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ABSTRACT

Context. Open clusters are key targets for studies of Galaxy structure and evolution, and stellar physics. Since the Gaia data release
2 (DR2), the discovery of undetected clusters has shown that previous surveys were incomplete.
Aims. Our aim is to exploit the Big Data capabilities of machine learning to detect new open clusters in Gaia DR2, and to complete
the open cluster sample to enable further studies of the Galactic disc.
Methods. We use a machine-learning based methodology to systematically search the Galactic disc for overdensities in the astrometric
space and identify the open clusters using photometric information. First, we used an unsupervised clustering algorithm, DBSCAN, to
blindly search for these overdensities in Gaia DR2 (l, b, $, µα∗ , µδ), and then we used a deep learning artificial neural network trained
on colour–magnitude diagrams to identify isochrone patterns in these overdensities, and to confirm them as open clusters.
Results. We find 582 new open clusters distributed along the Galactic disc in the region |b| < 20◦. We detect substructure in complex
regions, and identify the tidal tails of a disrupting cluster UBC 274 of ∼3 Gyr located at ∼2 kpc.
Conclusions. Adapting the mentioned methodology to a Big Data environment allows us to target the search using the physical
properties of open clusters instead of being driven by computational limitations. This blind search for open clusters in the Galactic
disc increases the number of known open clusters by 45%.

Key words. surveys – open clusters and associations: general – astrometry – methods: data analysis

1. Introduction

Since the publication of the second data release of the ESA mis-
sion Gaia (Gaia DR2; Gaia Collaboration 2016, 2018), which
contains more than 1.3 billion stars with precise astrometric
measurements (positions, parallax, and proper motions) and inte-
grated photometry for three broad bands (G, GBP, and GRP),
among other data products, the study of open clusters (OCs) has
been revolutionised and the OC population redefined in statisti-
cal terms.

Open clusters are fundamental objects in galaxies that allow
us to understand the structure and evolution of the Milky Way.
They are groups of stars that are gravitationally bound and born
in the same event and therefore stars in an OC share a com-
mon position and proper motion (l, b, $, µα∗ , µδ) as well as initial
chemical composition and age. The possibility to reliably esti-
mate the ages and distances of OCs, compared to the estimation
on individual stars, makes them a useful tool for studying sev-
eral topics in astrophysics. Young OCs allow us to the derive
the initial mass function (IMF) and trace star forming regions,
providing useful information on star forming mechanisms. Inter-
mediate to old OCs contain information about the processes
occurring in the Galactic disc that disrupt these stellar struc-

? Full Table 1 and Table 2 are only available at the CDS via anony-
mous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http:
//cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/635/A45

tures and drive the evolution of the disc. All OCs are also indis-
pensable to constrain stellar structure and evolutionary models.
To enable most of these studies, a complete and homogeneous
census of the OC population needs to be built.

Many published studies were aimed at detecting new OCs
and accurately determining membership probability. Shortly
after the publication of Gaia DR2, Cantat-Gaudin et al. (2018)
was able to compute membership probabilities for 1229 OCs
present in catalogues previous to Gaia DR2 (where these
catalogues included about 3000 objects Dias et al. 2002 and
Kharchenko et al. 2013), and proved the non-existence of some
of them. In parallel, Castro-Ginard et al. (2018) developed a
machine learning (ML) methodology to search for unnoticed
OCs in the Gaia data and was able to detect 23 new OCs dis-
tributed throughout the sky in the TGAS data set (Michalik et al.
2015; Lindegren et al. 2016) and 53 new OCs in a region
near the Galactic anticentre (Castro-Ginard et al. 2019). Since
then, there have been many efforts to complete the OC census:
Cantat-Gaudin et al. (2019a) found 41 OCs in the direction of
Perseus using Gaussian mixture models; Sim et al. (2019) found
207 OCs by visually inspecting proper motion diagrams; and
Liu & Pang (2019) recently reported 2 443 OCs, of which 76
were unknown and considered of high quality, by dividing the
sky into small 3D regions and employing a friends-of-friends
algorithm to search for overdensities in the (l, b, $, µα∗ , µδ)
space.
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All of these previous studies analysed either a particular
region of the Galactic disc, or divided the entire Galactic disc
into areas defined by the limiting number of stars that the algo-
rithms are able to deal with due to the computational complexity
and resources needed when dealing with Big Data catalogues
such as Gaia. The implementation of such methodologies in a
Big Data environment, where the division of the search region
of the sky into small regions depends only on the targeted struc-
tures and not on any computational limitation, is a key step in
blind all-sky searches.

In this paper, we adapt the methodology described in
Castro-Ginard et al. (2018; 2019, CG18 and CG19 hereafter) to
run in a Big Data environment. The methodology consists in the
application of an unsupervised clustering algorithm, DBSCAN,
to find overdensities in a five-dimensional parameter space
(l, b, $, µα∗ , µδ). The confirmation of these overdensities as plau-
sible clusters is done by recognising an isochrone pattern in
the colour–magnitude diagram (CMD) of the candidates using
a deep learning artificial neural network (ANN).

This paper is organised as follows. In Sect. 2 we discuss the
methodology used, and how we adapted it to a Big Data environ-
ment. Section 3 describes the data used. A review of the new OCs
found is presented in Sect. 4, as well as some general properties
of the new OCs and a comparison with other OC catalogues. This
section also includes some specific comments on the capabilities
of the methodology. Finally, conclusions are presented in Sect. 5.

2. Methodology

This section summarises the methodology used to systemati-
cally search for unknown OCs. The method is fully described
in CG18, and was applied to Gaia DR2 data in CG19 to find
new OCs in a region near the Galactic anticentre.

The method consists in three main steps: preparing the data,
identifying clusters with DBSCAN, and confirming them with
an ANN.

In the first part, where the data are prepared, the region to
be searched is divided into rectangles of size L × L where the
five parameters (l, b, $, µα∗ , µδ) used to look for the overdensities
are standardised. This division into small regions is necessary
to compute an average density of the region, where the clusters
located in that region represent local overdensities. Contrary to
other papers, the size of these regions is defined by its homo-
geneity and not by the limitations of the hardware or algorithm.

Once the data are prepared, the overdensities are found using
a density-based clustering algorithm, DBSCAN (Ester et al.
1996), which uses a statistical distance (computed as the
Euclidean distance in our case) to define close-by stars in 5D
as a cluster. This step has been improved with respect to CG18
and CG19 because of the larger volume of data to be analysed
(see Sect. 2.1 for details). The choice of DBSCAN is conve-
nient because it does not require an a priori number of clusters
to be found, it is able to find arbitrarily shaped clusters, and it
only requires two input parameters (ε,minPts). The ε parame-
ter is the radius of the hypersphere in which to search for close
neighbours (members of the same cluster); it is automatically
computed in each L × L rectangle using the fact that the separa-
tion between stars in a cluster is smaller than between field stars
(see Sect. 2.2 in CG18 for details on the computation of ε). The
parameter minPts refers to the minimum number of stars within
ε to consider them as a cluster. Once DBSCAN finds the statis-
tical clusters in a grid defined by the L × L rectangles, the grid
is shifted by L/3 and 2L/3 where the algorithm is run again to
account for clusters in the borders.

The value of minPts is optimised, together with L, using
Gaia-like simulated data. We used a Gaia Universe Model Snap-
shot (GUMS) to simulate field stars (Robin et al. 2012) including
errors at the time of Gaia DR21. Open clusters simulated using
the Gaia Object Generator (GOG Luri et al. 2014) were added to
the GUMS simulation as the objects to be found by DBSCAN.
A pair of (L,minPts) is considered to be optimal if a balance is
reached in terms of low contamination and high efficiency.

For true data, the whole process is run over the several
(L,minPts) optimal parameters to assess the reliability of the
clusters found. The more times a statistical cluster has been
found within the explored (L,minPts) pairs, the more likely it
is to be a real OC. The values of (L,minPts) used are 35 combi-
nations of L ∈ [9◦, 15◦] and minPts ∈ [8, 16].

As a last step, overdensities found with DBSCAN are clas-
sified into real OCs or just statistical clusters using an ANN
(Hinton 1989), trained to recognise the characteristic isochrone
pattern of OCs in the CMD. This step has also been improved
with respect to CG18 and CG19, resulting in a more robust clas-
sification with the use of deep learning (see Sect. 2.2).

2.1. Distributed computation of DBSCAN

So far, the method has been applied to small-volume data sets
(i.e. to TGAS in CG18, and to a region in the Galactic anticentre up
to a magnitude of G = 17 in CG19) for design and validation pur-
poses. Both previous studies used the DBSCAN implementation
from scikit-learn (Pedregosa et al. 2011), an easy-to-use API that
provides ML algorithms for Python. However, the higher stel-
lar density to be analysed in other regions of the disc, such as
towards the Galactic centre for example, requires a ML library
able to be deployed in a distributed environment and to handle
larger volumes of data.

Here, we used PyCOMPSs (Tejedor et al. 2017) to find over-
densities in the whole Galactic disc (0◦ ≤ l ≤ 360◦ and −20◦ ≤
b ≤ 20◦) down to a magnitude of G = 17. PyCOMPSs is a task-
based programming model that automatically manages the distri-
bution of the computation depending on the available resources.
Using PyCOMPSs, we build an application that uses DBSCAN
from scikit-learn on different regions of the Galactic disc in par-
allel. This speeds up the computation time and allows us to pro-
cess a volume of data that does not fit in the memory of a single
machine.

The algorithm is deployed on the MareNostrum 4 supercom-
puter2 installed at the Barcelona Supercomputing Center (BSC).
The nodes used for the computation of DBSCAN have 96 GB
of memory and 48 cores per node. For performance-comparison
purposes, we ran DBSCAN with the same configuration that we
used in CG18 on the TGAS data set. In that case, in CG18, the
computation of DBSCAN for all the optimal parameters took
18 hours in a sequential execution on a single machine, whereas
when using PyCOMPSs the whole computation takes ∼1.4 h in
one node (48 cores) and less than 18 minutes in four nodes (192
cores, see Sect. 5 from Álvarez Cid-Fuentes et al. 2019, for a
detailed comparison).

For this case, the analysis of the whole Galactic disc (defined
as −20◦ ≤ b ≤ 20◦) up to magnitude G = 17 using DBSCAN on
four nodes (192 cores) takes an average of 8.27 hours per pair of
parameters, ranging from 5.67 to 11.17 hours depending on the
pairs of (L,minPts).

1 Errors computed with the prescription given in https://github.
com/agabrown/PyGaia
2 https://www.bsc.es/marenostrum
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2.2. Open cluster validation with deep learning

The application of DBSCAN over a large volume of data with
several optimal pairs of parameters (L,minPts) picks up a large
number of statistical overdensities that correspond to real OCs,
also including overdensities only in statistical terms. To automat-
ically decide whether or not a given statistical cluster is a real OC
we have trained an ANN to recognise the isochrone patterns that
stars in OCs follow in a CMD. For both CG18 and CG19 we
used a simple multi-layer perceptron with one hidden layer to
make the classification. In this paper, due to the large number of
statistical clusters found, a more complex model is needed for
robust classification. We designed a “deep” ANN, with several
convolutional layers to perform the classification.

This deep ANN is implemented in PyTorch3 (Paszke et al.
2017), a popular and powerful deep learning library. It takes a
2D histogram in GBP −GRP vs. G, as input, that is, a CMD, and
is trained to decide whether it belongs to a real OC or not. The
network is built in two blocks; a first block consisting in a set
of convolutional layers which are able to learn the features and
geometry of the isochrone pattern in the CMD, and a second
block with two fully connected layers where the classification
of the learned features is performed. After each layer, a ReLU
activation function ( f (x) = max(0, x)) is added, which has
been shown to give better results than other activation functions
(LeCun et al. 2012).

2.2.1. Building the training set

One of the caveats of deep learning is that it requires a large
amount of training samples to learn the possible configurations
of the feature space. The CMDs of the approximately 1500 con-
firmed OCs are not sufficient to train the network. Moreover,
some of these OCs do not have enough stars (minPts at least)
with magnitudes of G ≤ 17 or the isochrone is very dispersed,
and therefore we had to remove these clusters from the train-
ing set. To enlarge the training set we used data-augmentation
techniques (see description in Sect. 2.3.2 in CG18) on the real
known OCs. In addition to the known OCs, we used simulated
isochrones from the PARSEC code (Bressan et al. 2012). To
build the set of isochrones, we assume solar metallicity (Z '
0.0152) and ages ranging from log(age) = 6.6 dex to log(age) =
10.3 dex in steps of 0.1 dex. For each age, the isochrone is filled
with a population of a total mass of 104 M� following the IMF
described in Kroupa (2001). We then select different subsam-
ples of the whole population to create the simulated OCs, and
we locate them at different distances (ranging from 0.4 to 4 kpc)
to better represent the parameter space. For each subsample, the
CMD is built in the GBP −GRP versus G space using the photo-
metric pass bands described in Maíz Apellániz & Weiler (2018).
Finally, in order to mimic Gaia DR2 results, we add photometric
errors (Evans et al. 2018) using an analytical prescription pro-
vided by Carrasco et al. (private communication) and a fraction
of binaries. On the negative identification side, we use CMDs
from random (field) stars located at different fields in the whole
studied area.

Each CMD is converted to a 2D histogram, and as a pre-
processing step, we normalise the data (each pixel of the his-
togram is limited between 0 and 1) before feeding the whole 2D
histogram to the network. To reach better classification perfor-
mance, a logarithmic normalisation was done in order to high-
light the lower density regions so that the network takes into

3 https://pytorch.org/

account the contamination from field stars when performing the
classification.

2.2.2. Performance of the classification

The performance of the classification is assessed in two steps.
On the one hand, the whole training set is split into training and
test with 80% and 20% of the whole set, respectively. This is
useful when designing the network architecture because the true
classification of each sample is known. The final architecture is
chosen to be the one that minimises the test loss.

On the other hand, the model is applied to the anticentre area
as in CG19, where we found 53 new OCs from 491 candidates.
We do not know the true classification of each of those 491 sam-
ples, so the final parameters of the ANN here are tuned to keep
80% (at least) of the OCs confirmed in that region, minimis-
ing the manually discarded statistical clusters. When applying
the final model to classify all the statistical clusters found in the
Galactic disc, we can recover this 80% requirement (in terms of
known OCs recovered) showing that the results are equivalent in
both sets.

3. Data

The data used to perform the blind search for OCs are those of
the Gaia DR2 (Gaia Collaboration 2018). In DR2, Gaia provides
precise astrometry and kinematics (l, b, $, µα∗ , µδ) in addition to
excellent photometry in three broad bands (G,GBP,GRP). The
search is focused on the Galactic disc, defined as 0◦ ≤ l ≤ 360◦
and −20◦ ≤ b ≤ 20◦, because the expectation of finding OCs in
that region is maximum; i.e. 99% of the known OCs catalogued
in Cantat-Gaudin et al. (2018) are in |b| < 20◦, similarly for
Dias et al. (2002) and Kharchenko et al. (2013) with 96% and
94% of the total reported objects in |b| < 20◦, respectively.

The data set is also limited in magnitude up to G = 17, where
the median astrometric uncertainties are 0.094 mas for the par-
allax, and 0.158 and 0.137 mas yr−1 for µα∗ and µδ, respectively
(Lindegren et al. 2018). On the photometric side, up to magni-
tude G = 17 the uncertainties are at the level of ∼0.001 mag
for G, ∼0.006 mag for GBP, and ∼0.01 mag for GRP (Evans et al.
2018). We consider these uncertainty levels to be adequate limits
with which to obtain satisfactory results with our method. This
results in a sample containing 122 727 809 stars.

4. Results

The described methodology is applied to the whole Galactic
disc. This results in a list of 2 213 possible OC candidates,
including the already known OCs and newly discovered ones.

4.1. Comparison with existing catalogues

To report only newly discovered OCs, we cross-match our list of
detections with other catalogues to see which groups are already
known.

4.1.1. Cantat-Gaudin et al. (2018)

We consider a candidate to be matched with one OC in the
Cantat-Gaudin et al. (2018) catalogue if their mean parameters
are compatible within 2σi, where σi is the standard deviation
computed from the members of each OC in the 5D astromet-
ric space, i = {l, b, $, µα∗ , µδ}. From our 2 213 OC candidates,
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Fig. 1. Distribution in Galactic coordinates (l vs. b) of the OCs catalogued in Cantat-Gaudin et al. (2018). Green dots represent OCs that our
method recovers, red dots are OCs not found by DBSCAN, and yellow dots are OCs which are found by DBSCAN but for which the CMD is not
recognised by our ANN. The size of the dots is proportional to the star density of the cluster (see text, Eq. (1)).

688 are listed in Cantat-Gaudin et al. (2018) with our match-
ing criteria. This represents ∼81% of the OCs reported in
Cantat-Gaudin et al. (2018) used in the training set for the ANN,
where we removed OCs either with few members up to G = 17
or with poorly defined empirical isochrones in the CMDs that
would confuse the ANN for the classification.

Our strategy to compute the DBSCAN parameters (L,minPts)
relies on the higher star density of a cluster compared to field stars.
Therefore, our detection is limited to the most compact objects in
the field of search (L × L). This is seen in Fig. 1, where a distri-
bution of l versus b of the catalogued OCs is shown. The OCs
found using our method are plotted in green, whereas those not
found are plotted either in red (if not found by DBSCAN) or
in yellow (if its sequence in the CMD is not well defined and
is therefore not recognised by our ANN). The size of the dots
is proportional to the density of the cluster in the 5D astromet-
ric space, computed as 68% of the total number of stars of the
cluster divided by the volume of a 5D hypersphere:

V5 =
π

5
2

Γ( 5
2 + 1)

r5, (1)

where r = (σ2
l +σ2

b +σ2
$+σ2

µα∗
+σ2

µδ
)

1
2 for each cluster. The OCs

found using our method are mostly high-density groups, whilst
those not found are low-density objects (which are near a higher
density object) or their sequence in the CMD is not recognised
as an isochrone by our ANN.

4.1.2. Castro-Ginard et al. (2018, 2019), and
Cantat-Gaudin et al. (2019a)

The method discussed in this paper was presented in CG18,
where a blind search was performed over the TGAS data
(Lindegren et al. 2016). The 23 OCs found in CG18, mainly
closer than 1 kpc (due to the bright limiting magnitude), are not
likely to be found with Gaia DR2 due to the very different star
density of the data set and the parameters (L,minPts) used in the
search. However, we can find UBC 3, UBC 6, UBC 8, UBC 9,
and UBC 27.

Castro-Ginard et al. (2019) and Cantat-Gaudin et al. (2019a)
applied different methodologies to an area covering the Galac-
tic anticentre. These latter authors found 53 and 41 previously
unknown OCs, respectively, with 21 OCs in common. They
found that the techniques are complementary, with none of the
explored methods being able to detect all the objects.

These studies analysed a very particular region of the disc,
where the star density is low compared to any other disc region.
In the present work, we are able to find 42 out of the 53
(i.e 80%) OCs found in CG19 using the same methodology.
The reason for not finding the 11 remaining OCs is that the
parameters (L,minPts) used in the DBSCAN search (in the case
of CG19) were optimised for that region of low stellar den-
sity. When optimising these parameters for a blind search of the
whole Galactic disc, one has to account for regions with very dif-
ferent stellar densities. The optimal parameters chosen here are
those that show the best performance in general terms, reaching
a balance between low- and high-density regions. For the case of
Cantat-Gaudin et al. (2019a), we were only able to find 24 out of
the 41 reported OCs for similar reasons.

4.1.3. Dias et al. (2002) and Kharchenko et al. (2013)

These catalogues contain about 3 000 OCs each, compiled from
heterogeneous data sources, which makes a cross-match with
our candidates difficult. A candidate is considered to be ten-
tatively matched with one object in those catalogues if its
centres lie within a circle of 0.5◦ in radius. If two objects are
tentatively matched by this positional criterium, we check if
the mean values in (µα∗ , µδ) are compatible by performing a
Welch t-test (Welch 1947), with a threshold p-value of 0.05 to
reject the null hypothesis (i.e., to reject their compatibility). To
perform the Welch t-test, we take the Kharchenko et al. (2013)
most probable members for the cluster central part as the
number of members for each OC in Kharchenko et al. (2013).
These catalogues do not report the mean parallax for each
OC but an estimation of the distance instead, with no asso-
ciated uncertainty. Therefore, no comparison is made in this
dimension.
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Table 1. Some examples of the proposed OCs ordered by increasing l.

Name α[deg] δ[deg] l[deg] b[deg] θ[deg] $[mas] d[kpc] µα∗ [mas · yr−1] µδ[mas · yr−1] Vrad[km · s−1] N (NVrad )

Class A

UBC 91 267.42(0.07) −28.76(0.07) 0.61(0.07) −0.67(0.06) 0.09 0.42(0.03) 2.37+0.18
−0.16 −0.59(0.09) −1.12(0.11) −(−) 83(0)

UBC 92 269.88(0.07) −26.65(0.06) 3.53(0.07) −1.49(0.06) 0.09 0.38(0.04) 2.66+0.31
−0.25 2.13(0.09) 0.41(0.09) −10.79(2.85) 105(2)

UBC 93 268.57(0.05) −25.39(0.05) 4.03(0.04) 0.17(0.05) 0.07 0.34(0.03) 2.95+0.25
−0.22 −0.93(0.11) −1.88(0.09) −(−) 52(0)

UBC 94 269.63(0.09) −24.64(0.1) 5.17(0.1) −0.29(0.08) 0.13 0.75(0.01) 1.34+0.03
−0.02 −1.66(0.07) −4.45(0.06) −(−) 41(0)

UBC 95 268.25(0.06) −22.17(0.09) 6.66(0.09) 2.06(0.07) 0.11 0.49(0.03) 2.03+0.12
−0.1 −0.15(0.13) −1.28(0.11) −16.16(−) 84(1)

UBC 96 273.76(0.09) −16.33(0.1) 14.31(0.11) 0.39(0.08) 0.14 0.62(0.02) 1.62+0.07
−0.06 0.64(0.11) 0.93(0.08) −(−) 41(0)

UBC 97 274.78(0.1) −15.73(0.08) 15.3(0.1) −0.18(0.08) 0.12 0.73(0.02) 1.36+0.03
−0.03 −0.87(0.08) −1.15(0.08) −(−) 33(0)

UBC 98a 288.83(0.15) −22.14(0.14) 15.38(0.13) −14.93(0.16) 0.2 1.53(0.03) 0.65+0.01
−0.01 0.56(0.11) −6.66(0.17) −(−) 23(0)

UBC 99a 282.02(0.09) −18.3(0.09) 16.18(0.08) −7.52(0.09) 0.13 1.06(0.03) 0.94+0.03
−0.03 −1.16(0.1) −4.1(0.13) −(−) 52(0)

UBC 100 281.26(0.07) −11.12(0.1) 22.3(0.1) −3.65(0.07) 0.12 0.7(0.01) 1.43+0.03
−0.03 −1.1(0.08) −3.33(0.09) −(−) 25(0)

UBC 101 279.5(0.09) −7.14(0.07) 25.05(0.08) −0.28(0.08) 0.11 0.42(0.02) 2.41+0.15
−0.13 −0.31(0.09) −3.03(0.08) 15.89(−) 54(1)

UBC 102 280.61(0.08) −6.89(0.09) 25.77(0.09) −1.15(0.08) 0.12 0.52(0.02) 1.94+0.08
−0.08 −1.04(0.09) −2.51(0.11) 9.97(−) 42(1)

UBC 103 280.63(0.05) −6.6(0.08) 26.04(0.07) −1.04(0.06) 0.09 0.28(0.03) 3.54+0.35
−0.29 −0.4(0.09) −2.27(0.09) −3.99(−) 97(1)

UBC 104 280.69(0.05) −6.26(0.07) 26.37(0.06) −0.93(0.06) 0.08 0.29(0.03) 3.45+0.44
−0.35 0.49(0.09) −0.8(0.09) −1.25(2.17) 61(2)

UBC 105 280.33(0.09) −5.43(0.08) 26.94(0.08) −0.23(0.08) 0.12 0.47(0.03) 2.14+0.12
−0.11 0.46(0.11) −0.99(0.09) −(−) 75(0)

.

.

.

Class B
UBC 336 267.98(0.03) −27.83(0.03) 1.66(0.03) −0.62(0.03) 0.04 0.31(0.02) 3.2+0.18

−0.16 0.75(0.08) 0.14(0.07) −25.48(−) 22(1)

UBC 337 271.72(0.08) −24.65(0.08) 6.09(0.07) −1.94(0.08) 0.11 0.57(0.02) 1.77+0.06
−0.06 0.47(0.08) −0.72(0.07) −(−) 40(0)

UBC 338 271.53(0.07) −24.23(0.08) 6.37(0.08) −1.59(0.06) 0.1 0.6(0.02) 1.66+0.06
−0.06 0.01(0.08) −1.77(0.09) −15.86(−) 38(1)

UBC 339 271.31(0.04) −23.31(0.05) 7.08(0.05) −0.96(0.04) 0.06 0.39(0.02) 2.59+0.12
−0.11 0.57(0.07) −0.59(0.08) −(−) 19(0)

UBC 340 270.77(0.09) −22.66(0.07) 7.4(0.06) −0.21(0.09) 0.11 0.7(0.02) 1.42+0.03
−0.03 0.72(0.07) −2.57(0.08) −(−) 27(0)

UBC 341 276.45(0.1) −17.06(0.09) 14.87(0.1) −2.23(0.08) 0.13 0.48(0.03) 2.1+0.13
−0.11 −0.21(0.12) −1.49(0.1) −3.75(−) 94(1)

UBC 342 273.91(0.17) −14.92(0.17) 15.61(0.13) 0.94(0.2) 0.24 0.6(0.03) 1.66+0.09
−0.08 −0.17(0.11) −1.04(0.14) −(−) 66(0)

.

.

.

Class C
UBC 572 280.42(0.07) −21.95(0.06) 12.2(0.06) −7.78(0.07) 0.09 0.65(0.02) 1.54+0.05

−0.05 0.98(0.1) −0.63(0.11) −33.02(7.31) 23(2)

UBC 573 275.01(0.07) −9.44(0.09) 20.95(0.09) 2.58(0.07) 0.11 0.53(0.02) 1.88+0.09
−0.08 −0.18(0.1) −4.48(0.1) −(−) 17(0)

UBC 574a 282.32(0.08) −4.36(0.09) 28.8(0.09) −1.51(0.08) 0.12 0.58(0.0) 1.73+0.01
−0.01 1.06(0.02) 0.21(0.04) −10.15(−) 9(1)

UBC 575 291.01(0.08) −5.13(0.11) 32.05(0.1) −9.58(0.09) 0.13 0.91(0.02) 1.09+0.02
−0.02 −0.3(0.07) −5.18(0.08) −(−) 9(0)

UBC 576 284.68(0.04) 0.42(0.06) 34.13(0.06) −1.43(0.04) 0.07 0.74(0.02) 1.34+0.03
−0.03 −0.74(0.08) −3.56(0.09) −(−) 17(0)

UBC 577 282.17(0.05) 22.12(0.09) 52.54(0.09) 10.47(0.05) 0.1 1.0(0.02) 1.0+0.02
−0.02 −1.04(0.11) 3.07(0.07) −0.59(16.75) 9(4)

.

.

.

Notes. The parameters shown are the mean (and standard deviation) for the (N) members found also including the apparent angular size (θ) and
estimated distance (d) with one sigma confidence interval. Radial velocity is included when available and is computed with NVrad members. The
name follows the numeration of CG19. The full list can be found online at the CDS. (a)coincidence with Sim et al. (2019) or Liu & Pang (2019),
see Sect. 4.1.5. (b)tentative identification with Kharchenko et al. (2013), see Sect. 4.1.3.

Most of the coincidences with these catalogues have already
been taken into account by the cross-match of our candidates
with Cantat-Gaudin et al. (2018). However, we find five OCs
that are compatible with the position and proper motion (with
p-value > 0.05) criteria described above. These objects are
flagged in our Table 1.

With our methodology we are also able to identify objects
related with known star forming regions. Some of these
are listed in the aforementioned catalogues. We find objects
related with σ-Ori, Collinder 228, Bochum 10, NGC 1980,
NGC 1981, NGC 6514, NGC 6530 and NGC 6604 (Reipurth
2008a,b). While σ-Ori is listed as a possible stellar associa-
tion in Dias et al. (2002) it is considered a moving group in
Kharchenko et al. (2013). Collinder 228 has variable extinction
according to Dias et al. (2002) and has nebulosity according to
Kharchenko et al. (2013). Bochum 10 and NGC 6604 are normal
clusters in both catalogues. NGC 1980 and 1918 are considered

in Dias et al. (2002) to be a normal OC and an embedded OC in a
possible OB association, respectively, while they are considered
as nebulosities in Kharchenko et al. (2013). Finally, NGC 6514
and NGC 6530 are listed as normal OCs in Dias et al. (2002) and
as nebulosities in Kharchenko et al. (2013).

4.1.4. Bica et al. (2019)

Bica et al. (2019) compiled a catalogue with 10 978 stellar clus-
ters, associations, and candidates reported previous to Gaia
DR2, by combining catalogues from different studies on differ-
ent surveys (Digital Sky Survey, 2MASS, WISE, VVV, Spitzer
and Herschel). Among the groups listed by Bica et al. (2019),
the OCs amount to 3000. Others are about 300 globular clus-
ters, about 5 000 embedded clusters (which are hardly seen by
Gaia) and about 1200 asterisms. The coincidences among OCs
have been discussed above. We find 45 additional coincidences
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with their catalogue. These matches correspond to globular clus-
ters (GCs), which Bica et al. (2019) include, and which were not
taken into account in the previous cross-matches.

The detection of GCs using our methodology is a good diag-
nostic test. On the one hand, DBSCAN is able to detect these
GCs repeatedly among all the DBSCAN runs (for all optimal
L,minPts parameters). For example, ω-Cen, the most massive
GC known with 4 × 106 M�, is the cluster found the high-
est number of times by our algorithm. On the other hand, the
ANN was trained with CMDs from real OCs and from simu-
lated stellar populations at different ages. Since OCs are mostly
young objects, the contribution to the recognition of such an
old isochrone (>10 Gyr) comes from the simulated data (with
the appropriate error model). Therefore, the use of simulated
CMDs not only contributes by increasing the training set, but
also allows the ANN to recognise cases in the real data that were
trained using simulations.

4.1.5. Sim et al. (2019) and Liu & Pang (2019)

Recently, Sim et al. (2019) found 207 new OCs located within
1 kpc by visually inspecting Gaia DR2 proper-motion diagrams
searching for overdensities. The criteria used to consider one of
these objects as matched with one of our candidates are simi-
lar to those discussed in the previous section. We consider an
identification as tentative if the centres of both objects lie within
a circle of 0.5◦ in radius and then we compare the rest of the
astrometric parameters. Firstly, we find that one of these objects,
UPK 19, corresponds to UBC 32, already reported by CG18. In
this case, UPK 19 and UBC 32 are separated by 0.18◦ in the
sky and the rest of their mean astrometric parameters differ by
(2σ$, 0.14σµα∗ , 0.15σµδ ). Secondly, eight of our OC candidates
are identified with one UPK object. All the identifications are
compatible within 1σ in proper motions. The mean parallaxes
are compatible within 1.91σ (at most). This larger discrepancy
is because Sim et al. (2019) do not report mean parallaxes but the
estimated distance instead, and the transformation from parallax
to distance may lead to big differences. However, we consider
these objects as matched.

Similarly, Liu & Pang (2019) identified 2 443 star clusters in
the Galactic disc using a clustering algorithm in the 5D astro-
metric space (l, b, $, µα∗ , µδ). Most of these star clusters were
previously reported. Of their high confidence candidates, 76 are
reported as new objects. Among these 76, we find 4 coincidences
with CG18 and CG19. These are the cases for their clusters
with IDs 1973, 2143, 2230, and 2385 which are identified with
UBC 74, UBC 72, UBC 56, and UBC 7 (from CG18 and CG19),
respectively. All the identifications are within 0.5◦ and within 2σ
in ($, µα∗ , µδ). From our list of new OC candidates, we find 45
cases that are compatible with one of the 76 from Liu & Pang
(2019), with the same matching criteria.

4.2. Newly found open clusters

We select as new OCs those candidates that are found more than
three times among all the runs to which we applied the method
(each time with a different set of optimal parameters (L,minPts);
see Sect. 2). This results in a list of 676 tentative new structures.

These structures are further divided into three categories:
new OCs of class A, class B, and class C; plus other stellar
structures that were discarded. We classify the new OCs into
these categories by visually inspecting the CMD of the candi-
dates, and the distribution of their member stars in the astro-
metric space (Fig. 2), including radial velocity when available.

Table 14 lists the mean parameters of the candidates proposed
as OCs (α, δ, l, b, $, µα∗ , µδ,Vrad) as well as the apparent angular

size computed as θ =

√
σ2

l + σ2
b. An estimation of the distance

by the inversion the mean parallax is also included, with (asym-
metric) confidence intervals. A list with the members for each
OC, as computed by DBSCAN, is available in Table 25.

The number of OCs in these categories are 245 OCs in class
A, 236 in class B, and 101 in class C. Table 3 shows the mean
(θ,$, σµα∗ , σµδ ,N,Nfound) for each class. Figure 2 shows one OC
from each category. Class A clusters typically show a high con-
centration of the member stars in all five astrometric parame-
ters (l, b, $, µα∗ , µδ), and a clean isochrone in a CMD. Clusters
in class B show a more sparse distribution in the five astromet-
ric parameters, and many include a low number of contaminant
(field) stars which can be seen more clearly in the CMD. While
clusters in class C are typically poorly populated and show an
isochrone that could have a higher degree of contaminant stars.
From the OCs classified as class A, 115(47%) have stars evolved
beyond the main sequence; this represents the oldest population
of this class.

From the OCs classified in class A, 139 have stars with radial
velocity measurements, and 85 contain more than two stars with
radial velocity measurements. For those, the mean dispersion of
the radial velocities within cluster member stars is 5.47 km s−1.
For the OCs in class B, 93 from 236 have radial velocity mea-
surements, and 42 have more than two stars with these measure-
ments. The mean radial velocity dispersion for class B clusters is
6.59 km s−1. Finally, for class C clusters, only 38 have stars with
radial velocities, of which 20 have measurements for more than
two stars. In this latter case, the mean dispersion is 11.81 km s−1.
A certain amount of this dispersion could be due to multiplicity.
Since the clustering did not take into account the radial veloc-
ity in order to detect the OCs, this external check shows the fre-
quency of contaminant stars that clusters in each class may have.

4.2.1. Comments on the new open clusters
The newly found clusters have mean parallaxes ranging from
0.09 to 2.58 mas. Estimating their distance as the inverse of their
mean parallax yields distances from 387 pc to ∼11 kpc. Invert-
ing parallaxes is however not a good approach for objects with
large relative parallax uncertainties (Luri et al. 2018), and a more
sophisticated method should be applied to estimate the distance
to the most distant OCs. Figure 3 shows a comparison between
the distribution of parallaxes of the known OCs with the new
findings, with light orange representing previously known OCs
and light blue representing OCs found in this study. The OCs
found represent an increase in the OC census of 18% in clusters
closer than 1 kpc, 54% in clusters at between 1 and 2 kpc and
49% in clusters further than 2 kpc.

The distribution of the new OCs in the Galactic plane is
shown in Fig. 4 (projection in the X − Y plane in Fig. 5). Of the
new OCs, 83.5% are located at Galactic latitudes |b| < 5◦, 8.2%
are located within 5◦ < |b| < 10◦ and only 8.3% are found at
|b| > 10◦. The black dots represent the newly found OCs (their
angular size is proportional to the number of members) while
the red density contours represent the known ones. We see that
the distribution of the new OCs follows a similar distribution to
the previously reported ones. In these figures, we can see that
the present study detected relatively few new objects between
Galactic longitudes of 140◦ and 210◦. This region has already

4 Full version, with the 582 OCs, available online at the CDS.
5 Table 2 is only available online at the CDS.
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Fig. 2. Examples of class A (top row), class B (middle row), and class C (bottom row) clusters. The columns represent, from left to right, a
distribution of the member stars (in blue) and field stars (grey) for: i) position in (α, δ), ii) proper motions in (µα∗ , µδ), iii) distribution in ($, µα∗ ),
and iv) a CMD in G vs. GBP −GRP. Rows correspond to OCs UBC 257, UBC 478, and UBC 669, respectively. Classes A, B, and C correspond to
different levels of reliability (see Sect. 4.2).

Table 3. Mean parameters for each of the OC classes.

θ $ σµα∗ σµδ N Nfound

Class A 0.14 0.58 0.11 0.11 78.3 25.3
Class B 0.12 0.44 0.10 0.10 51.1 16.3
Class C 0.11 0.36 0.11 0.11 26.3 10.2

Notes. The parameters shown are angular size, parallax, proper
motions, number of members, and number of times found within all
runs of the method.

been the target of two cluster searches using Gaia DR2 data
(in CG19 and Cantat-Gaudin et al. 2019a), and fewer objects are
left to be discovered here. Figure 6 shows the distribution of the
known (red dots) and newly found OCs (black dots). We see
that none of the new OCs are found at high |ZGal| in the inner
disc (RGal < 7 kpc) where real OCs are unlikely to be found
(Cantat-Gaudin & Anders 2020).

4.2.2. Specific remarks on UBC 274

UBC 274 is a newly found OC at a relatively low Galactic lat-
itude (b ∼ −12.8◦) and at a distance of d ∼ 2 kpc. It is the
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Fig. 3. Parallax histogram of the new OCs (light blue) and OCs
known previous to this study (light orange), i.e. CG18, CG19,
Cantat-Gaudin et al. (2018), and Cantat-Gaudin et al. (2019a).

clearest new detection made with our method, that is, the cluster
found the highest number of times within the pairs of (L,minPts)
explored, one of the most massive OCs we can find (with 365
stars), and one of the biggest in size. There are 15 stars with
radial velocity measurements, of which 13 are in agreement with
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Fig. 4. Distribution of the OC census in l vs. b. Black crosses represent new OCs while red triangles represent OCs in CG18, CG19,
Cantat-Gaudin et al. (2018), and Cantat-Gaudin et al. (2019a).

Fig. 5. Distribution of the OCs projected in the X − Y plane. Previously
known OCs (CG18,CG19, Cantat-Gaudin et al. 2018, 2019a) are shown
as a density map in red. Newly found OCs reported here are shown as
black dots, where the size is proportional to the number of members of
each cluster.

a mean value of −22.92 km s−1; they have a standard deviation
of 1.26 km s−1, and so they are compatible with the membership.
The non-compatible stars have a radial velocities of −10.68 and
−8.00 km s−1, at 9σ and 11σ difference, respectively; they may
be field stars or multiple stars.

Figure 7 shows a distribution of the member stars of
UBC 274 in the five astrometric dimensions, and in a CMD.
These members show a concentrated clump in ($, µα∗ , µδ), well
distinguishable from the field stars. UBC 274 shows an elon-
gated shape in the spatial distribution in the direction of the
proper motion. The CMD shows a clean isochrone from which
we can estimate an age of ∼3 Gyr. Fewer than 20% of the pre-
viously known clusters have ages greater than 1 Gyr, and only
5% have ages greater than 2 Gyr. We can also identify some blue
straggler candidates.

Tidal tails in intermediate and old age OCs due to dis-
ruption by the gravitational field have been detected in well-
known clusters like the Hyades, Praesepe, and Coma Berenices
by Röser et al. (2019), Röser & Schilbach (2019), Tang et al.

(2019) based on Gaia DR2. The elongation of UBC 274
(Fig. 8) suggests that it is another example of disruption taking
place.

4.2.3. Substructure in star forming regions

It has been known for a long time that star forming regions are
in groups and form structures and filaments (e.g. Bouy & Alves
2015). Gaia DR2 has allowed for the spatial and kinematic
substructure of several star forming regions to be accurately
determined (Zari et al. 2018; Lim et al. 2019; Galli et al. 2019;
Cantat-Gaudin et al. 2019b) and has even allowed the internal
dynamics of these groups to be studied. We identified several
objects possibly related to known star forming regions. For
instance, in the Carina Nebula, we are able to find seven groups
which are related to the nebula. Figure 9 shows the spatial dis-
tribution of those groups. The points in different colours rep-
resent the stars found for each of the new UBC clusters, and
dashed circles represent known clusters related to the nebula.
We see that even in a blind search, we are able to detect sev-
eral subgroups which could be related to the same structure. For
instance, Collinder 228 and UBC 505 share sky coordinates but
they are found as two different objects due to the difference in
parallax, which is 0.42 and 0.29 mas, respectively.

5. Conclusions

We devised a methodology to blindly search for open clus-
ters in the Galactic disc using the Gaia DR2 astrometric and
photometric data. The method is based on two ML algorithms,
first an unsupervised learning algorithm (DBSCAN) detects
overdensities in the astrometric space (l, b, $, µα∗ , µδ) and then
a supervised ANN recognises the isochrone pattern that some of
these statistical overdensities (the ones that correspond to real
OCs) show in a CMD, identifying them as actual OCs.

In order to scan the whole Galactic disc using a strategy
driven by the targeted OCs and not the computational limita-
tions, the method has to be adapted to a Big Data environ-
ment. We use the PyCOMPSs parallelisation scheme to deploy
the clustering algorithm to the MareNostrum Supercomputer at
the BSC. This enables us to search for overdensities indepen-
dently of the density of the region, for example higher density
regions such as the direction of the Galactic centre. Once the
statistical densities are detected, and because of the large num-
ber of them, a more reliable photometric confirmation of the
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Fig. 6. Distribution of the OCs in R − Z in Galacto-centric coordinates. Previously known OCs (CG18,CG19, Cantat-Gaudin et al. 2018, 2019a)
are shown as red dots while newly found OCs are shown in black dots; the sizes of the dots are proportional to the number of members of each
cluster.

Fig. 7. Distribution of the member stars of UBC 274 (blue points) in comparison with field stars (grey points). The leftmost plot is a distribution in
position (α, δ). The inner left plot shows the proper motion vector diagram while the inner right plot includes the parallax ($, µα∗ ). The rightmost
plot is a CMD.

Fig. 8. Density contours for the members in cluster UBC 274, and field
stars (grey points). UBC 274 shows an elongated shape in its outskirts.

candidate is needed. This is achieved by applying deep learning
methods to an ANN, which outperform the simple multi-layer
perceptron when 2D correlations are present (a CMD in G vs.
GBP−GRP).

The methodology is able, even in a blind search where the
parameters are tuned to find the largest number of OCs, to find
substructures in richer regions or even features of individual
objects such as their tidal tails. This suggests that with a fine tun-
ing of the parameters, the methodology can be adapted to study
single objects in more detail.

The method was first devised using TGAS data in CG18, and
successfully applied to a low-density disc region (the Galactic
anticentre) using Gaia DR2 in CG19, finding a total of 76 new
OCs. In this paper, the method is applied to the whole Galactic
disc (|b| < 20◦) up to a magnitude of G = 17, finding a total of
582 previously unknown OCs, which represents a 45% increase
in the detection of this class of objects.

The OCs found represent an increase of 18% up to 1 kpc,
54% between 1 and 2 kpc, and 49% further than 2 kpc. The mean
angular size of the clusters found is 0.13◦ and the mean number
of members is 58.3. One of the most interesting clusters found is
UBC 274, which is about 3 Gyr old at b = −12.8◦, and shows an
elongated shape due to disruption by tidal tails.
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Fig. 9. Region around the Carina Nebula. Grey points represent field
stars, while points in blue, orange, and pink represent UBC 653,
UBC 505, and UBC 262 respectively. The dashed circle represents the
locations of the OCs Cantat-Gaudin et al. (2018), which are related
to the Carina Nebula. Dashed green circles are objects found by our
method and dashed red circles are objects not found.
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