
HAL Id: hal-02954040
https://hal.science/hal-02954040v1

Preprint submitted on 30 Sep 2020 (v1), last revised 21 Jul 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Task Assignment to Heterogeneous Federated
Learning Devices

Laércio Lima Pilla

To cite this version:
Laércio Lima Pilla. Optimal Task Assignment to Heterogeneous Federated Learning Devices. 2020.
�hal-02954040v1�

https://hal.science/hal-02954040v1
https://hal.archives-ouvertes.fr

Optimal Task Assignment to Heterogeneous
Federated Learning Devices

Laércio L. Pilla
Univ. Paris-Saclay, CNRS, Laboratoire de Recherche en Informatique (LRI)

Orsay, France
pilla@lri.fr

Abstract—Federated Learning provides new opportunities for
training machine learning models while respecting data privacy.
This technique is based on heterogeneous devices that work
together to iteratively train a model while never sharing their
own data. Given the synchronous nature of this training, the
performance of Federated Learning systems is dictated by the
slowest devices, also known as stragglers. In this paper, we
investigate the problem of minimizing the duration of Federated
Learning rounds by controlling how much data each device
uses for training. We formulate this problem as a makespan
minimization problem with identical, independent, and atomic
tasks that have to be assigned to heterogeneous resources with
non-decreasing cost functions while respecting lower and upper
limits of tasks per resource. Based on this formulation, we
propose a polynomial-time algorithm named OLAR and prove
that it provides optimal schedules. We evaluate OLAR in an
extensive experimental evaluation using simulation that includes
comparisons to other algorithms from the state of the art and
new extensions to them. Our results indicate that OLAR provides
optimal solutions with a small execution time. They also show
that the presence of lower and upper limits of tasks per resource
erase any benefits that suboptimal heuristics could provide in
terms of algorithm execution time.

Index Terms—Task Assignment, Scheduling, Federated Learn-
ing, Makespan Minimization, Proof of Optimality, Simulation.

I. INTRODUCTION

Federated Learning (FL) is a recent machine learning tech-
nique focused on data privacy and security [1], [2], [3]. In a
nutshell, FL involves a group of participating devices (mostly
heterogeneous mobile devices) working together to iteratively
train a machine learning model under the coordination of a
central FL server. The server starts the training by sending
an initial model to the devices. Each device trains the model
with its own local dataset — which is never shared — and
sends the new model’s weights to the server. The server then
aggregates all updates, averages them, and sends the new
model weights to the devices. This process is repeated for a
fixed number of rounds, or until the model convergences to a
target accuracy. Overall, this training scheme is also known for
making efficient use of the network [3] (as raw data is never
communicated) and has been applied at the scale of millions
of devices [2].

The performance (total training time) of Federated Learning
is mainly dictated by two factors: the time each training round
takes (round duration), and the number of rounds executed.
We will focus on the former, as the latter can be affected by
factors such as the model and quality of available data, which

are outside the scope of this work. The time a device takes on
training (its cost) is related to its communication time with the
server and its computation time (which depends on the device’s
characteristics, the machine learning model, and the amount
of local data). As each round requires a synchronization with
the central FL server, the duration of a round is dictated by the
slowest participating devices, also known as stragglers [4], [5],
[6]. The main issue with stragglers is that they can be much
slower than other devices due to the heterogeneous nature of
mobile devices. For this reason, improving the performance
of a training round requires minimizing the execution time
on the slowest devices, which can be seen as a makespan
minimization problem [7].

Although communication times have been thought to dom-
inate the execution time [1], [3], recent research has shown
that, in practice, computation is the bottleneck [6]. In order to
control the computation time of a device, one may control how
much data (e.g., number of mini-batches) it uses for training
based on a lower and upper limit. This can create more data
imbalance in the system, but this has not been an issue in
previous works [1], especially when data is independent and
identically distributed (i.i.d.) [6]. Lower limits can enforce that
all devices participate at a certain level in the training, while
upper limits can be set by the devices (to due limited data or
processing time available for training) or by the server (e.g.,
to avoid draining the battery of a device).

Deciding how much data each device should use for training
in a round is akin to assigning tasks to resources. Given
that scheduling problems are often NP-Complete or NP-
Hard [7], [8], one may expect that this problem also falls in
these complexity classes and try to propose heuristics to find
approximate solutions. However, in this work we show that an
optimal assignment of data to FL devices can be found in poly-
nomial time. We present this problem in a similar formulation
to the problem of scheduling identical and independent tasks
(1-D data) on heterogeneous resources [8], and we propose
an algorithm — named OLAR — that computes an optimal
assignment. In this context, our main contributions are:
⋆ We present a formulation of this optimization problem

with lower and upper limits, and arbitrary, non-decreasing
cost functions per resource.

⋆ We propose a polynomial-time algorithm named OLAR,
and we prove its optimality.

⋆ We evaluate the quality of the assignment and the

scheduling time of algorithms from the state of the
art over varied scheduling scenarios (number of tasks,
resources, kinds of resource cost functions, presence or
absence of limits).

⋆ We provide the algorithms’ implementations and experi-
mental data for use and reproduction of the results [9].

The remaining of this paper is organized as follows: Sec-
tion II presents related work on FL and scheduling. Section III
describes the problem formulation, our algorithm and its proof
of optimality. Section IV details our experimental evaluation,
and Section V presents concluding remarks.

II. RELATED WORK

There is a large volume of work on the improvement of
Federated Learning mechanisms. We point our readers to the
survey by Lim et al. [3] for a comprehensive view on the
subject. We will focus our attention here to works that can be
compared to or that can benefit from OLAR. We also discuss
some points related to device profiling (to obtain costs) and
the use of lower and upper limits of tasks (data) per device.

Standard FL. FederatedAveraging (FedAvg) was proposed
by Brendan McMahan et al. [1] when the concept of FL was
introduced. Given an equal distribution of data among devices,
FedAvg was shown to reduce the number of rounds for con-
vergence when compared to a baseline distributed stochastic
gradient descent mechanism. As it focuses on the number of
rounds for convergence, FedAvg does not optimize the rounds’
duration. Given its importance, we consider FedAvg with an
equal distribution of data as a baseline for comparison in our
experiments (Section IV). We also extend it to consider lower
and upper limits of tasks per resource.

Resource selection. Traditionally, the FL server chooses a
subset of resources uniformly at random for a round [1]. Other
strategies for choosing resources, such as round robin, pro-
portional to the signal-to-noise ratio [10], and age-based [11]
have been proposed to try to accelerate convergence. OLAR
can work together with these approaches by assigning tasks
to the chosen resources and minimizing round duration.

Nishio and Yonetani [12] aim to limit round duration by
selecting only a subset of devices that can participate. Given a
deadline to the round, they propose a greedy heuristic (FedCS)
to maximize the number of participant devices. Similarly,
Shi et al. [13] propose a greedy heuristic to minimize round
duration by choosing participating devices that do not pose a
problem for communication. Xia et al. [14] employ Reinforce-
ment Learning (RL) to choose devices that help minimize the
total training time. In contrast, OLAR minimizes the round
duration by selecting how much data each of the participating
devices should use.

Other objectives and decisions. Wang et al. [6], [15]
propose algorithms to minimize the training time and accuracy
loss by controlling the assignment of tasks to resources (as we
do). For the scenario with i.i.d. data, they propose Fed-LBAP,
an algorithm that uses binary search to find a minimal round
duration that fits all data required. We examine Fed-LBAP
and an adaptation that considers lower and upper limits in

Section IV. Likewise, Yang et al. [16] use a similar binary
search scheme to try to minimize the total training time, but
based on parameters of bandwidth, transmission time, and
target accuracy.

Zhan et al. [17] focus on minimizing a combination of total
training time and energy consumption using RL to control the
processor clock frequency on the devices. Similarly, Anh et
al. [18] use RL to decide how much data and energy each
device should use in order to minimize the total training time
and energy consumption on devices. We plan to investigate if
OLAR can be adapted to consider energy in the future.

Deadline determination. Li et al. [19] propose a two-level
mechanism (SmartPC) that aims to balance the total training
time and the energy consumption on the devices. At a global
level, it tries to determine a deadline for the round that should
be respected by a part of the devices. In this context, OLAR
could be trivially adapted to maximize the number of tasks can
be assigned to resources while respecting the chosen deadline.

Distributed Learning. Mohammadi Amiri and Gunduz [5]
present scheduling algorithms and bounds to solve issues with
stragglers in the context of Distributed Learning. Although
Distributed Learning is similar to FL in some ways, it requires
data to be shared among devices. As sharing goes against the
principles of FL, their algorithms cannot be applied in our
context. In any case, OLAR could be adapted to this scenario
(e.g., by adding the cost of data transmission) and still provide
optimal assignments.

Asynchronous strategies. Some approaches avoid strag-
glers by removing the synchronization barrier used at each
round. Damaskinos et al. [20] introduced a new algorithm
named Adaptive Stochastic Gradient Descent (AdaSGD) in
order to do asynchronous learning. Sprague et al. [4] also pro-
pose their own asynchronous FL algorithm. Ways to translate
the benefits of OLAR to asynchronous FL are left as future
work.

Cost profiling. Collecting the cost information from devices
(i.e., the time they take to communicate and train with a certain
amount of data) could be seen as a barrier to implementing
cost-aware scheduling algorithms. Nonetheless, tools such as
I-Prof [20] could be utilized to solve this issue. Additionally,
Wang et al. [15] have shown that cost information can be
profiled with a high degree of accuracy.

Lower and upper limits. The effects of setting lower and
upper limits to the number of tasks per resource have not been
studied previously. Yet, we see that limits can play an integral
part in FL systems. Upper limits come naturally from limited
storage, processing time, or battery in mobile devices. Limits
could be use to enforce fairness constraints [14], as lower
limits enforce device participation, while upper limits avoid
an overrepresentation of data from some better-performing
devices [3]. Besides, when setting incentives to attract devices
to participate in training [21], the use of limits can help define
the scope of utilization of the devices for users.

III. OPTIMAL SCHEDULING ALGORITHM

The presentation of our novel scheduling algorithm for FL
is organized as follows: we start by presenting some important
definitions and explanations. We then present our scheduling
algorithm and an analysis of its complexity. We finish by
proving its optimality.

A. Definitions

Our scheduling problem can be formulated similarly to the
problem of scheduling identical and independent tasks (1-D
data) on heterogeneous resources ([8], Chapter 6.1). Consider
T ∈ Na number of identical, independent, and atomic tasks
(e.g., data units, mini-batches), and a set R of n resources
(e.g., mobile devices). Each resource i ∈ R has its own lower
and an upper limit on the number of tasks it can compute (Li ∈

N and Ui ∈ N, respectively), and its own non-decreasing cost
function Ci(⋅) ∶ N → R≥0 that informs the cost of assigning a
number of tasks to it. Our problem is to find a task assignment
Ai ∈ N to each resource i ∈ R that minimizes the makespan
Cmax (Eq. (1)) while assigning all tasks among the resources
(Eq. (2)) and respecting the lower and upper limits (Eq. (3)).
Throughout this text, we use the indexes i and k for resources
and tasks, respectively.

Cmax ≔ max
i∈R

Ci(Ai) (1)

∑
i∈R

Ai = T (2)

Li ≤ Ai ≤ Ui, ∀i ∈ R (3)

This scheduling problem is based on a few assumptions and
ideas. First, we consider that the cost functions are independent
among resources, but they are all non-decreasing (Eq. (4)). For
FL, the cost functions include the time taken to communicate
the model between the FL server and the device, and the time
to train the model with a certain amount of data. Second,
for there to be feasible solutions, the sums of the lower and
upper limits have to surround T (Eq. (5)), and the lower
limit for a resource cannot be greater to its upper limit
(Li ≤ Ui, ∀i ∈ R). We could enforce that no resource would
receive more tasks than its upper limit by setting the cost of
any exceeding tasks as infinity (Eq. (6)). Third and final, there
may be multiple optimal solutions for a given scenario. Our
focus is to find one of them, and not to list them all.

Ci(k) ≤ Ci(k + 1), ∀i ∈ R, k ∈ N (4)

l ≤ T ≤ u, l ≔ ∑
i∈R

Li, u ≔ ∑
i∈R

Ui (5)

Ci(k) = +∞, ∀i ∈ R, k > Ui (6)

In order to make it easier to explain and prove the optimality
of our algorithm, we extend our notation to consider the
makespan (Eq. (7)) and the assignment of tasks to resources

(Eq. (8)) at step t ≤ T . At this step, t tasks have been assigned
to resources. Accordingly, CT

max = Cmax.

C
t
max ≔ max

i∈R
Ci(At

i) (7)

∑
i∈R

A
t
i = t (8)

B. Algorithm

Our algorithm, named OLAR for OptimaL Assignment of
tasks to Resources, is similar to the solution of to the problem
of scheduling identical and independent tasks (1-D data) on
heterogeneous resources ([8], Algorithm 6.2), but it includes
different costs functions, and limits. OLAR employs dynamic
programming to compute an optimal final assignment by itera-
tively finding optimal assignments for an increasing number of
tasks. Its main idea is based on the notion of assigning the next
task t + 1 to a resource j that would minimize the makespan
C

t+1
max (Eq. (9)). OLAR is further detailed in Algorithm 1.

j = arg min
i∈R

Ci(At
i + 1) (9)

Algorithm 1: OLAR
Data: Tasks T , Resources R, Cost functions Ci(⋅),

Lower and Upper limits Li and Ui (i ∈ R)
Result: Assignment of tasks to resources Ai (i ∈ R)

1 h← min-heap() ▷ Heap sorted by cost

2 for i ∈ R do
3 Ai ← Li ▷ Resources start at their lower limit

▷ Checks if the resource can receive more tasks

4 if Ai < Ui then
▷ Inserts the cost of the next task on i

5 h.push(Ci(Ai + 1), i)
6 end
7 end
8 for t from l + 1 to T do

▷ Extracts the next optimal assignment (Eq. (9))

9 (c, j) ← h.pop()
10 Aj ← Aj + 1 ▷ Assigns t to j

▷ Checks if the resource can receive more tasks

11 if Aj < Uj then
▷ Inserts the cost of the next task on j

12 h.push(Cj(Aj + 1), j)
13 end
14 end

Algorithm 1 starts by setting up a minimum heap to store
the costs of adding a task to each resource (line 1). It then
initializes the assignment of tasks to resources with their lower
limits (line 3), and adds the cost of assigning their next task
to the heap if the resource can receive more tasks (line 5).
Its main loop (lines 8–14) makes the optimal assignment of
one task at a time by getting one of the resources with the
minimum cost to receive a new task (line 9), assigning the
additional task to it (line 10), and updating its cost on the heap

T = 6, R = {0, 1, 2}
L0 = 0, L1 = 0, L2 = 1,
U0 = 7, U1 = 2, U2 = 7,
C0 = {0.5, 2, 4, 7, 9, 11, 14}
C1 = {0, 1, 3, 5, 7, 9, 11}
C2 = {1, 6, 10, 15, 22, 23, 27}

(a) Parameters of the example.

Cost (time)
1 2 3 4 5 6 7 8 9

0

1

2

0

0

1

1

1 2

2

2

3

3

4

4 5

R
es

ou
rc

es

(b) Gantt chart of the costs to map a number
of tasks to each resource (italics, in blue).

Cost (time)
1 2 3 4 5 6 7 8 9

0

1

2

0

0

1

1

1 2

2

3

R
es

ou
rc

es 3 5 6

4

1

2

(c) Gantt chart with the order the tasks are
assigned with OLAR (italics, in red).

Fig. 1: Example of task assignment respecting lower and upper limits with OLAR.

(line 12) if it can still receive more tasks. After all iterations of
the main loop, all tasks will have been assigned to a resource
and the algorithm finishes.

Fig. 1 illustrates an example of a schedule computed by
OLAR. The parameters in Fig. 1a indicate that each resource
has its own cost function, and that resource 2 must receive
at least one task, while resource 1 cannot receive more than
two. The Gantt chart in Fig. 1b shows that resource 2 could
be a straggler in this scenario, as its costs are much larger
than the costs of resources 0 and 1. For instance, if we were
to assign two tasks to each resource, the makespan would be
dictated by C2(2) = 10. In contrast, OLAR would start by
first assigning one task (1 in Fig. 1c) to resource 2 to respect
its lower limit (lines 2–7 in Algorithm 1). Then OLAR would
follow its second loop and assign one task (2) to resource 1,
one task (3) to resource 0, and another task (4) to resource 1.
At this moment, OLAR would stop considering resource 1 for
new assignments as it has reached its upper limit (line 11). It
follows assigning the remaining tasks (5 and 6) to resource 0,
as it has the minimum cost. This results in an assignment with
Cmax = 7, which is optimal considering the restrictions.

1) Complexity: The time complexity of OLAR can be
computed as follows: the initialization loop (lines 2–7) runs
for n iterations; each of its iterations includes an insertion in
the heap, which takes Θ(1) for a Binomial heap; this makes
the complexity of the first loop to be Θ(n). Meanwhile, the
main loop (lines 8–14) runs for Θ(T) iterations; each iteration
includes a removal from the heap (Θ(log n)), while the other
operations are Θ(1). Combining these two loops, we can
conclude that OLAR is Θ(n + T log n), or Θ(T log n) for
T ≥ n.

We can notice that the general behavior of Algorithm 1 is
similar to sorting the costs of assigning up to T tasks to each
resource, and then iteratively traversing the resulting array
to assign the k

th task to the resource with the k
th-smallest

cost. Nevertheless, merging n sorted arrays of size T would
require O(nT log T) operations. OLAR avoids this complexity
by keeping a minimum heap of n elements only, and by
iteratively removing the minimum and inserting a new item
to the heap T times only. Moreover, given that finding an
optimal solution requires the minimum of n values T times,
we present Conjecture 1.1. This conjecture could be disproved

by finding an optimal algorithm that does not require minimum
values or sorting1.

Conjecture 1.1. The lower bound of any optimal sequential
algorithm for this scheduling problem is Ω(n log n) for n = T .

The space complexity of OLAR is dominated by the pres-
ence of the n cost functions of size T + 1, as all other data
structures are Θ(n). This results in a space complexity of
Θ(nT). Nevertheless, if we know the functions that generate
the costs for each resource, we could compute Ci(k) during
execution. If each cost could be computed in Θ(1), then the
space complexity of OLAR would be reduced to Θ(n) with
no change to its asymptotic time complexity.

C. Proof of optimality

We prove that OLAR is optimal by first proving that the
base cases are optimal in Lemma 1.2 and Corollary 1.2.1, and
then by proving that each step of the algorithm is optimal in
Lemma 1.3. These proofs are combined in a proof by induction
in Theorem 1.4.

Lemma 1.2. C0
max is optimal.

Proof. The proof is trivial. As there is no assignment decision
done before or at this step, the only (therefore, optimal)
solution is assigning zero tasks to all resources.

Corollary 1.2.1. Cl
max is optimal.

Proof. Similarly to Lemma 1.2, there is only one assignment
of l tasks to resources that respects the lower limits of tasks for
all resources (i.e., Al

i = Li,∀i ∈ R), therefore it is optimal.

Lemma 1.3. If Ct
max is optimal, Ct+1

max is optimal.

Proof. By contradiction. Assume there is a resource r ∈ R \
{j} (j is defined in Eq. (9)) such that mapping task t+ 1 to r

1We require comparison-based sorting algorithms because costs are non-
negative real numbers.

leads to a smaller makespan than mapping it to j. This would
lead to the following inequality for their makespans:

max (max
i∈R\{r}

Ci(At
i), Cr(At

r + 1)) <

max (max
i∈R\{j}

Ci(At
i), Cj(At

j + 1))
(10)

Using the non-decreasing property of Ci(⋅) in Eq. (4),
the associative property of the maximum operator, and the
definition of Ct

max in Eq. (7), we can rewrite Eq. (10) as

max (max
i∈R\{r}

Ci(At
i),max(Cr(At

r), Cr(At
r + 1))) <

max (max
i∈R\{j}

Ci(At
i),max(Cj(At

j), Cj(At
j + 1)))

(11)

max (max
i∈R

Ci(At
i), Cr(At

r + 1)) <

max (max
i∈R

Ci(At
i), Cj(At

j + 1))
(12)

max (Ct
max, Cr(At

r + 1)) < max (Ct
max, Cj(At

j + 1)) (13)

We can split the analysis of Eq. (13) in two parts:
Part 1. Ct

max ≥ Cj(At
j + 1). This would mean

C
t
max ≤ Cr(At

r + 1) < Ct
max

or

Cr(At
r + 1) ≤ Ct

max < C
t
max

Both require Ct
max < C

t
max, which is a contradiction.

Part 2. Ct
max < Cj(At

j + 1). Using the definition of j in
Eq. (9), this would mean

C
t
max ≤ Cr(At

r + 1) < min
i∈R

Ci(At
i + 1)

or

Cr(At
r + 1) ≤ Ct

max < min
i∈R

Ci(At
i + 1)

Both require Cr(At
r + 1) < min

i∈R
Ci(At

i + 1) and, as r ∈ R,
this is a contradiction.

As all parts are contradictions, this means that Eq. (10) is
false, so Ct+1

max is optimal.

Theorem 1.4. The makespan Cmax computed by OLAR is
optimal.

Proof. By induction. Lemma 1.2 and Corollary 1.2.1 prove the
optimality for the base case, while Lemma 1.3 proves it for
the inductive step, so Cmax is optimal.

IV. EXPERIMENTAL EVALUATION

With the interest of comparing how OLAR and other
scheduling algorithms from the state of the art perform for
Federated Learning, we have organized an experimental eval-
uation based on simulation. All the data and code necessary to
run the experiments and their analysis was implemented using
Python 3 and made available online for the community [9]. We
chose Python due to its ease of implementation (with libraries
such as numpy) and execution (which facilitates the reproduc-
tion of our experiments). Whenever possible, we used numpy
array operations to optimize the schedulers. OLAR also uses
heapq for its minimum heap. As this module implements
binary heaps, we adapted OLAR to use a heapify operation
instead of inserting costs iteratively (line 5 in Algorithm 1) to
keep its first loop within O(n) operations.

Our experiments include four other scheduling algorithms,
four kinds of cost functions for the resources, and a com-
bination of scheduling scenarios with varying numbers of
resources, tasks, and others. We compare the algorithms based
on the quality of their schedules (achieved makespans) and
their execution times for what represents scheduling a single
round of training. We evaluate these metrics for scenarios
without and with the inclusion of lower and upper limits of
tasks per resource. We explain each of these points in the
next sections. Additional information related to the execution
platform and special parameters are detailed in Appendix A.

A. Scheduling Algorithms
Besides OLAR, our experiments include four limit-unaware

algorithms:
1) FedAvg [1] distributes the tasks equally among the

resources in a cost-oblivious manner. It serves as our
baseline for comparisons.

2) Fed-LBAP [6] was created to schedule i.i.d. data fol-
lowing ideas related to the linear bottleneck assignment
problem (hence, LBAP). The algorithm sorts the costs
for all resources and numbers of tasks, and then per-
forms a binary search to find the minimum cost that
includes the assignment of all tasks. Each step of the
binary search verifies if enough tasks could be assigned
respecting the current maximum cost.

3) Proportional(k) considers the cost of mapping k tasks
to each resource. These costs are used to compute an
inverse proportion of the number of tasks to be received
(the higher the cost, the less tasks a resource receives).
If any tasks are missing due to rounding errors, they are
assigned one by one to the resources in order.

4) Random(seed) generates a random number uniformly in
the interval [1, 10) for each resource based on a random
number generator seed. It uses the sum of all random
numbers to find the proportion of tasks each resource
will receive. If any tasks are missing due to rounding
errors, it randomly adds them to the resources.

Given the need to set the values of Ai (i ∈ R), FedAvg,
Proportional, and Random are O(n) sequential algorithms.
Meanwhile, Fed-LBAP does O(nT log nT) operations [6].

B. Kinds of Resources (Cost Functions)

We simulate resources (devices) whose costs follow four
possible functions. All include one or more parameters (α, β,
γ) that are randomly chosen from a uniform distribution in the
interval [1, 10).

1) Recursive follows a function f(x) = f(x − 1) + αx,
where αx is randomly chosen for each value of x. On
average, the cost of assigning an additional task to this
kind of resource is 5.5. This makes it the most constant
of the tested cost functions.

2) Linear follows a function f(x) = α + βx.
3) Nlogn follows a function f(x) = α + βx log x.
4) Quadratic follows a function f(x) = α + βx + γx2.

C. Summary of the Experimental Scenarios

We ran experiments to measure the achieved makespans and
algorithm execution times with and without limits of tasks
per resources. Each experiment follows a slightly different
organization:
• Scenario 1 focuses on the makespan achieved when no

limits are considered; it serves to compare OLAR to the
other scheduling algorithms in their original environment.

• Scenario 2 measures the execution time of the algorithms
without the use of limits; it is intended to compare the
times of the best implementation of each algorithm.

• Scenario 3 captures the makespans when lower and upper
limits of tasks per resources are present; it shows how the
algorithms behave after being extended to handle limits.

• Scenario 4 profiles the execution times of the extended
algorithms; it emphasizes how lower and upper limits can
affect the algorithm’s performance.

We present the details of each scenario and their respective
results in the next sections.

D. Scenario 1: (achieved makespan, no limits)

In this scenario, the algorithms had to schedule from 1, 000
to 10, 000 tasks (in increments of 100) over 10 and 100
resources. The heterogeneous resources are organized in five
groups: all recursive costs, all linear costs, etc, and one mixed
group composed of the same proportion from the four cost
functions2. These experiments include results for Random
with three different starting random seeds, and results for
Proportional with k = {1, ⌊T

n
⌋, T}.

Fig. 2 summarizes the makespan results for Scenario 1.
Each figure presents the results for one group and number
of resources. The horizontal axis represents the number of
tasks to assign, and the vertical axis represents the makespan
achieved by the assignment. Each scheduler is represented
by a line connecting the makespan achieved for consecutive
numbers of tasks. Each figure has its own scale for the vertical
axis due to the particular costs of its group of resources.

In this scenario, both OLAR and Fed-LBAP found optimal
assignments for all cases, while none of the other algorithms

2When n = 10, we have 3 Recursive, 3 Linear, 2 Nlogn, and 2 Quadratic
resources.

10002000300040005000600070008000900010000
Number of tasks (T)

0

2000

4000

6000

8000

10000

12000

M
ak

es
pa

n
(a

.u
.)

Scheduler
Random()
Random()
Random()
Proportional(1)
Proportional(T/n)
Proportional(T)
FedAvg
Fed-LBAP
OLAR

(a) Recursive costs, n = 10.

10002000300040005000600070008000900010000
Number of tasks (T)

0

200

400

600

800

1000

1200

1400

M
ak

es
pa

n
(a

.u
.)

(b) Recursive costs, n = 100.

10002000300040005000600070008000900010000
Number of tasks (T)

0

2000

4000

6000

8000

10000

12000

M
ak

es
pa

n
(a

.u
.)

Scheduler
Random()
Random()
Random()
Proportional(1)
Proportional(T/n)
Proportional(T)
FedAvg
Fed-LBAP
OLAR

(c) Linear costs, n = 10.

10002000300040005000600070008000900010000
Number of tasks (T)

0

200

400

600

800

1000

1200

M
ak

es
pa

n
(a

.u
.)

(d) Linear costs, n = 100.

10002000300040005000600070008000900010000
Number of tasks (T)

0

10000

20000

30000

40000

50000

60000

70000

80000

M
ak

es
pa

n
(a

.u
.)

Scheduler
Random()
Random()
Random()
Proportional(1)
Proportional(T/n)
Proportional(T)
FedAvg
Fed-LBAP
OLAR

(e) Nlogn costs, n = 10.

10002000300040005000600070008000900010000
Number of tasks (T)

0

1000

2000

3000

4000

5000

6000

M
ak

es
pa

n
(a

.u
.)

(f) Nlogn costs, n = 100.

10002000300040005000600070008000900010000
Number of tasks (T)

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

M
ak

es
pa

n
(a

.u
.)

Scheduler
Random()
Random()
Random()
Proportional(1)
Proportional(T/n)
Proportional(T)
FedAvg
Fed-LBAP
OLAR

(g) Quadratic costs, n = 10.

10002000300040005000600070008000900010000
Number of tasks (T)

0

20000

40000

60000

80000

100000

120000

140000

M
ak

es
pa

n
(a

.u
.)

(h) Quadratic costs, n = 100.

10002000300040005000600070008000900010000
Number of tasks (T)

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

M
ak

es
pa

n
(a

.u
.)

Scheduler
Random()
Random()
Random()
Proportional(1)
Proportional(T/n)
Proportional(T)
FedAvg
Fed-LBAP
OLAR

(i) Mixed costs, n = 10.

10002000300040005000600070008000900010000
Number of tasks (T)

0

20000

40000

60000

80000

100000

120000

M
ak

es
pa

n
(a

.u
.)

(j) Mixed costs, n = 100.

Fig. 2: Makespan results for Scenario 1.

found a single optimal assignment. Regarding the other sched-
ulers, we can notice that Random usually performs much
worse than FedAvg. Additionally, their difference tends to

increase as the number of tasks to be assigned grows, making it
just not worth exploring Random assignments for this problem.
FedAvg performs close to optimal only for the resources with
recursive costs (Figs. 2a and 2b), as this group is the most
homogeneous among all the tested groups. In the other cases,
assigning T

n
tasks to the most costly resource easily dominates

the makespan.
Proportional performs close to optimal when resources with

linear costs are present (Recursive, Linear, and Mixed groups)
and k is large. This happens because it estimates linear costs
for all resources, so large values of k approximate well the real
costs in these cases. In general, the results with k = ⌊T

n
⌋ and

k = T are very similar (sometimes overlapping in the figures),
while results with k = 1 are much worse. Nonetheless, when
resources follow other behaviors, Proportional starts to get
farther from the optimal solution. This can be noticed for the
groups with Nlogn costs (Figs. 2e and 2f), and especially for
the resources with Quadratic costs, where it gets to perform
worse than FedAvg (Fig. 2h).

A final point to be taken from these results is that cost-
aware scheduling algorithms are exceptionally important when
resources follow different cost behaviors. This is clearly illus-
trated in the results for resources with Mixed costs and 10
resources (Fig. 2i), where FedAvg’s makespan is about 800
times worse than the optimal for 10, 000 tasks.

E. Scenario 2: (scheduling time, no limits)

The experiments in this scenario are split into two: we first
fix the number of resources at 100, and vary the tasks from
1, 000 to 10, 000 in increments of 1, 000. Then, we fix the
number of tasks at 10, 000, and vary the number of resources
from 100 to 1, 000 in increments of 100. All resources follow
Linear cost functions, as we assume that their costs should not
have a major impact on the performance of the schedulers. For
each triple (scheduler, tasks, resources), we gather 50 samples.
Each sample is composed of 100 runs of a scheduler measured
using Python’s timeit module. The order that the samples
are collected is randomized to reduce issues with interference
and system jitter.

The average execution times for each triple are presented
in Fig. 3. The vertical axis represents the execution time for
each scheduler (ms, in log scale), while the horizontal axis
represents the number of tasks and the number of resources
in Figs. 3a and 3b, respectively. Each scheduler is represented
by a line connecting their execution times achieved for con-
secutive cases. The average times for each scheduler for the
smallest and largest cases are also presented in Tables I and II.

As can be noticed in these results, Random, Proportional,
and FedAvg perform at least one, two, or three orders of
magnitude faster than Fed-LBAP and OLAR. This is to be
expected, as the three algorithms perform O(n) operations
(which is also the reason for no performance changes when
increasing the number of tasks). Moreover, these differences
emphasize that generating random numbers is slower than only
computing proportions, and computing proportions is slower
than only doing a division. The bumps seen for FedAvg in

Fig. 3b come from the division T
n

leaving leftover tasks that
have to be assigned in a second step.

1000 2000 3000 4000 5000 6000 7000 8000 900010000
Number of tasks (T)

10 5

10 4

10 3

10 2

10 1

100

101

102

103

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(m

s,
lo

g
sc

al
e)

Scheduler
Fed-LBAP
OLAR

Random
Proportional

FedAvg

(a) Fixed n = 100.

100 200 300 400 500 600 700 800 900 1000
Number of resources (n)

10 5

10 4

10 3

10 2

10 1

100

101

102

103

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(m

s,
lo

g
sc

al
e)

Scheduler
Fed-LBAP
OLAR

Random
Proportional

FedAvg

(b) Fixed T = 10, 000.

Fig. 3: Scheduling algorithm times for Scenario 2.

TABLE I: Average execution times (ms) with n = 100.

Fed-LBAP OLAR Random Proportional FedAvg

1, 000 tasks 10.592 2.009 0.160 0.022 0.002
10, 000 tasks 55.091 18.930 0.158 0.023 0.002

TABLE II: Average execution times (ms) with T = 10, 000.

Fed-LBAP OLAR Random Proportional FedAvg

100 resources 54.134 18.953 0.163 0.023 0.002
1, 000 resources 702.978 21.318 1.459 0.036 0.002

Between the two algorithms that generate optimal assign-
ments, we can notice that OLAR performs better than Fed-
LBAP in all configurations. We confirmed their difference
using the Mann-Whitney U test with 5% confidence (i.e., all
comparisons rejected H0 with p-values < 0.05, meaning that
they come from different distributions). This non-parametric
test was chosen because some of the sampled results did not
come from normal distributions (Kolmogorov-Smirnov tests
with p-values < 0.05).

We can also notice that the execution times of OLAR
and Fed-LBAP grow at different rates. When increasing the
number of tasks (Fig. 3a and Table I), OLAR’s execution
time increases by less than 2 ms for every 1, 000 tasks,
while Fed-LBAP increases by about 5 ms. On the other
hand, when increasing the number of resources (Fig. 3b and
Table II), OLAR’s execution time goes from about 19 to 21 ms,
while Fed-LBAP’s time increases more than tenfold. This
is a natural result of OLAR’s complexity (Θ(n + T log n)).
Finally, OLAR’s execution time of up to tens of milliseconds is
negligible when compared to the benefit of optimal scheduling
for Federated Learning, as a round can easily take over tens
of seconds [15].

F. Scenario 3: (achieved makespan, with limits)

With OLAR being the only scheduling algorithm that con-
siders the lower and upper limits of resources, we had to
extend the other algorithms from the state of the art for this
comparison. We refer to these extended versions by adding
the prefix Ext- to the original names of the algorithms.

Ext-Fed-LBAP supports limits by sorting only the costs for
valid numbers of tasks — i.e., for each resource i ∈ R, only
the costs for tasks in the interval (Li, Ui] are considered. This
results in no change to the overall complexity or behavior of
the algorithm.

Conversely, Ext-FedAvg and Ext-Proportional required
bigger changes to their base algorithms, as solutions that would
try to iteratively fix any invalid assignments could lead to
O(n2) operations for pathological cases. A solution in two
steps was found for these algorithms. First, we apply their
base algorithms and check if their assignments are valid.
If that is the case, their assignments are returned and only
O(n) operations are required. However, if the assignment is
invalid, the second step follows an algorithm similar to OLAR,
where the only difference are the kinds of value inserted in
the minimum heap: Ext-FedAvg uses the number of tasks
missing to achieve the mean number of tasks per resource
T̄ ≔ ⌊T

n
⌋ (i.e., Ai − T̄), while Ext-Proportional(k) uses the

estimated cost for the next task using its linear regression (i.e.,
(Ai+1)× Ci(k)

k
). This makes both algorithms Θ(n+T log n).

In order to inspect if the addition of limits would lead to any
changes to the behavior of OLAR and the extended algorithms,
we adapted a subset of the experiments from Scenario 1. In
this scenario, the algorithms had to schedule from 1, 000 to
10, 000 tasks (in increments of 100) over 100 resources. We
only organized the heterogeneous resources in two group: one
with all Linear costs, and one with all Quadratic costs. For the
upper and lower limits, we use the rules in Eqs. 14 and 15,
as they would lead to invalid assignments for the original
scheduling algorithms.

Li =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

T̄
4

if i = arg max
r∈R

Cr(T)

4 otherwise
(14)

Ui =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

T̄
2

if i = arg min
r∈R

Cr(T)

2T̄ otherwise
(15)

Fig. 4 presents the makespan achieved by OLAR and the
extended algorithms in this scenario. We can notice that these
results follow the same general behavior of their counterparts
without lower and upper limits in Scenario 1 (Section IV-D,
Figs. 2d and 2h). In all cases, OLAR and Ext-Fed-LBAP find
optimal solutions, while none of the other schedulers ever
found a single optimal assignment. Ext-Proportional still found
near-optimal solutions for the resources with Linear costs,
but its assignments for the Quadratic costs diverges from the
optimal.

The only major difference seen in these results happened for
Ext-Proportional(⌊T

n
⌋) and Ext-Proportional(T) for Quadratic

costs, as they were able to outperform Ext-FedAvg while their
original counterparts were not able to do so. In an additional
investigation, we have found that the presence of lower and
upper limits restricted the negative effects of the incorrect cost
predictions made by Proportional (i.e., a linear regression for

10002000300040005000600070008000900010000
Number of tasks (T)

0

200

400

600

800

1000

1200

M
ak

es
pa

n
(a

.u
.)

Scheduler
Ext-Proportional(1)
Ext-Proportional(T/n)
Ext-Proportional(T)
Ext-FedAvg
Ext-Fed-LBAP
OLAR

(a) Linear costs, n = 100.

10002000300040005000600070008000900010000
Number of tasks (T)

0

20000

40000

60000

80000

100000

120000

140000

160000

M
ak

es
pa

n
(a

.u
.)

(b) Quadratic costs, n = 100.

Fig. 4: Makespan results for Scenario 3.

a quadratic function), leading to smaller makespans. Never-
theless, this is not a rule, as the same behavior was not seen
when scheduling tasks over 10 resources only.

G. Scenario 4: (scheduling time, with limits)

After verifying that the extended algorithms compute valid
solutions and that their behavior is still similar to their original
versions, we move our attention to the execution time of
the schedulers in the presence of lower and upper limits of
tasks per resource. The experiments in this scenario follow
the same steps of the experiments described in Section IV-E
with the addition of the lower and upper limits described in
Section IV-F. The average execution times measured in this
scenario are presented in Fig. 5. The vertical axis represents
the execution time for each scheduler (in ms), while the
horizontal axis represents the number of tasks and the number
of resources in Figs. 5a and 5b, respectively. Each scheduler is
represented by a line connecting their execution times achieved
for consecutive cases. The average times for each scheduler
for the smallest and largest cases are also listed in Tables III
and IV.

The first major change that can be observed in these results
(in comparison to the results in Section IV-E) is that the
execution times of Ext-Proportional and Ext-FedAvg are now
closer to OLAR and Ext-Fed-LBAP. This is a natural effect
of their change in complexity from O(n) to O(n + T log n)
with the extension. We can also see that Ext-Proportional
seems to take longer than OLAR and Ext-FedAvg to compute
its schedule, which is an effect of the kinds of values and

1000 2000 3000 4000 5000 6000 7000 8000 900010000
Number of tasks (T)

0

10

20

30

40

50

60

70

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(m

s)

Scheduler
Ext-Fed-LBAP
OLAR
Ext-Proportional
Ext-FedAvg

(a) Fixed n = 100.

100 200 300 400 500 600 700 800 900 1000
Number of resources (n)

0

10

20

30

40

50

60

70

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(m

s)

(b) Fixed T = 10, 000.

Fig. 5: Scheduling algorithm times for Scenario 4.

TABLE III: Average execution times (ms) with n = 100.

Ext-Fed-LBAP OLAR Ext-Proportional Ext-FedAvg

1, 000 tasks 4.827 1.258 2.708 1.056
10, 000 tasks 7.304 17.786 37.259 14.851

TABLE IV: Average execution times (ms) with T = 10, 000.
Ext-Fed-LBAP OLAR Ext-Proportional Ext-FedAvg

100 resources 7.448 18.044 37.448 15.211
1, 000 resources 65.420 13.373 27.503 11.266

operations each uses in their minimum heap. Nevertheless,
the three follow the same general behavior in all cases.

OLAR and Ext-Fed-LBAP show new behaviors in Figs. 5a
and 5b. In the first figure, we can see that OLAR’s ex-
ecution time grows almost linearly, while Ext-Fed-LBAP’s
time stays almost constant. This leads to a situation where
OLAR performs better up to 3, 000 tasks, while Ext-Fed-
LBAP performs better for higher numbers of tasks (their
difference was confirmed with a Mann-Whitney U test with
5% confidence). This difference comes from the use of upper
limits based on the mean number of tasks per resource T̄
(Eq. (15)). While this has no major advantage for OLAR, Ext-
Fed-LBAP sees a reduction in the size of its cost matrix. It is
reduced from n × T to u ≈ n T̄

2
= n T

2n
=

T
2

. This affects the
number of operations for sorting the matrix and for the binary
search, leading to the performance we see.

In the second case (Fig 5b), we can see that Ext-Fed-LBAP’s
execution time grows almost linearly, while OLAR’s time
actually decreases with the growing number of resources. This
leads to a situation where Ext-Fed-LBAP performs the best up
to 200 resources, and then its execution time surpasses OLAR
(their difference was confirmed again with a Mann-Whitney U
test with 5% confidence). This, in turn, comes from the use of
lower limits based on a fixed number of tasks (Eq. (14)). This
has only a marginal effect for Ext-Fed-LBAP, but OLAR, Ext-
Proportional, and Ext-FedAvg see a reduction in the number
of iterations on their second loop. This reduction is based on
l ≈ 4n, meaning that the loop runs only for T − 4n iterations.
We have confirmed that OLAR’s reduction in execution time
is related to the use of lower limits by running an additional
version of this experiment with no limits, only lower or upper
limits, and using both limits. The average execution times for
100 and 1, 000 resources are summarized in Table V. It shows
that the only factor influencing these execution times is the use
of lower limits.

TABLE V: Average execution times (ms) for OLAR with T =

10, 000 and variations in lower and upper limits.

No limits Upper limits Lower limits Both limits

100 resources 19.438 19.303 18.600 18.498
1, 000 resources 21.674 21.973 13.620 13.664

Based on the results from Scenarios 2 and 4, we can
conclude that the presence of lower and upper limits have
a beneficial impact on the performance of OLAR and Fed-
LBAP. Nevertheless, the adaptation of O(n) heuristics to

handle limits removes any benefits that their small execution
times has brought before. In this sense, in a situation where
costs are known (or properly estimated) and limits should be
respected, there would be no reason to use an algorithm to
schedule tasks other than the proved optimal OLAR.

V. CONCLUSION AND FUTURE WORK

In this paper, we considered the problem of scheduling data
to devices in order to minimize the duration of rounds for
Federated Learning (FL). This problem is very current and
relevant, with FL systems growing in scale, thus becoming
more easily affected by slowdowns due to stragglers. We have
modeled this problem as a makespan minimization problem
with identical, independent, and atomic tasks that have to be
assigned to heterogeneous resources with non-decreasing cost
functions while respecting lower and upper limits of tasks per
resource. We have proposed a solution to this problem with
OLAR (OptimaL Assignment of tasks to Resources), a Θ(n+
T log n) algorithm (for T tasks and n resources), which we
also proved to be optimal.

In an extensive experimental evaluation (including other
algorithms from the state of the art and new extensions to
them), we have shown that OLAR can compute optimal
assignments of 10, 000 tasks to 1, 000 resources in tens of
milliseconds, which is negligible when compared to training
rounds that take tens of seconds [15]. We have also found that
OLAR outperforms Fed-LBAP [6] and its extended version
in most scenarios. While a Proportional scheduling algorithm
has been found to achieve close to optimal assignments when
resources follow mostly linear cost functions, our experiments
have demonstrated that the execution time benefits of such
a heuristic disappear when lower and upper limits of tasks
per resource have to be taken into account. Overall, we can
conclude that, given the opportunity, OLAR would be the
preferred algorithm for this scheduling problem.

We see some possibilities that would require further study
in the future. First, we would like to conduct experiments
in a real FL platform using mobile devices to see how
beneficial OLAR can be. We also plan to investigate ways
to adapt OLAR to other scheduling problems in FL that
include objectives such as energy consumption reduction and
convergence acceleration. Finally, seeing that Ext-Fed-LBAP
also found optimal schedules, and that it had execution times
smaller than OLAR for some proportions of tasks per resource
when upper limits were present, we plan to try to find a
proof of optimality for this algorithm, and to study a way to
combine it with OLAR in order to always produce the shortest
algorithm’s execution times with optimal solutions.

ACKNOWLEDGMENT

The author would like to thank Dr. Francieli Z. Boito and
Dr. Stéfano D.K. Mór for their feedback on this manuscript.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient Learning of Deep Networks from Decentral-
ized Data,” in Artificial Intelligence and Statistics. PMLR, 2017, pp.
1273–1282.

[2] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi, H. B. McMahan et al.,
“Towards federated learning at scale: System design,” arXiv preprint
arXiv:1902.01046, 2019.

[3] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y. C. Liang, Q. Yang,
D. Niyato, and C. Miao, “Federated learning in mobile edge networks:
A comprehensive survey,” IEEE Communications Surveys Tutorials,
vol. 22, no. 3, pp. 2031–2063, 2020.

[4] M. R. Sprague, A. Jalalirad, M. Scavuzzo, C. Capota, M. Neun,
L. Do, and M. Kopp, “Asynchronous federated learning for geospatial
applications,” in ECML PKDD 2018 Workshops. Cham: Springer
International Publishing, 2019, pp. 21–28.

[5] M. Mohammadi Amiri and D. Gündüz, “Computation scheduling for
distributed machine learning with straggling workers,” IEEE Transac-
tions on Signal Processing, vol. 67, no. 24, pp. 6270–6284, 2019.

[6] C. Wang, X. Wei, and P. Zhou, “Optimize scheduling of federated
learning on battery-powered mobile devices,” in IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2020, pp. 212–
221.

[7] J. Y. Leung, Handbook of scheduling: algorithms, models, and perfor-
mance analysis. CRC press, 2004.

[8] H. Casanova, A. Legrand, and Y. Robert, Parallel algorithms. CRC
Press, 2008.

[9] “OptimaL Assignment of tasks to Resources GitHub Repository - tag
v1.0,” https://github.com/llpilla/olar-federated-learning, accessed: 2020-
09-30.

[10] H. H. Yang, Z. Liu, T. Q. Quek, and H. V. Poor, “Scheduling policies
for federated learning in wireless networks,” IEEE Transactions on
Communications, vol. 68, no. 1, pp. 317–333, 2019.

[11] H. H. Yang, A. Arafa, T. Q. Quek, and H. V. Poor, “Age-based
Scheduling Policy for Federated Learning in Mobile Edge Networks,”
in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2020, pp. 8743–8747.

[12] T. Nishio and R. Yonetani, “Client Selection for Federated Learning
with Heterogeneous Resources in Mobile Edge,” in IEEE International
Conference on Communications (ICC). IEEE, 2019, pp. 1–7.

[13] W. Shi, S. Zhou, and Z. Niu, “Device Scheduling with Fast Convergence
for Wireless Federated Learning,” in IEEE International Conference on
Communications (ICC). IEEE, 2020, pp. 1–6.

[14] W. Xia, T. Q. Quek, K. Guo, W. Wen, H. H. Yang, and H. Zhu, “Multi-
Armed Bandit Based Client Scheduling for Federated Learning,” IEEE
Transactions on Wireless Communications, 2020.

[15] C. Wang, Y. Yang, and P. Zhou, “Towards efficient scheduling of feder-
ated mobile devices under computational and statistical heterogeneity,”
2020.

[16] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy
efficient federated learning over wireless communication networks,”
arXiv preprint arXiv:1911.02417, 2019.

[17] Y. Zhan, P. Li, and S. Guo, “Experience-Driven Computational Resource
Allocation of Federated Learning by Deep Reinforcement Learning,”
in IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2020, pp. 234–243.

[18] T. T. Anh, N. C. Luong, D. Niyato, D. I. Kim, and L.-C. Wang,
“Efficient training management for mobile crowd-machine learning: A
deep reinforcement learning approach,” IEEE Wireless Communications
Letters, vol. 8, no. 5, pp. 1345–1348, 2019.

[19] L. Li, H. Xiong, Z. Guo, J. Wang, and C.-Z. Xu, “SmartPC: Hierarchical
Pace Control in Real-Time Federated Learning System,” in IEEE Real-
Time Systems Symposium (RTSS). IEEE, 2019, pp. 406–418.

[20] G. Damaskinos, R. Guerraoui, A.-M. Kermarrec, V. Nitu, R. Patra, and
F. Taiani, “FLeet: Online Federated Learning via Staleness Awareness
and Performance Prediction,” arXiv preprint arXiv:2006.07273, 2020.

[21] J. Kang, Z. Xiong, D. Niyato, H. Yu, Y.-C. Liang, and D. I. Kim,
“Incentive Design for Efficient Federated Learning in Mobile Networks:
A Contract Theory Approach,” in IEEE VTS Asia Pacific Wireless
Communications Symposium (APWCS). IEEE, 2019, pp. 1–5.

APPENDIX A
EXPERIMENTAL EVALUATION DETAILS FOR

REPRODUCIBILITY

Hardware: experiments were executed on a Dell Latitude
7390 notebook with an Intel Core i5 8250U processor, 16GB

of DDR4 RAM (1×16GB, 2400MHz), and an Intel PCIe SSD
with 512GB of capacity. The computer was plugged to a
power source at all times, and the processor was set to run
at maximum clock frequency and Turbo Boost.

Software: the computer runs Ubuntu 18.04.5 LTS (ker-
nel version 4.15.0-117-generic). We used Python 3.6.9
with numpy version 1.19.2 for the experiments. Modules
matplotlib (3.3.1), pandas (1.1.2), seaborn (0.11.0),
and scipy (1.5.1) were used for the visualization and statis-
tical analysis of results. During timing experiments, no other
applications were open besides a terminal.

Random number generator (RNG) seeds: RNG seeds
were used to control the generation of parameters for the cost
functions of the resources, for the scheduling decisions of the
Random scheduler, and for shuffling the order of experiments
in the Scenarios 2 and 4. The seeds for the Random scheduler
and for shuffling are increased by one for each new set of
inputs. Seeds were set using np.random.seed. Here is a
list of the values used per experiment.

Scenario 1.
• Recursive costs: resources: [0, 99], Random scheduler

(♠ ∶ 1000,♣ ∶ 2000,♥ ∶ 3000);
• Linear costs: resources: [100, 199], Random scheduler

(♠ ∶ 4000,♣ ∶ 5000,♥ ∶ 6000);
• Nlogn costs: resources: [200, 299], Random scheduler

(♠ ∶ 7000,♣ ∶ 8000,♥ ∶ 9000);
• Quadratic costs: resources: [300, 399], Random scheduler

(♠ ∶ 10000,♣ ∶ 11000,♥ ∶ 12000);
• Mixed costs: resources: [400, 499], Random scheduler

(♠ ∶ 13000,♣ ∶ 14000,♥ ∶ 15000).
Scenario 2.
• Fixed resources: resources: [0, 99], Random scheduler:

1000, Shuffle: 0;
• Fixed tasks: resources: [0, 999], Random scheduler:

1000, Shuffle: 1000.
Scenario 3.
• Linear costs: resources: [600, 699].
• Quadratic costs: resources: [700, 799].
Scenario 4.
• Fixed resources: resources: [0, 99], Shuffle: 1000;
• Fixed tasks: resources: [0, 999], Shuffle: 2000.
Fed-LBAP: a series of minor changes had to be made on

the algorithm described in [6] in order for it to converge to
a solution. They include: computing the median and D

′ at
the beginning of the loop (not before the loop); changing the
stop condition of the main loop (min is always smaller than
max when using the floor operator for the median); checking
if D′

≥ D when the algorithm stops, or else recomputing the
solution using median←max. For extended-Fed-LBAP, we also
remove tasks from resources if the algorithm assigns more
tasks than requested. This happens in specific cases where
multiple resources have costs equal to Cmax, or when the lower
limit of a resource sets the makespan. For instance, if R =

{0, 1}, T = 3, C0 = {0, 0.5, 1, 1.5}, C1 = {0, 0.7, 1, 1.3}, Fed-
LBAP would assign 4 tasks (A0 = 2, A1 = 2) for a Cmax = 1.

https://github.com/llpilla/olar-federated-learning

	Introduction
	Related Work
	Optimal Scheduling Algorithm
	Definitions
	Algorithm
	Complexity

	Proof of optimality

	Experimental evaluation
	Scheduling Algorithms
	Kinds of Resources (Cost Functions)
	Summary of the Experimental Scenarios
	Scenario 1: (achieved makespan, no limits)
	Scenario 2: (scheduling time, no limits)
	Scenario 3: (achieved makespan, with limits)
	Scenario 4: (scheduling time, with limits)

	Conclusion and Future Work
	References
	Appendix A: Experimental Evaluation Details for Reproducibility

