
HAL Id: hal-02953985
https://hal.science/hal-02953985v1

Submitted on 1 Oct 2020 (v1), last revised 3 Nov 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nonsmoothness in Machine Learning: specific structure,
proximal identification, and applications

Franck Iutzeler, Jérôme Malick

To cite this version:
Franck Iutzeler, Jérôme Malick. Nonsmoothness in Machine Learning: specific structure, proximal
identification, and applications. Set-Valued and Variational Analysis, In press. �hal-02953985v1�

https://hal.science/hal-02953985v1
https://hal.archives-ouvertes.fr

Set-Valued and Variational Analysis manuscript No.
(will be inserted by the editor)

Nonsmoothness in Machine Learning: specific structure,
proximal identification, and applications

Franck Iutzeler · Jérôme Malick

October 1, 2020

Abstract Nonsmoothness is often a curse for optimization; but it is some-
times a blessing, in particular for applications in machine learning. In this
paper, we present the specific structure of nonsmooth optimization problems
appearing in machine learning and illustrate how to leverage this structure
in practice, for compression, acceleration, or dimension reduction. We pay a
special attention to the presentation to make it concise and easily accessible,
with both simple examples and general results.

1 Introduction

Optimization is at the core of machine learning and nonsmoothness plays
there a special role. Often, nonsmooth functions are introduced in learning
problems to enforce low-complexity of the optimal model parameters. This
promoted structure (e.g. sparsity, low-rank, or controlled variation) turns out
to be progressively identified by proximal algorithms; most interestingly, it
can be leveraged numerically to improve optimization methods. This situation
contrasts with a large part of the optimization literature where dealing with
nonsmooth functions or checking nonsmooth substructure is usually uneasy.

In this paper, we lay out a generic framework of optimization problems for
which nonsmoothness can be exploited, covering most machine learning prob-
lems with low-complexity priors. We then go over the main technical tools
that enable to mathematically and practically handle nonsmooth structures.

F. Iutzeler
Univ. Grenoble Alpes

J. Malick
CNRS, LJK

2 Franck Iutzeler, Jérôme Malick

We pay a special attention to being accessible for a wide audience1 in opti-
mization, including graduate students in applied maths. No specific knowledge
on machine learning or nonsmooth analysis is necessary to follow our devel-
opments, but fundamentals in mathematical optimization are required. Let us
mention that we will make a constant (but basic) use of the proximal oper-
ator which is a key tool to deal with explicit nonsmoothness. For a function
g : Rn → R ∪ {+∞} and a parameter γ > 0, we define proxγg(u) for any
u ∈ Rn as the optimal solution of the following problem:

proxγg(u) := arg min
y∈Rn

{
g(u) +

1

2γ
‖y − u‖22

}
. (prox)

This properly defines an operator proxγg : Rn → Rn in many cases, in particu-
lar when g is convex. We refer to the textbooks [31] and [6] or to the review [43]
for more information and an historical perspective.

The rest of the paper is organized as follows. In Section 2, we explain why non-
smooth models are considered in machine learning. In Section 3, we formalize a
large class of nonsmooth optimization problems for which structure can be ex-
ploited. Then, in Section 4, we discuss the proximal optimization algorithms
that can harness this structure. In Section 5, we lay out the mathematical
grounds that enable to properly identify structure. Finally, in Section 6, we
review recent advances in the use of identified structure to improve perfor-
mances of some optimization algorithms in machine learning.

2 Nonsmooth problems in Machine Learning

Standard machine learning tasks such as regression, classification, or cluster-
ing (see e.g the textbook [48]) lead to optimization problems. Indeed, many
objectives in supervised learning can write as minimizing some risk function
R measuring the dissimilarity between a learning model, obtained from statis-
tical modeling, with parameters x ∈ Rn, and a set of m examples {ai, bi}mi=1,
in the form of an input (ai) and target (bi) pair. This problem, often called
Empirical Risk Minimization (ERM), has the following form:

min
x∈Rn

R (x; {ai, bi}mi=1) . (ERM)

Often, the risk R is taken as the average of some loss over the training ex-
amples: R (x; {ai, bi}mi=1) = 1

m

∑m
i=1 `(p(x; ai); bi) where p(x; a) is the model

prediction for input a using parameters x, and `(p; b) quantifies the error be-
tween the predicted point p and the true target b. The simplest case is when
the prediction function is linear (p(x; a) = 〈x; a〉) and the error is quadratic
(`(p; b) = (p− b)2) leading to the well known least-squares regression problem.

1 Advanced readers can jump directly to Sections 5 (about general identification) and 6
(with entry points to recent research on this topic).

Nonsmoothness in Machine Learning 3

Other popular choices for the model include polynomial and gaussian kernels,
or neural networks. The error functions often depend either on (i) the statisti-
cal modelling of the problem through the (log) likelihood (squared 2-norm for
linear regression of points corrupted by a Gaussian noise, 1-norm for Laplace
noise); or (ii) directly from applications (errors in classification).

With the ever-growing collection of data, the size of learning problems has
significantly increased, both in terms of number of examples, m, as well as in
size of optimized parameter, n. While the increase in number of examples is
generally beneficial for the general conditioning of the problem, the increase of
the parameter space often makes the problem ill-conditioned and reduces both
the interpretability and stability of the model. In order to overcome this issue,
a generally admitted solution is to introduce a prior on the structure of the
model x and to regularize the (ERM) in order to promote the prior structure.
One of the first and most well-known instances of such a prior is the sparsity
sought in the parameters of least-squares regression, leading to the well known
lasso problem [51]. More generally, regularizing a learning problem to enforce
a prior structure conforms to the following steps:

(i) Define a prior structure. Let us observe the usual priors in machine learn-
ing: sparsity, constant by block, fixed rank, etc. They can be described as
subsets of Rn that are rather easy to describe and project on. As mathe-
matical objects, and to comply with a vast part of the literature, we shall
see them as (affine or smooth) manifolds, but most of the arguments in
this paper hold for simple closed sets.

(ii) Find an additive nonsmooth function r enforcing this structure. Nons-
moothness of functions traps optimal solutions in low-dimensional man-
ifolds: small perturbations in the risk around these points would not break
down optimal structure as illustrated by Figure 1. Mathematically, this
is due to subdifferentials with non-empty relative interiors in relevant di-
rections. For instance, the subdifferential of the `1-norm has a nonempty
relative interior along the axes, promoting sparsity.

At this point, a regularized version of (ERM) can be formulated as

min
x∈Rn

R (x; {ai, bi}mi=1)︸ ︷︷ ︸
=:f(x)

minimizes the risk

+ λ r(x)︸ ︷︷ ︸
=:g(x)

enforces structure

. (Regularized ERM)

To make it more concrete, let us consider the popular example of `1-regularized
least-squares problems (often called lasso [51]): take a linear prediction func-
tion, a quadratic loss, and the `1-norm as a regularizer, then the regularized
problem becomes

min
x∈Rn

1

2
‖Ax− b‖22 + λ ‖x‖1 . (lasso)

Optimal solutions are then sparser than the one of the original least-squares,
and their sparsity pattern is stable under small perturbations; see Figure 1.

4 Franck Iutzeler, Jérôme Malick

In general, the regularized risk minimization has thus a composite form, in-
volving two different parts: f which is linked to the risk itself, and g which
only promotes structure, with a hyperparameter λ > 0 controlling the bal-
ance between f and g. This particular formulation enables one to use ad-hoc
optimization methods which forms the third part of the learning process:

(iii) Design an optimization method complying with this composite formulation.
The structure-enforcing part g = λ r is necessarily nonsmooth but it may be
possible to choose it so that its proximity operator (prox) can be computed
easily (with an explicit expression or through a computationally cheap pro-
cedure). When this is the case, proximal methods (i.e. optimization meth-
ods involving at least one proximity operator) are the algorithms of choice
to solve (Regularized ERM). Indeed, contrary to subgradient methods, the
proximity operator enables taking fixed stepsizes and is thus much faster
in both theory and practice. We will come back to them in Section 4.

−2 −1 0 1 2 3 4

−2

0

2

4

0.5

0.5
1

1

1 2

2

2

2

4

4

4
4

4

6

6

66

6

10

10
10

10

20

20

30
−2 −1 0 1 2 3 4

−2

0

2

4

0.5

0.5

0.5

1

1

1

2

2

22

4
4

4

4

4

4
6

6

6

6
6

6

10

10

10

10

20

20

20 30

Fig. 1: Illustration of the stability of optimal solutions of lasso in R2. We plot the level sets
of 1/2‖Ax− b‖22 for two (lasso) problems with different but close design matrices A. We see
that while the solutions of the (unregularized) least-squares problem (marked by a x) are
different, the solutions of the lasso (marked by a circled cross), although different, lie on the
same axis, corresponding to the nonsmoothness loci of the `1-norm.

To summarize, when solving a machine learning problem, it is common to
assume some prior structure and enforce it by adding a regularization term
to the (ERM). In the next section, we will see that this prior structure of-
ten takes a special and simple form in relation with the proximity opera-
tor of g. In this context, we will later explain how proximal methods solving
(Regularized ERM) automatically uncover the optimal structure (or at least
part of it), and how we can take advantage of this behavior to improve the
performance of the algorithms themselves.

Nonsmoothness in Machine Learning 5

3 Noticeable Structure in nonsmooth optimization problems

The type of nonsmoothness encountered in machine learning objectives is of-
ten linked to user-defined priors, as in (Regularized ERM). In this case, the
nonsmoothness is under control: it is chosen and relatively simple. In this sec-
tion, we introduce the notion of Noticeable Structure (NS) to describe this
favorable class of problems for which structure can be characterized.

Framework NS (Problems with Noticeable Structure). For a function g and
a finite collection2 C = {M1, . . . ,Mp} of closed sets, we say that the couple
(g,C) has noticeable structure if
1. we have a projection mapping projMi

ontoMi for all i as well as for any
intersection WI = ∩i∈IMi for I ⊆ {1, .., p};

2. g is non-differentiable at x only if x ∈Mi for some i;
3. proxγg(u) is a singleton and can be computed explicitly for any u and γ;
4. upon computation of x = proxγg(u), we know if x ∈Mi or not for all i.

Before providing examples, let us discuss these four properties. Items 1 and 2
are important to harness the structure numerically. The first item simply
means that it is computationally possible to project onto any set (or intersec-
tion of sets) present in the collection; this is to enable algorithms to harness
the iterates structure by updating preferably along the identified manifold (see
Sec. 6.3). Item 2 permits localization the non-differentiability and as a conse-
quence better grasp differentiability (outside of the manifolds and along mani-
folds3). Item 3 is typically satisfied for all proper convex lower semi-continuous
functions and for some classes of non-convex functions (e.g. for prox-bounded,
prox-regular functions [45, Prop. 13.37]). Note though that (generalized) con-
vexity will not be required for most of our developments. Item 4 is essential:
to be able to exploit some structural information, the user needs to know the
current structure. This condition is not so stringent since for many popular
structure-enforcing functions, an explicit proximity operator is known, often
based on switch-cases that directly determine the output structure.

In the remainder of this section, we detail some popular examples of structures
and regularizers4 falling into the framework (NS) often considered as priors in
machine learning [4].

2 We mention that the sets in the collection C = {M1, . . . ,Mp} are denoted byMi since
in most of the literature these sets are described as manifolds. The manifold structure will
only be used when needed. However, the closedness of the sets is primordial. Its finiteness
is less essential but is used to describe properly the structure of a neighborhood points (see
the proof of Theorem 1).

3 In many examples, the nonsmooth function g turns out to be smooth with respect to
smooth (sub)manifolds of the collection. We will come back to this relative smoothness of
the problem in Section 6.3.1.

4 In the following examples, we take λ = 1 out of simplicity since in that case g ≡ r. This
does not change the discussion on proximity operators since there are explicit formulas for
scaling, translation, etc. [8, Th. 6.1].

6 Franck Iutzeler, Jérôme Malick

3.1 Sparse structure with `1-norm

The natural manner to look at the sparsity pattern of a vector is to look at
each coordinate and see if it is null or not. In terms of collection of manifolds,
we consider

C = {M1, . . . ,Mn} with Mi = {x ∈ Rn : xi = 0}.
First, the projections on theMi’s are direct (NS-1). Taking g(x) = ‖x‖1, its
non-differentiability points exactly match the described manifolds (NS-2).

The proximity operator of the `1-norm is the well-known soft-thresholding
operator which can be described coordinate-wise as

[x]i =
[
proxγ‖·‖1(u)

]
i
=

 0 if [u]i ∈ [−γ, γ]
[u]i − γ if [u]i > γ
[u]i + γ if [u]i < −γ

with [u]i ∈ R denoting the i-th coordinate of vector u ∈ Rn. This proximity
operator is thus explicitly computable for any u (NS-3). Finally, after com-
pleting the tests on the right hand side above, the structure of the output x
is perfectly known (NS-4).

For other types of sparsity-inducing functions and structure (e.g. `1/`2 or
group sparsity), see [3]. Note that these functions do not need to be convex as
discussed in the following remark.

Remark 1 (Sparser structure with non-convex functions) The `1-norm is some-
times seen as a convex approximation of the `0-“norm”. Although g(x) =
‖x‖0 = Card{i : [x]i 6= 0} is not a norm and is non-convex, it is quite easy to
see that it fits the framework (NS), with the same collection and the proximal
operator

[x]i =
[
proxγ‖·‖0(u)

]
i
=

{
0 if [u]i ∈ [−γ, γ]
[u]i if |[u]i| > γ

,

sometimes called the hard-thresholding operator.

For completeness, notice that all the functions g(x) = ‖x‖pp for p ∈ [0, 1]
satisfy (NS)-1 & 2 and are thus sparsity-inducing. However, the only explicitly
computable proximity operators are for p = 0, 0.5, 2/3, 1 [12], they are thus the
only ones matching (NS)-3 & 4. Finally, only p = 1 (presented above) leads to
a convex function.

3.2 Flat structure with total variation

The denoising of piecewise-constant one-dimensional5 signals has attracted
a lot of attention, notably thanks to the introduction of the total variation

5 The 2D problem of matrix regression with flat regions is much harder to define and to
solve, see e.g. [15] and references therein.

Nonsmoothness in Machine Learning 7

function g(x) =
∑n
i=2 |[x]i − [x]i−1| [47]. The structure of piecewise constant

signals can be described using the following collection:

C = {M1, . . . ,Mn−1} with Mi = {x ∈ Rn : xi = xi−1} ,

and once again (NS)-1 & 2 are easily satisfied. The computation of the prox-
imity operator is less direct than before and does not benefit from a closed
form solution, however, there are efficient dynamic programming algorithms
computing it exactly and enabling to know exactly the structure of the output,
see [14] for details. Hence, (NS)-3 & 4 are also satisfied.

Remark 2 (More structure with non-convex functions) In the same vein as be-
fore, the total variation can be seen as a convex relaxation of g(x) = Card({i :
[x]i 6= [x]i−1}), sometimes called the Potts problem [54]. (NS)-1 & 2 are then
easily satisfied, while 3 & 4 are less direct but the proximity operator can also
be obtained by dynamic programming [24].

3.3 Low rank with nuclear norm

One of the most prominent types of structure sought in matrix-values prob-
lems is low-rank. Indeed, it is widely used (notably stemming from PCA and
spike models) in order to summarize the information in the matrix to its most
informative subspaces. It also pops out in matrix factorization and matrix
completion problems, with applications in recommender systems. Naturally,
the collection writes

C = {M1, . . . ,Mn} with Mi = {rank(X) = i}

and projection onto the manifolds can be obtained numerically by truncating
the singular value decomposition (for NS 1).

To express the rank of a matrix X ∈ Rr×c, it is natural to examine its singu-
lar values (σ1, . . . , σn) (where n = min{r, c}). A direct way to promote low-
rank matrices is through nuclear norm regularization, which is the `1-norm of
the singular values vector: g(X) = ‖X‖∗ =

∑n
i=1 σi. One can show that the

proximal operator X = proxγ‖·‖∗(U) of a matrix U = V diag(σi)W
∗ can be

obtained by

X = V diag(νi)W
∗ with νi = proxγ|·|(σi) =

 0 if σi ∈ [−γ, γ]
σi − γ if σi > γ
σi + γ if σi < −γ

which matches NS 3 & 4.

A remarkable point is that even though two close matrices may have completely
different singular vectors, their singular values will be close (this is sometimes
called Weyl’s lemma, see [55,49]). Hence, while a new singular value decom-
position has to be computed at each application of the proximity operator of

8 Franck Iutzeler, Jérôme Malick

the nuclear norm, the rank of the output will be somewhat stable to small
perturbations, which is of utmost importance when using sparsity.

Thus, even though the problem of checking the rank of a matrix can be prob-
lematic numerically, the simplicity of the proximity operator (modulo the com-
putation of the SVD) enables it to fall into our framework (NS); especially,
the rank of the output of the proximity operator is known by construction.

Finally, note that as in the previous case, the “`0-equivalent” of the nuclear
norm is simply the rank whose proximity operator involves a hard threshold-
ing of the singular values. Finally, for completeness, several types of matrix
structures falling into our framework can be found in [9].

4 Proximal algorithms

From an optimization point of view, regularized empirical risk minimization
(see (Regularized ERM) in Section 2) is often seen as a composite problem:

min
x∈Rn

f(x) + g(x) (P)

where g induces a Noticeable Structure (NS) as per the framework introduced
in the previous section.

The study of optimization algorithms associated with proximity operators,
notably in relation with monotone operators [46] and splitting methods [20],
has attracted a considerable lot of attention in the optimization community
since the 70s; see e.g. [13,43] for reviews of the essential points for signal
processing and machine learning applications. These proximal algorithms are
written quite generally as follows with iterations consisting of an Update step,
that defines the algorithm, followed by a proximity operation:{

uk+1 = Update
xk+1 = proxγg(uk+1)

(prox− Update)

The main purpose of the Update step is to handle f which is the part of the
problem not managed by proxγg. To do so, it can use the properties of f as
well as previous iterates.

We will see in the next section that such proximal methods are the most generic
algorithms that can harness nonsmoothness in the framework (NS). The only
prerequisite is that these methods converge (or converge almost surely, when
randomness is involved), which we formalize in the next assumption.

Assumption 1. The method (prox− Update) is such that

1. (uk) converges (almost surely) to a point u?,
2. (xk) converges (almost surely) to a point x?,
3. x? = proxγg(u

?) is a minimizer of (P).

Nonsmoothness in Machine Learning 9

Let us list some popular proximal algorithms solving (P) with g convex6 lower
semi-continuous, that satisfy Assumption 1:

– Proximal gradient : for f convex with an L-Lipchitz gradient{
uk+1 = xk − γ∇f(xk)
xk+1 = proxγg(uk+1)

(PG)

satisfies Assumption 1 for γ ∈ (0, 2/L) [8, Th. 10.24].

– Accelerated Proximal Gradient : for f convex with an L-Lipchitz gradient,{
uk+1 = xk + αk(xk − xk−1)− γ∇f(xk + αk(xk − xk−1))
xk+1 = proxγg(uk+1)

(APG)

with αk = (k−1)/(k+3) satisfies Assumption 1 for γ ∈ (0, 1/L] [11, Th. 3].

– Douglas-Rachford : for f convex lower semi-continuous but not necessarily
differentiable, the proximity operator of f can be used with a splitting7

algorithm such as Douglas-Rachford{
uk+1 = proxγf (2xk − uk) + uk − xk
xk+1 = proxγg(uk+1)

(DR)

which satisfies Assumption 1 for any γ > 0 [6, Cor. 27.4].

– Variance-Reduced Incremental Methods: for f(x) = 1
m

∑m
j=1 f

j(x) with
each (f j) strongly convex with an L-Lipchitz gradient,uk+1 = xk−γ

(
∇f ik(xk)−∇f ik(xk−dikk) +

m∑
j=1

∇f j
(
xk−djk

))
xk+1 = proxγg(uk+1)

(SAGA)

where ik is drawn uniformly in {1, . . . ,m} and k − djk is the last time
before k when ∇f j was computed (i.e. for which ik−djk = j). SAGA satisfies
Assumption 1 for γ = 1/(3L) [17, Cor. 1].

6 In the case where g is convex and lower semi-continuous, points 1 and 3 imply point 2
and are actually sufficient for convergence. Observe indeed that ‖xk−x?‖ = ‖proxγg(xk)−
proxγg(u

?)‖ ≤ ‖uk − u?‖; see more in [6, Chap. 23]. In non-convex cases, the situation
is more complex, all three points are necessary and can be investigated by looking at the
prox-regularity and prox-boundedness of g at a local minimizer x?; see [30] and references
therein.

7 A splitting method is necessary here to separate the two proximity operators, since they
cannot be directly composed [57] or averaged [7].

10 Franck Iutzeler, Jérôme Malick

– Asynchronous Proximal Gradient : for f(x) = 1
m

∑m
j=1 f

j(x) with each (f j)
µ-strongly convex with an L-Lipchitz gradient,

uk+1 =
1

m

m∑
j=1

(
xk−djk

− γ∇f j(xk−djk)
)

xk+1 = proxγg(uk+1)

(DAve-PG)

where an iteration is performed as soon as an oracle (say i) finishes com-
puting a gradient (∇f i(xk−dik)); then, uk+1, xk+1 are updated. The time
k−djk is then the iteration of the last point for which j has sent a response.
Provided that no oracle completely stops working, DAve-PG satisfies As-
sumption 1 for γ ∈ (0, 2/(µ+ L)] [38, Th. 3.2].

This inventory, far from complete, gives an idea of the diversity of favorable
proximal methods. We end this section by mentioning methods that do not
satisfy Assumption 1; they mostly fall into two categories:

– Stochastic versions of proximal gradient. There are situations where the
gradient is obtained via a stochastic oracle gk satisfying E[gk] = ∇f(xk)
and E[‖gk − ∇f(xk)‖2] ≤ σ2. The proximal stochastic gradient, obtained
by replacing the gradient in (PG) by such stochastic one, may not recover
the structure of the problem; see [44, Sec. 1.3]. This case indeed fails to
satisfy Assumption 1: there is convergence only in probability and not
almost surely (or any other types of weaker convergence giving localization
guarantees).

– Inexact proximal methods. When the proximal operator is not cheap, the
step xk+1 = proxγg(uk+1) may be computed only approximately (see
e.g. [46]). The scheme (prox− Update) is not exactly satisfied and thus
fall out of the scope of the present paper. In addition, inexact methods
may not recover the structure of the optimization problem.

5 Proximal Identification

Proximal methods are the natural algorithms for solving regularized learning
problems. The convergence analysis of these algorithms is well-known and
studied in the references given in the previous section. Less-known and studied
is the qualitative behavior (beyond convergence) of these methods. In this
section, we question where the iterates of proximal methods are located and
show that they reach some near-optimal structure after some finite time: this
is the identification property of proximal methods.

Nonsmoothness in Machine Learning 11

5.1 A generic identification result

The observation that the iterates produced by optimization algorithms reach
some structure dates can be traced back to e.g. [56] for constrained problems
and [29] for nonsmooth minimization. Our presentation here is original re-
garding its simplicity and generality. For additional details on identification,
including early references, we point to [21] and references therein.

In order to properly study structure membership, let us define the sparsity
vector that describes the structure of a point x ∈ Rn relatively to the collection
C = {M1, . . . ,Mp} introduced in the framework (NS), as the vector S(x) ∈
{0, 1}p defined as

[S(x)]i = 0 if x ∈Mi and 1 elsewhere.

An identification theorem is a result describing the eventual structure of the
iterates of an algorithm, i.e. the value of S(xk) for large enough k, with respect
to the optimal point x?. We provide below an elementary but powerful enough
identification theorem.

Theorem 1 (Enlarged identification) Let Assumption 1 hold. Then, the
iterates (xk) produced by (prox− Update) identify some manifolds in the col-
lection of the framework (NS)8. More precisely, for each ε > 0 there is a K
such that for all k > K we have, with probability one, for all i

[S(x?)]i ≤ [S(xk)]i ≤ max
{
[S
(
proxγg(u)

)
]i : ‖u− u?‖ ≤ ε

}
where x? is the minimizer of (P) to which (xk) converges and u? is defined
as in Assumption 1.

Before going to the proof, we note that a slightly more precise result is shown
there: the right part [S(xk)]i ≤ max

{
[S
(
proxγg(u)

)
]i : ‖u− u?‖ ≤ ε

}
actually

holds as soon as ‖uk − u?‖ ≤ ε .

Proof. For the right part of the result, since uk → u? almost surely from
Assumption 1, we have that for any ε > 0, ‖uk − u?‖ ≤ ε for k large enough
with probability one. This directly gives the right hand side of the inequality.
Then, S

(
proxγg(uk)

)
≤ max

{
S
(
proxγg(u)

)
: ‖u− u?‖ ≤ ε

}
.

The left part of the inequality is more interesting. Consider the collection of
sets to which x? belongs C? = {Mi ∈ C : x? ∈ Mi} and its complementary
collection C? = C \ C?. Since M◦ :=

⋃
{M ∈ C?} is a closed set (given that

it is a finite9 union of closed sets), its complementary set Rn \ M◦ is open.

8 For simplicity, we place ourselves within the framework (NS), because it is needed to
exploit identification in practice. However, the result uses only existence and uniqueness of
the proximal mapping (first part of item 3 in the definition of framework (NS)).

9 This argument is the main reason why finiteness is assumed in the framework (NS). For
countably many sets in the collection,M◦ may not be closed (it is then a Fσ set).

12 Franck Iutzeler, Jérôme Malick

Since x? ∈ Rn \ M◦ by definition of C?, there exists a ball of radius ε′ > 0
around x? that is included in Rn \M◦. Hence, as xk → x? almost surely, it
will reach this ball in finite time with probability one and thus belong to fewer
subspaces than x?. No point x in that ball belongs toM◦ which means that
S(x?) ≤ S(x) coordinate-wise.

This rather generic result demonstrates that the iterates of proximal methods
partially identify some structure as soon as uk is close enough to u?. After a
finite but unknown number of iterations, we have:

– less structure than x?. The left-hand inequality guarantees that all the
identified manifolds contain the optimal manifolds, but possibly others
(which means that less structure is identified). Note that this does not
depend on the algorithm used.

– some structure. The identified structure is not random: it is controlled by
the right-hand-side term, which encompasses how the structure changes
around the pair (x?, u?). This upper-bound is in general impossible to eval-
uate a priori (for an exception, see [19]). Intuitively, its size captures the
difficulty of reaching the structure of x?; see Figure 2.

Note that the structure mentioned here is relative to the solution of (P) to
which the algorithm is converging. If there are multiple solutions to the prob-
lem, they may have different sparsity patterns, but identification still holds.

Fig. 2: Illustration of the enlarged identification of the proximal gradient algorithm solv-
ing matrix least-squares problems regularized by nuclear norm. We generate many random
problems for matrices of size 20 × 20 and with optimal solutions of rank 4. We plot the
decrease of the rank of the iterates for two groups of problems: in blue the problems are
well-posed and the algorithm identifies the optimal rank; in red the problems are degenerate
and the algorithm identifies something bigger. Each curve is a trajectory and the bold curves
are the averaged trajectory for the two groups.

Theorem 1 frames the structure of the iterates; sometimes the terminology
enlarged or approximate identification is used. However, there is no reason

Nonsmoothness in Machine Learning 13

for S(xk) to be asymptotically: stable, monotonous, or close to S(x?) (or to
the right bound), as evidenced numerically in [21,22,5]. This may pose some
problems in practice if one uses S(xk) as a proxy for the optimal structure.
Fortunately, the family of problems for which the identification is exact, i.e.
S(xk) = S(x?), can be characterized, as explained in the next section.

Remark 3 (Relation with Screening) Finding near-optimal structures is an im-
portant part of machine learning problems. For instance, when g = ‖ · ‖1 (for
instance in the lasso problem [51]), identification brings information about the
nullity of the coordinates of the problem solution, enabling feature selection
and/or dimension reduction [52]. Discarding null features when solving sparse
learning problems is often called screening. With the present notation, this
means knowing (an upper-bound on) S(x?) before convergence in order to dis-
card null features and optimizing on the non-zeros entries. Theorem 1 implies
that S(xk) is a valid upper-bound, but after some unknown time.

Observe though that, following the same arguments as in the proof of The-
orem 1, we have S(x?) ≤ max{S(proxγg(u)) : u ∈ X} for any set X 3 u?.
Determining such a safe region X [26] (for instance using duality [23]) and
computing the max gives a so-called safe screening rule. While this may be
computationally intractable in many cases, this proved to be very efficient for
solving the the lasso problem and other sparse learning models; for additional
details, see e.g. [34,40,35].

5.2 Exact identification under a qualifying constraint

The general enlarged identification result of Theorem 1 can be easily strength-
ened to an exact version, guaranteeing S(xk) = S(x?) after some time. A suf-
ficient condition for exact identification is that the proximity operator maps
all points u close to u? to a point with the same structure as x?:

∃ ε > 0 such that S(x?) = max
{
S(proxγg(u)) : ‖u− u?‖ ≤ ε

}
(QC)

Note that this qualifying condition only depends on the optimal pair (x?, u?)
and the proximity operator of function g.

Corollary 1 (Exact identification) Let Assumption 1 hold; suppose that
(P) has a unique minimizer10 and that (QC) holds true. Then, the iterates (xk)

10 In Theorem 1, the result holds for the minimizer to which the algorithm converges.
Here, for simplicity, we assume furthermore uniqueness of the minimizer. Nevertheless, if
there are multiple minimizers and condition (QC) holds for all pairs (x?, u?), the structure
of all optimal points can be proved to be the same under mild conditions. For instance, if f
is differentiable and ∇f is L-Lipchitz continuous on the set of optimal solutions X?, then at
optimality x? = proxγg(u

?) with u? = x? − γ∇f(x?). If (QC) holds for some ε > 0, take
two solutions x?1, x

?
2 ∈ X? such that ‖x?1 − x?2‖ ≤ ε/(1 + γL); then, ‖u?1 − u?2‖ ≤ ε and thus

S(x?1) = S(x?2) by (QC). Then, since S(x?) is the same for all minimizers, Corollary 1 holds.

14 Franck Iutzeler, Jérôme Malick

produced by (prox− Update) identify the optimal structure in the framework
(NS). More precisely, for k large enough, we have

S(xk) = S(x?) with probability 1

where x? is the minimizer of (P) and u? is defined as in Assumption 1.

Remark 4 (Identification time) As mentioned previously, identification time is
generally unknown. However, if (QC) holds for some known ε > 0, then any
uk such ‖uk − u?‖ ≤ ε will lead to a xk satisfying S(xk) = S(x?). Using the
convergence rate of the algorithm, an estimate of the identification time can
be given. For instance, if a proximal method satisfies ‖uk−u?‖ = O(1/k), then
we have S(xk) = S(x?) after O(1/ε) iterations. This rationale is used in [25,
42,50].

Remark 5 (Link between the qualifying constraint and partial smoothness) Con-
dition (QC) depends only weakly on the optimal structure, which is in contrast
with part of identification literature that considers g partly smooth [29,33]
relative to the final manifold. As shown in [5, Apx. A], if g is partly smooth
relative to the manifold M? :=

⋂
{Mi ∈ C : x? ∈ Mi} and the condition

(u?−x?)/γ ∈ ri ∂g(x?) is satisfied, then (QC) holds. Thus the assumption is a
consequence of the “irrepresentable condition” which is a classical assumption
in machine learning; see e.g. [58] and [2]. Note finally, that this condition sim-
plifies to −∇f(x?) ∈ ri ∂g(x?) for the proximal gradient method (PG) (and
most derivatives such as (APG), (DAve-PG)).

6 Nonsmoothness can help computationally

Nonsmooth regularizations are used in machine learning and signal processing
for the nice recovery or consistency properties11 that they induce; see e.g. [53]
and recall Figure 1. The point of this paper is to advocate that nonsmooth-
ness can also be useful to improve the optimization algorithms used in these
applications. This is what we illustrate in this section, building on the tools
presented so far.

In the previous section, we have properly formalized that proximal methods
uncover (some of) the optimal structure of the optimization problem, which
corresponds to the priors put in the learning model. Another important thing
to keep in mind is that while we are able to observe the structure along the
way, we do not know in general if this structure is in fact optimal or if it will
remain stable. The key question is then

11 These properties are intrinsic consequences of the nonsmoothness of regularizations,
and directly connected to the stability properties of optimal solutions and identification
properties of algorithms. Among a rich literature, we refer to the statistical properties of lasso
[51], the recovery in compress sensing literature [10,18], and the general model consistency
result of [22].

Nonsmoothness in Machine Learning 15

How can we harness the identified structure ?

We present below general ideas to exploit the structure brought by proximal
identification. These ideas can be seen as good practices or, more generally,
important points to keep in mind when designing algorithms on problems with
noticeable structure.

6.1 Compression: using the structure to compress iterates

The first way to harness structure is very simple and direct: since the algo-
rithm’s iterates will eventually reach some structure, we may use it to encode
them more efficiently. This idea is mainly useful with sparse structures (see
the examples of Section 3): the iterates can be stored in a (key,value) form
which directly saves space when storing the iterates.

More interestingly, in the case of distributed algorithms involving communi-
cations between a master and some workers, such as (DAve-PG), a sparse
encoding directly reduces the communication cost, which is often a bottleneck
in distributed systems; see Figure 3 and [39,28].

6.2 Acceleration: promoting structure stability over speed

The proximal gradient (PG) can be accelerated using inertia (see (APG)); this
acceleration makes the worst case functional convergence rate go from O(1/k)
to O(1/k2), which is the optimal complexity for such problems [41]. However,
acceleration interferes with identification: we illustrate this graphically on Fig-
ure 4 which displays the iterates of (PG) and (APG) on two problems (P) in R2

with f quadratic and g nonsmooth. This figure highlights two properties:

– Acceleration is faster and has some kind of exploratory behavior which
increases its ability to reach the optimal structure (1 iteration = 1 mark
in Figure 4).

– Even though the accelerated variant often reaches the optimal structure
faster, the additional inertial term in (APG) is proportional to the differ-
ence between the last two iterates. Thus, when reaching a new manifold, the
inertial term may drive the iterates out of it (In part (a), (APG) arrives to
the optimal manifold but then is dragged leftwards). More generally, even
if (APG) satisfies Assumption 1 and eventually identifies, it is less stable
than the vanilla proximal gradient.

To summarize, accelerated and vanilla proximal gradient both have respective
merits in terms of identification. In order to try and combine these merits,
an intermediate method, introduced in [5], consists in accelerating only if the
structure is preserved. This strategy shows encouraging results by being rea-
sonably fast while preserving a good structure identification. This makes it

16 Franck Iutzeler, Jérôme Malick

0 0.5 1 1.5 2 2.5 3

·104

0

20

40

60

80

100

iterations (k)

nu
m
be

r
of

nu
ll
co
or
di
na

te
s
in
x
k

(a) Iterates density along a run of DAve-PG.

0 1 2 3 4

·106

10−4

10−3

10−2

10−1

100

101

102

103

Number of coordinates communicated

Fu
nc
ti
on

al
su
bo

pt
im

al
it
y

all coordinates
only non-zero

(b) Suboptimality versus number of coordi-
nates exchanged between machines.

Fig. 3: Identification of null coordinates and its use for reducing the exchanges for
(DAve-PG) on a 200 × 100 lasso problem ran on one machine/master coordinating 10 ora-
cles/workers. We plot on the subfigure (b) the decrease of objective function with respect,
not to iterations as usual, but to number of coordinates exchanged between the master and
the workers. We see exchanging only non-zero coordinates is directly beneficial in terms
of communication cost. The three regimes in the curves correspond to the three behaviors
shown on subfigure (a): first the algorithm gives priority to sparsity against the quadratic
term, until around iteration 7000, where the huge change in sparsity depicts an approximate
identification; and finally exact identification takes place after 2e4 iterations. Recall from
Section 4 that an iteration here corresponds to an update from one of the 10 workers. In
this distributed framework, the bottleneck is the communications; we show that identifi-
cation would automatically reduce communications. Finally, we mention that this example
also shows that identification is not monotone in general: contrary to Figure 2, subfigure (a)
shows huge variations in the current support.

−1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

1.1

1
.1

2.3

2.
3

2
.3

3.4

3.4

3
.4

3.4

4
.5

4
.5

4.5

5
.7

5
.7

5.7

6
.8

6.8

8

8

9.1

10.2
11.4M1

M2

x?

Proximal Gradient
Accelerated Proximal Gradient

(a) g(x) = ‖x‖1 C = {M1,M2}
M1 = y-axis,M2 = x-axis

−1.5 −1 −0.5 0 0.5
−0.5

0

0.5

1

1.5

0.28

0.28

0.28

0.28

0.28

0.28

0.56

0.56

0.56

0.56

0.56

0.84

0.84

0.84

1.12

1.12

1.12

1.4

1.4

1.68

1.68

1.96

1.96

2.242.522.8

M
x?

Proximal Gradient
Accelerated Proximal Gradient

(b) g(x) = max(0, ‖x‖1.3 − 1) C = {M}
M is the unit sphere for ‖ · ‖1.3

Fig. 4: Iterates behavior for the Proximal Gradient (with and without acceleration) when
minimizing a function of the type ‖Ax − b‖2 + g(x) with two different functions g, the
`1-norm (left) and the distance to the unit ball of the 1.3 norm (right).

interesting in machine learning problems where recovering (partial) structure
is almost as important as convergence.

Nonsmoothness in Machine Learning 17

6.3 Dimension reduction: updating with respect to the identified structure

Let us make a simple remark. Once a manifold has been identified (e.g. some
coordinates are null), there is some hope that it will stay identified for the
remainder of the algorithm (e.g. the coordinates will remain null for all sub-
sequent iterations). It is thus natural to update preferentially outside of this
manifold (e.g. update preferentially the non-null coordinates). Mathematically,
this leads to the following conceptual algorithm:

– Observe S(xk), which gives Ck = {Mi ∈ C : xk ∈ Mi}, the identified
collection, andMk =

⋂
M∈Ck

M, the identified manifold.
– Compute a working manifold Wk from Ck andMk.
– Update iterates preferentially12 along Wk.

Two types of strategies for choosingWk and updates are presented in the next
two subsections: (i) alternating between updates along Wk and updates on
the whole space; (ii) drawing randomly Wk as a larger manifold so that, in
expectation, the full space is covered.

6.3.1 Predictor-corrector methods

After the observation of the current collection Ck, a simple and natural choice
of working manifold is to consider

Wk =
⋂
M∈Ck

M .

In the ideal situation where we know that our working manifoldWk is optimal
(i.e. x? ∈ Wk), we would just have to solve our optimization problem restricted
toWk. However, as already mentioned, we never know if Wk is optimal or
not. An idea is therefore to interlace efficient steps along Wk (as if we knew
the optimal manifold) and proximal steps in the whole space (to keep on
identifying). This type of methods is called predictor-corrector in [16].

Interestingly, the nonsmooth function g restricted to the manifold Wk is often
smooth, and the problem restricted toWk is then a Riemannian optimization
problem [1]. In words: on top of reducing dimension, identification may also
allow us to get rid of nonsmoothness; at the price of the additional constraint
of lying inWk. See [37] for discussions on the connections between nonlinear
programming, nonsmooth optimization, and Riemannian optimization.

We write the generic predictor-corrector method exploiting this identification
of smooth substructure, as follows{

uk = (Gradient or Newton) step tangent to Wk (Riemannian step)

xk+1 = proxγg(uk) (prox)

12 Preferentially but not only. Since the user never knows if the optimal structure is at-
tained, the directions outside the identified manifoldMk should still be updated at times.

18 Franck Iutzeler, Jérôme Malick

When a Riemannian Newton step is used, this method offers a geometrical
interpretation of the so-called VU algorithms (introduced in [32] and showed
to be superlinearly convergent in [36]).

6.3.2 Randomized structured descent

We focus here on (P) for f convex and smooth with a Lipschitz gradient, g
convex lower semi-continuous, and linear manifolds, as for instance for sparse
(Section 3.1) or flat (Section 3.2) structures.

After the observation of the current collection Ck, [27] proposes to update on
the random working subspace

Wk =
⋂
M∈Ck

(ξM,kM+ (1− ξM,k)Rn)

where the (ξM,k) are independent identically distributed Bernoulli random
variables with success probability p ∈ (0, 1). This means that the working
subspace is obtained from the current collection, by randomly removing some
identified spaces. This allows any direction in Rn to be explored with non-
zero probability, which prevents the algorithm against mis-identification. For
instance, in the case of sparsity manifolds, it consists in working on variables
with the same support as the current variable, except for some randomly drawn
coordinates that we allow to be non-zero as well.

Working in the subspace Wk involves projecting the gradient, which unfor-
tunately adds a bias in the averaged decent direction. To compensate, [27]
proposes to debias the iterates with the inverse squared root of the averaged
projection Qk =

(
E projWk

)− 1
2 , which leads to the following algorithm.

yk = xk − γ∇f(xk) (gradient)

uk = Q−1k
(
projWk

(Qkyk) + proj⊥Wk
(uk−1)

)
(debiased projection)

xk+1 = proxγg(uk) (prox)

Unfortunately, as such, this method does not work if the collection Ck (or
equivalently the distribution of subspaces Wk) changes too much, which goes
against the progressive structure identification. To overcome this, [27] proposes
to change the current collection Ck (onto which Wk is based) not at every it-
eration but after some waiting time depending on the amount of change in the
iterates’ structure (the more changes, the longer the wait). Thus, by adapting
the collection at the right frequency, the method identifies the optimal struc-
ture and benefits from a competitive rate of convergence compared to the
vanilla proximal gradient while using a smaller part of the gradient at each
iteration; see [27] for details and illustrations.

Nonsmoothness in Machine Learning 19

7 Conclusions

In this paper, we introduced a framework to formalize nonsmooth optimiza-
tion problems with noticeable structure. These problems often arise in machine
learning applications and are prone to be solved by proximal methods. These
algorithms are known to identify the problem structure, but going one step
further, we show that the structure progressively uncovered by these methods
can be harnessed in practice to improve their performances. Among many pos-
sible applications, we emphasize the automatic compression, the interplay with
acceleration, and some algorithmic options offered by dimension reduction.

Acknowledgements

The authors would like to warmly thank the whole DAO team and especially
our PhD students Gilles Bareilles, Mathias Chastan, Sélim Chraibi, Dmitry
Grishchenko, Yu-Guan Hsieh, and Yassine Laguel. FI benefited from the sup-
port of the ANR JCJC project STROLL (ANR-19-CE23-0008).

References

1. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on matrix manifolds.
Princeton University Press (2008)

2. Bach, F.: Consistency of trace norm minimization. The Journal of Machine Learning
Research 9(Jun), 1019–1048 (2008)

3. Bach, F., Jenatton, R., Mairal, J., Obozinski, G., et al.: Convex optimization with
sparsity-inducing norms. Optimization for Machine Learning 5, 19–53 (2011)

4. Bach, F., Jenatton, R., Mairal, J., Obozinski, G., et al.: Optimization with sparsity-
inducing penalties. Foundations and Trends® in Machine Learning 4(1), 1–106 (2012)

5. Bareilles, G., Iutzeler, F.: On the interplay between acceleration and identification for
the proximal gradient algorithm. Computational Optimization and Applications (2020)

6. Bauschke, H.H., Combettes, P.L.: Convex analysis and monotone operator theory in
Hilbert spaces. Springer Science & Business Media (2011)

7. Bauschke, H.H., Goebel, R., Lucet, Y., Wang, X.: The proximal average: basic theory.
SIAM Journal on Optimization 19(2), 766–785 (2008)

8. Beck, A.: First-order methods in optimization, vol. 25. SIAM (2017)
9. Benfenati, A., Chouzenoux, E., Pesquet, J.C.: A proximal approach for a class of matrix

optimization problems. arXiv preprint arXiv:1801.07452 (2018)
10. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal recon-

struction from highly incomplete frequency information. IEEE Transactions on infor-
mation theory 52(2), 489–509 (2006)

11. Chambolle, A., Dossal, C.: On the convergence of the iterates of the “fast iterative
shrinkage/thresholding algorithm”. Journal of Optimization theory and Applications
166(3), 968–982 (2015)

12. Chartrand, R., Yin, W.: Nonconvex sparse regularization and splitting algorithms. In:
Splitting methods in communication, imaging, science, and engineering, pp. 237–249.
Springer (2016)

13. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In:
Fixed-point algorithms for inverse problems in science and engineering, pp. 185–212.
Springer (2011)

20 Franck Iutzeler, Jérôme Malick

14. Condat, L.: A direct algorithm for 1-d total variation denoising. IEEE Signal Processing
Letters 20(11), 1054–1057 (2013)

15. Condat, L.: Discrete total variation: New definition and minimization. SIAM Journal
on Imaging Sciences 10(3), 1258–1290 (2017)

16. Daniilidis, A., Hare, W., Malick, J.: Geometrical interpretation of the predictor-corrector
type algorithms in structured optimization problems. Optimization 55(5-6), 481–503
(2006)

17. Defazio, A., Bach, F., Lacoste-Julien, S.: Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. In: Advances in Neural
Information Processing Systems, pp. 1646–1654 (2014)

18. Donoho, D.L.: Compressed sensing. IEEE Transactions on information theory 52(4),
1289–1306 (2006)

19. Duval, V., Peyré, G.: Sparse regularization on thin grids i: the lasso. Inverse Problems
33(5), 055008 (2017)

20. Eckstein, J., Bertsekas, D.P.: On the douglas—rachford splitting method and the prox-
imal point algorithm for maximal monotone operators. Mathematical Programming
55(1-3), 293–318 (1992)

21. Fadili, J., Malick, J., Peyré, G.: Sensitivity analysis for mirror-stratifiable convex func-
tions. SIAM Journal on Optimization 28(4), 2975–3000 (2018)

22. Fadili, J.M., Garrigos, G., Malick, J., Peyré, G.: Model consistency for learning with
mirror-stratifiable regularizers. In: International Conference on Artificial Intelligence
and Statistics (AISTATS) (2019)

23. Fercoq, O., Gramfort, A., Salmon, J.: Mind the duality gap: safer rules for the lasso.
In: International Conference on Machine Learning, pp. 333–342 (2015)

24. Friedrich, F., Kempe, A., Liebscher, V., Winkler, G.: Complexity penalized m-
estimation: fast computation. Journal of Computational and Graphical Statistics 17(1),
201–224 (2008)

25. Garrigos, G., Rosasco, L., Villa, S.: Thresholding gradient methods in Hilbert spaces:
support identification and linear convergence. arXiv preprint arXiv:1712.00357 (2017)

26. Ghaoui, L.E., Viallon, V., Rabbani, T.: Safe feature elimination for the lasso and sparse
supervised learning problems. Pacific Journal of Optimization 8(4), 667–698 (2012)

27. Grishchenko, D., Iutzeler, F., Malick, J.: Proximal gradient methods with adaptive
subspace sampling. Mathematics of Operations Research (2020)

28. Grishchenko, D., Iutzeler, F., Malick, J., Amini, M.R.: Asynchronous distributed learn-
ing with sparse communications and identification. arXiv preprint arXiv:1812.03871
(2018)

29. Hare, W., Lewis, A.S.: Identifying active constraints via partial smoothness and prox-
regularity. Journal of Convex Analysis 11(2), 251–266 (2004)

30. Hare, W., Sagastizábal, C.: Computing proximal points of nonconvex functions. Math-
ematical Programming 116(1-2), 221–258 (2009)

31. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms.
Springer Verlag, Heidelberg (1993). Two volumes

32. Lemaréchal, C., Oustry, F., Sagastizábal, C.: The U-Lagrangian of a convex function.
Transactions of the AMS 352(2), 711–729 (2000)

33. Liang, J., Fadili, J., Peyré, G.: Activity identification and local linear convergence of
forward–backward-type methods. SIAM Journal on Optimization 27(1), 408–437 (2017)

34. Mairal, J.: Sparse coding for machine learning, image processing and computer vision.
Ph.D. thesis, École Normale Supérieure de Cachan (2010)

35. Massias, M., Salmon, J., Gramfort, A.: Celer: a fast solver for the lasso with dual
extrapolation. In: International Conference on Machine Learning, pp. 3321–3330 (2018)

36. Mifflin, R., Sagastizábal, C.: A VU-algorithm for convex minimization. Mathematical
programming 104(2-3), 583–608 (2005)

37. Miller, S.A., Malick, J.: Newton methods for nonsmooth convex minimization: connec-
tions among-lagrangian, riemannian newton and sqp methods. Mathematical program-
ming 104(2-3), 609–633 (2005)

38. Mishchenko, K., Iutzeler, F., Malick, J.: A distributed flexible delay-tolerant proximal
gradient algorithm. SIAM Journal on Optimization 30(1), 933–959 (2020)

Nonsmoothness in Machine Learning 21

39. Mishchenko, K., Iutzeler, F., Malick, J., Amini, M.R.: A delay-tolerant proximal-
gradient algorithm for distributed learning. In: International Conference on Machine
Learning, pp. 3584–3592 (2018)

40. Ndiaye, E., Fercoq, O., Gramfort, A., Salmon, J.: Gap safe screening rules for sparsity
enforcing penalties. The Journal of Machine Learning Research 18(1), 4671–4703 (2017)

41. Nesterov, Y.E.: A method for solving the convex programming problem with conver-
gence rate O(1/k2). In: Dokl. Akad. Nauk SSSR, vol. 269, pp. 543–547 (1983)

42. Nutini, J., Schmidt, M., Hare, W.: “active-set complexity” of proximal gradient: How
long does it take to find the sparsity pattern? Optimization Letters 13(4), 645–655
(2019)

43. Parikh, N., Boyd, S.P.: Proximal algorithms. Foundations and Trends in optimization
1(3), 127–239 (2014)

44. Poon, C., Liang, J., Schönlieb, C.B.: Local convergence properties of saga/prox-svrg
and acceleration. arXiv:1802.02554 (2018)

45. Rockafellar, R., Wets, R.B.: Variational Analysis. Springer Verlag, Heidelberg (1998)
46. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM journal

on control and optimization 14(5), 877–898 (1976)
47. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algo-

rithms. Physica D: nonlinear phenomena 60(1-4), 259–268 (1992)
48. Shalev-Shwartz, S., Ben-David, S.: Understanding machine learning: From theory to

algorithms. Cambridge university press (2014)
49. Stewart, G.W.: Perturbation theory for the singular value decomposition. Tech. rep.

(1998)
50. Sun, Y., Jeong, H., Nutini, J., Schmidt, M.: Are we there yet? manifold identification of

gradient-related proximal methods. In: The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 1110–1119 (2019)

51. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological) pp. 267–288 (1996)

52. Tibshirani, R., Bien, J., Friedman, J., Hastie, T., Simon, N., Taylor, J., Tibshirani,
R.J.: Strong rules for discarding predictors in lasso-type problems. Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 74(2), 245–266 (2012)

53. Vaiter, S., Peyré, G., Fadili, J.: Low complexity regularization of linear inverse problems.
In: Sampling Theory, a Renaissance, pp. 103–153. Springer (2015)

54. Weinmann, A., Storath, M., Demaret, L.: The l1-Potts functional for robust jump-sparse
reconstruction. SIAM Journal on Numerical Analysis 53(1), 644–673 (2015)

55. Weyl, H.: Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Dif-
ferentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung).
Mathematische Annalen 71(4), 441–479 (1912)

56. Wright, S.J.: Identifiable surfaces in constrained optimization. SIAM Journal on Control
and Optimization 31(4), 1063–1079 (1993)

57. Yu, Y.L.: On decomposing the proximal map. In: Advances in Neural Information
Processing Systems, pp. 91–99 (2013)

58. Zhao, P., Yu, B.: On model selection consistency of Lasso. The Journal of Machine
Learning Research 7, 2541–2563 (2006)

	1 Introduction
	2 Nonsmooth problems in Machine Learning
	3 Noticeable Structure in nonsmooth optimization problems
	4 Proximal algorithms
	5 Proximal Identification
	6 Nonsmoothness can help computationally
	7 Conclusions

