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Abstract—Physically Unclonable Functions (PUFs) have been 

addressed nowadays as a potential solution to improve the security 

in authentication and encryption process of Cyber Physical 

Systems. The research on PUF is actively growing due to its 

potential of being secure, easily implementable and expandable, 

using considerably less energy. Depending on the application, the 

size of a PUF Challenge-Response Pair (CRP) set can be different. 

Applications that demand frequent use of PUF, require 

enrollment of a very large set of CRPs per PUF unit. This for 

resource constraint ecosystems, especially in IoT edge device 

authentication, can become a challenge. In this work our aim is to 

put spotlight on the prediction power of trained Neural Network 

models, constructed using Deep Learning techniques, to replace 

the traditional usage of CRP set tables. Potentially, the trained 

Neural Networks for that purpose require very small set of CRPs 

per PUF unit for enrollment (training) and can predict a 

considerably larger set of CRPs for a given PUF. Different 

implementation of Neural Network based PUF authentication 

potentially exist, to which we point out and explain the pros and 

cons. In addition, we will also discuss other benefits of conducting 

Deep Learning for enrollment, such as being resilient to instability 

of PUF CRP, and a Deep Learning based PUF enrollment can be 

utilized to implement robust key generation for encryption. 

Keywords—Physically unclonable Function (PUF), Deep 

Learning, Challenge Response Pair (CRP), Neural Network (NN), 

Enrollment 

I. INTRODUCTION 

The popularity of Physically Unclonable Functions (PUFs) 
has been reflected in the abundance contributions in academia 
and companies conducting this technology to provide a robust 
secure infrastructure for authentication [1], [2] and/or key 
generation [3] .  

PUF  in digital electrical and electronic devices refers to 
functional components, either intrinsic or implemented, on 
hardware,  which have exactly the same architecture, but output 
differently, compared to one another, based on the same input 
[4]. The characteristic of PUF are based on a Challenge-
Response mechanism. PUF architectures usually have a vector 
input, which is the challenge, and has an output vector, which is 
the response of the PUF. For a given Challenge, there is of 
course a Response. Noting that it is expected in theory that the 
Response to a Challenge is unique per PUF unit. By this 
definition then, the Challenge-Response Pair (CRP) can be used 
to authenticate a PUF enabled device [4]. 

To employ PUF, a designer should be certain that the 
intrinsic behavior of the PUF, per PUF unit, satisfies their 
application. To do so, parameters such randomness, uniqueness, 
diffuseness  and the reliability of the collected CRP 
corresponding implemented PUF hardware should be 
studied[5], [6]. Commonly, the PUF Challenge space is large 
enough to build any CRP, there exists a considerable chance that 
a Response for a given Challenge is unstable. Therefore, the 
selection of CRPs for an optimal CRP set per PUF unit should 
be conducted delicately, to uphold the optimal value for the 
mention parameters. This happens when the two physical 
quantities (that are compared to generate the response) have very 
similar values, and metastability happens in the comparator. 
These responses are not useful in the protocols for 
authentication, and even less for generating secret keys. 
Therefore, each CRP is tested multiple times or dedicated 
procedures must be used [7], [8]  to prove stability. And finally, 
the unstable CRPs are not considered in the final CRP set.  

The number of CRPs, measured and stored, is also an 
important factor, which differs based on the type of PUF, and 
also the application using the PUF [9], [10]. Generally, there are 
two types of PUFs, strong PUFs and weak PUFs. The main 
difference between these two types is the number of stored CRP, 
wherein for strong PUF, the number of stored CRP is 
considerably higher. There are many applications existing that 
rely on using Strong PUFs, and in such applications preserving 
the identity of PUF units is a common concern. For instance, it 
has been discussed in  [11] that reusing the same Challenge-
Response Pair, raises the likelihood of attacks such as Replay 
attack and Impersonation attack. Thus, to prevent this, PUF 
CRPs in such systems are preferred to be used only once.  

The case of measuring large number of CRPs is also relevant 
for characterizing the behavior of PUF units under different 
environmental situations, for which the measurement of CRP 
subsets under different environmental states, such as varied 
temperature, or the effect of aging, is conducted, which then 
leads to construction of an even larger CRP dataset [12], [13]. 
Measuring this amount of knowledge could be a challenge, 
especially for cases in which PUF units targeted for 
authentication are highly populated. Moreover, another 
challenge could be with the storage of the CRP sets and 
managing them during authentication [14]. Especially if the 
population of PUF devices for authentication is high and 
demanding on CRP extraction, either for authentication or 
encryption purposes is frequent and high.  
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Fig. 1 is an example of an IoT, where authentication of edge 
devices is distributed rather centralized. And it is ever closer to 
the edge of the ecosystem. Part of the definition of such topology 
is that the authenticators themselves are defined relatively 
resource constraint. Therefore, needing a careful usage of 
energy and storage on memory.   

While the CRP storage of PUF is not mentioned to be of a 
concern in early stages of the development of the technology, 
with rapid growth of population of devices relying on PUF 
technology for their authentication and encryption purposes, 
especially with increasing complexity of PUF architecture, the 
CRP dataset enrollment and storage will face its own challenges. 
We believe at that time the challenges would be some as we 
mentioned in the following, which in turn lead to increase in 
time of CRP dataset enrollment and size of CRP datasets: 

• Increased complexity of PUF architecture 

• Inclusion of different operational states 

• Aiming for a reliable, hence stable CRP set 

To prevent such challenges to take effect, a new technique 
should be used to replace traditional PUF enrollment. In other 
words, it could be potentially more effective to construct a data-
model of the PUF unit, instead of a huge CRP dataset (which we 
refer to as M set). The reference model is built using a subset of 
the CRP dataset with all possible CRPs of a given PUF unit, 
which we refer to as the M set. However, the reference model 
then can reflect the larger set, possibly all within the M set. To 
consider this reference model an eligible substitution, we 
assume that the construction of it requires considerably smaller 
number of CRPs, compared to that of a CRP set needed 
according to a given application which utilizes the PUF. Also, 
we should make sure that deploying this model in an actual 
ecosystem is also practically acceptable, in terms of computation 
overhead and memory storage. 

To this end, we propose using Deep Learning modeling as 
an efficient modeling technique. We made this proposal based 
on our observation of number of recent works that conducted 
Deep Learning modeling to clone PUFs [15]–[17]. In most of 
these works, DL models are assumed to be trained by an 
adversary using leaked information, and so far, the models have 
achieved high accuracy in cloning the PUF.  

However, in our case, if DL modeling is to be conducted, 
further optimization is required to reach to the highest accuracy. 
That, however, can be achieved in our case, since we are on the 
manufacturers side thus having access to enough amount of 
knowledge to further increase the optimality of our DL models. 

In this work we will discuss the potential of Deep Learning 
Modeling used for PUF CRP enrollment. We will discuss 
different implementations of PUF, such as SRAM based PUF 
and Arbiter PUFs, as well as their application and how Deep 
Learning can potentially be used to facilitate enrollment for each 
architecture, as well as other benefits of enrollment based on 
Neural network models. 

 The rest of this work will be as followed. Section II presents 
the preliminaries of this work. In section III we will talk about 
how deep learning can in various ways be conducted to model 
PUF on an authenticator system, and what would be the benefits 
of doing that compared to the traditional way of storing CRP 
tables. In section IV we will discuss also the challenges we see 
forward with our proposed methods and how we also think of 
solutions that can overcome these challenges.  

II. PERLIMINARIES 

Section II.A describes the basic structure of Deep Learning 

briefly, with a deeper look into the Neural Network 

architectures which are potentially fit for our context, i.e., to be 

used for modeling PUF. Section II.B presents some of the 

commonly used and discussed PUF architectures.  

A. Deep Learning models 

Deep Learning is a subset of Machine learning and is defined 
based on the structure and behavior of Artificial Neural 
Networks (ANNs). It’s been proven widely that ANNs are 
capable models for applications requiring complex data 
classification [18]. The field of ANN models has been 
generously maturated. Common architectures such as Multi-
Layer Perceptron (MLP), Convolutional Neural Network 
(CNN), Recurrent Neural Network (RNN), Auto Encoders 
(AEs), etc. have been defined for more than 2 decades and have 
been so far conducted in various industrial, academical, and 
medical applications. The basic block of all ANNs is the 
Neuron. And the idea of ANNs is the composition of a 
population of Neurons, in layers, which is referred to as Neural 
Network. Fig. 2. shows the basic structure of one Neuron.  

 

Fig. 1. Examples of schematics of two Architecturally Hierarchical IoT system with edge devices and authenticators, (a) with central authentication and (b) 

with distributed authentication. (c) is distributed authentication where Neural Networks (NN) instead of CRP tables are used for authentication. 

 



 

Fig. 2. Diagram showing the functionality of a single neuron. 

An Artificial Neuron model is a computational unit, which 
receives a vector of input I of size n, and produces v which is the 
dot product of I to a vector of weight values w of size n. The 
value of v is then passed to a function f () called the activation 
function. f (v) will then define the output of the Neuron based 
the value of v. Figure_2 shows a single perceptron. Common 
Activation functions are ReLu, Sigmoid, Step Function, etc. 
[18].  

A Neural Network is a composition of a group of Neurons, 
ordered in layers. Various compositions are possible to make 
different Neural Networks. For instance, CNN is used for feature 
extraction in images with high dimentiality [19], as well as 
object detection, etc. Auto Encoder is used for regeneration 
purposes from noisy data. While in (c), the Recurrent Neural 
Network is optimal for audio processing, and generally robust 
for feature extraction with respect to temporal situation. 

B. Common PUF architectures 

The definition of Physically Unclonable Function has been 
coined for almost two decades [20], [21]. Since then, several 
architectures, as well as many variations of each has been 
proposed. SRAM based PUF for instance, is found quite feasible 
in implementation, due to using the most commonly found 
hardware component in almost all digital devices, the internal 
memory [22]. This intrinsic type of PUF is found potential for 
both authentication and encryption key generation. Another 
example of a common PUF architecture, is the family of Arbiter 
PUFs (APUFs) [6]. APUFs are quite feasible in hardware 
implementation, such as on FPGA. They are low cost, energy 
efficient, and potentially known as strong PUFs. Yet they are 
faced with the challenge of being susceptible initially to 
modeling attacks. On the other hand, there are Ring Oscillator 
(RO) PUF, which compared to APUFs, are more resilient to 
modeling attacks, due to their relatively more complicated 
design, but consecutively also, demand more energy for 
computation [13]. There exists also other architecturally 
innovative PUFs such as PUFs based on Neural Networks, but 
to keep this work compact and relative to the context, we 
decided to move forward with two of the former mentioned 
architectures. In the coming section, we will discuss the different 
possible implementation of Deep Learning modeling for SRAM 
based PUF and Arbiter PUFs enrollment, respectively, the pros 
and cons, as well as the benefits it features for PUF enrollment. 

III. IMPLEMENTATION 

The implementation of an ideally working DL based PUF 
enrollment can differ relative to the PUF architecture. For 
instance, let’s consider the family of Arbiter PUFs. Quite 
number of works has been conducted describing DL modeling 
attacks against this family of PUFs. Wherein the models are 
commonly architected to replicate a PUF unit behavior, based 
on a set of leaked CRPs. The results are consequently binary 
classifiers which predict a response for a given challenge, to 

replicate a single block of an Arbiter PUF. Following this 
modeling technique for authentication, an obvious proposal 
would be to train compact NN models per PUF unit. While the 
potential exists for predicting a large set of CRPs with a trained 
NN which requiring only a small set of CRPs to be trained highly 
accurate, on the other hand, the issue with storage may remain 
active. Since a model for a PUF unit is saved on an authenticator 
server. One can say, if the size of the stored trained model on 
server is considerably smaller than a fixed CRP LUT with the 
same capacity, then the tradeoff is tolerable.  

A better implementation of this technique however can 
potentially be realized. That would be in following of a recent 
work by Karimian et al. in [14] which has taken the approach 
towards using DL modeling for PUF enrollment. This work uses 
CNNs to classify PUF units directly, by reading their Response, 
which is a large 2d matrix of all cells of the embedded DRAM. 
Noting that the response comes from a DRAM based PUF. 
Therefore, any feature extracted from the response matrix, 
solely belong to the physically unique characteristic of the 
DRAM, during training the CNN. Conducting the same method 
for Arbiter based PUFs will not highly likely result the same 
way, if classification is based on one CRP. That is since the 
population of Responses are not enough to extract specific 
features from. However, to mitigate this we have a proposal. 

Our proposal is to implement a classification of PUF units, 
but taking in a range of CRP, which we refer to as ranged-CRP 
which is ordered in a 2d matrix. Fig. 3 shows an example of a 
ranged-CRP frame sent from a PUF unit.  

 

Fig. 3. Implementation of enrollment/authentication using ranged-CRP frame 

and Karimian CNN [] for classification of PUF units. 

 The reason why we stress on a range of CRP, rather one, is 
that in one CRP, any characteristic drawn from it, would majorly 
be weighed on the Challenge section of the CRP, since the 
response is only one bit. This would in turn, increase the training 
process, while needing also a large CRP set on the other hand, 
to achieve a high accuracy in classification. On the other hand, 
a ranged-CRP frame can more likely reflect potential 
characteristics to a PUF unit from the obvious variations in the 
frame. Since these variations are now comprising multiple 
response bits, as well as some of the challenge bits. While a large 
chunk of the frame belongs to the fixed challenge bits, which 
during training is considered as white space, from machine 
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learning terms, and consequently less relative to effect 
classification.  

The realization of this idea, is potential not just to reduce the 
size of stored reference DL model on the authenticator server, 
compared to the former proposal, but also equally potential to 
require only a small CRP set to train a highly accurate NN 
model. We speculate also that the ranged-CRP frame has a lesser 
complexity compared to that of a 2d memory map extracted 
from a DRAM, following the work of Karimian et al at [14]. 
Moreover, we think that even a Multi-Layer Perceptron (MLP) 
can be used for modeling, which compared to CNNs, are easier 
to train and less resource demanding. 

Following the work of Karimian et al [14], the realization of 
DL based PUF enrollment has been discussed to be vulnerable 
to man-in-the middle attacks. That is, as we assume, to be due 
to the fact that at each time, the same memory frame is sent for 
authentication, leaving the chance for attackers to read enough 
variations of the same frame during the transmission, and 
gradually be capable of model-building a clone of the memory. 
To mitigate this issue, we propose sending positionally different 
chunks of memory for classification from a PUF unit to server 
at each time. For this, we propose the use of challenge vector as 
address bit to address a chunk of memory and send it to server. 
In complementary, what is to be addressed further is the 
questions of how classification can be done if we are not taking 
in input the entire map of memory, but just a chunk of it. For 
that we propose the following. 

During the enrollment of DRAM PUF units, an entire map 
of the DRAM is extracted from each PUF unit, formed in a 2d-
matrix, and sent to a CNN for training. Note the classification is 
to identify a PUF unit from its memory map. That is, similar to 
the work of Karimian et al in[14]. In addition to CNN, an Auto 
Encoder Neural Network [23] can be used to regenerate a 
reference memory map per PUF unit. The reference map is also 
saved on the server. 

Furthermore, during authentication, a chunk of memory, 
which is addressed by a challenge vector coming from server to 
PUF unit, will be sent from PUF unit to server as response. On 
the server side, after receiving the response for a given 
challenge, we multiply or replace each corresponding bit of the 
chunk on the reference map model, with the bits on the received 
response. The result is a new map which then is sent to CNN for 
classification. If classified correctly, the response corresponding 
the challenge is valid, which means it belongs to the PUF unit. 
Thus, the PUF is authenticated. Additionally, the potential to 
only train and classify with the addressed chunk of the memory, 
without using the reference Image, can be further studied to save 
more storage. 

For this method, we need to carefully consider the size of the 
memory chunks are extracted. First, we should consider that the 
memory chunk should not be too small so that its effect is not 
that impactful to the classification  We also don’t want to make 
it large enough so that attackers who collect the large size 
memory chunks are potentially capable to build their clone 
memory model. We also want the memory chunk to be 
efficiently sized so that for cases of using them only one time, 
or limited times, we have the capacity, by the proportion of the 
size of the entire DRAM memory to the size of the extracted 

memory chunk, that is resulting a large number of possible 
challenges. This limitation of course from security point of view 
is beneficial since it leaves very few clues of the entire memory 
behavior per memory chunk for attackers to exploit on. But the 
chunk is large enough that, for instance, if it comes from a clone 
device, it has the impact to disturb the classification. In addition, 
the definition of the size of the memory chunk is also relative to 
how frequent an application would want to use the PUF. Fig. 4. 
shows the implementation of the idea. 

 

Fig. 4. Implementation of re-mapping response chunk on reference memory 

map and classifying the new map. Also, the training of CNN based on 
self-filtered memory frame. (a) is the Enrollment process of a PUF unit, 

and (b) shows the authentication of a puf unit with the proposed method. 

IV. DISCUSSION 

In this section we will discuss the existing challenges we 
found impactful on Deep Learning Modeling for PUF 
enrollment. The base of the proposal to use DL modeling as a 
new method to enroll PUF, is training or optimizing a Neural 
Network model towards accurately predicting all possible 
responses a PUF model per challenge, or either directly 
classifying a PUF unit based on its response. In the following, 
we will discuss about the parameters that are important in 
providing a robust CRP set for DL based PUF enrollment. 

A. Requirements of a DL based PUF CRP set 

In practice, during authentication, as mentioned, a Neural 
Network is trained by a small fraction of CRPs from this space. 
Different factures here should be taken into consideration. One 
for instance is, the proportion of set sizes of (Training_set + 
Validation_set) / (Desired Predictable_set). While training 
accuracy based on the Training set assures the Neural Network 
is trained to optimally classify CRPs of the training set, or 
classifying a PUF unit, high Validation accuracy on the other 
hand, determines that the network can efficiently predict CRPs, 
or the correctness of CRPs, outside of the Training set. This, 
however, is a relative measurement. Potentially, Randomness of 
the (Training set + Validation set) plays an important role on 
definition that how far an addressed accurately trained; of 
course, based on validation accuracy, can predict CRPs outside 
Trainig_Validation set. 
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CONCLUSIONS  

 In this work we discussed that this new solution can 
greatly decrease the number of CRPs during enrollment, due to 
the prediction power of neural networks. We showed that 
initially, deep learning modeling has been studied and conducted 
as an adversary model to clone PUF architectures, and we 
discussed that highly accurate models can be trained based on 
only leaked information of PUF, which has been already 
practically proven in previous works. We then mentioned the 
work of Karimian et al [14], as being one of the first and resent 
works addressing the utilization deep learning for DRAM based 
PUF enrollment. Following their work, we also proposed how 
the method can be utilized for another type of PUF architecture, 
the family of Arbiter based PUF. We proposed a technique to 
extract more physically unique features for a PUF unit, during 
authentication, so to take maximum benefit of DL based 
classification. Furthermore, for the work of Karimian et al [14], 
in order to operate a less leaking transmission of challenge 
response during authentication, we proposed sending small parts 
of memory, thus if leaked, lead to no major clue for attackers to 
enable them to construct a clone model. We then showed how 
this modification can be adapted to  arimian’ CNN based 
classification model. The future of this work will be for us to 
perform experiments on these proposed solutions and find the 
limits of their implementation, as well as practically proving the 
methods. In our future experiments, our goal is to include more 
than just the direct response of PUF, but also the environmental 
and temporal state of enrolled PUF units, in order to build a more 
robust model for authentication. 
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