
HAL Id: hal-02954037
https://hal.science/hal-02954037v1

Submitted on 30 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Topology Aware Leader Election Algorithm for Dynamic
Networks

Arnaud Favier, Nicolas Guittonneau, Luciana Arantes, Anne Fladenmuller,
Jonathan Lejeune, Pierre Sens

To cite this version:
Arnaud Favier, Nicolas Guittonneau, Luciana Arantes, Anne Fladenmuller, Jonathan Lejeune, et
al.. Topology Aware Leader Election Algorithm for Dynamic Networks. PRDC 2020 - 25th IEEE
Pacific Rim International Symposium on Dependable Computing, Dec 2020, Perth, Australia. pp.1-
10, �10.1109/PRDC50213.2020.00011�. �hal-02954037�

https://hal.science/hal-02954037v1
https://hal.archives-ouvertes.fr


Topology Aware Leader Election Algorithm
for Dynamic Networks

Arnaud Favier∗, Nicolas Guittonneau∗, Luciana Arantes∗,
Anne Fladenmuller, Jonathan Lejeune∗ and Pierre Sens∗

Inria∗, LIP6, CNRS
Sorbonne University, Paris, France

Email: {firstname.lastname}@lip6.fr

Abstract—This paper proposes an algorithm that eventually
elects a leader for each connected component of a dynamic
network where nodes can move or fail by crash. A node only
communicates with nodes in its transmission range and locally
keeps a global view, denoted topological knowledge, of the
communication graph of the network and its dynamic evolution.
Every change in the topology or in nodes membership is detected
by one or more nodes and propagated over the network, updating
thus the topological knowledge of the nodes. As the choice of the
leader has an impact on the performance of applications that
use an eventual leader election service, our algorithm, thanks to
nodes topological knowledge, exploits the closeness centrality as
the criterion for electing a leader. Experiments were conducted
on top of PeerSim simulator [1], comparing our algorithm to a
representative flooding algorithm. Performance results show that
our algorithm outperforms the flooding one when considering
leader choice stability, number of messages, and average distance
to the leader.

Index Terms—distributed systems, dynamic networks, con-
nected graph, leader election, topology, centrality

I. INTRODUCTION

Eventual leader election is an essential service for many
reliable applications that require coordination actions on top
of asynchronous fail-prone distributed systems. Also called the
Ω failure detector [2], an eventual leader election algorithm
provides a primitive, denoted Leader() that, when invoked by
a process, returns the identity of a process of the system and
ensures that there exists a time after which it always returns
the identity of the same nonfaulty process.

Ω allows to solve the consensus problem with the weakest
assumptions on process failures considering a majority of
correct processes. Consensus is one of the most fundamental
problems of distributed computing [3]. Paxos [4] and Bit-
coin [5] (as many other blockchains) are well-known consen-
sus algorithms that exploit eventual leader election service,
while many examples of problems in the literature, such as
state machine replication or atomic broadcast, as well as many
distributed systems (e.g., Kubernetes [6], ZooKeeper [7], etc.)
use consensus.

We are particularly interested in providing an even-
tual leader election algorithm for mobile ad hoc network
(MANET), a decentralized dynamic network where nodes
can move and communicate by transmitting messages over
wireless links. Only nodes within the transmission range of
each other can communicate directly with one another. Then,

they can retransmit the message to other nodes. Thus, one or
more intermediate nodes may act as relays. In such a network,
the communication graph evolves: nodes can join or leave the
system, fail, and recover at runtime. Due to this dynamic, the
network may be partitioned, i.e., composed of two or more
connected components. Initially, nodes have no knowledge of
the system membership, learning about it during execution
time.

Many works have proposed leader election algorithms in
both static [3], [8]–[10], and dynamic [11]–[18] distributed
systems. However, among the latter, only a few of them take
into account the above highly dynamic characteristics and
membership lack of knowledge of MANETs. Furthermore,
in the majority of these algorithms, the choice of the leader
is based on a beforehand criterion such as the lowest or the
highest nonfaulty process identity. We argue that a criterion
should take into account the impact that the choice of the
leader may have on the performance of algorithms that use
the leader election service. Performance-related criteria are,
for instance, nodes remaining battery life, nodes computation
capabilities, nodes topological position (e.g., the minimum
average distance from a node to all other nodes), etc. Similarly
to [12], we denote the most valued node the one that best meets
the performance-related criterion in question and, therefore,
should be chosen as the leader. Hence, we believe that (1) an
election algorithm for mobile networks must tolerate arbitrary,
concurrent topology changes, and should eventually terminate
electing a unique leader per connected component of the
network [19]; (2) for the sake of performance, an elected leader
should be the most valued node among all the nodes within
its connected component.

The contribution of this paper is an eventual leader election
algorithm based on the most valued node criterion and whose
nodes have a global knowledge of the communication graph
and its dynamic evolution, denoted topological knowledge.
Our algorithm progressively builds and maintains a local
knowledge of the connected graph. It relies only on broadcasts
within node transmission ranges and does not require any elec-
tion communication phase: with both its current topological
knowledge and choosing the most valued node, each node
can directly deduce at any moment which node is the current
leader. In particular, the topological knowledge allows for the
computation of the closeness centrality and the election of



per component central located leaders, which, thus, efficiently
spread information across nodes of the component. If the
problem of discovering a topology has been studied in various
contexts [20], [21], it is to the best of our knowledge the first
time this approach is used to elect an eventual leader.

We should point out that even if we target MANET, our
algorithm has been designed for generic mobile dynamic
networks.

We have compared the performance of our Topology Aware
algorithm with a variant of the leader election algorithm of
Vasudevan et al. [12], because their work is a good example
of a typical flooding algorithm and is strongly referenced in
the literature [13], [14], [18], [22]. Results of experiments con-
ducted on the PeerSim simulator [1] confirms the effectiveness
of our algorithm and that it outperforms the latter.

The rest of the paper is organized as follows. Section II
presents research works related to the leader election prob-
lem, Section III explains the chosen model and assumptions,
Section IV describes the algorithm, Section V discusses per-
formance results and, finally, a conclusion and future work are
given in Section VI.

II. RELATED WORK

There exists an extensive literature related to leader election
and Ω failure detector (eventual leader election) for both static
and dynamic systems.

Several existing leader election algorithms on static net-
works consider that nodes are logically organized in a ring [8],
[9], [23], while others [3], [24], [25] dynamically build span-
ning trees for exchanging information, taking a decision about
the elected node, and announcing the new leader.

The problem of coping with dynamics in order to implement
a leader election algorithm in a dynamic system, more specif-
ically in MANET, has been largely studied by many authors.

Malpani et al. have a solution [11] that builds an acyclic
graph where each node has a direct path to the leader.
However, contrarily to our algorithm, it does not provide
enough information to elect a central leader by choosing its
topological position in the network. The election criterion used
by the algorithm is the lowest value of a movement-based
counter. The algorithm was extended by [22] and [14] where
the election of a new leader requires three diffusion waves
over the network: two waves to search for a potential leader
and one confirmation wave to spread the election result over
the network. These waves induce a high number of message
exchanges which slow down the election process. Furthermore,
these algorithms do not use a broadcast communication model
like our algorithm, but neighbors send point-to-point messages,
increasing the number of messages sent. A final remark is that
the algorithm in [22] relies on a global time, assuming that
nodes have perfectly synchronized clocks.

By using the highest identifier node as the criterion to
elect a node, the algorithm of Rahman et al. [13] is based
on a spanning tree construction which requires heartbeat,
probe, reply, and acknowledgment messages. The number
of exchanged messages is, thus, very high, overloading the

network and does not provide enough information to choose
a centrally positioned leader.

Kim et al. [18] exploit a wave algorithm to build a spanning
tree to elect a centrally positioned leader, according to the
average depth of nodes in the tree, and compare different
centrality metrics. However, the central leader is not always
optimal, depending on the initiator node of the election, and
mobility of nodes is not studied.

By returning a leader identity only when it is accepted by all
nodes in the network, the algorithm of Vasudevan et al. [12]
solves, in fact, a stronger problem than the eventual leader
election. The election criterion of the algorithm is static and
corresponds to the highest arbitrary value assigned to a node.
The wave algorithm builds a spanning tree where each node
sends back to its parent the identifier of the node having the
highest value in its subtree. The authors suggest the idea of
electing as the leader the node with the minimum average
distance to other nodes, but as it is presented, their algorithm
does not permit such an election.

Since it is impossible to solve an eventual leader election
(Ω failure detector) in pure asynchronous distributed systems
prone to process failures [26], additional assumptions are
necessary to implement it. To this end, the majority of works
use one of the two orthogonal approaches: timer-based, which
supposes that links are eventually timely [17], [27], [28],
or message exchange pattern-based [15], [29], i.e., a query-
response mechanism where eventually there is a link whose
responses are always received before the others. A punishment
mechanism is usually used as a criterion for electing the leader.
In order to tolerate the dynamics of mobile networks, some
solutions are either based on the message pattern approach
with broadcasts to neighbor nodes and network stability as-
sumptions [15], or on the construction of dynamic graphs,
considering that eventually links are timely or the network
topology stop changing [17], [30]. We did not compare our
solution with these algorithms since their model, synchrony,
stability, or mobility assumptions are different from ours.

III. SYSTEM MODEL AND ASSUMPTIONS

In this section, we define the system model and assumptions
for our eventual leader election algorithm. We assume an
upper bound φ on the time a process takes to execute a
step and eventual timely links, i.e., an upper bound δ on
the transmission delay. However, both upper bounds φ and
δ are unknown, so the system is partially synchronous. As we
consider one process per node, the words node and process
are interchangeable.
Node states and failures: Every node always follows the
specification of the algorithm, until a potential fail. It is
considered correct if it never fails and never leaves the system
during the whole execution. Otherwise, it is considered faulty,
until it comes back in the system.

A node can fail by crashing and a failed node can recover,
joining the system again with the same unique identifier, i.e.,
two nodes cannot have the same identifier. Therefore, a node
keeps its identifier regardless of its state. However, the node



does not recover its state neither the knowledge of the network
membership and, thus, is initialized again.
Communication graph: As the system is composed of mobile
nodes, it can be seen as an undirected graph, where vertices
are nodes and edges represent the possibility of two nodes to
communicate directly between each other (1-hop nodes). Two
nodes can communicate directly if they are in the transmission
range of each other, i.e., the emission range of the sending
node intersects the reception range of the receiver node. In
our system, the emission range is the same as the reception
range, so if node i can communicate with node j, node j can
also communicate with node i (bidirectional links).

In the graph, adjacent vertices of a node are called neighbors
and the set of adjacent vertices represents the neighborhood
of a node. A given node belongs to a connected graph formed
by its neighbors, neighbors of its neighbors and so on, that we
called a connected component.

If the system is divided into two (or more) different con-
nected components due to movement or failure of nodes,
each connected component is considered to be a fully-fledged
network in itself, and therefore, eventually elects one leader.
Both partial synchrony and algorithm ensure that, regardless
of topology changes, if the latter cease, each connected com-
ponent will eventually elect a single leader.
Channels: Nodes communicate by broadcast. All neighbors of
the sender node receive the broadcast message. Our algorithm
only uses broadcast communications on a fixed Wi-Fi chan-
nel selected beforehand. We assume reliable communication
channels, possible in a wireless network where the MAC
layer reliably delivers broadcast messages, even in presence
of signal attenuation, collision, and interference. Otherwise,
the transmitter is faulty or out of the neighborhood. There
is no assumption about message order, so messages can be
delivered out of order.
Membership and nodes identity: The number of nodes is
unknown. Each node initially knows its own identifier which
is unique in the system. A probe system is used which allows
detection of neighbor nodes. By receiving messages from its
neighbors, a node gets knowledge of the membership of the
network.

IV. LEADER ELECTION ALGORITHM

In our algorithm, every node keeps a topological knowl-
edge of the connected component to which it belongs. The
algorithm builds this component knowledge during node con-
nections and disconnections (triggered by the probe system),
and maintains it by sending either the full knowledge (called
known) to new neighbors, or partial modifications (called
updates) periodically to its neighbors. The pseudo-code of the
Topology Aware algorithm for a node i is given in Algorithm 1.

A. Data structures, variables, and messages

The two following data structures are used by node i:
• view (line 1) is composed of two elements: a logical

clock [31] value only incremented by i, and a set of
identifiers representing neighbors of i.

• updt (update, line 2) represents additions or deletions
of neighbors of i. It consists of the identifier of the
source node that has detected membership changes in
its neighborhood, a set of added nodes (new connected
neighbors), a set of removed nodes (new disconnected
neighbors), the logical clock value of source node before
the modifications (old_clk) and its logical clock value
after the modifications (new_clk). This structure allows
us to track new modifications for a given period of time.

Each node i maintains three local variables (line 3):
• knowni (line 4): the current topological knowledge of

the connected component of node i (including itself),
implemented as a map of view indexed by node identifier,
i.e., an entry for each node.

• updatesi (line 5): a list of updt (updates) is periodically
sent, used to update the knowledge of nodes by propagat-
ing modifications of the knowledge of i (new connections
and disconnections), without sending the full knowledge,
avoiding therefore, to send redundant information already
received by neighbors.

• pendingi (line 6): a list of pending updates that cannot
be applied by i at the time of first reception, but applied
when new information is received thereafter.

During communication, the variables known and updates
are exchanged through two distinct types of messages identi-
fied by the name of the variables.

B. Algorithm

The pseudocode of the algorithm given in Algorithm 1 is
described in the following.

1) Initialization: At the beginning, node i initializes its
knowledge with its own identifier (i) and its logical clock set
to 0 (lines 7 to 11).

2) Periodic updates task: Periodically (every ∆ millisec-
onds), node i broadcasts its new updates list if not empty, and
then set it to empty (lines 12 to 16).

3) Connection: When a new node j appears in the transmis-
sion range of node i, it is detected thanks to the probe system
and the Connection method is triggered (line 20). Node j is
considered as a new neighbor and is added to the knowledge
of node i (line 21). As the latter has been updated, the logical
clock of node i is incremented (line 22). Then, both nodes
broadcast their current knowledge to share information about
their component with each other, and also to inform neighbors
about the new node. Therefore, node i broadcasts its known
map (line 23) to its neighbors: node j then acquire topological
knowledge about the component, while the other neighbors of
i are informed about the new connection with j. Same process
is executed by j in regard to node i and its neighbors.

4) Disconnection: When a certain number (γ) of probes
from node j are not received by node i, node j is considered
disconnected by i (line 24). An update structure is created
with the following information (line 25):

• the identifier of node i, considered as the source of the
modification;



Algorithm 1: The Topology Aware eventual leader
election algorithm for a node i

1 Typedef view: 〈clk: int, neigh: set(id)〉
2 Typedef updt: 〈src: int, add: set(id), rmv: set(id),

old_clk: int, new_clk: int〉
3 Local variables of node i:
4 known: map(key: id, value: view)
5 updates: list(updt)
6 pending: list(updt)

7 Initialization of node i:
8 known[i].neigh ← {i}
9 known[i].clk ← 0

10 updates ← ∅
11 pending ← ∅

12 Periodic Updates Task:
13 if updates 6= ∅ then
14 Broadcast (updates)
15 updates ← ∅
16 Wait ∆ milliseconds

17 Invocation of Leader():
18 component ← Reachable (known[i])
19 return Max (ClosenessCentrality (component))

20 Connection of node j:
21 known[i].neigh ← known[i].neigh ∪ {j}
22 known[i].clk ← known[i].clk + 1
23 Broadcast (known)

24 Disconnection of node j:
25 updates ← updates ∪ {〈i, ∅, {j}, known[i].clk,

known[i].clk + 1〉}
26 known[i].neigh ← known[i].neigh \ {j}
27 known[i].clk ← known[i].clk + 1

• an empty value for the add set (no new connection);
• the identifier of the disconnected node j for the removed

set;
• the current clock of node i;
• the new clock, whose value is equal to the clock value

of node i increased by 1.

This tuple is added to the list of updates to be propagated
later by the periodic updates task. Node j is then removed
from the knowledge of node i (line 26) and the clock of node
i is incremented (line 27).

5) Knowledge reception: When node i receives the known
map of node j (line 28), it checks each node id included in
knownj (line 29). If id is a new node for it (line 30), node i
creates an update containing the neighbors of node id with an
old clock valued at 0, meaning that all neighbors of id are in
the add set (line 31). The update is added to the list of updates
to be propagated later by the periodic updates task. Then, the
clock and neighbors of id are added to the knowledge of node
i (line 32).

28 Receive knownj from node j:
29 ∀ 〈id, view〉 ∈ knownj do
30 if @ 〈id, –〉 ∈ known then
31 updates ← updates ∪ {〈id, view.neigh, –, 0,

view.clk〉}
32 known[id] ← 〈view.clk, view.neigh〉
33 else if view.clk > known[id].clk then
34 add ← view.neigh \ known[id].neigh
35 rmv ← known[id].neigh \ view.neigh
36 updates ← updates ∪ {〈id, add, rmv,

known[id].clk, view.clk〉}
37 known[id] ← 〈view.clk, view.neigh〉

38 PendingUpdates()

39 Receive updatesj from node j:
40 ∀ updt〈src, add, rmv, old_clk, new_clk〉 ∈ updatesj

do
41 if @ 〈src, –〉 ∈ known then
42 if old_clk = 0 then
43 known[src] ← 〈new_clk, add〉
44 updates ← updates ∪ updt
45 else
46 pending ← pending ∪ updt

47 else if old_clk = known[src].clk then
48 known[src].neigh ← (known[src].neigh ∪

add) \ rmv
49 known[src].clk ← new_clk
50 updates ← updates ∪ updt
51 else if old_clk > known[src].clk then
52 pending ← pending ∪ updt

53 PendingUpdates()

54 Invocation of PendingUpdates():
55 ∀ updt〈src, add, rmv, old_clk, new_clk〉 ∈ pending

do
56 if old_clk = 0 then
57 if @ 〈src, –〉 ∈ known then
58 known[src] ← 〈new_clk, add〉
59 pending ← pending \ updt

60 else if old_clk = known[src].clk then
61 known[src].neigh ← (known[src].neigh ∪

add) \ rmv
62 known[src].clk ← new_clk
63 pending ← pending \ updt

64 if old_clk < known[src].clk then
65 pending ← pending \ updt

If id is known by i and the clock value of id is greater
than the clock value known by node i for id (line 33), it
means that id made some connections and/or disconnections
of which node i is not aware. Hence, node i creates an update
and computes the add set (line 34), which will be composed



of the new neighbors for i that id informed in view, minus the
neighbors of id which i already knew. The result represents
new neighbors of id since its last received view. Then, node i
computes the removed nodes of the update, by removing the
received neighbors from the known neighbors of id (line 35),
which represents disconnections since the last received view.
The value of the old clock in the update is set to the clock
value of id in the knowledge of node i, and the new clock
value is set to the value of the received clock (line 36).

The update is added to the list of updates to be propagated
later by the periodic updates task (line 12), and eventually,
thanks to their previous knowledge and update exchanges,
neighbors of node i will have the same knowledge as node
i with identical clocks, thus, they will be able to apply this
new update in their respective knowledge.

Finally, the clock value and neighbor identifiers of id are
added to the knowledge of i (line 37) and the PendingUpdates
method is called to apply previously received updates (line 38).

6) Updates reception: When node i receives updates from
node j (line 39), each update adds or removes neighbors of a
source node src (line 40). Following the old clock value, an
update can be applied, saved in the pending list to be applied
later, or discarded.

If the old clock is equal to 0 (line 42), the update contains all
the neighbors of node src (see Knowledge reception IV-B5),
and the update is applied (line 43) if node i does not have any
information about node src (line 41). If the old clock is equal
to the clock of node src in the current knowledge of node
i (line 47), the update corresponds to new information. The
update is then applied, i.e., neighbors are updated (line 48) as
well as the clock (line 49). In both cases, the updates are added
to the updates set of node i (lines 44 and 50), to be propagated
later to neighbors through the periodic updates task.

An update cannot be applied when it is more recent than
other updates not yet received by i, which should have applied
before the former. This out of order update receptions might
happen if the component contains cycles, i.e., when the old
clock is greater than the clock of src in the knowledge of i
(line 51), or when node i does not have information about
node src and the old clock is greater than 0 (line 45). In
those cases, node i saves the update in a pending updates list
(lines 46 and 52), and will try to apply it in the future, after
new updates will be received (line 53).

7) Pending updates: PendingUpdates (line 54) checks the
updates that can be applied in the pending list (line 55). To
reduce message exchanges and improve performance, updates
that cannot be applied when first received are saved, and the
algorithm tries to apply them after new information is received.

When an update is applied (i.e., the knowledge of i changes,
lines 58 and 61-62), the latter is removed from the pending list
(lines 59 and 63). If the clock value of the current knowledge
is greater than the old clock value of the update (line 64), the
update is also removed for the pending list (line 65), meaning
that node i receives a knowledge or updates from a node with
more recent information.

8) Leader(): When a process running on node i requires
a leader, it calls the local Leader method (line 17) which
computes and returns, based on the knowledge of i, the best
leader according to the closeness centrality (line 19). We use
the closeness centrality rather than the betweenness centrality,
because it is faster computed and requires fewer computational
steps, so use less energy from the mobile nodes. The closeness
of a node is the inverse of the sum of all shortest paths to
other nodes, characterizing the ability of a node to spread
information over the graph. We use the closeness centrality
formula defined by Alex Bavelas [32] for a node x as :

C(x) =
1∑

y d(y, x)

where d(y, x) is the shortest path between nodes y and x.
In order to compute the closeness centrality, node i, starting
from itself, get the set of reachable nodes according to its
topological knowledge of the component (line 18). Then, for
each reachable node, it computes the shortest distance between
this node and the other reachable ones, obtains the closeness
centrality, and deduces the most central node as the leader
(line 19). The highest node identifier is used to break ties
among identical centrality values.

If all nodes of the component have the same knowledge
of the topology, the Leader() call returns the same leader
node to all of them. Otherwise, it may return different leaders
for distinct nodes. However, if topology changes cease, our
algorithm ensures that all nodes of a connected component will
eventually have the same topology knowledge and, therefore,
will have the same leader node [14].

V. RESULTS

The objective of the experiments is to compare our Topology
Aware algorithm with a flooding algorithm.

A. Simulation environment

We have conducted evaluation experiments on PeerSim [1],
a Java peer-to-peer network simulator. Each experiment lasts
30 minutes, with a simulated unit of time corresponding to one
millisecond, and simulates 60 nodes placed in a 900 × 900
meters obstacle-free area. Message sending latency follows a
Poisson distribution with parameter λ = 10.

B. Mobility models

We consider two different mobility patterns for the exper-
iments: the random waypoint and a periodic disc positioning
pattern around a single point of interest. For both mobility
patterns, the minimum node speed is set to 5 m/s and the
maximum node speed is set to 15 m/s. The chosen speed
follows a uniform distribution between the minimum and the
maximum speed.

1) Random waypoint: Nodes are randomly placed in the
area and move according to the Random Waypoint mobility
model [33]. Nodes wait 10 seconds before choosing the next
random destination. We point out that this mobility pattern is
largely used in the literature [12], [33].



2) Periodic single point of interest: First, nodes are placed
to create concentric circles whose center is the same unique
point of interest, thus, composing a disc, like the one shown in
Figure 1, such that there exists a path between any two nodes
in the disc.

After 10 seconds, nodes start moving to a randomly chosen
destination. Once reached, nodes wait 10 seconds before going
back to their initial position in the circle, waiting for each
other nodes to reach its initial position. Note that nodes can
wait a long time for the other nodes to return to their initial
position in the disc, due to various node speeds. When every
node is at its initial circle position (the disc is reconstructed
again), they wait 10 seconds before moving to another random
destination, and repeat this behavior continually until the end
of the experiment.

The shape of the disc is independent of the node trans-
mission range, i.e., it always looks like the one in Figure 1
regardless of the diameter of the transmission range. This
pattern could model user activities, where nodes represent
people visiting regularly just a few places [34].

Figure 1. Single point of interest disc

C. Algorithms

We compared two versions of our Topology Aware algorithm
with a variant of the Vasudevan et al. algorithm [12], since
it is representative of flooding algorithms. Vasudevan et al.
algorithm returns ⊥ during the election phase, if the leader
has not been elected yet. In order to be fairly comparable with
our algorithm Topology Aware, we have considered a variant
of this algorithm that never returns ⊥, but a possible current
leader. Indeed, in our algorithm, a correct node is always able
to render a leader according to its topological knowledge. We
denoted this variant Flooding because each node periodically
broadcasts leader messages informing its current leader to
neighbor nodes.

Note that Flooding is also a variant of the OptFloodMax
algorithm that Nancy A. Lynch introduced in her book Dis-
tributed Systems [10]. In OptFloodMax, processes send their
unique identifier to their neighbors, whenever a process obtains
a new maximum unique identifier (which will eventually be
elected as the leader).

We adapted the Flooding algorithm for MANET assuming
an underlying probe system that detects connections and
disconnections. Exchanged leader messages contain the node
identifier and an election criterion, called value. The leader

is the node with the highest value. It periodically broadcasts
leader messages to neighbor nodes every α milliseconds, and
each node forwards this information to neighbors. When the
leader fails, it stops sending leader messages, and after a
non-reception of β leader messages from the leader, nodes
trigger a new election by setting themselves as their own new
leader. Thus, new leader messages from different nodes are
propagated, and eventually, the node with the highest value is
elected.

In order to elect a leader with good local connectivity,
we consider that the value is equal to the number of direct
neighbors of a node, equivalent to node degree in a graph,
which is updated at each topology change, thanks to the probe
system (new connection or disconnection). The highest node
identifier is used to break ties among identical values. We
denote this algorithm Flooding Degree.

For fairness comparison with Flooding Degree, we also
implemented a variant of the Topology Aware algorithm, called
Topology Aware Degree, which uses the node degree as the
election criterion. The version presented in Section IV-B8
using the closeness centrality as an election criterion is called
Topology Aware Closeness.

D. Algorithms settings

In the Flooding Degree algorithm, nodes send messages
every α = 250 milliseconds. Every node triggers a new
election if β = 1 message from the current leader was not
received after a timeout of 300 milliseconds.

In both Topology Aware versions, updates are kept in a list
acting as a buffer, before being sent every ∆ milliseconds.
The value of ∆ is based on the transmission range (on x-
axis of figures), considering that the larger the transmission
range, the higher number of nodes potentially reached. Thus,
to avoid burst effect after topology changes, the value of ∆ is
computed according to the following formula:

∆ = 70× log10(range)− 60

With this formula, ∆ has a low value for small ranges
and increases proportionally to the size of the range, with a
fast increase for low ranges and a slow increase for higher
ranges. This aims to transmit information quickly on smaller
components, but more slowly on larger components due to the
high dynamics of mobile nodes induced by larger transmission
ranges.

When a probe message is received by node i, the Connec-
tion method of the algorithm is triggered. A probe message
contains the unique identifier of the node and is sent every τ =
400 milliseconds. If γ = 1 probe message from node j is not
received after a timeout of 450 milliseconds, node i considers
node j as out of range and trigger the Disconnection method.

E. Metrics

We considered the following three metrics:
1) Instability: it is the percentage of average time during

which a node takes as the leader a node that is not equal to the
eventually unique elected leader of the component. The latter



is computed by an oracle based on nodes degree for Flooding
Degree and Topology Aware Degree, or closeness centrality for
Topology Aware Closeness. Instability at time t is computed
by the following formula:

Instabilityt =

∑N
i=0

{
0, leader(i) = oracle(i)
1, leader(i) 6= oracle(i)

N
× 100

where N is the number of nodes in the system and i the node
identifier. Then, we compute the Instability over the whole
time of an experiment, which is the average Instabilityt ∀t,
from t = 0 to the end of the experiment.

2) Number of messages sent per second: it is the average
of the total number of messages sent per second. This metric
does not consider probe messages, since the same number of
probes is sent for all algorithms every τ milliseconds.

3) The longest leader path relative to the component diam-
eter: This metric characterizes how fast a leader can reach
nodes of its component. First, we compute the longest path of
all shortest paths from every node of the component to their
current leader. Then, since it depends on the number of nodes
in the component, we divide the longest path by the diameter
of the component.

F. Performance

The goal is to compare the performance of Flooding Degree
algorithm with the Degree and Closeness versions of our
Topology Aware algorithm, for different diameters of transmis-
sion range that vary from 10 meters to 200 meters. Note that,
there is a strong correlation between the transmission range
and network connectivity, i.e., the number of components in
the system.

1) Instability: The random waypoint pattern in Figure 2
shows that the instability percentage of Flooding Degree and
both Topology Aware versions varies according to the trans-
mission range, with a stabilization starting at a transmission
range of 120 meters when the majority of nodes are in a
few large connected components. However, nodes in Flooding
Degree spend on average 55% more time with the wrong
leader than nodes in Topology Aware Degree. We observe that
the Closeness version of Topology Aware is slightly less stable
than the Degree version.

For the periodic single point of interest pattern, compared to
Topology Aware Degree, Flooding Degree spends on average
82% more time with a wrong leader, i.e., 1.5 times more
than the previous mobility pattern. In Flooding Degree, leader
unavailability is progressively detected by all nodes of the
component, upon expiration of leader messages timeout. In
this case, each node of the component triggers a new election
by setting itself as the leader, and starts broadcasting leader
messages. However, some nodes located further away from
the old leader might still receive, from their neighbors, leader
messages related to this old leader and, thus, will take more
time to start a new election. Furthermore, the greater the
number of nodes in the component, the higher the spreading
of leader message (as we can observe in Figure 2).

0

10

20

30

40

50

60

Av
er

ag
e 

nu
m

be
r 

of
 c

om
po

ne
nt

10 30 50 70 90 110 130 150 170 190
Transmission range (in meters)

0

5

10

15

20

25

30

35

In
st

ab
ili

ty
 p

er
ce

nt
ag

e

Instability
Random waypoint

Flooding Degree
Topology Aware Degree
Topology Aware Closeness
Average number of comp.

0

10

20

30

40

50

60

Av
er

ag
e 

nu
m

be
r 

of
 c

om
po

ne
nt

10 30 50 70 90 110 130 150 170 190
Transmission range (in meters)

0

5

10

15

20

25

30

35

In
st

ab
ili

ty
 p

er
ce

nt
ag

e

Instability
Periodic single point of interest

Flooding Degree
Topology Aware Degree

Topology Aware Closeness
Average number of comp.

Figure 2. Instability percentage

In Flooding Degree, the spreading of leader messages from
all the nodes that have started a new election slows down the
election convergence and thus increases the average stability.
On the other hand, both Topology Aware versions only need
to spread updates to each node.

The two versions of Topology Aware are more stable than
Flooding Degree, especially in large components where there
is low nodes movement, because it needs fewer steps to elect
a new leader once its topological knowledge is built.

Instability over time at 90 meters: In Figure 3, we
show the evolution of instability over time, considering a
transmission range of 90 meters which is quite realistic. The
instability at time t is the average cumulative instability from
time 0 to time t, and the right y-axis is the exact number of
components at time t.

As shown on top of Figure 3, the random waypoint mo-
bility pattern has on average 18 connected components, and
Topology Aware Degree is on average 62% more stable than
Flooding Degree.

In the periodic single point of interest pattern at the bottom
of Figure 3, nodes are gathering at their initial position on



0

5

10

15

20

25

N
um

be
r 

of
 c

om
po

ne
nt

0 250 500 750 1000 1250 1500 1750
Time (in seconds)

0

10

20

30

40

50

60

70

In
st

ab
ili

ty
 p

er
ce

nt
ag

e
Instability over time

Random waypoint - 90m
Flooding Degree
Topology Aware Degree

Topology Aware Closeness
Number of components

0

5

10

15

20

25
N

um
be

r 
of

 c
om

po
ne

nt

0 250 500 750 1000 1250 1500 1750
Time (in seconds)

0

10

20

30

40

50

60

70

In
st

ab
ili

ty
 p

er
ce

nt
ag

e

Instability over time
Periodic single point of interest - 90m
Flooding Degree
Topology Aware Degree

Topology Aware Closeness
Number of components

Figure 3. Evolution of instability at a transmission range of 90 meters

the disc in Figure 1, creating a unique connected component,
then moving to random positions, also having an average max-
imum of 18 components. At the beginning of the experiment,
nodes in both Topology Aware versions exchange messages
to build their knowledge, inducing many leader errors, hence,
an instability rate of 41% for the Degree version and 69%
for the Closeness one. However, Flooding Degree quickly
finds the correct leader, thus, showing low instability. After
the second gathering and until the end of the experiment,
the two Topology Aware versions are on average 79% more
efficient to elect the correct leader than Flooding Degree,
which increases its instability after each gathering, when nodes
start to randomly move again.

2) Number of messages sent per second: In the previous
section, we observed that the smaller the transmission range,
the higher the number of components. Therefore, in the case
of low transmission ranges, there are more components, and
consequently, more leaders. This higher number of leaders
explains why Flooding Degree presents bad performance with
low transmission ranges, since each leader floods its com-
ponent with leader messages. When the transmission range

10 30 50 70 90 110 130 150 170 190
Transmission range (in meters)

0

100

200

300

400

500

600

700

800

M
es

sa
ge

 s
en

t p
er

 s
ec

on
d

Number of messages sent per second
Random waypoint

Flooding Degree
Topology Aware Degree
Topology Aware Closeness

10 30 50 70 90 110 130 150 170 190
Transmission range (in meters)

0

100

200

300

400

500

600

700

800

M
es

sa
ge

 s
en

t p
er

 s
ec

on
d

Number of messages sent per second
Periodic single point of interest

Flooding Degree
Topology Aware Degree
Topology Aware Closeness

Figure 4. Number of messages sent per second

increases, the number of leaders decreases, thus reducing the
number of flooding messages. On the other hand, Topology
Aware algorithms behave inversely: when the transmission
range increases, each node observes more topological move-
ments, therefore, increasing the amount of new knowledge and
update messages. These behaviors are well characterized in
Figure 4, especially for the random waypoint pattern. Note
that the number of messages sent in both Topology Aware
versions is the same because the election criterion does not
impact the number of messages.

We can observe an interesting threshold effect from the
transmission range of 130 meters. At this range, components
are bigger and start to become more stable in terms of topology
changes. Topology Aware algorithms benefit from the topology
stability since: (1) they generate fewer messages (due to
fewer connections and disconnections, so fewer knowledge
and updates exchanges); (2) they are less sensitive to the size
of components. On the opposite, Flooding Degree is punished
by the size of the components, because it is not sensitive to
topology changes and flooding is more costly when the number
of links increases. This explains why the curves of Topology



Aware versions stabilize while the curve of Flooding Degree
increases.

For the periodic single point of interest pattern, both ver-
sions of Topology Aware send fewer messages, because they
do not need to communicate when the topology is motionless.
As the number of nodes in the component increases, the
number of messages also increases, depending on the value
of ∆ that impacts the number of messages sent per second.
On the other hand, Flooding Degree sends more messages than
the two Topology Aware versions, because even if the topology
is static, a flooding algorithm continues to periodically send
information about its current leader.

However, the size of messages exchanged in Topology
Aware is larger than in the Flooding Degree algorithm. In
Table I, the Flooding Degree algorithm presents the same
average message size since messages contain just a node
identifier and a value, i.e., two integers. On the other hand,
the size of messages in Topology Aware varies according to
the number of nodes in the connected component. Therefore,
messages in both Topology Aware versions have larger sizes
when compared to the Flooding Degree algorithm. Note that
the value of message sizes in Table I contain additional
information needed by the simulator, which is identical to the
three algorithms. Also, note that the size of messages remains
below the MTU value of wireless networks, then messages
can be included in single packets.

Table I
AVERAGE MESSAGE SIZE (IN BYTES)

Flooding
Degree

Topology
Aware
Degree

Topology
Aware

Closeness
Random waypoint 196 705 to 1284 681 to 1260

Periodic single POI 196 786 to 942 760 to 915

3) The longest leader path relative to the component di-
ameter: Figure 5 gives the average longest path to the leader
(y-axis left) and the average component diameter (y-axis right)
for both mobility patterns. It shows that an election criterion
based on Closeness centrality shortens paths to the leader
compared to an election criterion only based on Degree.

For the random waypoint pattern, low transmission ranges
lead to small components with only some nodes. Therefore,
paths to the leader are most of the time direct links or contain
only a few nodes. When the transmission range increases,
Topology Aware Closeness is better than Flooding Degree,
thanks to its component central leader choice.

In the periodic single point of interest pattern however, as
the shape of the disc is independent of the transmission range,
there is periodically only one component comprising the entire
network. We observe that Topology Aware Closeness is 11%
better than Flooding Degree. Topology Aware Degree has a
similar behavior to Flooding Degree as both have the same
election criterion.

0

1

2

3

4

5

6

7

8

Av
er

ag
e 

co
m

po
ne

nt
 d

ia
m

et
er

(in
 n

um
be

r 
of

 h
op

s)

10 30 50 70 90 110 130 150 170 190
Transmission range (in meters)

0

5

10

15

20

25

30

35

Le
ad

er
 p

at
h 

re
la

tiv
e 

to
 c

om
po

ne
nt

 d
ia

m
et

er

Leader path relative to the component diameter
Random waypoint

Flooding Degree
Topology Aware Degree
Topology Aware Closeness
Average comp. diameter

0

1

2

3

4

5

6

7

8

Av
er

ag
e 

co
m

po
ne

nt
 d

ia
m

et
er

(in
 n

um
be

r 
of

 h
op

s)

10 30 50 70 90 110 130 150 170 190
Transmission range (in meters)

0

5

10

15

20

25

30

35

Le
ad

er
 p

at
h 

re
la

tiv
e 

to
 c

om
po

ne
nt

 d
ia

m
et

er

Leader path relative to the component diameter
Periodic single point of interest

Flooding Degree
Topology Aware Degree
Topology Aware Closeness
Average comp. diameter

Figure 5. Longest leader path relative to component diameter

G. Fault injection

We have conducted fault injection experiments on the leader
node in a static configuration, evaluating then the average time
to elect a new leader when the transmission range varies from
10m to 200m. After nodes have exchanged information to elect
the eventual leader of the component, the leader crashes and
recovers periodically. Results in Table II show the average
election time to elect the new leader. We observe that for
both Topology Aware versions the election time is larger
than Flooding Degree, because the buffering of messages
slows down message transmission time of each node as the
transmission range increases. However, this time remains low
(less than 1 second).

Table II
AVERAGE ELECTION TIME (IN MILLISECONDS)

Flooding
Degree

Topology Aware
Degree

Topology Aware
Closeness

422 820 731



VI. CONCLUSION AND FUTURE WORK

This article has presented a per component eventual leader
election algorithm for dynamic networks, that shows the
advantages of a network topology knowledge used by all
nodes for the choice of the leader. To this end, by exchang-
ing messages, every node maintains a local knowledge of
the communication graph of connected nodes and exploits
such knowledge to elect as the leader the node having the
highest closeness centrality. This leader can, therefore, spread
information faster over its connected component than flooding
algorithms. Considering the random waypoint and a periodic
single point of interest mobility models, we evaluated on
the PeerSim [1] simulator both our algorithm and a flooding
algorithm with a local topological election criterion. Both
Topology Aware algorithms are more stable than Flooding
Degree and the closeness version has a shorter path to the
leader, especially on large components with low movements
of nodes. It is less sensitive to the component size and sends
fewer messages than Flooding Degree. When compared to
Flooding Degree, our algorithm improves the leader stability
up to 82% depending on mobility models, sends half as many
messages, and nodes reach the leader by 11% shorter paths.
In the Topology Aware algorithm, the size of messages could
be reduced using compression, for example.

In the future, we plan to work on a cross-layer implemen-
tation for MANET, using information from the MAC layer to
improve communication performance. We will also consider
wireless message collisions. In order to detect inconsistencies,
nodes will periodically broadcast a checksum of their topo-
logical knowledge, in probe messages for example. Lastly, we
intend to implement the Topology Aware algorithm on real
devices such as Raspberry Pis, conducting experiments in real
conditions.

REFERENCES

[1] A. Montresor and M. Jelasity, “PeerSim: A scalable P2P simulator,” in
The 9th Int. Conference on Peer-to-Peer (P2P’09), 2009, pp. 99–100.

[2] T. D. Chandra, V. Hadzilacos, and S. Toueg, “The weakest failure
detector for solving consensus,” Journal of the ACM (JACM), vol. 43,
no. 4, pp. 685–722, 1996.

[3] D. Peleg, “Time-optimal leader election in general networks,” Journal
of parallel and distributed computing, vol. 8, no. 1, pp. 96–99, 1990.

[4] L. Lamport, “The part-time parliament,” ACM Transactions on Computer
Systems (TOCS), vol. 16, no. 2, pp. 133–169, 1998.

[5] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Oct.
2008. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[6] H. V. Netto, L. C. Lung, M. Correia, A. F. Luiz, and L. M. S. de Souza,
“State machine replication in containers managed by kubernetes,” Jour-
nal of Systems Architecture, vol. 73, pp. 53–59, 2017.

[7] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free
coordination for internet-scale systems.” in USENIX annual technical
conference, vol. 8, no. 9, 2010.

[8] G. Le Lann, “Distributed systems-towards a formal approach.” in IFIP
congress, vol. 7, 1977, pp. 155–160.

[9] E. Chang and R. Roberts, “An improved algorithm for decentralized
extrema-finding in circular configurations of processes,” Communica-
tions of the ACM, vol. 22, no. 5, pp. 281–283, 1979.

[10] N. A. Lynch, Distributed algorithms. Elsevier, 1996, ch. 4.1, pp. 52–56.
[11] N. Malpani, J. L. Welch, and N. Vaidya, “Leader election algorithms

for mobile ad hoc networks,” in The 4th int. workshop on Discrete
algorithms and methods for mobile computing and communications.
ACM, 2000, pp. 96–103.

[12] S. Vasudevan, J. Kurose, and D. Towsley, “Design and analysis of a
leader election algorithm for mobile ad hoc networks,” in The 12th int.
Conference on Network Protocols, ICNP. IEEE, 2004, pp. 350–360.

[13] M. Rahman, M. Abdullah-Al-Wadud, and O. Chae, “Performance anal-
ysis of leader election algorithms in mobile ad hoc networks,” Int. J.
of Computer Science and Network Security, vol. 8, no. 2, pp. 257–263,
2008.

[14] R. Ingram, T. Radeva, P. Shields, S. Viqar, J. E. Walter, and J. L. Welch,
“A leader election algorithm for dynamic networks with causal clocks,”
Distributed computing, vol. 26, no. 2, pp. 75–97, 2013.

[15] L. Arantes, F. Greve, P. Sens, and V. Simon, “Eventual leader election
in evolving mobile networks,” in Int. Conference On Principles Of
Distributed Systems. Springer, 2013, pp. 23–37.

[16] C. Shea, B. Hassanabadi, and S. Valaee, “Mobility-based clustering in
vanets using affinity propagation,” in GLOBECOM. IEEE, 2009, pp.
1–6.

[17] C. Gómez-Calzado, A. Lafuente, M. Larrea, and M. Raynal, “Fault-
tolerant leader election in mobile dynamic distributed systems,” in 19th
Pacific Rim Int. Symposium on Dependable Computing. IEEE, 2013,
pp. 78–87.

[18] C. Kim and M. Wu, “Leader election on tree-based centrality in ad hoc
networks,” Telecommunication Systems, vol. 52, no. 2, pp. 661–670,
2013.

[19] C. Fernández-Campusano, M. Larrea, R. Cortiñas, and M. Raynal, “A
distributed leader election algorithm in crash-recovery and omissive
systems,” Information Processing Letters, vol. 118, pp. 100–104, 2017.

[20] M. Nesterenko and S. Tixeuil, “Discovering network topology in the
presence of byzantine faults,” Transactions on Parallel and Distributed
Systems, vol. 20, no. 12, pp. 1777–1789, 2009.

[21] B. Bellur and R. G. Ogier, “A reliable, efficient topology broadcast proto-
col for dynamic networks,” in INFOCOM’99. Conference on Computer
Communications. 18th Annual Joint Conference of the IEEE Computer
and Communications Societies., vol. 1. IEEE, 1999, pp. 178–186.

[22] R. Ingram, P. Shields, J. E. Walter, and J. L. Welch, “An asynchronous
leader election algorithm for dynamic networks,” in Int. Symposium on
Parallel & Distributed Processing. IEEE, 2009, pp. 1–12.

[23] D. S. Hirschberg and J. B. Sinclair, “Decentralized extrema-finding in
circular configurations of processors,” Communications of the ACM,
vol. 23, no. 11, pp. 627–628, 1980.

[24] P. Humblet, “A distributed algorithm for minimum weight directed
spanning trees,” IEEE Transactions on Communications, vol. 31, no. 6,
pp. 756–762, 1983.

[25] B. Awerbuch, “Optimal distributed algorithms for minimum weight
spanning tree, counting, leader election, and related problems,” in The
19th annual ACM symposium on Theory of computing, 1987, pp. 230–
240.

[26] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” J. ACM, vol. 32, no. 2,
p. 374–382, Apr. 1985.

[27] M. Larrea, A. Fernández, and S. Arévalo, “Optimal implementation
of the weakest failure detector for solving consensus,” in 19th IEEE
Symposium on Reliable Distributed Systems, SRDS’00, Proc., 2000, pp.
52–59.

[28] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg, “On
implementing omega with weak reliability and synchrony assumptions,”
in The 22nd annual symposium on Principles of distributed computing,
2003, pp. 306–314.

[29] A. Mostéfaoui, E. Mourgaya, M. Raynal, and C. Travers, “A time-free
assumption to implement eventual leadership,” Parallel Process. Lett.,
vol. 16, no. 2, pp. 189–208, 2006.

[30] L. Melit and N. Badache, “An Ω-based leader election algorithm for
mobile ad hoc networks,” in Networked Digital Technologies - 4th Int.
Conference. Part I, 2012, pp. 483–490.

[31] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, p. 558–565, 1978.

[32] A. Bavelas, “Communication patterns in task-oriented groups,” The
journal of the acoustical society of America, vol. 22, no. 6, pp. 725–730,
1950.

[33] T. Camp, J. Boleng, and V. Davies, “A survey of mobility models for ad
hoc network research,” Wireless communications and mobile computing,
vol. 2, no. 5, pp. 483–502, 2002.

[34] M. Papandrea, K. K. Jahromi, M. Zignani, S. Gaito, S. Giordano,
and G. P. Rossi, “On the properties of human mobility,” Computer
Communications, vol. 87, pp. 19–36, 2016.

https://bitcoin.org/bitcoin.pdf

