is µ-strongly convex, with
µ = 1

2 .

We have g∗(v) = −minu g(u)− v>u. With a component-wise minimization, we obtain g∗(v)i =
δ|vi|≤λ with δ being the convex indicator. Thus, we deduce that g∗(v) = δ‖v‖∞≤λ.

Then, we have f∗(v) = −minu f(u) − v>u. By cancelling the gradient we obtain: f∗(v) =
1
2‖A†

>
v‖22 + v>A†x

This allows use to conclude the demonstration. Note that, if we set A = Id, we obtain the same
problem as (Barbero and Sra, 2018; Chambolle, 2004).

Performance comparison We propose to compare the performance of different iterative solvers to
assess their performance.

We generate n = 1000 times series to compare the performance between the different algorithms.
We set the length of the source signals (ui)

n
i=1 ∈ Rn×k to k = 40 with a support of |S| = 4

non-zero coefficients. We generate A ∈ Rm×k as a Gaussian matrix with m = 40, obtaining then
(ui)

n
i=1 ∈ Rn×p. Moreover, we add Gaussian noise to measurements xi = Aui with a signal to noise

ratio (SNR) of 1.0.

We select the PGD and its accelerated version with the synthesis primal formulation (5) (“Synthesis
primal A/PGD“), the PGD and its accelerated version with the analysis primal formulation (“Analysis
primal A/PGD“). We consider also the PGD and its accelerated version (Chambolle, 2004), for the
analysis dual formulation (“Analysis dual A/PGD“) and finally we add the primal/dual algorithm
(Condat, 2013b) for the analysis primal formulation (“Analysis primal dual GD“).

Figure E.1 a proposes performance comparison for an exhaustive selection of the algorithm used
to solve (1). We see that the analysis primal formulation proposes the best performance for each
regularization parameter. We notice that the Condat (2013b) provides good performance too. Finally,
the synthesis primal formulation along with the analysis dual formulation provides the slowest
performance. Those results reinforces our choice to focus on the PGD of the analysis primal
formulation.

F Proof for Section 2

F.1 Convergence rate of PGD for the synthesis formulation (6)

Proof. The convergence rate of ISTA for the synthesis formulation reads

S(z(t))− S(z∗) ≤ ρ̃

2t
‖z(0) − z∗‖22 . (25)

15

0 1 2 4 10 21 46 100 215 464 1000
Iterations t

10−6

10−4

10−2

100
E
[P

x
(u

(t
))
−
P
x
(u
∗)
]

Synthesis primal PGD

Synthesis primal APGD

Analysis primal PGD

Analysis primal APGD

Analysis dual PGD

Analysis dual APGD

Analysis primal-dual GD

(a) λ = 0.1λmax

0 1 2 4 10 21 46 100 215 464 1000
Iterations t

10−6

10−4

10−2

100

E
[P

x
(u

(t
))
−
P
x
(u
∗)
]

Synthesis primal PGD

Synthesis primal APGD

Analysis primal PGD

Analysis primal APGD

Analysis dual PGD

Analysis dual APGD

Analysis primal-dual GD

(b) λ = 0.8λmax

Figure E.1: Performance comparison between the iterative solver for the synthesis and analysis
formulation with the corresponding primal, dual or primal-dual re-parametrization. We notice that
the primal analysis formulation provides the best performance in term of iterations. We also observe
that the higher the regularization parameter, the faster the performance for each algorithm.

We use S(z(t)) = P (Lz(t)) = P (u(t)) to get the correct left-hand side term. For the right hand side,
we use z(0) = D̃u(0), and z∗ = D̃u∗, which gives ‖z(0)−z∗‖22 = ‖D̃(u(0)−u∗)‖22 ≤ 4‖u(0)−u∗‖22.
The last majoration comes from the fact that ‖D̃‖22 ≤ 4, as shown per Lemma F.1. This yields

P (u(t))− P (u∗) ≤ 2ρ̃

t
‖u(0) − u∗‖22 . (26)

F.2 Computing the spectrum of L

Lemma F.1. [Singular values of L] The singular values of L ∈ Rk×k are given by

σl =
1

2 cos(πl
2k+1)

, ∀l ∈ {1, . . . , k} .

Thus, ‖L‖2 = 2k+1
π + o(1).

Proof. As L is invertible, so is L>L. To compute the singular values σl of L, we will compute the
eigenvalues µl of (L>L)−1 and use the relation

σl =
1√
µl

(27)

With simple computations, we obtain

Mk = (L>L)−1 = L−1(L>)−1 = D̃D̃> =

1 −1 0 . . .
−1 2 −1 0 . . .

.
0 −1 2 −1

−1 2

(28)

This matrix is tri-diagonal with a quasi-toepliz structure. Its characteristic polynomial Pk(µ) is given
by:

Pk(µ) = |µ Id−Mk| =

∣∣∣∣∣∣∣∣∣∣

µ− 1 1 0 . . .
1 µ− 2 1 0 . . .

.
0 1 µ− 2 1

0 1 µ− 2

∣∣∣∣∣∣∣∣∣∣

(29)

= (µ− 1)Qk−1(µ)−Qk−2(µ) (30)

16

where (30) is obtained by developing the determinant relatively to the first line and Qk(µ) is the
characteristic polynomial of matrix M̃k equal to Mk except for the the top left coefficient which is
replaced by 2

M̃k =

2 −1 0 . . .
−1 2 −1 0 . . .

.
0 −1 2 −1

0 −1 2

(31)

Using the same development as (30), one can show that Qk verifies the recurrence relationship

Qk(µ) = (µ− 2)Qk−1(µ)−Qk−2(µ); Q1(µ) = 2− µ, Q0(µ) = 1 . (32)

Using this with (30) yields
Pk(µ) = Qk(µ) +Qk−1(µ) (33)

With the change of variable ν = µ−2
2 and denoting Uk(ν) = Qk(2 + 2ν), the recursion becomes

Uk(ν) = 2νUk−1(ν)− Uk−2(ν); U1(ν) = 2ν, U0(µ) = 1 . (34)

This recursion defines the Chebyshev polynomials of the second kind (Chebyshev, 1853) which
verifies the following relation

∀θ ∈ [0, 2π], Uk(cos(θ)) sin(θ) = sin((k + 1)θ) . (35)

Translating this relationship to Qk gives

∀θ ∈ [0, 2π], Qk(2 + 2 cos(θ)) sin(θ) = sin((k + 1)θ) . (36)

Using this in (33) shows that for θ ∈ [0, 2π[Pk verify

Pk(2 + 2 cos(θ) sin(θ) = sin((k + 1)θ) + sin(kθ) . (37)

The equation
sin((k + 1)θ) + sin(kθ) = 0 , (38)

has l solution in [0, 2π[that are given by θl = 2πl
2k+1 for l ∈ {1, . . . n}. As for all l, sin(θl) 6= 0, the

values µl = 2 + 2 cos(θl) = 4 cos2(πl
2k+1) are the roots of Pk and therefor the eigenvalues of Mk.

Using (27) yields the expected value for σl.

The singular value of L is thus obtain for l = k and we get

‖L‖2 = σk =
1

2 cos(πk
2k+1)

=
1

2 cos(π2 (1− 1
2k+1))

, (39)

=
1

2 sin(π2
1

2k+1)
=

2k + 1

π
+ o(1) . (40)

Where the last approximation comes from 1
sin(x) = 1/x+ o(1) when x is close to 0.

F.3 Proof for Proposition 2.1

Proposition 2.1. [Lower bound for the ratio ‖AL‖
2
2

‖A‖22
expectation] Let A be a random matrix in

Rm×k with i.i.d normally distributed entries. The expectation of ‖AL‖22/‖A‖22 is asymptotically
lower bounded when k tends to∞ by

E
[‖AL‖22
‖A‖22

]
≥ 2k + 1

4π2
+ o(1)

Proof. Finding the norm of AL can be written as

‖AL‖22 = max
x∈Rk

xL>A>ALx; s.t. ‖x‖2 = 1 (41)

From Lemma F.1, we can write L = W>ΣV with V , W two unitary matrices and Σ a diagonal
matrix with Σl,l = σl for all l ∈ {1, .., k}.

17

First, we consider the case where A>A is a rank one matrix with A>A = ‖A‖22u1u
>
1 , with vector u1

uniformly sampled from the `2-ball and fixed ‖A‖2. In this case, as W is unitary, w1 = Wu1 is also
a vector uniformly sampled from the sphere. Also as V is unitary, it is possible to re-parametrize (41)
by y = V x such that

max
y∈Rk

‖A‖22y>Σw1w
>
1 Σy; s.t. ‖y‖2 = 1 (42)

This problem can be maximized by taking y = Σu1

‖Σu1‖2 , which gives

‖AL‖22 = ‖A‖22‖Σw1‖22 (43)
Then, we compute the expectation of ‖Σw1‖22 with respect with w1, a random vector sampled in the
`2 unit ball,

Ew1
[‖Σw1‖22] =

k∑

l=1

σ2
l E[u2

1,i] =

k∑

l=1

1

4 cos2 πl
2k+1

1

k
=

1

2π

k∑

l=1

π

2k

1

cos2 πl
2k+1

. (44)

Here, we made use of the fact that for a random vector u1 on the sphere in dimension k, E[u1,i] = 1
k

In the last part of the equation, we recognize a Riemann sum for the interval [0, π2 [. However,
x 7→ 1

cos2(x) is not integrable on this interval. As the function is positive and monotone, we can still
use the integral to highlight the asymptotic behavior of the series. For k large enough, we consider
the integral

∫ π
2−

π
2k+1

0

1

cos2(x)
dx =

[
sin(x)

cos(x)

]π
2−

π
2k+1

0

=
cos π

2k+1

sin π
2k+1

=
2k + 1

π
+ o(1) (45)

Thus, for k large enough, we obtain

Ew1

[
‖Σw1‖22

]
=

1

2π

(
2k + 1

π
+ o(1)

)
(46)

Thus, we get

E
[‖AL‖22
‖A‖22

]
=

(
k + 1

2

π2
+ o(1)

)
(47)

This concludes the case where A>A is of rank-1 with uniformly distributed eigenvector.

In the case where A>A is larger rank, it is lower bounded by ‖A‖22u1u
>
1 where u1 is its eigenvector

associated to its largest eigenvalue, since it is psd. Since A>A is a Whishart matrix, its eigenvectors
are uniformly distributed on the sphere (Silverstein, 1989). We can thus use the same lower bound as
previously for the whole matrix.

G Proof for Section 3

G.1 Proof for Proposition 3.1

Proposition 3.1. [Weak Jacobian of prox-TV] Let x ∈ Rk and u = proxµ‖·‖TV (x), and denote by

S the support of z = D̃u. Then, the weak Jacobian Jx and Jµ of the prox-TV relative to x and µ can
be computed as

Jx(x, µ) = L:,S(L>:,SL:,S)−1L>:,S and Jµ(x, µ) = −L:,S(L>:,SL:,S)−1 sign(Du)S

First, we recall Lemma G.1 to weakly derive the soft-thresholding.

Lemma G.1 (Weak derivative of the soft-thresholding; Deledalle et al. 2014). The soft-thresholding
operator ST : R × R+ 7→ R defined by ST(t, τ) = sign(t)(|t| − τ)+ is weakly differentiable with
weak derivatives

∂ ST

∂t
(t, τ) = 1{|t|>τ} , and

∂ ST

∂τ
(t, τ) = − sign(t) · 1{|t|>τ} ,

where

1{|t|>τ} =

{
1, if |t| > τ,

0, otherwise.

18

A very important remark here is to notice that if one denote z = ST(t, τ), one can rewrite these weak
derivatives as

∂ ST

∂t
(t, τ) = 1{|z|>0} , and

∂ ST

∂τ
(t, τ) = − sign(z) · 1{|z|>0} . (48)

Indeed, when |t| > τ , |z| = |t| − τ > 0 and conversely, |z| = 0 when |t| < τ . Moreover, when
|t| > τ , we have sign(t) = sign(z) and thus the two expressions for ∂ ST

∂τ match.

Using this Lemma G.1, we now give the proof of Proposition 3.1.

Proof. The proof is inspired from the proof from Bertrand et al. (2020, Proposition 1). We denote
u(x, µ) = proxµ‖·‖TV (x), hence u(x, µ) is defined by

u(x, µ) = arg min
û

1

2
‖x− û‖22 + µ‖û‖TV (49)

Equivalently, as we have seen previously in (5), using the change of variable û = Lẑ and minimizing
over ẑ gives

min
ẑ

1

2
‖x− Lẑ‖2 + µ‖Rẑ‖1 . (50)

We denote by z(x, µ) the minimizer of the previous equation. Thus, the solution u(x, µ) of the
original problem (49) can be recovered using u(, µ) = Lz(x, µ). Iterative PGD can be used to solve
(50) and z(x,mu) is a fixed point of the iterative procedure. That is to say the solution z verifies

{
z1(x, µ) = z1(x, µ)− 1

ρ (L>(Lz(x, µ)− x))1 ,

zi(x, µ) = ST
(
zi(x, µ)− 1

ρ (L>(Lz(x, µ)− x))i,
µ
ρ

)
for i = 2 . . . k .

(51)

Using the result from Lemma G.1, we can differentiate (51) and obtain the following equation for the
weak Jacobian Ĵx(x, µ) = ∂z

∂x (x, µ) of z(x, µ) relative to x

Ĵx(x, µ) =

1
1{|z2(x,µ)|>0}

...
1{|zk(x,µ)|>0}

�

[
(Id−1

ρ
L>L)Ĵx(x, µ) +

1

ρ
L> Id

]
. (52)

Identifying the non-zero coefficient in the indicator vectors yields
{

Ĵx,Sc(x, µ) = 0

Ĵx,S(x, µ) = (Id− 1
ρL
>
:,SL:,S)Ĵx,S(x, µ) + 1

ρL
>
:,S .

(53)

As, L is invertible, so is L>:,SL:,S for any support S and solving the second equations yields the
following

Ĵx,S = (L>:,SL:,S)−1L>:,S (54)

Using u = Lz and the chain rules yields the expecting result for the weak Jacobian relative to x,
noticing that as Ĵx,Sc = 0, LĴx = L:,S Ĵx,S .

Similarly, concerning, Ĵµ(x, µ), we use the result from Lemma G.1 an differentiale (51) and obtain
Ĵµ(x, µ) = ∂z

∂µ (x, µ) of z(x, µ) relative to µ

Ĵµ(x, µ) =

1
1{|z2(x,µ)|>0}

...
1{|zk(x,µ)|>0}

�

[
(Id−1

ρ
L>L)Ĵµ(x, µ)

]
+

1

ρ

1
− sign(z2(x, µ))1{|z2(x,µ)|>0}

...
− sign(zk(x, µ))1{|zk(x,µ)|>0}

 .

(55)

19

Identifying the non-zero coefficient in the indicator vectors yields

{
Ĵµ,Sc(x, µ) = 0

Ĵµ,S(x, µ) = Ĵµ,Sc(x, µ)− 1
ρL
>
:,SL:,S Ĵµ,Sc(x, µ)− 1

ρ sign(zS(x, µ)) .
(56)

As previous, solving the second equation yields the following

Ĵµ,S = −(L>:,SL:,S)−1 sign(zS(x, µ)) (57)

Using u = Lz and the chain rules yields the expecting result for the weak Jacobian relative to µ,
noticing that as Ĵµ,Sc = 0.

G.2 Convergence of the weak Jacobian

Proposition G.2. Linear convergence of the weak Jacobian We consider the mapping z(Tin) :
, µRk × R+ 7→ Rk defined where z(Tin)(x) is defined by recursion

z(t)(x, µ) = ST (z(t−1)(x, µ)− 1

‖L‖22
L>(Lz(t−1)(x, µ)− x),

µ

‖L‖22
. (58)

Then the weak Jx = L∂z
(Tin)

∂x and Jµ = L∂z
(Tin)

∂µ of this mapping relative to the inputs x and µ
converges linearly toward the weak Jacobian Jx and Jµ of proxµ‖·‖TV (x) defined in Proposition 3.1.

This mapping defined in (58) corresponds to the inner network in LPGD-LISTA when the weights of
the network have not been learned.

Proof. As L is invertible, problem (50) is strongly convex and have a unique solution. We can thus
apply the result from Bertrand et al. (2020, Proposition 2) which shows the linear convergence of
the weak Jacobian Ĵx = ∂z(Tin)

∂x and Ĵµ = ∂z(Tin)

∂µ for ISTA toward Ĵx and Ĵµ of the synthesis
formulation of the prox. Using the linear relationship between the analysis and the synthesis
formulations yields the expected result.

G.3 Estimating Tin and T to achieve δ error

Using inexact proximal gradient descent results from Schmidt et al. (2011) and Machart et al. (2012),
we compute the scaling of Tin and T to achieve a given error level δ > 0.
Proposition G.3. [Scaling of T and Tin w.r.t the error level δ] Let δ the error defined such as
Px(u(T))− Px(u∗) ≤ δ.
We suppose there exists some constants C0 ≥ ‖u(0) − u∗‖2 and C1 ≥ max` ‖u(`) − proxµ

ρ
(u(`))‖2

Then, T the number of layers for the global network and Tin the inner number of layers for the
prox-TV scale are given by

Tin =
ln 1

δ + ln 6
√

2ρC1

ln 1
1−γ

and T =
2ρC2

0

δ

with ρ defined as in (2)

Proof. As discussed by Machart et al. (2012), the global convergence rate of inexact PGD with Tin
inner iteration is given by

Px(u(T))− Px(u∗) ≤

ρ

2T

‖u(0) − u∗‖2 + 3

T∑

`=1

√
2(1− γ)Tin‖u(`−1) − proxµ

ρ
(u(`−1))‖22

ρ

2

, (59)

20

where γ is the condition number for L i.e.
cos(π

2k+1)

sin(π
2k+1) .

We are looking for minimal parameters T and Tin such that the error bound in (59) is bellow a certain
error level δ.

We consider the case where there exists some constants C0 ≥ ‖u(0) − u∗‖2 and C1 ≥ max` ‖u(`) −
proxµ

ρ
(u(`))‖2 upper bounding how far the initialization can be compared to the result of the global

problem and the sub-problems respectively.
We denote α1 = 3

√
2
ρC1. The right hand side of (59) can be upper bounded by as

ρ

2T

‖u(0) − u∗‖2 + 3

T∑

`=1

√
2(1− γ)Tin‖u(`−1) − proxµ

ρ
(u(`−1))‖22

ρ

2

≤ ρ

2T

(
C0 + α1T (1− γ)Tin/2

)2

(60)

Then, we are looking for T, Tin such that this upper bound is lower than δ, i.e.

ρ

2T

(
C0 + α1T (1− γ)Tin/2

)2

≤ δ (61)

⇔
(
C0 + α1T (1− γ)Tin/2

)2

− 2δ

ρ
T ≤ 0 (62)

⇔
(
C0 + α1T (1− γ)Tin/2 −

√
2δ

ρ

√
T

)(
B + α1T (1− γ)Tin/2 +

√
2δ

ρ

√
T

)

︸ ︷︷ ︸
≥0

≤ 0 (63)

⇔C0 + α1T (1− γ)Tin/2 −
√

2δ

ρ

√
T ≤ 0 (64)

(65)

Denoting α2 =
√

2δ
ρ and X =

√
T , we get the following function of X and Tin

f(X,Tin) = α1(1− γ)Tin/2X2 − α2X + C0 (66)

The inequality f(X,Tin) ≤ 0 has a solution if and only if α2
2 − 4C0α1(1− γ)Tin/2 ≥ 0 i.e.

Tin ≥ 2
ln

α2
2

4α1C0

ln 1− γ

Taking the minimal value for Tin i.e. Tin = 2
ln

α2
2

4α1C0

ln 1−γ =
ln 1
δ+ln 6

√
2ρC1

ln 1
1−γ

yields

f(X,Tin) =
α2

2

4C0
X2 − α2X + C0 =

α2
2

4C0
(X − 2C0

α2
)2

for X = 2C0

α2
=
√

2ρC0√
δ

i.e. T =
2ρC2

0

δ .

21

	Introduction
	Solving TV-regularized problems
	Synthesis formulation
	Unrolled iterative algorithms

	Back-propagating through TV proximal operator
	Derivative of prox-TV
	Unrolled prox-TV

	Experiments
	Simulation
	fMRI data deconvolution

	Conclusion
	Network training process strategy
	Real fMRI data acquisition parameters and preprocessing strategy
	Real fMRI data experiment addition results
	Computing lambda max for the TV regularized problem
	Dual formulation
	Proof for Section 2
	Convergence rate of PGD for the synthesis formulation
	Computing the spectrum of
	Proof for Proposition 2.1

	Proof for Section 3
	Proof for Proposition 3.1
	Convergence of the weak Jacobian
	Estimating Tin and T to achieve given error

