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Abstract

This paper models the dynamics of a large set of interacting neurons within the framework of statistical
field theory. We use a method initially developed in the context of statistical field theory [47] and later
adapted to complex systems in interaction [48][49]. Our model keeps track of individual interacting
neurons’ dynamics but also preserves some of the features and goals of neural field dynamics, such as
indexing a large number of neurons by a space variable. This paper thus bridges the scale of individual
interacting neurons and the macro-scale modelling of neural field theory.

1 Introduction

Bridging micro and macro behaviors remains largely problematic for systems with large number of degrees
of freedom. When studying neural activity, we either directly start from a macro description of the system,
or from a micro description that is then treated numerically.

At the macroscopic scale, mean - or neural - fields, that model large populations of neurons as homo-
geneous structures and index individual neurons by some spatial coordinates can describe several patterns
of brain activity. Following Wilson, Cowan and Amari ([1][2][3][4][5][6][7][8][9]), neural fields dynamics is
usually studied in the continuum limit and neural activity is represented by a macroscopic variable, the
population-averaged firing rate. The Mean Field approach is an effective theory in which degrees of freedom
of some underlying processes are aggregated.

Mean field theory has been extended along various lines and has a wide range of applications.

It allows for travelling wave solutions (see [20][21] and references therein). Stochastic effects in firing
rates may be introduced [10][11][12][13][14] to model perturbations and diffusion patterns in the pulse waves
dynamics and account for noisy transitions between different mean field regimes (see [15]). Besides, mean
fields can be extended to study the impact of neural network topology on spatial configurations of neural
activity (see [17], developments in [18], and references therein).

Last but not least, the Mean field approach has been extended using the tools of statistical field theory
[19][22]]23][24][25][26][27]. Statistical fields stand for the neural activity - or spike counts - at each point of the
network. Because it keeps track of covariances between neural activity at different points, the perturbation
expansion of the effective action goes beyond mean field approximation. However, since the fields considered
represent densities of activity, this extension of mean field theory remains at the collective level rather than
deriving from the microscopic features of the network.

Despite the convenience and applications of the mean field formalim, it uses simplifying assumptions
to account for the microscopic level, such as delays in interactions or variations of neurons connectivity.
Besides, they cannot account for emerging behaviors.

At the microscopic scale, a vast litterature at the intersection of dynamical systems, complex systems
and neural networks focuses on neurons dynamics and interactions (see [31][32][33] and references therein).

In strands of litterature such as cognitive neurodynamics or computational neurosciences, neural pro-
cesses result from the interactions of assemblies of individual neurons. The lower scale allows for a finer
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account of the interrelation between neurons’ connectivity and firing rates than the one of neural fields.
Usually, no spatial indices are assumed: neurons are not positioned in a spatial structure, and the reso-
lution of the model relies on numerical studies. This approach accounts for neurons’ cyclical dynamics,
changes in oscillation regimes (for an account, see [31] and references therein) and, more important to us, for
the emergence of local connectivity and higher scale phenomena, such as binding problem or polychroniza-
tion ([36][37][38][39][40][41][42][43][44][45][46]). However, unlike mean fields, these models lack an analytical
treatment of collective effect.

The present method bridges the gap between the macro-scale modelling of neural field theory and the
assembly of interacting neurons. It is based on a method initially developed in [47] and later adapted to
complex systems in interaction [48][49][50][51]. Our model of statistical field theory keeps track of individual
interacting neurons dynamics while preserving some features and goals of neural field dynamics. For instance,
neurons are indexed by a space variable, to find continuous dynamic equations for the whole system. But,
unlike Mean Field Theory and its extensions, our fields do not directly describe any neural activity. As in
Statistical Field Theory (see [47]), they are rather abstract complex valued functionals bearing microscopic
information to a larger collective scale. Closer to our approach would be ([28]) and ([29]), that use partition
functions for the whole system of neurons, or ([30]), that works with an effective action. Yet these approaches
use either simplified assumptions at the micro-level, or a priori assumptions about the effective action.

Our approach recovers features studied in some extensions of mean field theory. Our results are inherently
stochastic: the field describes interactions of neurons subject to dynamics’ uncertainty. We recover some
traveling waves patterns. Beyond that, our formalism has several advantages. It highlights the influence of
some internal variables on the dynamics of firing rates. It may provide a direct approach to phase transitions
phenomena, i.e. the impact of collective patterns on individual ones, by studying the effective action of the
system. Besides, it allows for a wide range of extensions.

The present field theory results from a two-step process. In a first step, the standard formalism of the
dynamic equations of a large set of interacting neurons ( [46]) is modified to account for the dynamic nature
of neurons connectivity (see [52]). From this, we deduce the firing frequencies’ dynamic equations of a large
set of neurons.

In a second step, this set of dynamic equations is transformed into a second-quantized Euclidean field
theory (see [48][49][50] for the method). This field description includes both collective and individual aspects
of the system. The dynamics of the whole system is encompassed both in the action functional for the field
and its associated partition function. To understand the role of collective effects in the system, we compute
the effective action of the system using standard techniques of field theory. The minimum of this effective
action is the vacuum of the theory, i.e. the background field, in which the system evolves. It depends on
some internal parameters and external currents and impacts individual neurons dynamics.

We then compute a local approximation for the individual frequencies’ dynamic equations that depends
on internal and external parameters and on the background field. Depending on the connectivity between
neurons, the wave equation may display some non-linear aspects, such as position-dependent coefficients.
In the linear approximation, the dynamics reduces to some wave equation, that is either dissipative, stable
or explosive. The presence of the background field stabilizes the frequency equation. Some traveling waves
are solutions of the system, which shows the importance of the phase of the system for the wave dynamics.
Moreover, the field formalism allows to derive frequencies dynamic equations beyond the local approximation.
This stresses the importance of the interdependence of the system of frequencies.

The successive derivatives of the effective action with respect to the field yield the correlation functions of
the system. These correlation functions compute the joint probabilities of transition for an arbitrary number
of neurons and depend directly on the form of the vacuum. These correlation functions for an arbitrary
number of points yield an alternative and complementary description of the system frequencies’ equations.
They compute a joint probability density for the frequencies at different point. These probabilities depend
on time, and this linear dependency reflects the ondulatory behaviour of frequencies, and on the background
field. Its presence ensures coordination to some extent between frequencies.

The field formalism is then generalized to include several extensions. We show for instance how to
include dynamic equations for the connectivity functions. Although these equations are ”classical” differential
equations, they could also be described by a field formalism. We also show that two types of neurons,
inhibitory and excitatory, may be included and their interactions described by the inclusion of two interacting
fields in the model.



This paper is organised as follows. Section 2 describes the individual dynamics of neurons in interaction.
Section 3 describes the field theoretic formulation of the model and section 4 computes the effective action of
the system. In section 5, we derive the minimum of the effective action. In section 6 we find the general form
of the frequencies’ equation. Section 7 computes the static equilibrium. In section 8, we derive the differential
equation for frequencies in the local approximation and show the existence of traveling waves solutions. We
also present some extensions of our model and discuss the implication of these extensions. Section 9 derives
the frequencies’ equation beyond the local approximation. In section 10, we derive a general form for the
correlation functions in presence of strong or weak background field and present their interpretation in term
of joined probabilities for frequencies at different points. Section 11 is a conclusion

2 Individual dynamics and probability density of the system

Following [48][49][50], we describe a system of a large number of neurons (N >> 1). We define their
individual equations. Then, we write a probability density for the configurations of the whole system over
time.

2.1 Individual dynamics

We follow the description of [46] for coupled quadratic integrate-and-fire (QIF) neurons, but use the additional
hypothesis that each neuron is characterized by its position in some spatial range.
Each neuron’s potential X; (¢) satisfies the differential equation:

X (t) =vX2 () + Ji (t) (1)

for X, (t) < X,, where X, denotes the potential level of a spike. When X = X, the potential is reset to its
resting value X; (t) = X, < X,,. For the sake of simplicity, following ([46]) we have chosen the squared form
vX?Z (t) in (1). However any form f (X; () could be used. The current of signals reaching cell 4 at time ¢ is
written J; (t).

Our purpose is to find the system dynamics in terms of the spikes’ frequencies. First, we consider the time
for the n-th spike of cell 4, H%i). This is written as a function of n, () (n). Then, a continuous approximation
n — t allows to write the spike time variable as () (£). We thus have replaced:

0% — 0@ (n) = 09 (1)

The continuous approximation could be removed, but is convenient and simplifies the notations and compu-
tations. We assume now that the timespans between two spikes are relatively small. The time between two
spikes for cell ¢ is obtained by writing (1) as:

dX; (t)
dt

= X2 (8) + Ji (1)

and by inverting this relation to write:

B dX;
T X2 IO (00 (n - 1))

dt

Integrating the potential between two spikes thus yields:

X
_ _ » dx
0 (n) — 0@ (n—1 :/ » -
() =67 == | X0 (60 (1)

Replacing J* (0(“ (n— 1)) by its average value during the small time period () (n) — 8@ (n — 1), we can
consider J®) (H(i) (n— 1)) as constant in first approximation, so that:



Xp
| | {arctan ( <I(’)(9<:Y)(11—1))X)]
o) (n) — 9@ (n—1) =~ X,

\/’yJ(Z 60 (n — 1))
: : Xy PR IO (6 (n-1))
[arctan (1 WM)} arctan (X” Xp ) 2

X ¥ J(ﬂ)(g(nfl))
X, +W

V7O (09 (n— 1)) VIO (09 (n - 1)

. JM (pn=1) ..
For v normalized to 1 and —xx, << 1, this is:

10 (n) — P10 (n—-1)=G (9(@) (n - 1)) _ arctan ((i‘/(}(jlzz(i)\/(‘](i)(le)(;) (n— 1))>

The frequency or firing rate at ¢, w; (t), is defined by the inverse time span (2) between two spikes:

1
G (60 (n—1))

F (H(i) (n

w; (t) =

. VIO (09 (n—1)
) () o)

Since we consider small time intervals between two spikes, we can write:

09 () — 00) (n— 1) = S00) (1) — w7 (1) = <0 (1) Q

where the white noise perturbation ¢; (t) for each period was added to account for any internal uncertainty in
the time span ) (n) —0® (n — 1). This white noise is independent from the instantaneous inverse frequency
w; ' (). We assume these ¢; (¢) to have variance o2, so that equation (3) writes:

%9@ ()G (691,79 (69 (1)) =& (1) (4)

The w; (t) are computed by considering the overall current which, using the discrete time notation, is given
by:

\Zi = Z;1
C

JO ((n—1)) =JD(( + Z n_ 1 (9@') (n—1)—09 (m)— ) 3 (0 —1,2),(m, Z;))
| (5)
The quantity J@ ((n — 1)) denotes an external current. The term inside the sum is the average current sent

to 4 by neuron j during the short time span 0 (n) — () (n — 1). The function T}; ((n — 1, Z;), (m, Z;)) is
the transfer function between cells j and i. It measures the level of connectivity between ¢ and j. We assume
that:

The transfer function of Z; on Z; only depends on positions and times. It models the transfer function
as an average transfer between local zones of the thread. This transfer function is typically considered as
gaussian or decreasing exponentially with the distance between neurons, so that the closer the cells, the more
connected they are.



We can justify the other terms arising in (5): given the distance |Z; — Z;| between the two cells and the

signals’ velocity ¢, signals arrive with a delay M. The spike emitted by cell j at time #U) (m) has thus

to satisfy:
. . Zi — 7, 4
0@ (n—1) < 69 (m) + 12221 _ g (n)
c
to reach cell ¢ during the timespan [H(i) (n—1),00 (n)] . This relation must be represented by a step function
in the current formula. However given our approximations, this can be replaced by:

5 (9@ (n—1)— 09 (m) - |Z—ZJ|>

C

as in (5). However, this Dirac function must be weighted by the number of spikes emitted during the rise
of the potential. This number is the ratio w":(ém)) that counts the number of spikes emitted by neuron
j towards neuron ¢ between the spikes n — 1 and n of neuron i. Again, this is valid for relatively small
timespans between two spikes. For larger timespans, the frequencies should be replaced by their average
over this period of time.

The sum over m and 4 is the overall contribution to the current from any possible spike of the thread,
provided it arrives at 4 during the interval 6 (n) — (%) (n — 1) considered. Note that the current (5) is
partly an endogenous variable. It depends on signals external to 4, but depends also on i through w; (n — 1).
This is a consequence of the intrication between the system’s elements.

In the sequel, we will work in the continuous approximation, so that formula (5) is replaced by:

00 =100+ [ > s (000 - 00 () - EZEN) 1 0.2 s zp)as 16)

t c

Formula (6) shows that the dynamic equation (3) has to be coupled with the frequency equation:
wi(t) = (9< D (¢ (9@ )) o (1) (7)
arctan ((;T — X%)) J@ (t))

and J (t) is defined by (6). A white noise v; (t) accounts for the possible deviations from this relation, due
to some internal or external causes for each cell. We assume that the variances of v; (t) are constant, and
equal to n?, such that 7% << o2

+vi (1)

2.2 Probability density for the system

Due to the stochastic nature of equations (4) and (7), the dynamics of a single neuron can be described by the
probability density P (6 (t) ,wit (t)) for a path (9(” (t),w; ! (t)) which is given by, up to a normalization
factor:

P (09 (1).w" (1)) = exp (~4) ®)

where:

. A . 2
L (d (vt (-6 (09 @),7 (09 1))
A; = ?/ %9 () —w; (t)] dt +/ o dt (9)
(see [48] and [49]). The integral is taken over a time period that depends on the time scale of the interactions.
Actually, the minimization of (9) imposes both (3) and (7), so that the probability density is, as expected,
centered around these two conditions, i.e. (3) and (7) are satisfied in mean. A probability density for the
whole system is obtained by summing .S; over all agents. We thus define:

P((09 @ 0) ) =exp(-4) (10)



with:

-1 i 7(pG 2
A:ZA":Z;/<CZW (t)_w_l(t))de/ (wi (t)ic:(e()(t)’tj(a()(t)))) . (11)

% ,,72
3 Field theoretic description of the system

3.1 translation of Equation (11) in terms of field theory

We have shown in [48][49][50] that the probabilistic description of the system (10) is equivalent to a statistical
field formalism. In such a formalism, the system is collectively described by a field that is an element of the
Hilbert space of complex functions. The arguments of these functions are the same as those describing an
individual neuron. A shortcut of the translation of systems similar to (11) in terms of field, is given in [51] .
The next paragraph gives an account of this method.

3.1.1 Principle

General form of the statistical weight In general, we assume a system in which individual agents (here
cells) are described by vectors X; (t) of arbitrary dimension, and such that the exponent of the statistical
weight of the system has the form:

2

ax! (1)

— FO X (), X5 (), Xp (t) ...) dtgdtdty... | dt (12)
A -
+Z/ > g (X (1), X (), X (ta) ...) dtidt jdt...

i Gkl

for some functions f(® and g. The introduction of index « represents the dynamics of the a-th coordinate
of a variable X (t) as a function of the other agents. If we replace .J (§() (t)) in (11) by its expression (6),
we can check that (11) has the form (12). This point is detailed below.

Translation in terms of fields The translation itself can be divided into two relatively simple processes,
but varies slightly depending on the type of terms that appear in the various minimization functions.

Term without temporal derivative The terms in (12) that include indexed variables but no temporal
derivative terms are the easiest to translate. They are of the form:

Z/ > g (Xi(t), X () Xy, (th) .o.) dticlt jdlt...

i Iyk,l...

These terms describe the whole set of interactions between agents characterized by their variables X; (¢), X; (), X (2)...
In the field translation, agents are described by a field ¥ (X) where X is a vector of the same dimension

as the X;.
In a first step, the variables indexed ¢ such as X; (¢) are replaced by variables X in the expression of g.

The variables indexed j,k,l,m..., such as X; (t), Xy, (¢)... are replaced by X', X", and so on for all the indices

in the function. This yields the expression:

oY g(X XL, X".)

i g.k,0m...

In a second step, each sum is replaced by a weighted integration symbol:

= [ (X)]*dX, = [ ¥ (X)]?dX/, = [ (X)) dX"
- >~ >



which leads to the translation:

Z/ > g (X (), X (), X (ta) .o.) dticlt jdt...

i Gkl

— /g (X, X/, X7 ) [0 (X)) |0 (X)) | (X)) dXdX dX"... (13)

Note that this formula can be generalized if we compose the previous formula by any function G. The
translation of an expression of the form:

Z/ /Z X, () X (t0) ) dtydty... | dt: (14)

Jyk,l...

is obtained by expanding (14) in powers of [ 37, g(Xi(t:),X; (), Xy (tx) ...) dt;dty... and using (13).
We find:

Z/ /Z X, (), X (tg) ...) dtdty... | dt;

Jyk,l...

- /|\IJ(X)|2G (/g(x,x',x"...) o (X)? |\Il(X”)|2dX’dX”...> ax (15)

Term with temporal derivative The terms in (12) that imply a variable temporal derivative are of

the form: )

(@)
Z:/ dXiT(t) —/j%:mf(") (X, (), X5 (), X, () ..) dtzdt;dty, | dt (16)

The method of translation is similar to the above, but the time derivative adds an additional operation.
In a first step, we translate the terms without derivative inside the parenthesis:

O XK (1), X () X (k) -..) dtidtjdty, (17)

Gkl

The translation of this type of term has already been presented in the previous paragraph. Note however
that, in (17), there is no sum over 4, so that the translation includes neither the integral over X, nor the
factor |¥ (X)|°.

The translation of (17) is therefore, as before:

/f<a> (X, X, X" ) |0 (X[ (X)) dXdX” (18)

A free variable X remains, which will be integrated later, when we account for the external sum »,. We
will call A(X) the expression obtained in (18):

AX) = /f<a> (X, X, X" [0 (XN (X)) dX!dX” (19)

In a second step, we account for the derivative in time by using field gradients. To do so, and as a rule, we

replace :
2

(a)
) dX /Z FO (X (1), X5 (1), X () o) dtidtdty, (20)
@ Fokl...
by: )
[0 00 (<9 (252 0x +400) ) 0 () X (21)



The variance 0%,,, reflects the probabilistic nature of the model which is hidden behind the field formalism.

This variance represents the characteristic level of uncertainty of the system’s dynamics. It is a parameter
of the model. Note also that in (21), the integral over X reappears at the end, along with the square of the
field | (X)|*. This square is split into two terms, ¥ (X) and ¥ (X), with a gradient operator inserted in
between.

3.1.2 Translation of (11)

In our context, the field depends on the three variables (6, Z,w), and writes ¥ (8, Z, w). The field dynamics
is described by an action functional for the field and its associated partition function. This partition function
reflects both collective and individual aspects of the system, and allows to recover correlation functions for
an arbitrary number of neurons.

The field theoretic version of (9) is obtained using (11): a correspondence detailed in [48][49]) yields an
action S (¥) for a field ¥ (6, Z,w) and a statistical weight exp (— (S (¥))) for each configuration ¥ (6, Z,w)
of this field. The functional S (¥) is decomposed in two parts corresponding to the two contributions in (11).

The first term of (11):

% (29@ (t)—wi_l(t)) dt (22)

is a term with temporal derivative. Its form is simple since the function f(®) in (20) depends only on the
variable X; () = (6% (t),w; " (t), Z;). Actually f® (X, (t)) = w; ' (t). Using (21), the term (22) is thus
replaced by the corresponding quadratic functional in field theory :

2
f%qﬁ 0,2,0)V (gv - w1> U (0, Z,w) (23)

where 02 is the variance of the errors ¢;.
The field functional that corresponds to the second term of (9):

dt

o / (vt -c (e@;it) (09 0)))

is obtained by expanding the formula (6) for the current induced by all j:

Vo= Q;/dtzi:(wi_l(t) (24)

w; (t) c

-G|J (9“’) (t) ,Zz-> + %/dsz wi (5) T (. Z3) 5, Z5) (9(1’) () — 09 (5) — |ZZ_ZJ|>

with n << 1, which is the constraint (7) imposed stochastically. Its corresponding potential in field theory
is obtained straightforwardly by using the translation (15):

2

|Z—Z|
1 nw1T<Z79721’07T) Z-Z
27]2/\\1/(9,2,@\2 wl -G J(9,Z)+/N " ‘\1/ <9|cl|,zl,w1) dZ dw;
(25)
To simplify, we will write in the sequel:
Z-7
T <Z,9, Z1,0 — |1|> =T(Z,0,7,)
C



The field action is then the sum of (23) and (25):

1 2
S = _iqﬁ (9,Z,w)V<U29V—w—1>\I/(9,Z,w) (26)
1 9 1 K Wi |Z — Z4]
+2772 /|\IJ 0, Z,w)] (w G (J(Q,Z)—i—/N " LG (9 . , 21, w1

3.2 Projection on dependent frequency states:

2

2
T(Z7 9, Zl) ledUJ1>>

Using the fact that n?> << 1, and noting that in this case, field configurations ¥ (#, Z,w) such that:
2
K W1

Z -7
w—l_G<J(9,Z)—|— N o \IJ(H_IC”,ZLWI>

have negligible statistical weight, we can simplify (26) and restrict the fields to those of the form:

T (Z,(g7 Zl) led(U1> 7é 0

\I/(H,Z)é(w‘l Wt (J,H,Z,|\I/|2)) (27)
where w™! (J,0, Z, ¥) satisfies:
wlT ZGZl,H—%” 7 7 2
w ! (J,e,z,|\11\2) - J(0,7) / ) ’\p (9—”,21,w1> 47, duwr
N J 0,7,|9| ) c
leT(Z,H,Zl,Hf@) ‘Z—Zl| 2
SR O R : ’\p (9_,21>
N w(J,H,Z,|\I!| ) c

Z—Z
X8 <w1_1 —wl <J,9 — % Zi, |\1/2)> ledw1>

The last equation simplifies to yield:

R e )

dzy

(28)
The configurations ¥ (0, Z,w) that minimize the potential (25) can now be considered: the field ¥ (6, Z,w)
is projected on the subspace (27) of functions of two variables, and we can therefore replace in (25):

wl ! (J,o,z, |\If|2)

The ”classical” effective action becomes (see appendix 0):
1 + 0'2 -1 2
—5¥(0,2) (Vo (5 Ve —w (J,e,z, | ) U (6, 2) (29)

with w™! (J, 0,7, |\Il|2) given by equation (28).

The form of the transfer function T'(Z, 0, Z1) can ultimately be refined. Using a simplified version of [52],
appendix 6 shows that, at the individual level and in first approximation, the transfer functions are modelled

by a product between a spatial factor T' (Z, Z1) and a function W of the frequencies w = w (J, 0,7, \\Il|2),
and w; = w (J, 0 — M, Z, |\Il|2) The function W is increasing in w and decreasing in w;. Without loss

of generality, we will consider W as an increasing function of ( ) so that:

T(2,0,2,) =T (Z,2:)W (“) (30)

w1



3.3 Inclusion of collective stabilization potential

To stabilize the number of active connexions, we ultimately modify (29) by including collective terms. These
terms correspond to some overall regulatory processes that are not accounted for in the model in its actual
form. When there is no ”competition” between inhibitory and excitatory mechanisms, such a potential
models the ability for a system to return to some minimal equilibrium activity.

To do so, we add to the action functional (29) a potential V (¥) that maintains and activates new
connections. The system’s action thus becomes:

1 2
§=—5v10,2) (ve ( Vo —w” (J,e,z, |q/|2)>) U (0,2)+V (D) (31)
We choose the following form for V (¥):

e

where Up is a U shaped potential, with Uy (0) = 0 so that Uy has a minimum for some positive value of
2
z-z' L . . .
‘\Il (9 lz=2] ,Z" || . At this minimum, the potential Uy is negative.
Note that, expression (32) models the interactions between activity at time 6 of cells located at Z, and

|2 ZW

activity at time 60 — lz=2] - i of those located at any point Z’. The delay
time of signals between Z and Z’.
The potential (32) can be written as a series expansion. We choose the following decomposition:

v(m>=—<1/<|\lf<9,2>l2 w(o- 222 7) >+Z<n/|\p (6, 2) ( v(o- 2 5a) |

(33)
The first term in (33):
2 ‘Z_Z/| / ?
—<1/<|W<9,Z) @(9—C,Z> >

with (; > 0, accounts for a minimal number of connections that are permanently maintained. The magnitude
of this factor depends on the external activity J.
The second term in (33) models a global limitation mechanism. It increases with the overall number of
connections and currents, so that we assume for n > 2:
2
> ~0

> (Tl e (o- 257 2)

=1
where the bracket () denotes the expectation value of the product of fields.
The coefficients (,, can be set to 0 for n > N, where N is an arbitrary threshold. The term proportional
to —(1 and the contribution for n = 2 can be gathered to rewrite the collective potential as:

Z<n>/|\paz ( (G—ZCZ”,Zi) 2) (34)

where (") = ¢, for n > 2, and (@ = (& — ¢;. We assume that (2 < 0, so that a nontrivial minimal
collective state exists. The classical action is thus:

in time is induced by travelling

-1

=1

n—1
i=

1

2

f%qﬁ 0,2) (ve (‘;

_ —%\IIT 0.2) (Ve <022V9 ! (J,Q,Z,\If|2))> \I!(@,Z)—f—riC(n)/‘I’(@»Z)F (:i:[ll v

Vo —w! (J,a, Z, xp|2))> U (0,2)+V (D)
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Since we are merely interested in the relative magnitudes of the coefficients 03 and quantities such as w™,

we can impose a constraint on the coefficients (™). As a relative benchmark, we choose:
o] n—1 2
Z — Zj|
) [ 1w (0. 2)? v(o— ‘71 7.
> [wezr (1]

- oo (f{js(- 252 ) -

Several extensions of the formalism will be considered. The details are left for further research.

3.4 Including excitatory vs inhibitory interactions

1

The previous formalism can be extended to include inhibitory currents. To do so, two different types of cells,
each defined by a different field, are introduced. We write ¥ (0, Z,w) and ¥y (07 Z ,&1) for excitatory and

inhibitory neurons respectively. A straightforward generalization to an arbitrary number of types of cells is

presented at the end of the section.

3.4.1 Asymetric interaction between two types of cells

We consider two types of cells. One set is composed of interacting cells, as described by the previous
formalism, while the other acts as inhibitor or regulator on the first set. The influence of each type of cell
on the other translates through the actions of the induced currents. Assuming identical transfer functions
for both types of fields, the corresponding potential terms for the frequencies are, for the first type of cells:

2

Z -7
‘1]1 (9_ Il|;Zl7w1>
C

1 2 -1 K wi
2772/“1’1(9’27@' (w —G(J(9,2)+ s

~ 2

-2 -

S N T(Z,o, Zl)leda;l
C

/<;<I)1

Uy | O
Nwl|?

and, for the second type:

o [ (0.28)[* (o - (0 [ 52

This models the fact that the second system merely inhibits the first one.

Z-7 2
\Ijl (0 ‘ 1|azl7w1>
c

T (2,97 Zl) ledwl

(36)

2
T (Z,G, Zl) ledw1>>

(37)

As in section 3.2, we project the fields on the frequency-dependent states defined by (36) and (37). The

resulting action for the system is:

1 2
S = —5\1/]{ (97Z)v0 (?Ve—w_l (Ja05Z7le1a\I/2)> \Ijl (072)

—%\1/; (9, Z) Vo (”jvg —o7Y(J,0,2, W, \1/2)) v, (9, Z)

11
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where the frequencies satisfy:

1z
5 L2,.v) Z-21] ,\|
w (J,G,Z,‘Ill,q/g) = 9 Z \1’1 0 — 77Z1 T(Z,G, Zl)le
N w c
AR 2
Rl ) | M R L ) 5 43
_/N - 20— 2 T(Z, ,Zl)le (39)

~ AL 2 w) T (2,0, 20,0 - 2221)
O HN],0,Z,0,,0,y) = J(0,2)+ /N _

w
Z-Z 2
X ‘112 (9—1|7Z]_>
c

le> (40)
Ultimately, a collective potential can be added, as in section 3.3:
Z —7;
ch)/m,ez ( (9_|C’|’Zi)

) @
U (0, 2)° = ¥ (0, 2)] + T2 (6, 2)

Potential (41) models an equilibrium that results from both excitatory and inhibitory activities.

n—1

i=1

where we define:

3.4.2 n interacting fields

The previous 2-fields description may be generalized to describe n interacting types of cells, with arbitrary
interactions. Each type of cells is caracterized by its frequency i = 1, ..., n, and interacts either positively or
negatively with each other. Each type is defined by a field ¥; and frequencies w; (6, Z). The general version
of (38), that includes (41), becomes:

2
s = —EZWT (0,Z) Vg <09V9—wil(J79,Z,\111,\I/2)> U, (0,7) (42)
n—1 |Z—Z| 2
+ZZC("/|\P 0, 2)| (H \1/,»(0—01,21) )
i n=2 i=1

and equations for frequencies are defined by:

K Wy (0 — M, Zl>
wi (0,2) = Fi|JO)+ ~ / T(Z,Z) e CZ) G (43)

2
[ w0.2) j (g‘oj-<o,21>+‘“’j(9‘|z_czﬂ’21> )le

w; (9 - =27
The n x n matrix G has coefficients in the interval [—1,1]. In the sequel, the sum over index j is implicit.
For instance, if n = 2, the matrix g:
L =g
G_<9 0)

represents inhibitory interactions between the two populations defined in (36) and (37).
In the sequel, the computations will focus on the one-field basic model. The implications for several fields
model will be discussed at the end of the paper.

12



4 Effective action

4.1 Principle

Appendices 1, 2 and 3 present the computation of the effective action associated to the action functional
(35). To do so, appendix 1 computes the two-points Green functions of the system from which the lowest
order expansion in power of field of the effective action is derived, while appendix 2 considers the whole
series of graphs. Appendix 3 then provides a compact expression for the effective action.

4.2 Effective action at the tree order

The effective action at the lowest order in powers of fields is computed through the two-points Green function,
that are computed by a graphs expansion with free propagator.

4.2.1 Propagator for the free action

Appendix 1.1.2 and 1.1.3 compute the two-points Green functions associated to (35) by a graph expansion
using the propagator associated to the ”free action”:

—UT(0,2)Vy ((’;vg —wt(J,0,Z2, 0)) T (0,2) (44)

where w™! (J,0,Z,0) is the inverse frequency given by (28) for ¥ = 0, i.e. w™!(J,0,2,¥) = G (J(6,2)).
Action (35) thus decomposes as:

—%\Iﬁ 0,2) (vg (C’;vg w10, 2, 0))) n %\I/T (0, 2) Vow ™t (J, 9,7, \\1/\2) U(0,2)+V () (45)

and the two last terms in the previous expression are considered perturbatively in the computation of the
graphs.

We find in appendix 1.1.1 that for an external current decomposed in a static and dynamic part .J (Z) +
J(Z,0), the expression for G (J (6,7)) can be approximated by G (j(Z)), so that:

w1 (J,0,2,0) =G (J(2)+ J(9)) ~G (J(2))

Given our choice for the function G, we find:

o (6.2.0) ~ arctan ((z ;();)) J(Z)> _ Xrl(Z) (46)

Using (46), the propagator associated to (44) Go (0,0', Z, Z') can be directly computed. It satifies:
2
Y (‘;ve —w(J,0, 2, 0)> Go(0,0/,2,2)=6(Z—2)6(0—0)

and we find:
exp (—A1 (Z) (0 —¢"))

Go(0,0',2,2"Y=06(Z—-2") NG

H©O-0) (47)

where:

=
N
Il
NN
&
7N
q
[\v]
Ll
N
S~
(V)
+
W
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and H is the heaviside function:

H@-0) = 0for—-0"<0

= 1for0—6 >0
For the sake of simplicity, we often discard the factor ¢ (Z — Z') and write Gy (0,0', Z) for Go (0,0',Z, Z").
In the sequel, for the sake of simplicity, the dependency in Z of X, (Z), A(Z), A1 (Z) will be implicit, so

that we will write: B
X, (2) =X, A2) =AM (2)=M

4.2.2 Graphs expansion and two point Green functions

Having found the propagator Gy (0, 6’, Z) associated to (44), appendix 1.1.2 computes the graphs associated
to the decomposition (45). The two points Green function is shown to be equal to be the inverse of the
operator:

1 [o]wt @, 2)9 (w7t (16,2, 191°) v (6,2))]

0 v
—7V9 V + 5 3 M
2 5|0l g S [ w2
(6,2)[=Go(0,2) =60(0.2)
(48)
where: Ay (2) (6 — )
exp (—4\1 — ’
and |[* [5“‘;‘2} is a shorthand for:
y 2
/dZ’ (0 1Z - Z|,Z’> X d 5 (49)
5 (‘xp (0 _ Lf",z) )
4.2.3 Effective action at the lowest order
The effective order at the lowest order is derived directly from (48). Appendix 3 shows that:
§[Sy (U, W
Lo (U1, ¥) =¥ (0,2) Lzﬂ v (9,2) (50)
g v (6,2))°
=G0(0,Z
with:
t Lot o -1 2
Sa (01, 0) = =507 (0,2) (Vo (V0w (J,e,z,|xp| ) U (0, 7) (51)

2
V(D)

+o¢/‘\11 (0@),27;)

and the brackets notation given in equation (49). Alternatively, formula (50) can also be written:

w (T
To (\I;T’\I;) = —%\IIT 0,2) (VQO: (Vg - (w‘l (j, Z, g()) + g [ 5QO(L(]O, ?)QO)] Go (9/,9,Z)>>> v (0,2)
’ 0'=0

5[V ()]

+a [ V0, 2)+ (0,2
[rwe.zrvie.2) e

U (6, 2) (52)
W (0.2)?

=Go(0,

14



where w1 (j A go) is the static inversed frequency defined as the solution of the equation:

iw (j,Zl,go)

W (T(2).2.60) = C (J D | N w(7.2.9)

Go (0, Zl)T(Z,G,Zl)le> (53)

In formula (53), J (Z) is the average over time of J (6, Z). As a consequence, w™' (J (Z), Z,Go) solves:

e ((2).21.60)
N w1 (J(2),Z,G)

w(J(2),2,G0) =G (J(Z) + T(Z,0,21)Go (0721)le> (54)

Once w™!(Z,Gp) is known, (52) implies that the effective action at the tree-order is given by:where V (¥) is
defined in (32).

4.3 Effective action at higher orders
4.3.1 General formula

Appendix 2 shows that the effective action is a series of corrections to the classical effective action (50):

r (vt v) = ni/ <f[l vt (9§’),Zl)> s (6.6, 2.)) (;ﬁqj (9§“,Zz)>

The contribution S, ((9?), Ggl), Zl)> for a given n is the n points effective vertex. It is the sum of one-
particle irreducible graphs (1PI) with n lines labelled by their position Z;, I = 1,...,n plus their starting
; : (ORFI0)
and ending points Hf 0,7 ).
To build the series of graphs, we first consider the [ points vertices:

Vo ({(9(’“”7%)}1 1 l) 1|8 (0.2) Vo (1.6.2) W (0, Z) dZdb + V ()]

._ 1
=1,..., H 5 ’\p (9(1@1’)7Zki)|2
L i=1 |W(0,2)|?=G0(0,Z)

1 8" [Se (WT,W)]

l
[T 6| (0%, 2|
Li=1

[¥(6,2)1?=Go(0,2)

for I = 2,...,n and (0%, Zy,) € {(0;,Zi)} ;.
i 7. N
These vertices are represented graphically by associating a point (6, Z)y, to each vertex V', which differs
from all the (0, Z;) and (0, Z)y # (0, Z)y, when V # V'. We draw [ lines from (6, Z)y ending at the
points (9(’“)7Zki).
We then consider the series of graphs [ = 2, ..., n, with an arbitrary number of vertices Vay ({ (9(’“), Zki) }i:Lm,l) ,

with 0; € [01,00] and (00, 2,,) # (0%, Z,) for

n

joining the points (0(’“), Zk,;)« To each internal segment between 6 and 6’ at position Z, we associate a prop-
agator Go (0,0, Z) defined in (47). The effective vertex S, ((0}”,91@, Zl)) is obtained by summing the n
lines-1PI graphs.

Defining:

S (W9, 9) = Su(00(0,2) + |wP) (55)
= —% ((vg (UEW —wt (go 0,2) +|¥ (07Z)|2)>) (Go (0,0, 2) + W1 (0, 2) ¥ (az»)el-a

+a [ (900,20 +180.2)F) +V ((90(0.2)+ ¥ 0. 2)))
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with V ((go (0, 2) + | (6, Z)|2)) given by (32):

v(go<0,2>+|\lf<972)|2):/(go(o 7)+19 (0, 2)| (/go 0, 7' ‘ (e 1Z2-21 z/)

c

(56)
the effective action writes as a series expansion (see appendix 3):

Pl e) = S (vhw)+ /(H“I’T (6.2 ))

lﬁlexp( Ay (9(1 _0(1» ] l
T G () AT (T (002)) &

with (ﬁj,m,k ((p})))' standing for the number of external lines with multiple lines of valence k > 2

J
ﬁjﬂn,k ((p;)) = Z 51@,2?’:’1 p’f (58)
=1

and where: _
6" < o) < )
The notation (p}) in (58) stands for the dependency of #; n x ((p;)) in the whole set of indices (pf) with
i=1.mandl=1.j.
In the local approximation, when A; > 1, exp (—A1 (9;” — 91@)) can be replaced by i 1) (9 92@)
and the effective action writes:

IRl G UR))
. Z (H ’r( " ) Z i=1 f[ s=rt|w (o0, z,)|? ﬁ ( o )
S (W) + / foa,Zl> = i<w0,zl>
e e oy i (1)) 1AJAZ 7 \ Y
S

(59)

Estimation of the effective action’s series expansion A series expansion for (59) can be derived. For
strong fields, we have:

5ot (S ()] SV (je e, 2))

- ~ = . v (9,2)
i Py 2 2 j PL 2
IT I1 o|w (60, 2,)| IT IT o|w (60, 2)|
=1 kf:l =1 k{:l

The derivatives of w1 (J7 0,7,Go(0,2) + |\I/|2> can be estimated as:
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Snw—1 (J,0,2) N exp <*Cln -« (Z:L:_ll ((c (L — lT+1))2 — 12 = ZT+1|2))>
1161w 2)
=1

n—1 n _1
J,0—1;,7Z;
x H <cln—Z|Zi—Zi+1|> H ( 2)

W (6 =1, Z1)]

where D is a constant (see appendix 6).
As a consequence, ordering the () by ) < ... < 81 we define 0 = min i ).

6Tt | Sy (w1, w)]

J (61)
[T 0% [w (00, 2,)|"
=1
j ; ; i Nk
o pew (<00 —a (S (@0 —000) - |20, - 20T ) )
- 75/ Dzzpf
J . J ! (J F10) Z) > i
<H (e, —6,)- ’Zl@l H(;) U (6;, Z,)[? d6:dZ:
I=1.p}#0 =1\ (00, Z,)|

We use the convention 69 = g(1), Z( D= = 7 for I > 0 and (-0 = ¢, Z(O) Z;. We can thus write (59) as

Cl \I!T Z/ Z ﬁdt‘)(l)le (M) ‘\IJ (e(l)’Zl> ‘2 (62)

3217 m>2,(py) =1 v (60,2,)]
Zip;:>2
m . 2
‘Hlfcexp (c(&i —0;;) —« ( I L pi£0 ((C (p0—14) — g(l,z')))2 7 ’Zl(i)l L ))) W (0, Z,)|? d0,dZ;
X =

(=2)™ DXt Pil T (8) 1A AZ i P
k

where the expressions in the sum include an implicit Heaviside function:

J

H|=c(:i—0i;)—al| Y, ((C (gufl,z‘) _ (;(z,z‘)))Q _ ’Zl(f)l _z® 2

1=1,p{#0

4.3.2 Alternative form for the effective action

An alternative form for the effective action can be derived for computational reasons (see appendix 3.3). We
give its full form, and its local approximation, which is more tractable.

Full form We rewrite Sy (U1, W), up to the constant a [ Go (0, Z;):

S (WF,0) ~ /\Iﬁ 0, 2) (; (vg ("fvg —wt (|\I/(9,Z)|2)>) +a+U (/ ’\1/ (9 - |ZCZ/|,Z’>

= /qﬁ 0,.Z2)L (V' (0,2),%(0,2)) ¥ (0,2)

2)) v (0,2)

In the above:
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(Jife )

V(9 0.2)+1 (0.2))

defined in (56), whose terms of degree 2 and higher in fields have been collected.
The effective action is given by:

L (0h,0) =8, (e, ¥ Z > /\IIT

is obtained by the series expansion of:

52m [L(v1(0,2),¥(0,2))]

ij,m (9, Ql) \\ (Hi, Z)

>1 J P ( ) P 2
(z;) 111 o] (609, 2)
J m 52117; S‘C’ \I/T7 N, i p i
- / (H v (9}”’&)) H / (QIPIO) i P [ . ( )] 5 H do(ki)
- SR #4705 ] ll[ ]_’[ ) ‘\IJ <9(kf),zl) I=1ki=1
I=1ki=1

e (=0 (60 - 0) (H‘P( 40 )) (63)

mltsm ((pf)) A7
where the kernel a; ., (6,6;) is defined as:

(6.6 — exp (*A1 (9 9§”)> m / _ 5P 00 (64)
APl [9(” 0(!)] lp_i 6‘\11(9(“)7&”)’2
ki=1
and
s (6, 04) = 5 (6 — o) Lt (B0 (p1)) P (- (6_ ) v / P do(+)
| o 0 ) AT B e

ki=1
(65)
for j > 1. The factors ;,, and % are given by:
Jom

ﬁj,m((pf)) = H njmk pl (Z(Sk Zzn11”i> (66)
k =

=1

1 ! 1
- . = 67
gim (1)) 1;[ (Bjmh <pl z; (Zz 10k, piton, p)' 0

The expression #;,,.x ((p})) has been defined in (58). The notations fi+1m+1 (), () and §j41,m+1 ((21) 5 (9}))

in (65) are defined by (66) and (67) in which the multi-indices (pf);im are replaced by the collection ob-

tained by gathering (p;);,_, ,, and (pl); i 1

The derivatives ¢ = 1,,,, m implicitly act independently on each factor:

P [gcw (\pmp)] i v
[ L
SUCTTL I s fw (00, 2,)

n (63).
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Local approximation In the local approximation, (63) simplifies and becomes:

oXin [L (W1 (0,2), ¥ (0, 2))]

R} t ;
rhu) =8, u)+3 % //\Iv (0,7) =L Dl 0,2 o5
azh po(ei) I1 11 6|w (60, 2,)]
i+, P2 I=1ki=1

551 (S (01, )] (lﬁ G )> d

=1

i (o an L

x (lquf (0, Zl>> ﬁ

ST e 0,2,

=1

with:
a1,m = 1

and .

a — 1+ ﬁ]-{-l m—+1 ((p ) ) (p;))

o fivtme1 ((20), (9}))

forj>1

4.3.3 Estimation of the series expansion for the alternative form of the effective action

The effective action can be approximated using (63). We first estimate the derivatives of S, (\IIT, \If) For a
slowly varying potential V' (¥), we have:

g v [S‘d (o', \1/)] Py [f Ut (9, 2) Vow! (J,e, 7,60 (0,7) + |\1/\2) v (0, 7) dZde]

[T 6%t |w (600, 2,) [1 5%t v (60, 2,)
=1 =1

This leads in the approximation of slowly varying background fields to the following effective action:

(v, v) (69)

5 J 6t (Vow ™ (0541, Ziva, |O)?
= Sq(hw)y+ > > //(H (g(l) Zl))H % (je ( +1,Zit1 )) O (01, Ziar)
2z ()., = = [T o7 |w (00, 7,)[*
P+, pi>2 =1

e (((00) (D)) < 5 )))) T A (FALTR)
1 u : ajm | [ (0,2 _ (9,2
" ( " %: (ﬁjJrl,i (o), (#)))) \ 819t (8, )| / ( ) 2 ﬁ L 2(08 )’2 6,2)
l_

<.

(].l[ v (e(l) Zl)) m
=1 )
x=—— AT gde dZ, ll'[lda dZ

with the convention that (0,41, Zm+1) = (0, 2).
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Strong fields approximation For strong fields, the derivatives P are negligible and (69) reduces

1
S|t (0;,2Z;)

to:
r (', v) (70)
Ly 1 ; g 62 (Vew_l (91‘7Zi, |‘I’|2)>
= Sa (v +; Z //]:[1 /\1/ (0:.2){ 53— - — U (0;, Z:)
2N (i), i= [16>7i |0 (60, Z,)|
i+, pi>2 =1

« aj,m/xpf(a,m ;52”71 (Vo (0.2:01%))

- (0, 7)
11 om |w (60 Al

X (ﬁ ‘qx (9(”,Zl) ‘2> ﬁdé’ile ﬁda(”dzl
=1 =1 =1

The derivatives of w™! (J,Q, Z,Go (0,2) + |\IJ|2) are computed in appendix 6, and given in (60). We
order the () by 80 < ... < (M) and define §; = min, ;i (). We thus write (60) as

oXiriwt (w9, 2))

(71)

ﬁ 5P \1/(9(0721)‘2
=1
_ e . . 2
/ exp (c(é) —-0) -« ( ?:1717#0 ((c (9(1 1) e(l))) ’ZFl iy )))

j >, Pl

S . “1(1,00, 7 s

<t (c@-0)- 3 |2a-2 H(“’()) v 6.2
I=1,pi#0 =1\ 200, Z)]

~(1 -G ~(0 R
where D is a constant. We use the convention 9() =00, Zz( ) = Z; for | > 0 and 9( - 0, Zo = 7. As a
consequence, (70) writes:

j >ipi
a; J w ! (J 710 Z) ’ 2
Ser (W, W) + c J/ dl,dz, <’ v (oW, 7z (72)
J;m>2(z) : 2 ;E]l: k4 (9(1),Zl)|2 ’ ( l>
Zipg?é ’
m » A= 2O\ |5 5 |2
X / il;ll {exp <_C(0 ) e ( Ll”’#o ((C (9 Y )) - ’Zl_l B Zl’ >>) v (07Z)|1 dodz

ajm T - - 7

g (=2)" D>l (2m ((p1))) AA>

Pi
Weak fields approximation For weak fields, the main contribution of the derivatives (W) is

obtained for p; = 1 (see appendix 3.3):
5T [Sa (Wt 0)] T (volw-l (1w, 2)7))

SR

IS w(60), 7,) i

=1 klizl

=
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and, in the local approximation, the effective action is:

r(vh,v) (73)
ﬁ +1,m Pm, p;n))) aj,m
- sy oy (11
4 m (\Di, 7 2
]>>11 pl’(pl)mxj ﬁJH ("))
pt+3,; pi>2
m4+1
S pitm Vow ™ (0, 2,|9) j
//\Iﬁ 0.7) d (Je ( )) \I/(&Z)H‘\I/ (9(“,Zl)’2d9(”le
H 5§22 pitpu ’\p (9(1)’Zz)|2 H 5o (9(1 Z)‘Q Py

which, using the notations of the derivation of (72), leads to an expression in terms of inverse frequencies:

PO
~1 ) ;
ey S| T () leenal o
PZlmz2,(p}) v (00, 2,)[°
ijii?Q
m . A(l 1 A(l 2 R R 9
/ 11 [ew (-0 -09-a (S (( (0 -0") - |21~ 2 )))Lgdz
>< i . -
(_2)m D21 Py (ﬁj,m ((p?))) A{Azllpf

5 Non-trivial minimum

5.1 Classical effective action

The effective action has a minimum for a wide range of parameters (see appendix 3.4). The corresponding
background field decomposes into a constant part ¥, and a contribution that depends on the external current.
We show that for slowly varying currents J (6, Z;), and for IC ”)| > w1 (J(0),0,7,Gy), the minimum of
I" (V) is reached for the fields ¥ (0, Z) and W' (6, Z) that decompose as:

U(8,2) =Wy (0, 2) + 50 (0, 2) (75)

and:
vt (0,2) =9} 0,2)+6v"(0,2) (76)

where [§W (0, Z)| << |¥q (6, Z)| and |§0T (6, Z)| << ’\I’S (H,Z)‘. The fields ¥y (0, Z) and ¥} (6, Z) minimize

the potential:
> ¢ o 1221 A\, \
dZﬁZW Go(0.2)) + [ W (0 = =57 )| dz

a/ ‘xp (9<i>,Zi)

This minimum exists for & << 1 and for |C(2)| large. It is reached for a value X, of [ |\I/ (G(i)7 ZZ-) |2 dZ;, and
its value is, up to an irrelevant phase:

U, (9@,21-) =l (0,2) = \/§

where V is the volume of the thread.
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The expression for §¥ (0, Z) and 6¥T (§, Z) arising in equations (75) and (76) are found in appendix 3.4,
which shows that the second-order expansion of the effective action is:

2

rw = —%5\1}* 0,2) (V@ (?vg —w! (J (0),0,2,Go + Xo + /Xo (007 + 6\1/)))) U (0, 2)(77)
_%(mﬁ 9, 2) (vg ("fvg —w! (J 0),0,7Z,Go + q/|2))> 8V (0, 2)
%&Iﬁ 0, 2)U" (Xy) 6V (0, Z)

and that the first-order equations for §¥T (4, Z) and 6 (0, Z) are:
sut =0
(Vo (20— (7(0),6,2,60+9P)))
5 (0,2) = - - Uy (6, 2) (78)
U (X0) = (Vo (3 V0 —w 1 (7(0),6, 2,60+ 9*) ))

Setting V' =1 yields, in first approximation:

Vow " (7(6).6,2.G0 + ¥

5U (6, 7) ~ — e X,

(79)

This relation is sufficient to derive the next section’s frequencies equations, but can however be used to
find 0 (0, Z), at our order of approximation (see appendix 3.4). In the local approximation and for slowly
varying currents, we show that the minimization of action (55) yields:

(g (L) (e 0 .
w0y = (o (5 (1 (st o)) o)

B 0
exp (H (r Go (1) + VXo) d))

with:
dY

mw)= [ ——
G (-2 expY) - T (6, 2)

I‘:/EMT (Z’9’2179_|Z_Z1|> dZ,
N c c

The constant d is chosen so that limg_,, §¥ (6, Z) = 0.

The field ¥ (G(j),Zj) is the - phase-dependent - background field. It is null in the trivial phase, so
that the effective action is the ”classical” one. In a non-trivial phase, ¥ (H(j ), Zj) is not null and may be
time-dependent. It describes the accumulation of currents or signals that shapes the long-term dynamics of
frequencies. Incidentally, we note that a non-trivial minimum that depends on the system parameters should
allow for phase transition in the system of frequencies. This question is left for further work.

and:

5.2 Including higher order corrections

Equation (72) yields the perturbative corrections that modify the classical effective action and its minimum.
These corrections modify equations (78) and (79) by shifting U” (Xy) — U” (Xo) — C (Xo) (see appendix
3.4 for the expression of C'(Xj)), which in turn modifies the solution (80):

_ -1 _U”(Xo)—C(Xo)eX 1 0 -
SV (0,2) = (G ( X, p(H (F(go(Zl)+\/)To)+d>>> J(Q,Z)) (81)

X ex -1 0
P (H (r(go Z) + Vo) +d>>
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where the constant d is set to ensure limg_,o 6V (6, 7) =

6 Equation for frequencies: General form

6.1 Principle

To find the frequencies, we use the form (63) for the effective action. Writing I" (\I/T, \I/) in the local approx-
imation as:

I (v 0) ~ /qﬁ 0, 2) <v9 ("fva —wt (J(e) ,0,7,Go + |\IJ|2)> §(0; —60;)+Q (9,2)) (0, 2)

(82)
with:
oz [L (VT (0,2),V(0,2)
00,2) = /Z > j[p( . )]fo(e,Z) (83)
pzh 6., LI 6w (60, 2)]
P+, P22 I=1kj=1
j m | §Zipi | § { cl0 \1/)} J
4 t (g 0]
ij! (qu (9f ,Zl)) H - (H\y(ei ,Zl)>
=1 i=1 H 5 ‘ (9(l ) ’2 =1
=1 zzl
The effective frequency can be identified as:
Vow; ' (7(0),0,2,G0 +|9) = Vo™ (1(0),6, 2,60 + [9*) +2(0, 2)
that is:
6
i (110).0.2.00+ [0P) =7 (10).0.2,60+ 10 + [ 2(6,2) (84)
where w (J 0),0,72,Go + |\I/\2) is the solution of:
K w (9 - |2221*‘ ) Z1>
10,2y = G J(@)Jr—/ (Z,7y) 2 (6.2) (85)
W 0 (0, 20) + |w (06— 12=2l 4 de
" “r ZHZ) e i

Using the form of ¥ (6 28 Z;) = ( ), Z; ;) + 0% (0, Z) derived in section 5, we find an expression for
w1 (J(e) .0,7,Go + 9| )

The second term fa Q(6,7) in (84) represents corrections due to the interactions. Using (83), we can
find its expression as a series expansion in terms of frequencies and field. In the next two paragraph, we
limit ourselves to the cases of strong and weak field approximation, respectively.
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6.2 Strong field approximation
Using (70), the strong field approximation is:

Wt (70).6,2.G0+ [91*) = (1(0).6,2.G0 + V) (86)

oy ()
2o, o 11T o] (600.2)[

P>, P2 I=1kj=1

X/(La' <ﬁ\w (o;l),zl)>ﬁ 5prw1 (1w 0. 2)P) w2 (ﬁ\p(e(“ ))
72 \i4 i=1 ll[ I—II 5|\P(0(l),Zl)| =1

=1 kli:1

We will compute in section 8.4 the lowest order terms of the correction terms in (86) and inspect their impact
on the frequencies dynamics.

6.3 Weak field approximation
Using (73), the weak field approximation is:
wit (700),0.2.G0+|9f) = (70),0.2,G0 + |9f) (87)

L OZim (Vew_l (|x11 0, Z)\2>)

T s

e, I f ol (o00.2)]
[ m 5Pl (Vw1 |\I’(9,Z)|2 j
x/jj'@lw (ey)’ZO)H : i ( | \If((e(kw 2)3) (H\P(ey)vmw
=1 ki1 T

7 Static equilibrium for frequencies

Discarding the corrections terms [ ) (6, Z), a static solution of (84) can be found for a constant background
U (0, Z,) ~ Wy (Z;) and constant current, i.e. J = J, w(0,Z) = w(Z). For a static solution, it implies
(T1Gy W) = 0, or equivalently: 5V (0, Z) = Vow™! (J (0),0, Z,Go + Xo) = 0, and:

w, ' (J(0),0,2) =w™" (J,2,G0(0,2) + Xo)

€

where w (J (Z),Go (0, Z;) + Xo) is solution of:

B - K w(Zy) w(Z)\ 5 _
w(Z)=F <J+ ~ /T(Z, Zy) () w <w(zl) Go (0, Z;) dZ, (88)
and: ~

Go (0,Z;) ~ Go (0, Z;) + Xo (89)
Moreover, in the absence of external sources, i.e. for J (6, Z) = 0, the solution of (88) can be written wy (2),

which satisfies: ) )

— ~ wia w G .

wo(Z)=F <N /T(Z, Zy) =) w (w(Z1)> Go (0, Zl)le) (90)

where % J dZ; is normalized to 1.
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8 Differential equation for frequencies in the local approximation

A local approximation of (84) under some position-independent static equilibrium can be derived. It will be
later generalized to a position-dependent equilibrium.

8.1 Assumptions
First, assume that the background field:
v (90‘), Zj) =Wy (Z;) + 60 (9<J’>,Zj)

satisfies: ‘
‘6\11 (e)(ﬂ),zj)‘ << [Wo ()]

Then, considering a translation-independent transfer function, i.e. T (Z,Z,) =T (Z — Z;) with d >> 1, and
neglecting border effects, equation (90) simplifies and yields a constant solution:

o = F (TW_(”) (91)

A

where:

K
— | T(Z,7Z,)dZ
N/(71)d1

%/T(Z, 71)Go (0, Z1) dZ,

=l N

Ultimately, we assume that the transfer functions are symmetric, that is:

T(Z,2,)=T(Z1,2) (92)

8.2 Local equation for frequencies

Note that, given (30) and (92), we have:

vz (v [ () )
— = [ W= )dZ
ow (9, Z) N w1 ' w1(01,21)=w(0,2)

0 K (W' (1) — W' (1))
e = | W dz / dz; =0
Ows (0, 2) (N/ <W1> l)wl(al,zl) =w(6,2) "N (9 Z) '

We can find a local approximation of (84) if we expand w (J 0),0,7Z,Gy + |\I/\2) to the second-order in
Z — Zy, and consider the other terms in the right-hand side of (84) as corrections. The equation for
w (J(a),a, Z,Go + |\1/\2) is

FH(w(J(0),0)) (93)
1221 Z1|
KT (Z,2,) w0~ Zl

c

. <g0 (o,zm\%w (9 1Z-2] Zl)

)
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We then expand w (9 - @, Zl) around w (0, Z) to the second-order in Z — Z; and compute the
integrals, which yields for the right-hand side of (93):

J(9>+/HT<szl>“’(‘9‘|Zczl’Zl>W< w (6, 2) )

N w(b,2) w(e_@7zl)

2
> dZy

TW (1) fiVew (0, 2Z) fgvgw(0,2)+ 5 fsV2w (0, 2)

X (go (0, Z1) + ‘\I/O (Z1) + 6V (9 - Z_CZH721>

~ J(0)+ I 2(0.2) 2(0.2) c o (6.2) +TU0¥ (0, 2)
where we defined:
- w (1) —-w(Q1 P W (1)-w'(1))T
f o= ()C Wp 7=t ()02 (1)) Ty (94)
r, = N';T/\Z—ZHT(Z,Zl)g_O (0,2,)dZ,
r, = QJ\fXT /(Z—Zl)zT(ZZl)g‘0 (0, 21) dZy
and:
TU,6T (0, 7) = / %% (Z,) 60 (e - IZ—CZﬂ%) A
Using (91), equation (93) then becomes:
-1 -1 _ fiVow (9, 2) f3V§w 0,2)  5; Viw(0,2)
P (7 0).0) = () = 7 (0)+ L CA S BE) 2y 20D rusu (0.2) (99)

Using also the local linear approximation for W (6, Z) derived in appendix 4.4.2:
Vow (6, 2,Go + o)
U (Xo)w? (7 (0),0,Z,Go + o[

SV (0,2) ~ (96)

Vow (8, Z,Go) 7,
U (Xo)w? (J(0) .0, Z,Go)
leads to:
T6V(0,Z) ~ 6V (0,2)—T1VeV (0,2)
~ NiVow(0,2,Go) — N2Vew (0, Z,Go)
with:
N, = Yo (2)
U" (Xo)w?(J (0),6, Z, Go)
N, I, (2)

We assume that F~1 is slowly varying, so that:
F 1w (J(0),0)) = F~" (wo) = To (w (J (), 0) — wo)
with':

f=F"Y (N /T(Z, Zy) W (1) dZ,Go (0, Z1)>

1Given our assumption that F is an increasing function, f > 0.
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and define:
Q0,2)=w(b,Z) —wp

As a result, the expansion of (95) for a non-static current is then:

Q00,2)=J(0)+ (w(glz) + N1> Ve (0, 2) + < (532) 2> Vi (0,2) + C&v%mo, Z) (97)
8.3 Stable traveling waves solutions of (97)
When J () is set to 0, equation (97) has some stable non linear oscillatory solutions, for a certain range of
thg parameters. As a consequence, equation (97) behaves locally as a wave equation, provided that f3 > 0,
ﬁ — Ny <0, and w (6, Z) varies slowly. An approximative solution of the type:
w (0, 2) = exp (ikol — ik Z)

can be found by writing:

f1 02f3 2
o06.2) + N1 = k + f
k2 4282 —ho (6,2) =0 (98)
Na — w(G?Z) Na — a;(a?z)

and:

. 2 2 f
Q fl wc(ﬁ %)kz f 1 w(@ @(0,2) +N1
M=\ ™™ )5\ NV iy
w
’ Ny — w(e?z) Ny (0,2)
where @ (0, Z) is the average of w (6, Z) in some range of time.

The approximative solution is oscillatory and explosive when the discriminant of (98) is positive and in a
range for w (6, Z), such that % + Ny > 0. The solution is oscillatory and dampening for (%Z) +N; <0.

Let define wy the value of w (0, Z) such that fl + N; =0. For w(0,Z) > w; the solution of (97) presents
an increasing amplitude, and for w (0, Z) > w; the solution of (97) is decreasing in amphtude

If w1 > wg, then wy is a stable point since it belongs to the domain in which w(@ 7+ N; < 0. Oscillatory
patterns will dampen towards wy. )

If wy < wy, the frequency wy is an unstable point. However, the change in sign of % + N for some
ranges in the parameters, induces an oscillatory pattern around wg. Actually, when the oscillation of A is of
quite constant amplitute, the time T'«,, spent by the system below w; is proportional to arccos (%), and
the time 7%, spent by the system above w; is proportional to 1 — arccos (“’UA%“”) For w; large enough and
during the time T«,, the system amplitude is multiplied by a term of order exp (—w1T<, ), whereas during

the time 7%, the system amplitude is multiplied by a term of order exp (N%T>w1)- Since wg —w;y > 0, the

relation T«,,, < 1%, is always true. However, the overall factor exp (—wlT<w1 + N%T>w1) may, depending
on the system’s parameters and on T, , be lower or grater than 1. Moreover its magnitude depends on the
dynamics, since the amplitude A that determines T, is itself time-dependent.

When w (0, Z) > wy, A increases, and the time T, increases with A. For some values of the parameters,
the dampening factor exp (—w1T<.,) cumulated during time T, becomes dominant with respect to the
increasing factor exp (N%T>w1)~ As a consequence, exp (7(,L11T<w1 + N%T>w1) > 1. The dynamic pattern
turns from explosive to dampened. Thus, the average amplitude A decreases, and T, diminishes. At some
point, exp (—w1T<w1 + N%T >wl) becomes greater than 1 and the amplitude increases again. The resulting
dynamics thus presents stable oscillations that are irregular in amplitude. The system does not converge
toward wy which remains unstable, but presents the characteristic of some non linear travelling wave.

Note that this result is more general than the one obtained in the linear approximation. In our context,
the possibility of travelling stable oscillation is obtained for a whole range of parameters whereas the linear
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approximation implies more restrictive condition. Actually, in the linear approximation, equation (97)
reduces to:

196,2)=7(0) + (fl + m) Vo (0,2) + <f3 - N2> Vi (0, 2) + <8 2f3 vQ0.2)  (99)

wo

and the condition for some stable linear travelling wave is obtained only for one value:

LyN =0 (100)

However, once the possibility of travelling wave is understood, one can replace (97) by its linear version (99)
where (100) is assumed to be satisfied.

8.4 Interaction corrections to the wave equation (97)

Equation (84) yields the corrective terms to w=! (J 0),0,7,Go + |\I/|2) We focus on the weak field approx-

imation (87) to ensure corrections of small magnitude. Since p; + ), pf > 2, the lowest order correction is
form=1and p;+ >, pf > 2 =2, and appendix 4.3 shows that:

Wil (J(Q) ,0,7,Go + |q/|2) =t (J (6),0,7,Go + |\p|2) vz (101)
where:
)
o ﬂj—i—lm DPm;s pm))) a5 m
2= [ay ¥ (Hzmﬁm((pz,(p m)) 2 102
200,
Tp, piz2

x/ﬁ 550 v (V,gw_l (9 Z,|\If|2)) 5 m (ng_l (9 Z, |\11\2))

j
i=1 H 5P

H v (0, 2) ]2 doVdz

w (00, 2)[" Mon | (o0 2)]" =

This series take into account the interaction between the frequencies and the background field. To find
detailed results, we limit ourselves to the lowest order corrections. We show in appendix 3, that these
corrections have the form:

Wyl (J(G),H,Z,go+|\11|2> Y (J(Q),H,Z,go+\\ll|2) (103)

// <>ezgo+mf|2))

1(hn - M) 5w (00,2,

+/1v9 5<w71 (J(e),e,z,g0+|qf|2)) 2’\11 (e(l),Zl)’2

1 sl (60.2,)

sz + M 5 (w7 (70),0.2,90 +19F%)) 2 COAE
4 (ahz — M2 / o|w (00, z,)|" o (0"2))
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In (103), the second and the third contributions:

AR o CNE T SSC)) Y M S

4<w(£?Z) _NQ) 6|\IJ(9(Z)7Z1)|2

§(wt(J(0),0,2,Gy + |W]? ’
+/iv9 ( (6’\11 (9(1)721)0‘2 )) ‘\I, (0(”’2[)’2

describe the influence of the collective state defined by ‘\I/ (9(”, Zl) ’2 on the frequency at position Z and time

#. Under our previous assumption that ﬁ — Ny < 0, and given that f > 0, the first term in (104) is posi-
§(w™(J(0),0,2,60+|%|?))
ow(6w,z,)|"
of the frequency to the collective state, the more the frequency of the wave is reduced. The effect of this
smooting is cumulative in time, as shown by the integral over time arising in this term. The second contri-
G0t ) |,

sl (0®,z,)]
sensitivity of frequency to the background field, increases in absolute value. As a consequence, it reduces the

tive, and thus, this term reduces w (J 0),0,72,Gy + \\II|2> The higher the sensitivity

bution in (104) amplifies this smoothing. Actually, this term is positive when

oscillations of w (J (0),0,7,Go + \\I/|2> when the frequency’s dependency in the background field increases

at position Z and time 6.
The fourth term in (103):

A LN, 5 (w0 (710).0,2,Go+|9F)) : 2
T/ ) [
(s — M) 8w (00, Z,)]|

reinforces the mechanism of oscillation stabilization described in section 8.3. It has the sign of — (ﬁ + Nl)
given our assumption % — N3 < 0 ensuring oscillatory behavior of w (J (0),0,Z,Go + |\I!|2) Thus, the
correction to w (J 0),0,2,Go + \\Il|2> induced by this term has the sign of (% + Nl): for % +N; >
0, the approximative solution is oscillatory and explosive. Thus, the correction amplifies the oscillations of
w (0, Z) and the stabilization mechanism applies. For w (6, Z) such that % + N; < 0, the correction term
turns negative and further decreases w (6, Z).

The series of higher corrections is computed in appendix 4.3. It shows that, in the local approximation,

the frequencies can be described by a wave equation whose form depends on the stabilization potential and
the evolution of the background itself.

8.5 Some extensions
8.5.1 Multiple components field

A multiple-components field which describes excitatory vs inhibitory currents leads to frequencies equations
that are similar to (43) when interaction corrections are neglected :

0,7 F IO += [ T(22 %@—”f%%hﬂ
w0.2) = RI0)+5 [TZ2) G (105)
(0,7 _ 77 2
x W wfz,z)| <goj(o,zl)+‘x1/j (0—'”,21> >d21
wj(9‘*“z‘L’Z1) ¢
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Similar computations to those leading to (97) yield:

flij fsu 2 02f3ij 2
0(0,2)=J; — = + Ny;0;4 Q; A ; Q. A Q. A
f (97 ) ‘]l (9)+<wz (67Z) + 1151] VO J (9’ )+ w; (9 Z) 21 VG J (97 )+w(97 Z) vZ J (97 )
(106)
where the sum over j is implicit and with:
\IJOZ (2)
Ny; = 107
VT (X)W (1 (0).0.2.G0) (107)
N o Flz\Ij(h (Z)
2 =
U" (Xo)wi (J(9),0,Z,G)
7 [ wi (0,2 wi(0,Z w; (0,72 wi(0,Z
3 W (ijG,ZD -w (%‘Eﬂzg) 7 (W (W:EGZ;) -w (“’15972;)) T2
fuij - Tiij, fai5 = =2 (108)
Iy = NX. G”/|Z 2| T (Z, Zl)goj (0,21)dZy
Iy = 2NX /(Z—Zl) T (Z,Z1)Go; (0, 21)dZ,

Equation (106) describes the interactions of several non linear traveling waves.

8.5.2 Non constant background frequency

In the above, we considered translation-invariant transfer functions. Although correct in first approximation,
this hypothesis does not hold in general. For instance, it may be invalidated by finite volume of the system
or border conditions. Moreover, since the whole system depends on the collective state, one may expect
that endogeneizing the transfer functions induce the emergence of states with position-dependent transfer
functions. A mechanism for this emergence is described in section 8.6.

We will thus consider transfer functions of the form 7' (Z,Z;). To make things simpler, we dismiss
the corrections to the frequencies due to the potential and the background field and focus on the linear
approximation (99) of (97).

The derivation of the linearized expansion of (84) around wy (Z) is similar to that of (97), but now yields
a wave equation in an inhomogeneous medium:

TV (0,2) = 90 (2) (0, Z) — 91 (Z) VeQ (0, Z) + 92 (Z) VZQ (0, Z) (109)
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where we defined:

R Q(6,2)
Q(G’Z) = WQ(Z)
I (Z)-T:1(2)
G (Z) = (Z)—
0034_%
L (Z2) -T2 (2)
9:(2) = 02 + BT
wo(Z wo(Z
) Z - 2T (2.2)) Jo((zl))W <wo°<(z1))> dZ,
r(2) - i - Ty (2)
wo (Z) %()’%) + g0
wo(Z1) wo(Z)
’ K ‘Z_Z1|T(Z’ Zl) woo(Zl) w (WOO(Zl))dZ1
r, = .
NX, (1), «
wo (2) §(7> +5a
2 7 wo(Z
- B K f(Z—Z1) T(Z, Zl) i,oo((z))W(woo((ZR))leF
> 7 a2NX, (1)}, x ’
wo (Z) g(;?) +3a
2 wo(Z wo(Z
/ w [ (Z—-20)0T(Z 7)) woo((zl)>W/ (woo((21))>dZ1
M (z) - . - Lo (2)
wo (2)1/5 (%) +3a
wo(Z)
s T(Z,Zl)W(woo(zl)>dZ1
Lo(2) = G N 2
a1 s
8 (X) oo

8.5.3 Arbitrary transfer functions

We can derive a straightforward generalization of (97) by considering anisotropic transfer functions. So far,
we have assumed that:

/(Z ~ 20,2~ 20),T(Z,2:) 22 (Z1) s ( wo (2)

w0 @) "\ (Zn) 1 = 01g

where §; ; is the Kronecker symbol. Relaxing this condition, we can replace fs (Z) — 194(2), g2(2) —
i (7) = J22)

Equation (97) becomes:

92 T 112"
V3Q0,2) = g0 (2)Q0,Z) + 91 (Z) Ve (0,2) + g5 (Z)V 2,V 7,00, Z) (110)
for distributions:
f(2) = (woW' (1)—W (1)T¥
o _ v [(Z—20),(Z2—21),T(2,2%)dZ I
2 2N X, VPRI
wo g (z) =+ 50&

Equation (110) is a wave equation in an anisotropic medium, the anisotropy being described by the metric
tensor g5 (Z).
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8.6 Including transfer functions dynamics

Until now, we merely considered the dynamics of frequencies, and transfer functions were considered in first
approximation as depending on frequencies. We will now briefly show how the model can be generalized
by including dynamic oscillations for the transfer function. To simplify the formula, we consider a constant
background frequency and restrain to the linear approximation defined by equation (99), but the computa-
tions can be generalized to a position dependent background (see appendix 7), and the idea can be translated
to the non-local context presented in the next section.

To account for the dynamic nature of the transfer functions T (Z, Z;,w,w;), we associate to equation
(99) an evolution equation for T'(Z, Z1,w,w1). Using (343), we replace T (Z, Z1,w,w1) by a general function
T(Z,Z1,0) that is a priori independent from frequencies. Thus, around the equilibrium defined by the
background frequency wy, the function T (Z, Z1, 6) writes:

T(Za Zlae) = TO (Za Zl) +h(Z721)T(Zvoa Zl)

where Ty (Z, Z1) is the transfer function in this equilibrium. The function T (Z,0, Zy) represents the fluctu-
ations around this equilibrium. The expansion of G around wgy becomes:

T (Z,74,0)dZ (111)

- /w0+9(9—'z—fl,zl)_9(9,2)

G| —
N 1\2
wWo % (z) + gOZ

0 — \ZZ1|Z
f:w0+ro/ ( ) (2.2 + h(Z,Z))T 2921

As a consequence, equation (99) is replaced by:
r r .
o2V (0,2)=Q(0,2) + ?IVQQ 0,2) —TV%Q(0,2) — C%vgsz (0,2) —ToT (Z,0)

where we define:

T(Z,e) = / h(Z’ Zl)T(Z793 Zl)

and:

Z —Z)|1To(Z,2y)dZ
— 22| (2.20) d2%

wog()—i—a

_ K f(Zle) To(Z,Zy)dZ,
r, = To

2N X, N2 .
() +30

s
wo s

K To (Z,Zy) dZy

m

The dynamics for 7 (Z,0) derived in appendix 2 yields a system of dynamic equations for (Q 0,2) T (Z, 9))

Iy
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that are similar to (99) for a slowly varying 7 (Z, ):
_ 2\72 Iy 2 R 7
0 = o;VeQ(0,2) — | (0, Z)—i—?VgQ(Q, 7Z) =TV (G,Z)—C—ZV(,Q 0,2)—ToT (Z,0) ) (112)

V2T (Z,6)

0 = (’f + Uy (wo) VoT (Z,0) + Uy (w) T (Z,6) (113)
o p (D(2) T (2) hip (wo) + Co (2) s (w0) )
— | PC(Z) b (wo) — N Q(2,0)
D (Z) Wp (wo) (T1Ve2(Z,0) — (T1V3Q(Z,0) + T2V5Q(Z,0)))
AT
with:
c(z) = = h(Z,7:) C (Z)
f(x) 30
Co(2) = = h(Z,2:)C(20) Ty (2,21)
2(+) +3a
TO (Z) = ! h(Z7 Zl)TO (Za Zl)

2
$(%) e

Solving the system (112) and (113) implies, depending on the parameters, the existence of oscillatory so-
lutions, both for frequencies of activity and transfer functions. These oscillatory solutions illustrate the
constant interaction between cells’ activity and the strength of connectivity between these cells.

To conclude this section, remark that in the limit of slowly varying transfer functions, equation (112)
has constant coefficients, i.e. describes wave propagation in an homogeneous medium. However, beyond this
approximation, equation (112) is replaced by:

I (6,2) (9 Z)

o2V (0,2) =Q(0,2) + VeQ(0,2) —T4(0,2)V%Q(0,2) — ViQ(0,72)
with:

r,(0,2) = Z - 2| T (2, Zl,o)dzlro

wog()—i—a

Ty (0,7) = —o [ (z-27) T(2.2,0) %

2N X, \2
woy /% () +3a

T(Z,24,0)dZ,

s

The dependency in (6, Z) is driven by the oscillations (113) of the transfer functions. As a consequence, and as
stated in section 8.5.2, the frequencies propagate as waves in an inhomogeneous medium, this inhomogeneity
being time-dependent.

I'y(0,2) =

8.7 Some implications of the differential equation for frequencies in the linear
approximation

To assess the implications of the wave equations and find the propagation of an external signal at some partic-
ular points to the whole thread, we must compute the Green functions associated to the linear approximation
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equations (99) and (109).

8.7.1 Green functions and external signals

The Green function of (97) and (109) are found using the usual Fourier representation. We focus on the
retarded Green functions that model the wave propagation initiated by a source.

Constant background frequency We first consider (97). As explained in section 8.3, once the existence
of stable solutions has been established, we can set:

fi
w(b,2)

+N; =0

and replace (97) with its linear approximation (99) for J (6) = 0, that writes:

92V%9(0,2) — V300, Z) = 902 (6, 2) (114)
with: 5
PR S
fa rIs T fs
(&) (&)

Given our assumptions in section 8.3, both gy and g are positive.
Equation (114) is of Klein-Gordon type and can be normalized by setting g, = 1 and writing go = m?.
Using its Fourier representation, the retarded Green function of (97) is given by:

G (2,7 t.4) = /dkeXp (ik. (2 = ZL;Z_W’“ C=) gy (115)

with wr = Vk% + m?2. This integral can be computed and yields:

mJ, (m\/(t 12— (z- Z’)2>
¢u—ﬁf—(z—zﬁ

G(Z, 2/ 04"y = H (t—1') ié(t ) - (116)

where Jj is the n = 1 Bessel function.
To inspect the implications of (116), we merely need to approximate it for small oscillations. For gg >> ga,
i.e. m? > 1, we can expand vk2 + m?2 at the lowest order in K and write (115), up to terms of order #,

exp (zk‘ (Z-7Z)—i (m 4 %) (t — t’))

m

H(t—t) (117)

g@me:/M

Computing the Fourier transform in (117), the function Gy (Z, Z',t,t') can be approximated by:

g(&ZQuﬂ)zam<i<?bi:fg—nﬂt—ﬂO)I{@—ﬂ) (118)

which shows that the Green function G (Z,Z’,t,t') represents the path integral of a particle under the
constant potential m.
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Non-constant background frequency The Green function of equation (109) is a generalization of (116)
and has been studied in the context of covariant quantum field theory. However, (118) shows that a path
integral formulation for the Green function can produced. If g, (Z) varies slowly with Z, the analog of (118)
with non-constant coefficients is:

=2 (\VEE (dz(9))?
Q(Z,Z’,t,t’):/exp i / 922“ ( - ) Va0 (z(s)) | ds | | Dz(s)H (t—t) (119)

(¥)=2"

The sum is over the set of paths z (s) starting from Z’ and ending at Z in a time span of ¢ —¢'. The
derivation of (119) is straightforward. If we neglect g1 (Z) as in the derivation of (114), (109) writes:

o2VQ(0,2) = g0 (2)2(0,Z) + g2 (Z) V520, Z)

We then cut the time span ¢ — ¢’ into slices At, such that go (Z) and g (Z) can be considered constant in a
domain of radius ¢cAt. The Green function for a time span At is given by a formula similar to (118), except
that go (Z) # 1:

— Z\S 2
G(2(s+Al),2(s),At) = exp | i -‘722(2(5” (2 (”AZ G _ g0 (2 (5)) At (120)

Under these assumptions, the convolution of (120) over the time slices yields ultimately formula (119).

8.7.2 Propagation of external signals

Constant coefficients With the Green function (118), we can compute the diffusion of an external source
along the thread by convolution. We assume an external source:

J (t, Z) = exp (—iwot) 6 (Z — Zp) (121)

which describes a signal located in Zj, with frequency wg. Using (118), the amplitude 2 (¢, Z) is:

2
/exp (z (?(Z(;io)) —wot — (m —wp) (t —t’))) H(t—t)dt

exp (—iwot — iv/m |(m — wo)||Z — Zo| + im)

[(m = wo)

Q(t, Z)

and for a signal including a whole range of frequencies:
f(t,2)= / £ (wo) exp (—iwot) dwg (122)

the corresponding response of the thread is:

Ot 7) = exp (—iwot — iv/m |(m — wo)| | Z — Zo| + im)
o= | [ — <o)

J (wo) duwo

We assume that the range of frequencies in (122) is such that m — wy > 0, so that:

/ exp (—iwot — iv/m (m — wy) |Z — Zo| + i)

%) = T — o)

J (wo) duwo

/ exp (—iwo (t — /m | Z — ZO|))f (o) o exp (—i (Vm)*|1Z = Zo| + iw)

[(m — wo) [(m — wo)
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To simplify, we also assume that the frequencies of the signal satisfy |wp| << m, so that:

exp (—i (Vm)’|Z = Zy| + iﬂ')

m

Qt,2) =~ f(t—Vml|Z — Zo|, Z) (123)

The whole past history of the signal is present in the frequencies at time ¢, and is thus recorded in the system
of oscillations. The result (123) can be extended for several independent sources. When these sources are
located in two points Z7, Zs that emit signals fi (t) and fa (t) respectively, with frequencies below m, the
response is:

exp (fi (V) 1Z — Zo| + m)

Qt2Z) ~ fi(t—vm|Z-Z)) =] (124)
) exp (—i (vm)® |Z = Zo| + i
et — )

The response defined by (124) may present some interference phenomena, depending on fl and fg, as usual
in waves dynamics.

Non constant coefficients Considering non constant coefficients in (119) translates the hypothesis of
position-dependent transfer functions between cells. The implications of this assumption may be understood
using formula (124). Assume a thread divided in two regions, each characterized by constant coefficients go
and g and only connected via two ”entry points”. This can be modelled by go = 0 on the border of the two
regions, and g, >> 1 at these two points.

Formula (119) implies that paths that do not cross the border at points Zjor Zs do not contribute to

the Green function. Actually, the factor 525283 that arises in the weight (119) of such paths induces large

oscillations in the vicinity of the border that cancel the contribution of the paths.

As a consequence, the paths contributing to the Green function have to cross at Zyor Zs, which induces
some interference phenomena (124) on the transmitted signal.

More generally, the dependency of the transfer functions in Z along the paths impacts the results, even
for simple signals (121). Actually, the various paths reaching a point Z of the thread contribute to the Green
function (124). They each acquire a phase that depends on both the path and the characteristic of the
medium encountered. These phases may create interferences between the paths. The trained networks may
present some particular learned features in the coefficients go (Z) and go (Z), i.e. their transfer functions,
that would produce either constructive or destructive interferences for the signals.

Non-static equilibrium The equations of the previous paragraph may be generalized for a non-constant
and slowly varying background solution. For a non-static potential and for currents of large magnitude, a
slowly varying solution of the type:

0.7 Flooy+Z [Tz 2 wo(ai‘ZZZ”’Zl)
w.2) = P10+ [Tz ——Fs
2
x W wo (6, 2) Go (0,21) + ’\I’o (9 - |Z_Z1|7Z1> dz,
wo (9 - |Z221*|,Zl> ¢

may exist, and we can expand (85) around wq (0, Z) in series of §¥. Minimizing the effective action (see
appendix 3) yields the values of 0¥. Equation (95) and the definition of the coefficients (94) are still valid,

but now Go (0, Z1) = Go (0, Z1) + |¥o|* has to be replaced by a time dependent propagator Go (6, 2,) =
2
Go (0,Z27) + ‘\IIO (0 — @, Zl)} . The coefficients arising in (95) thus become time dependent.
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9 Beyond local approximation

9.1 One-field system

Section 8 focused on the wave equation for frequencies, i.e. the local solutions of (85), plus the corrections
defined in (84). This section goes one step further and studies the dynamics for frequencies without the
locality assumption. To do so, we dismiss the correction terms due to the interaction between the system
and the stabilization potential in (84), and thus study the solutions of (85) by rewriting the equation:

(e_lZ—CZﬂ,Zl)W(w(efée?l),aQ

w(0,2)
Jo)

To write a non-local solution of (125), we use the series expansion in |‘I’ (9(7), Z) |2 of the right-hand side of
(306) and write:

w(J,G, Z) = W(Q’Z)|\I/|2:O (126)

w(1,0,7) = F J(9)+%/T(Z,Zl) (125)

X (go (0,21) + "I’ (9 - Z_CZ”,Z1>

9.1.1 Series expansion of (125)

> §"w (7,0, Z) . 2

[ = | TIwe-i2)
n=1 H (5|\I/ (Q—ZZ,ZZN i=1

=1

| [2=0
The first term in (126), w (6%, Z)|\If\2=0’ is a solution of:
| Z—Z4]|
K Wiw|2=0 (9 - T Zl) W |2=0 (97 Z) _
w(0,2) g0 = F J+—/T(Z,Zl) % Go (0, 21)) dZ:
[w1"=0 N Wy 2= (0, Z) W)p|2=0 (9 - 4|Z7CZ{‘7Z1> ( )

(127)
To find the internal dynamics of the system, we will first consider a constant external current J () = J,
typically J = 0, but the results of this section will be valid for a non static current J (#). The static solution

of (127) satifies:
F (J+ %/T(Z, 7)) “:((ZZl))W (:j((ZZl))> Go (0, Zi)dZ1>

w(J,2)

FlJ,w, 7]

we assume this solution to be known, and we chose to expand w (J,0,Z) in (126) around this solution, the
dynamics being given by ‘\Il (G(j), Zl) |2. We thus set:

w (0, Z)\‘PIQIO =w(J,2)

Appendices 5 and 6 compute the derivatives wlJ8.2) in (126).
I1 8% (0—1:,2)|?
i=1 |w|2=0
Defining:
T(0,2,2,w,9) (128)

50 (J,0,2)T (Z,2,) F' [ J,w,6, Z, V]

W2 (J,8,2) + (f (10— 22 71) (g‘o (0,20) + |w (0 - 2221, 2)

2
) T(Z,2') dZ’) F'[J,w,0, 7,V
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and the operator T with kernel:

7 ((Za—l)’ 9(1—1)) 7 (Z(l))g(l))) — 7le— li M’ AGS I AUIN (129)

; c
Jj=1

(o) - 222200

appendix 5 shows that:

|z0-1 Z<”|
ow()0.2) Z/ (” Zie 1)
oW (6~ b, 20)P (G0 (0.20) + v (8 —zl,zl>|2)

(130)

n=1

Zl7G-1) _ z3)
| |

f[T 0—Zf AL ACRER (ll—z|

Jj=1

Z(l 1) _ Z(l

) H dzW

Appendix 6 builds on (130) to compute the derivative arising in the series expansion (126):

T161Y (0 —1i, Z)|? -
i=1

|%|2=0

by a graphical representation. We associate the squared field |¥ (0 — I, Zi)|2 to each point Z; and draw m

lines for m = 1,...,n. One of them at least is starting from Z. These lines are composed of an arbitrary

number of segments and all the points Z; are crossed by one line. Each line ends at a point Z;. The starting

points of the lines branch either at Z or at some point of an other line. There are m branching points of

valence k including the starting point at Z. Apart from Z, the branching points have valence 3, ...,n — 1.
To each line i of length L;, we associate the factor:

~

(G-1) (€]
BT (20D, Z0) [J wo, 0 — Zl ! u A 1>]
F (line;) = (132)

(J0 Zl 1 |Z(J 1) Z<7)| Z )>

1=1) _ ()
" (M ok ZZ|Z>
Go (0, 2;)

Il
_

X

L; ZA=1) _71)
1| 26-1) — Z0)] Wo (Jﬂ -2k Q Zi)
[7(6-> =200 200 200 4w
) ) s W0,

1 =1 ¢ Go (0, Z;)

I
e

l

and to each branching point (X, ) = B of valence k + 2, we associate the factor:

5t ( 7(2,20)F'[7,6,00,20]Go (0, Z(l))>
wo (J,0,Z21)
F((X,0)) = o (1.6, 20 (133)
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and (131) writes as a series of lines contributions connected by the branching points:

_ §"w (J,0,7) H‘\II(G_lmZi)IQ (134)
T161Y (6 —1;, Z)|? '

|%]?=0

- (XX X IIFwme) H ) | [T1w @ -1 7))

..... line,,) 1

The graphical representation is generic. The integration over the set of lines also accounts for the degenerate
case of lines that share some segments.

9.1.2 Path integral description

Formalism Appendix 6 uses formula (134) to derive a non-local formula for the successive derivatives of
w(J,0,Z) and w=! (J,0,7). Moreover, equation (134) allows to rewrite the expansion (307) as the sum of
graphs for an auxiliary complex field A (Z;,60;). The idea is to regroup the graphs in (134) so that their
sum becomes a sum over graphs drawn between an arbitrary number of branch points, seen as vertices of
arbitrary valence k and associated factor (133). These vertices are connected by the edges of the graph with

associated Green functions W where T is the operator whose kernel is defined in (129). The factor

|| is the operator multiplication by |¥ (6, Z)|* at point (6, Z).
Appendix 6 shows that:

n

fTAT 2,0) [ T wo (J,0i, Z:) |¥ (J,0:, Z:)|* A(Zi,0;) d (Z:,0;) exp (=S (A)) DA
i=1
0(,9,2) +Zi exp (=S (A)) DA

JTAT(Z,0)exp (=S (M) + [ A (X, 0)wo (J,0,2) |9 (1,0, 2) d (X,0)) DA
Jexp (=S (A)) DA

w(6,2)

= wy(J,0,7)+ (135)

The action for the fields A and AT is:

S(A) = /A(z,e) (1—|qf|2T)AT(Z,9)d(Z,9)

Z—zW Z—zW
/A Z.0)T (0—’ | AL w0+TAT> AT< <1>,9—g dZdzM dp
C

Cc

with:

P 12022 L N
7o 22 200 7w+ TA
C

. M — . —zM —zM
- T(e—'ZCZ',zuxz,wO Z.0)+ /T(a_wj',zm,z,%) A <Z<l>,g_|ZcZ|> dZu))

We then show that, in the saddle point approximation, the detrended frequency:
Q0,2)=w(0,2) —wy (J,0,2)

satisfies the following equation:

~ A~ LUQQ
Q-T(Q+ v T
(2 +wo) || o1 0

=0 (136)

Equation (136) can be used in two ways.
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Series expansion A first application of the frequencies equation (136) considers the background field as
an external field |\I!|2 This case arises when the system is coupled to an external source J (Z, 6) that shapes
the background field. A solution of (136) can be found as a series expansion in the field |¥|* (see appendix
6). The dominant terms of the series is:

0 (J,0,2) / > exp CZ?:O li —a (1 + <|\IJ|2>) (Zf:o (cli)2 _ Zk_ol %>)

w(Z,0) = Bk+1

(Q—ZZ,Z) WQ(J,Q—lk,Zk) B ) -
XH( (0 —1;, Z;) + Auwo |U]* (0 _thZ,)) (1+<|\P|2>> | (0 — I, Z1)|” dZ;dl; (137)

where <|\IJ|2> is the average of |¥|* over the thread.
For w™1(Z,0), we obtain:

-1 (Z,G) = _1 (J9 Z)
& o, 0,2,0] [ e (—e Dol —a (14 (19F)) (X () - X7 E=2=))
T 7,9,0,7,9] / Dk+1
-1 N
XH( wo (9 li, Z;) ) wo (/.6 l;“Zk) \W(@—lk,ZkNQ dz;dl; (138)
0 (0120 + A WP (012 ) (14 (|u))

The full series expansion for w (Z, ) is derived in appendix 6.

Non local differential equation Equation (136) can also be used to obtain a non-local version of the
frequencies equation (85). To do so, we replace the background field by a function of the frequencies:

Vow (7(0),0,2.G + W0l
U” (Xo)w? (7 (6).6,2.G0 + Wol*)

U (0,7)= U, (0, 2)

that rewrites as:

02 = Xg Vo2
U (XO) (WO + Q)2
Equation (136) thus becomes:
L Ty Ve T wolt
v (Xo)
Q=T 139
PG (139)

This is a non-linear equation that generalizes (85). The second-order expansion in derivatives of the right-
hand side of (139) yields a second order linear differential equation similar to the type derived in sections

8.2 and 8.3 and confirms the possibility of waves propagation phenomenom.
Remark that equation (139) is still valid for any background field related to w by a relation of the type:
9* = f (w, Viw) (140)

which leads to the following dynamic equation:

Q—Twf (w,Vlgw) -7
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Corrections to the saddle point Ultimately, appendix 6 also yields the corrections to the saddle point
approximation. Replacing equation (135) by:

1 -1
) wo (Qwo + TAI)) R 2\
w=wo+TA [det [ 1+ 1+—AT(1+|\IJ|)T (141)
(wo n TAI,)
and considering equation (141) along with the defining equation for Ag:
T 2 “o t_
A} <|\I/| + TAT> TA wo |\I/\ (142a)

yields the modified version of (139):

w0(2w0—|—Q) LV T o
Qdet 1+<1+(WO+Q) T (1+ f(w Vg ))T)

Wo

1
w0+Qdet< (1+7”?f‘f$m (1+ f (w, ew))T> )

= T || f(w,Viw)+

wo (2(.«)0 + 9]

-1
xQ det 1+<1+ (w0+Q)) (1+ f (w, Viw)) > +wof (w, Viw)

9.2 Several interacting fields

The results of section 9.1 can be extended in the case of two types of interactions. Consider n populations,
each caracterized by their frequencies ¢ = 1,...,n, and interacting either positively or negatively. Each
population is defined by a field ¥; and frequencies w; (6, Z). Equations for frequencies are defined by (43):

w4 9 — 7‘27Z1| Zl>
0.7) = F J(9)+E/T(ZZ) ’ c 7 i (143)
Wi ) 7 N y &1 Wi (0’2)
(0,7 _ 77 2
x W . (Z z) <g0j (OaZ1)+ “I’j (9_|1|,Zl> )dzl
wi (0- 12521, 7,) ¢

The coefficients of the n x n matrix G belong to the interval [—1, 1]. The sum over indices is implicit for j.
The resolution of (143) is similar to that of (85), but with a vector of frequencies. The series expansion
of this vector is:

w(0,2) = w(0,2)gp_ (144)

> 5w (J. 0, Z i
D TTw® 12
=1

=1 \ TI 6|9 (0 —1;, Z)|?
=1

|[2=0

where the expression of the first order derivative is similar to (130):

o) n -1 i— i
5 0.7 . Z(] 1) _ Z(])
< w(J, s ) 2) _ Z/HT eizg,z(lfl),z(l%wmo
6‘\11(0_11’Z1)| ‘\1/|2:0 n=1 =1 ¢

j=1

(Ja Z'Z 29 Zl) X5<51_Z|ZZ(Z> HdZ(”
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where w (G(i),Z) and w (Q(i),Z) = wq are vectors of frequencies. We define D (|\Il|2) as a diag-

|¥|2=0
onal matrix with components \\IIZ|2 on the diagonal. More generally, for any expression H (o.)m-7 |\IJZ-|2),

we define D (H (wm \\Il|2)) as the diagonal matrix with components H (wOi,|\I!i|2). The expressions

G=1) _7()
6w(J.0,7) plg_ 5112 29 ga-n_z0 _—
<6|\IJ(0—11,ZI)|Q>|\I,‘2:0 and T (0 > =1 - , 2\ wo,0 ) are n X n matrices:

< 8w (J,0, 2) ) _( Sw; (J,0, 2) )
SWO=1,20F ) ory) SO0 20F )y

ﬁ] (97 Za lea \Ij)
GV 50, (J,0,2) T (2,2,) F' [J,0,6, 2,9

’ = ’ 2
w2 (J,0,7) + Gii <f £ (J,e - @,Z') (goj (0,2') + ]\pj (9 - @,Z/) > T(Z,2) dZ’) F'[J,w,0, Z, 7]

and the operator T with kernel:

=11 7G-1) _ ()
T((Z(lfl)’g(l*1)>’(Z(l),g(l))> _ g_zu’z(zm’zm,wo

- c
Jj=1

(o) - 222201

The successives derivatives in (144) are given by a formula similar to (134)

Shw (J, 9’ Z) n m
: | (S S frwelre) o
H5|\II(07Z1,21)‘ m=1i=1 (liney,...,line,,) 1
i=1 |w|2=0
where the various quantities % , F'(line;) and F (B) are tensors whose precise form
[T 6|%(6—1:,Z:)|
i=1 |w|2=0

and dimensions are given in appendix 6.3.
The resolution for frequencies follows the single field case, and yields (see appendix 6.3):

Q-1T( vPoT(—2 o=
@+an) 9 -7 (25 a =0

where (€ + wo) |¥|* and (w +Q) Q2 are the vectors with components (€ + wo),; \\11\22 and (wffﬂ) Q;, respec-

tively. The approximate series expansion for w (Z,6) and w=! (Z,6) are given in appendix 6.3:

w(Z.0) = wy(J.0,2) /Oo ‘o exp (el - (1+D<<‘I’|2))A((di)2_ ) (146)
k=0 i= O
wo (0 — 1, Z;) wo (J,0 — g, Zy)

wo (0 —1;, Z;) + Awo |‘I’|2 (0 —1i, Zs) (1 +D (<‘\II|2>))

exp (—clk - (1 +D (<|\If|2>)) A ((Cli)2 - M)) U (0 — I, Z)|* dZqdl; (147)

X B
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w(Z,0) = w'(J,0,2) (148)

D <G 7,0, 6, 7, V] )/ o0 k- 1exp clz-f (1+D(<|W|2>))A<(cli)2f%))

F'[J,w,0,Z,7] B

k=0 i=0
wo (0 — 1, Zi) wo (1,0 — Uy, Zy)
wo (0 — Ui, Zi) + Awo |V|* (0 — 1;, Z;) (1 +D <<|\m2>))

exp (_Clk - (1 +D (<|‘I’|2]>3)) A ((di>2 _ M» W (0 — Ly, Z3,)|? dZ;dl;

X

The full series expansion for w (Z, 6) is given in the same appendix.

10 Correlation functions and probabilistic interpretation

The correlation functions of the field theory can be interpreted in terms of the system’s dynamics. They
compute the joint probability for a set of frequencies at different points during a certain interval of time. We
first compute and interpret the two points correlation functions. We then generalize to an arbitrary number
of points. It is in this context that the interdependence of frequencies at different points appear.

10.1 Two points correlation functions

The correlation functions are found by computing the derivatives of the effective action with respect to the
classical background field. The two points Green function is the inverse of the second derivative of the
effective action I" (\I’T, \I!):

82T (v, w)

L11 (05, 25), (65, Zi)) = Swt (0f,Z) 6V (0, Z;)

In first approximation, we have:

2
I‘lyl ((9f7 Zf) ’ (917 ZZ)) = _v9 (O;VH - w_l (J (9) 797 Z7 gO + |\II|2)> 4 (9f - 9i)+rl,1 ((efﬂ Zf) ’ (927 ZZ) ) \IITa \Ij)

) (149)
with I'y 1 (65, Zy), (6, Z;), T, ¥) given by the second derivative of (57):

D1u (07, 25) 5 (05, Z0) , 01, 0) (150)
' i

Q) O]
j , [Texp(—A1 Hf -0,
x>y [ Moo (7 227)
m! H (ﬁk)' AZMPL
k

| =2 i . =1,l'=1
'r]n/22 (pl)m><1 f *
2 =2

m 5211’; |:Scl (\IlJf’ \Ij)] i n ) J
; 0
X Zl;[l /J [9(1) 9(1)} lll pf 5 1;[ H da(kl) X H \Ij (01 7Zl)
- l (9(1}),21/ >:(9faZf)
(0(12),le):(0i,Zi)
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In these expressions, the derivatives that correspond to the impact of propagation between 6; and 67 of the

signal have been neglected. In the local approximation, equation (150) writes:

D11 ((0,2)),(0,2:), 91, 0)

S0 Sl ol A | IR (OFD

322 (50),,,., =r=t e L=
2P 22
m sl [S”C,(\I/T,‘I/)]
H I pi ! 2 ;
=1 | I1 % (00,7, J z .
x 22 [ w (09, 2) a0z,
m!l;[(ﬁk)!/\ AP 1=1,1£l

i (0(l’)yzl,f>:(a,zf)

(a(l'),zlé):(e,zi)

with pf =0 or 1. The two points correlation function is then:

Ga (05, 25) 05 2)) = G (05, Z5) 6, Z0)) + G > (~1)" " (T (01, 9) 5 G)

n>2

where G ((07,Zy), (0;, Z;)) satisfies:

~Vy <J25V9 —w (106).0.2,60+ w)) G (05,25, (6:,2:)) = 5 (07 — 0)

(151)

(152)

(153)

and fl,l (\IIT, \Il) is the operator with kernel fl,l ((Qf, Z),(0:,Z;) , ¥, \I/) Appendix 4.1 yields an expression
for f‘l,l ((Hf, Zs),(0:,Z;) VT, \Il) and G ((0¢,Zy), (6, Z;)) in the approximation of relatively slow variations

of frequencies. We find:

1ql,l ((03 Zf) ) (07 Z?) 7\I/T7 \I’) = w71 (017 Z?) w71 (€f7 Zf) v (ofa Zf) \IIT (077 Zz) C (@a \I/)

a1 w(0,2) _ ¢ e

Moreover, we define the average frequency at Z over a time span [0, '] as:

where:

o1 (J(e) 0.7,Go + |\If|2) = <w*1 (J(e) 0,7,Go+ |\11|2)>

[0,0']

so that we obtain:

g (0f7 0i7 Zfa Zz)

2
o—1(J(6),0,Z,Go+|T|? o~ (J(0),0,Z,Go+|T|?
oo [ \/(w (00 0|)> 42 SO 2G )
1

~ §(Zp— 7)) —=

(69

s
2 \/(wl(J(e),e,z,go+|w2))2 20
o2 + o2

As a consequence, the solution of (153) is the series expansion:
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Gs (0f79i7vazi) = g(efveiazfazi) (155)
+/ <H d@dek> g(of,an,zf,zf) x> (-

k=1 n>2

n=1 Yyt (,, 7

Z)g (91,91') Z’iv ZZ)

r_l ( ak,Zk ( -1 (ek,Zk))zg (8k+170kazkazk)) m

In the following, we study the correlation functions with an arbitrary number of points.

10.2 (k,n) points correlation functions

The (k,n) points correlation functions are derived in the standard way (see appendix 4.2).
The correlation functions are obtained from the (k, n)-th effective vertex I'y ,:

§EL (W1 W)

Ten <(9}l)’Zl)l—l,..,k’ (91(1)721)1_1’”7“) = 5 (qﬁ (9}”,&)) sn (\If (951)721))
1=1,...k 1=1,...,n

through standard techniques. Appendix 4 shows that, in first approximation:

Gl ((9;1)721)1—1,.. E’ (g(l) Zl)z—L,,,n) (156)

inf(k,n) wu

= 3 3 II6((09.2). (6.2))

Ok, 0n u=0 j=0

k—u,n—u
X Z Zﬂ Z H Lk, . ((9}1)T’U)’Zl’r’u)l—l..., - (HZ(ISU)’Zl’S’u)lzL n>
i=1,j=1 P;(k—u) reP;(k—u) '

Pj(n—u) s€Pj(n—u)

where P; (k) and P; (n) denote the partitions of k£ and n in i and j subsets:

U, (Q;Z’T’u),zl,r,u) — (0;1)7 Z[)
=1,k I=u+t1,..k

U, <9£l7‘97u)7Zl,s,u) _ (ez(l)’ Zl)
l=u+1,..,ng l=u+1,..,n

as ordered sets. The sum over o and o, is over all permutations of the (9;”, Zl)l . and (951)7 Zl)l ,
=1,.., 1,..,n

and:

respectively.

10.3 Interpretation: joined probabilities for frequencies

Equations (155) and (156) can be interpreted in terms of joined probabilities for frequencies at different
points of the thread. We first consider the two points correlation functions.

10.3.1 Two points functions

At the perturbative zeroth order, the function Gq (6,6, Z) is the Green function of the operator:

2
= (?VG ~wTN(I(0),0,7, go>) to
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and is given by (47):

1\, 2 1
exp | — (ﬂ;@) t x| (0-0)
Go(0,0,2,2"Y=6(Z -7 n H(O -0
This function is the Laplace transform of the function Goz (0,0, An):

Go (0.0, 2,2") = / Coz (0,0, An) exp (—aln) da

The form of Goz (0,0', An) is irrelevant here.

The function Goz computes the probability of a time interval 8§ — 6’ for An spikes of the potential at
point Z. The Laplace transform Gy (0,0', Z, Z') computes the probability of a time interval § — ' for a
random number of spikes An with average L. Since the spikes’ frequency is %7 Go(0,0',Z,7Z") computes
the average probability of a frequency m of spikes. Computing the average ((# — 6’)) confirms this

point:
2
(T )oe)
Go(0,60,2,72") = 6(Z2-2") 1 HO-¢)
—aX, (-0
~ 5(2—2/)6’@( O‘A( ))H(e—ef)
so that (6 — ¢')) = . The average inverse frequency is then o ((6 —0')) = <.

As a conbequence the Green function G (0,0',Z,Z’) computed at @ = 1 can be interpreted as the
probability, at time 9+9 ———-. The same applies for higher
order correlation functlons.

Including the higher order corrections (154) and (155) lead to the same conclusion, but using (155) for
Z; = Z; shows the interdependencies of frequencies. Actually, this can be rewritten:

+/ (H d9dek> Q(Qf,amzuz) X Z
k=1 n>=2

n—1
i Ok, Z1) U (0, Z) i (01, 7;)
X kr:‘[I (w_l(ok,Zk)g (9k+179ka Zk7Zk) w (ak,Zk)> w (01’ ZZ) g (61701;’ Zi7 ZZ)

The probability G (0¢,0;, Z;, Z;) of frequency 6y — 6; on an interval centered on w is modified recur-
T .
sively by probabilities G (0x+1, 0k, Zk, Zr) at other points and times with a factor ggg:gz; ‘I:J ((99117 2)) This

factor measures the rates of interaction between different points. The probability G (61, 6;, Z;, Z;) impacts
G (62,01, Z1, Z1), that itself impacts G (03, 02, Za, Z3) and so on, until G (8¢, 0., Z;, Z;) closes the series of suc-
cessive modifications. The sum over times and space yields the impact of the whole system on the frequencies
at Zi~

10.3.2 (n,n) Green functions

The (n,n) Green function G, , ((9;”, Zl)l , (92@, Zl)l ) computes the transition probability of
=1,..,n =1,..,n

ng), Z to 0("), Z for i = 1... for an average number of spikes of 1, so that:
1=1,..,n S I=1,...,n
) 7 (n)
< ek < 9 ) I=1,..n (ai ’Zl)l_l,..,n)>a_l (158)
1) 4 g (n) 4 g(n)
_p . 0y +0; _ 1 wlz 0y +0; _ 1
2 9;1) . 91(1)’ ? ’ 2 egcn) . 97(”)
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QRIS 0 o(™
computes the joined probability for a set of n frequencies at points Zi,..., Z, and times +———,..., L———.
and w®) = -1

0+l .
2 - e(fl) 7051) :

Equation (158) can be rewritten in terms of density for the set of variables #() =

(0 )= (i) (on (0 2).. o 002, )

1 a=1

Using (158), we can now interpret equations (155) and (156). Writing:

Grn <(0;l)’ Zl)l:l,.,,k ’ (Ggl), Zl)l—l»--’")
= Y Y[ ((69.2,) . (6.2

Opn,0n u=0j=0

X niu (71)i+j Z H Fnr,ns ((05}77"7“)721,7’@)

i=1,j=1 Pi(n—u) r€P;(n—u)
Pj(n—u) s€Pj(n—u)

l,s,
) (01( ° u)v Zl,s,u) )
=1,..,n, =1,..,ns
in terms of probabilities:

T (0) W i)
() (o)
= Z iﬁ(w(j))2P(w(j),9(j)) 5 (=1)"

On,y0n u=03j=0 =

(w(l,r,u))_l

(I,ryu) -1
< > Il Tuw <9<“"*“>+2 7Zl,r,u> ,<9”m“>—(‘” 2) ,Zl,s,u>
=1,..,n, 1=1,..,ng

P;(n—u), r€P;(n—u)
Pj(n—u) s€Pj(n—u)

u
N\ 2 . .
has an interpretation similar to the 2-points Green function. The first terms [] (w(J)) P (w(]), 09U )) rep-
j=0
resent an independent distribution for the frequencies at different points, and the corrective terms measure
the mutual dependencies due to the interactions in the background field. Moreover, for [ = m = 1, the

probabilistic interpretation is an alternate description to the frequencies’ local differential equation.

11 Conclusion

We have presented a field theoretic framework for a system with a large number of interacting spiking
neurons, and showed its implications on the dynamics of the system frequencies.

The field framework and the existence of collective or background states allow for stable traveling wave
solutions and correlated frequencies at different points. These correlations are measured by the n point Green
functions and induces a non-locality in frequencies wave equations. which we accounted for by deriving non
local equations for the frequencies. Besides, some non-locality also emerges in the impact of the external
current on the background field. An external current may shape the form of the background field, which in
turn conditions the thread in which frequencies waves propagate.

We have presented several further extensions of our framework. First, we have extended our formalism
to multi-component fields, to include different types of cells interacting with each others. Second, we have
accounted for the possibility of time and position-dependent transfer functions, where the dependency results
from the strength of cells interactions. This extension induces frequencies’ wave equations with non constant
coeflicients, that are waves in a non-homogeneous medium, whose non-homogeneity is described by a metric.

Our results have been obtained using a dynamic evolution for transfer functions that depends on the
background field for the system of cells. A straightforward extension would be to design a field formalism
for the transfer functions themselves, in interaction with the cells’ field.
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Appendix 0

When we restrict the fields to those of the form:

V(0,2)0 (wl — ! (J,e,z, |\If|2>> (159)
where w1 (J,0, Z, V) satisfies:
Wl (Jﬁ, Z, |x11|2) (160)
Kw(J,Qf|Z;Z“,Z1,\II)T(Z,0,Zl,07@) Z- 7, 2
= GlJ0.z +/— 5 ‘w(e—,a) dZ,
N w (J,e,z, M ) c

The classical effective action writes:

—%/qﬁ 0,2)0(0,2)6 (w—l — ! (J,e, Z, |\I/|2>) ((";vg - w_1> ve) U (9,2)6 (w_l — ! (J,e, Z, |\I/|2))

(161a)
We can replace the first § function by 1 to normalize the projection on the frequency dependent states..

The action of Vg on ¥ (6, Z) 6 (wl ! (J,e, Z, |\11|2)) vields:
Vo (\p 0,2)5 (w_l — ! <J,0, Z, \W))) (162)
= (V¥ (0,2))5 (wl — ! (J, 0,7, |\II|2)>
- (Vew_l (J,a,z, |\1/\2)) U(0,2)8 (w_l ol (J,e,z, |\1/|2))

Inserting the result (162) in (161a) leads to:

%/qﬁ 0,2)% (6, 2) ((‘TQW —w_l)) (Vg\I/(H,Z))(S(w_l —w! (J,H,Z,|\I/|2))
+%/qﬁ 6,2) 0 (("2 )) v (0,7)8 (w_l ! (J,e,z, |\1/|2))
_ %/qﬁ(ez ((‘;vg—w 7.0, 7,02 ))veqf
L [t 2)w T Ve~ Vw1 (7.0, v (0
[veaven((5 (roz1wF)))ve

and the sum of the two last terms is, as in the text:

o0 (5(Gr0-o (1a210) v

Appendix 1. Vertices of (35) involved in the computation of the 2n
Green functions

To find the effective action associated to (35) and the collective term (34), we proceed in several steps. The
first one is to find the vertices involved in the computation of the Green functions. To do so, we will expand
the action (35) in series of field. This produces a series of an infinite series of vertices. However, given that
the two points Green function are not symmetric by time reversal, we will show that only the 2n first terms
are involved in the computation of the 2n Green functions. We will then estimate these vertices using the
recursive relation (27) between frequencies depending on field. These results will be used in the next section
to find the graph expansion of the system’s partition function.
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1.1 Estimation of the two points Green function

We start with the two points Green function and prove (50). To do so, we will expand the action functional
in series of the field ¥. The two points Green functions will be computed by using the ”free” action’s
propagator, obtained by replacing w=! (J,0, Z, ¥) with w=! (J,0, Z,0) in (35). The free action is:

1 2
So =5 (6,2) Vs ((;vg —w(J,8, 2, 0)) v (0, 2) (163)
and the series in field of (35) will be considered, as usual, as a perturbation expansion.

1.1.1 ”Free” action propagator.

Now, we compute the propagator associated to (163). We decompose the external current into a static and a
time dependent parts J + J (¢) where J can be thought as the time average of the current. We will consider
that |J (Z)| > |J (6, Z)|. At zeroth order in current J (6), the function w™! (J,6, Z,0) satisfies:

1(J,0,2,00 = G(J+J(9) (164)
arctan ((X% - %) j(Z)) 1 1

¥ GU@) = 72 X2 X,

where the dependence in Z of X, will be understood. As a consequence w (, Z) is thus approximatively
equal to X,.. Under this approximation:

So=-0"(0,2)V ‘iv 1 T (0,2)

0= ) o\ Ve~ )

T
and the Green function of the operator Vg (%QVQ — 5%) is computed as:

exp (tk (0 — 0"))
Gk +ikg-+a

(V1 (0,2)W(0',2)) =Go ((0,2),(0/,Z') = Go (0,0, 2) =6 (Z — Z’)/ dk (165)

The right hand side of (165) can be computed as:

exp (ik (0 —0")) 0—¢ exp (ik (0 —0"))
TP gk = — 2k
7]{7 + 'Lkz + « O’ kQ % (0_;( )

1 /
exp = |9 0|
( XT 0— 0
exp (166)

02X,

‘ﬂ'

2 ) +20¢

G’ZXT o2

and this is quickly suppressed for § — ¢ < 0. This is the direct consequence of non-hermiticity of operator.
In the sequel, for 02X, << 1, we can thus consider that:

> (JG o))
Go(0,0/,2)=5(Z— 2" H(O—0) (167)

/N
=
N~—
[ V)
+
[
Q

where H is the Heaviside function:

0ford—6 <0
lford—6 >0

H(0-0)
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Formula (167) for the propagator is sufficient to compute the graphs expansion in the next paragraphs.
We can check that the corrections due to a non-static current do not modify the result at a good level of
approximation. Considering the following form for G (J (6, Z2)):

arctan ((x% - X%)) J(G,Z))

G(J(0,2)) = 76.2)

For relatively high frequency firing rates, i.e., small periods of time between two spikes, we can write in first
approximation:

G(J+J(0,2)

12

G(J)+J(0,2)G (J)

— £ +I0.26 ()

and replace (165) by the Green function of:
o? 1

Vo (”;W —G (J(&Z))) ~Vy (2v9 -x. ~/0.0¢ (J)>

As a consequence, the inverse frequency Gy (0, 6’, Z) defined in (167) is replaced by:

=P <— ( () +2- X) <0—0'>>
H(6-0)

2
1 2a
<02XT> + o2

1 (T 0’
Lﬂ G (J) / J(QN,Z) 0/
V3 /( 1 )2_’_27(1 0
o2X, o2

Since J (6, Z) is a deviation around the static part .J, the corrective term:

gO ((aaz)v(alvzl)) = 5(Z7Z/)

=

/

x|11-—

1

/! Z) da//

vl

vanishes quickly as 6 — 0 increases, which justifies approximation (167).

1.1.2 perturbation expansion and the two points Green function

Formula (167) allows to compute higher order contributions to the Green function of action (35) by using a
graph expansion. Actually, writing w=! (0, Z) for w=' (J,0, Z, ¥) when no ambiguity is possible, the higher
order contribution for the series expansion of w™! (¢, Z) in fields are obtained by solving recursively:

(2.0~ 12220 7))
1 _ |Z_Zl|
(J,0,2)=G | J(0,2) /N AR ‘xp (9 === ,Zl>

2
/T(Z7 97 Zl) ledwl

(168)
This will be done precisely in the next paragraph. For now, it is enough to note that given (168), the
recursive expansion in w™! (J, 0, Z) of the potential term in (35):

2
T(Z,2,)dZ, | | ¥ (6, 2)

wlge_12=2l Z1>
T wo (o122 1z-27
vi(9,2)v | @ J(H,Z)+/N 797 ‘\11(9 1.7,

(169)
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induces the presence of products in the series expansion of the two points Green function:

2
i [ e n(e®) Z, — 7D ‘+...+ Z=1) _ S0
i i a(l) a(l) a(l) 1
1 L e
k=1 \ =1 a(l)=1
xdz{}),...dz %) v (M,Zi) 409 dz, (170)

with n(a (1)) = n(a(l)) for I > I’ and m € N. The function § (Z — Z’) in (165) and the use of Wick’s
theorem imply that all subgraphs drawn from this product reduce to a product of free Green functions
(167) of the following form (the gradient terms and the indices « (1) are not included and do not impact the
reasoning):

! k
-2 Zivi = 25

z |
/Hgo o) _ Z T79(z‘+1) _ Z ] 7Zi(ni)7 Zi(ni“)

<n; k<nit1

) (21 - Zi(”i)) 5 (Zl Zfﬁfl)) Az dz i) H o

(l)‘

(i) Zi— 2 (i+1)
S AICHICE Ve TR

A H do"
I<n k<m

/H Go (9(1‘)7 pli+D), Zl) T a0 (171)

by change of variable in the successive integrations. Moreover, the cancelation of Gy (6,0, Z) for 0 < ¢
implies that this product is different from zero only for () < #(+1 As a consequence, for all closed loops
0; < ...< 0 < gi+D) < 0, =6, the contribution (171) for loop graphs reduces to:

Zis Z(k)’

1160 (61,61, 21) = [ G0 (0, 21)

with (see (167)): .

1 Ve
() +2
As a consequence, the contribution of (170) to the two points Green function between an initial and final
state:
< 1n7 zn \/1_[\1’Jr (0 2 Zi)
2
i 2= Z2W| + .+ |z — ZzO)
XV o H N, <9(z) _ | | ‘ ‘ Z(l
k=1

C
x W (09,2) d09dz,w (070, Zpn)) (172)

gO (O,Z) =

Ik

dzW ..dzM)

reduces to sums and integrals of the type:

§(Zln - an Zgo 017”917 m) gO (017923 zn)~ gO (opaafnazin) (173)
p

Y Y 6 0.0.20) )

n {L?),.‘.,L%p) } m=1
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where Lgp ), e Lgf’) is the set of all n-uplet of possible closed loops that can be drawn from the remaining

variables in (172) once p variables have been chosen.
The result (173) is the same as if in (169) the potential had been expanded to the second order in ¥ and

in all terms of higher order, |¥ (6, Z)|* had been replaced by Gy (0, Z).
Now, writing w (J, 0,7, |\I/|2) for w and w (0) = w (J,0,Z,0) (i.e. when we set ¥ = 0), this means that

the 2 points Green functions are computed using the free action:
Lot o3 -1
—5\11 (0,Z2)Vy 7V3 —w (0)|¥(6,2) (174)

VO (w’l) ([n]) (0)
[n]!

%\Iﬁ 0.2)>

n>0

-1 2
+Z<Ve( I (g()(O’Z))n_lgO(e’e,’Z))

— 1N
n>0 [n 1]

(G0 (0,2))" ¥ (6,2)

0'=60

0.2
= 0.2 (FT - 0) 6.2)+ 5 0.2 Z 9o ((@) 6 0.2) =7 0) ¥0.2)

+97(0,2) (Vo ()M (60(0,2) 9 (0, 2) G0 (0,0, Z))>9/:9
5 [qﬁ (@', 7) Vow! (J, 0,7, |qf|2) v (6, Z)}
5w

1. 7 1 9
—5‘1’ 9,72) Ve)?Ve ‘11(9,Z)+§|‘I’|

|\I/(9,Z)\2:g0(0,Z)

w1 ([n])(o
where B is a short notation for:

5" [w_l (J,e, Z, \\1/|2)]

> / ﬁle(il)...le(ili)
L i=1

n |Z—z§f)‘+...+ Zli”’”*zz(fi) (1) 2
Io{|wfo- - 2y
|W|=0
_in(n—1]) 2
and % stands for:
- 5wt (1,6, 2,10P)]
S [Tl azt? iz N
i cen : k:’l
» Pl ‘Z*Zz(il)|+'“+ ij*l),zl(i"z‘) (1) \
H6 vlo- c ’Zlil
||=0

2

n—1 ’Z _ Zl(Jl)’ + ..+ ‘Zl(il_l) _ Zl(jlj) )
A . 7

(w_1)([n])(gO(O,O,Z))N’l2

= , the derivatives are evaluated at |¥ (6, Z)|* = Gy (0,0, Z).

Similar notation is valid for
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We have also used |¥|” [6@‘2} as a shorthand for:

2

A (175)

/ az".az"\ |, |2 -2 +..+ |20 - 2
l C
5

(k)!
x &) (1=1) _ () 2
5 <’\I/ (0 e e e ’,Zl(l)> )

Ultimately, the computation of the Green function involves the series expansion of the potential V (¥). We
have seen above (see equation(173)) that the graphs generated by this expansion are the same as if in (169)
the potential had been expanded to the second order in ¥ and in all terms of higher order, |¥ (6, Z)|2 had
been replaced by Gy (0, 7). As a consequence, the second order Green functions are computed with the
action:

—501(0,2) (Vo 2, ) v 0,2)

_ 2 - 7
'k [xyf (0,2) Vg (w ! (J,G, Z,|9| ) v (0, Z))} 2 [0V (W)
a1 2 P |
5| 2 S[UI™ Jwo.2)
[¥(0,2)] L 4 260(0,2)
=G0(0,2) IO
Equivalently, this means that the 2 points Green functions are the inverse of the operator:
_ 2 - .
o 1 [ 2) Ve (v (10.2,07) W (6,2))] 51V (V)
—-Vo—=-Vy+ - ) Rl s
272 2 5| we.nr L O Jiwe)?
:goio’z) ZGO(Ovz)

1.2 Higher order vertices involved in the effective action
1.2.1 General form of the vertices

To compute the 2n points Green functions, we proceed as for the two points function and consider a series
n

expansion of the potential in powers of W (6, Z). In products [[ |¥ (6;,Z:)|?, n — k factors |¥ (6;, Z;)|*
i=1

are replaced by G (0,0, Z;) at the higher orders. A derivation similar to (174) then shows that 2n Green

functions are computed by using the expansion of the action:

1 2
—5; v (0,2) (ve";ve) v (6,2) (176)
+1 Z I\I/‘Zk LZ |:\IIT (9/72) Vo (w_l (J,07Z’|lll|2)\ll(9’ Z)):|
2 5150 [K]\d% ] 2
nzkz |¥(0,2)|*=60(0,2)

where |W[* W generalizes (175) and stands for:

2
22 0]+ ot 200 - 2
0 o J z J

k
Z/H (le(l)le(lz)) it 7Zl(-li)
k2 k2 c 7
1; i=1
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Equation (176) can be shown recursively. To compute the 2n correlation functions, the subgraphs with 2k
legs, k < n, are given by (176) at order 2k. For k = n, the classical action yields a vertex:

% (H‘SnQ (10, 2) Vo (w7 (46,2, 19) ‘1’(97Z))D v

n|lom | 0| 12(6.2)|?=0
For k > n, a similar argument as in paragraph 1.1 in the vertex:
1 6k t 7 1 2 2k
AT [‘I’ (0'.Z) Vo (W (Jﬂ,Z, g )‘I’(Q,Z))} 0|
[kl} | | |\I/(19,Z)‘2:0

k — n factor |¥ (6, Z)|* have to be replaced by Go (0,0, Z). Summing over k, it means that the 2n vertex is
computed with:

%i (W [qﬁ CANY, (wfl (J,a, Z, |\m2) 0 Z))]) [CL,] (G0 (0,0, 2))! W]

| Sl+n
= \ [+ njaten wf? 19(6,2)[2=0

where the symbol [C}, ] reminds that among the product |¥ (6;, ZO)? o | (014, Zign)|? we sum over all

the C},,, possibilities to replace [ factor |¥ (6, Zj)|2 by Go (0,0, Z;). Summing the series, we find for the 2n
vertices:
1 bl 6l+7l t / —1 2 l l 2n
3 s (V0. 2) Ve (0 (16,2197 ) v (0. 2)) | (] (G0 (0,0,2))' 9]
2= [l + n]lol+n 0|2 2
= v (6,2)*=0
1
-1 \Iﬁ @', 2)V, (ml (J,e, Z, |\1/|2) v (0, Z))} o]
2\ [n)tom |\I;‘ .
[¥(6,2)[°=G0(0,2)

as requested.
Below, to compute the higher order corrections to the effective potential, it will be useful to write (176)
with an other set of variables. We replace:

2= 2]+ .+ |2V -

N, ’ Zl(il i)

c

by W (0 — l;, Z;) where [; represents an arbitrary delay time. As a consequence, the 2n-th vertex:

Vo = [0 (M (1@, 2) Vo (w7 (10,2 197) w o, Z))D

|\IJ(07Z)‘2:QO(O,Z)
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becomes (where w™? (J,6, Z) stands for w1 (J, 0,7, |\Il|2> when no confusion is possible):

1 " [ [T (0,2)Vow™ (J,0,2) ¥ (0, Z) dZdb)]

Vau = [vie.2) (1)
| n
2 [Lo1w (-1, 2P
i=1
><H|x11 —1;, Z) |2 dl; v (0, Z) dZdo
“IJ(Q,Z)F:QO(O,Z)
n—1, ,—1
_ ﬁ/qﬁ(e,zwe 51 wo (J,6.2) H|‘I’ — 1, Z)|? dZ: (0, Z) dZdodl,
n — ! n— 2
o (0—1;,7;
il;[1 I ) \‘1’(9>Z)|2
:g0(07z)
(v J,0,2)Go (0,0, 7)), .,
/Ve Gwn (1.0, 2)60 0.9, 2)) gy H|\I/ - 2Hdz dzdedl,;
(5|\I/( _liaZi)| i=1 i=1
i=1 |w(0,2)
:go(ovz)
1.2.2 Estimation of (177)
Expression (177) can also be rewritten:
1 n— 1 71 0 Z n—1 n—1
Vo = 5/\1;1 (6.2) V- 5 (1,9, H|\p » Zo)|P [ dziv (0, 2)dzdl;  (178)
H5|‘I’( — 1, Zo)|* =t
n,—1 n n
/go n5 (/.8,2) H|‘I’ - i)‘ZHdZidZdli
flapw -1z =

n

s - 0,7 2
/Qo Vow ' (J,0,2) H|\IJ(9—li,Zi)\2HdZidZdli

n

o o-1.2)f =

with:
VoGo (6,0, 2)
g2 - (FRGEE)

However, the two last terms in (178) come from the backreaction of the n vertices on the whole system, and
can be neglected in first approximation. Actually in a neighborhood of the permanent regime, we have:

w1 (J,0,Z o lw=t(J,0,Z
g()(Z) — w ( » Yy ) - << — w ( Y )
[1 5[0~ 1. 2) [16190—1,2)]
i=1 i=1

The neglected terms will be reintroduced later. We can thus consider that:

n—1 n—1

1 ; 5n Lw=1(J,0,2) 5
Vapn = 1) vi(9,2)v H W (0 —1;, Z:)|* || dZidli¥ (0, Z) dodZ  (179)
' H SW (-1, Zi)” i=1

The neglected contributions will be reintroduced in Appendix 4.
The terms in (179) are the coefficients obtained by the expansion of w™! (.J, 8, Z) in powers of ¥T (0, Z) ¥ (0, Z).
It is valid for |¥ (0, Z)| < 1. For |¥ (6, Z)| > 1, we can expand w~! (J,0, Z) in powers of m. Given the
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form of F' and since arctan (z) = % — arctan (%), the expansion is obtained by replacing the derivatives of
F by those of —z2F and by replacing w with w™?!.
Formula (179) yields the vertices Va,, n < N, intervening in the computation of the 2N correlation

functions. We have to estimate the derivatives arising in (179), before computing the effective action.

Appendix 2 General form of the graphs and convergence of the
graphs expansions

We compute the sum of graphs involved in the partition function with source term, i.e. the graphs deduced
from the.interaction terms (177). This is done in several step. We first give the general form of these graphs.
Then, we compute the factors arising from the vertices (177). This allows to find the full sum of graphs, and
to show its convergence.

2.1 General form of the graphs

The sum of graphs with 2n-th external points is obtained by considering any graph between these points
and made of 2 points propagators connected by vertices Vo, defined in (177), where | < n. The 2[ vertices
are given by:

Vo ({(9@ Z"’%)}izl l) 1[0 [[ 90, 2) Vew ! (1.0, 2) ¥ (0, Z) dZdb)] (180)

1
I 5] (60, 2,,)
i1 |¥(0,2)|2=G0(0,2)

To these vertices will be added the contributions of a stabilization potential. If we write this potential V' (¥),
the vertex is modified as:

w({owa)),, ) s

1|6 [[OT(0,2)Vow™t (J,0,2)V(0,2)dZdl + W' (0,2)V (¥) V¥ (0, Z)]
!

7

51w (0%, 7))
il;ll | ( ' kq')’ |w(0,2)|
=G0(0,2)

The graphs have no loop drawn between two legs of any of the external points (these contributions are
already taken into account by the expansion around Gy (0, Z) = %) The absence of internal loops implies that
the 2n-th points graphs are made of n lines P;. Each line P; is associated to a point Z;. It is drawn between

an initial time Gl@ and a final time 9?). We can thus write the 2n-th external points as (02@, 9?), Zi)

i=1,...,n
with 01@ < 05;). The vertex Vi ({(9(’“), Zki)}i=1,...,l
issued 2/ legs ending at the points (9(”“), Zki). A graph thus consists in lines P; that are cut by an arbitrary
number of vertices of valence | < n of the form Vi, ({(0(’“’?), Zki)}i:l l) with 951”) < 0k < 0;’“). We

) can be represented by a point (Z,0) from which is

associate a propagator Gy (0,0, 7) = MH (0 — €') to each segment of the graph between two
vertices connected to the line labelled by Z at 6 and 6,
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As in (177), the vertices Var ({ (0(’“), Zki) }i=1 l) can be decomposed in two terms:

1 S (Vw1 (1,0,2) + V (1)) .
2(n—1)!/ -1 5<9(k)

—9)6(Zki—Z)dZd6dli
1:[ | (g(k Z’Ci)}Z

[¥(0,2)|*=G0(0,2)

1 5 (Vow™ (1.6,2)Go (6,0, 2) + Go (6,6, 2) V (¥)),_,,

o = dzde
" 116w (6%, 2|
=1

|\Il(07Z)‘2:gO(O7Z)

The second term computes the impact of the propagator Gy (0,6’, Z) on the background ¥, that is, on
the whole system. As a consequence, its contribution can be neglected. Only the first term remains in first
approximation and it is equivalent to constrain one of the derivatives in (181) to act on ¥T (9, Z) and ¥ (¢, Z)
in the integral. We will compute the graphs in this approximation and account ultimately for the corrections
due to the neglected terms.

We can picture picture the vertices (181) as a box cutting the lines Py,. The contributions associated to
the segments between two vertices are 2 points Green functions Gy (0(’“), o), Zkl.). We can transform all
the vertices of valence 21 < 2n as 2n points vertices. To do so, we define for {ki,....,k;} = {k;}, C {1,...,n}
the 2n vertex:

i (b, )],

where {k;},_, , is the complement of {k;},_, ,in {1,...,n}. The operators G; ' are local and depend on

two variables:
gal = gal (9([1)7 le)

Then:

(go_l)®m _ I1 Gyt (0(“), Zz,i)

LiC{ki};oq,.

The vertex [V;:i}’ ({ (60, Z) }

ables { (6(’“), Zr,) }i:
For the other variables, pairs of propagators are convoluted with their inverse, producing a single propagator,
as needed. In the sequel, we write:

e ({0 z) )] = e ({020}, )]

and m runs implicitly from 1 to n.
As a consequence, the contribution of a graph made of an arbitrary sequence of vertices is:

[ggan« gimo) gm) 7 m))]* {‘éik} ({(mml) m)})]*[gg@"((9<m1>,9<m2>7zm1)>} (182)
() R ()

with the constraint that 6(mo) = Gfmo) olme) = Hl(mp), and {Z,,,} = {Z.} are fixed. The 2n points
propagators are defined by the product of individual propagators:

g5 (01, 2,)) = T oo (0.0, 2.

)} is represented by a box cutting all the lines P;. For the vari-

m=1,...,n

. the propagators on each side of the box are convoluted with Vgl ({ (9(’“), Z;.Ci) }Z.fl

=1,...,
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The sum over all possible vertices is then:

£ Lo (#0702 -
o Do B S RN M R (s

{k1, ki c{l,...,n

The p! arises to avoid counting of equivalent graphs. The power is understood as successive convolutions.
As a consequence, the sum of graphs rewrites:

G&™ * exp Zn: Z [‘A/Q{fi}’ * g(;@"] = G&" * exp ({Vgn * gg?"D (184)

1=1 {1kt }C {10}

where [Vz{:i}l * gg@"} is the operator with kernel:

ot (L0 2 ) 1) = oo ( (02,000, 2 )
m]=y X [

I=1 (ke }C{Lyeeeim}

and where we defined:

Alternatively it is also given by:

exp En: > [9?" * Vzﬂﬁ}l} * G = exp ({Vzn * G?”D *GOm (185)

=1 {kqy,....k; }C{1,....,n}

We expand this formula in the next paragraph to show the convergence of the graph expansion. In turn,
this proves the convergence of the one-particule irreducible graphs (1PI graphs) series expansion. The series
expansion of 1PI graphs compute the effective action. Its precise form will be obtained by an other method
in appendix 3.

2.2 Convergence of the series expansion
2.2.1 Expression of vertices arising in (184)

The series expansion of (184) has to be computed using the Wick theorem on the terms (182). Such terms
are computed by inserting vertices (189) between propagators. These ones have the form between n pairs

(0969, 2)

Go ((egi)79§i)7zi)) _ exp (—A1 <Z?_lz§i) - i 05“)) (186)

2
us 1 2ce
A = — [ =
V 2 (O’ZXT) t oz

A= (Y 2 1
b 02X, o2 02X,

As a consequence, the convolution of m propagators leads to a global factor:

exp( Ay (Zz 19?) Zz 101( ))
Am

with:
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The power m is given by the total number of vertices in the graph, each of them weighted by its valence.
The vertices induce multiplicative factor at some times #(Y) and integrations are performed over (9. The
presence of derivatives in the vertices induce terms of the form:

SV 2) VeV (6,2)9(0,7)

where V (6, Z) is any type of vertex and the upper bar denotes the contraction through Wick’s theorem. It
is equivalent to replace this term by:

%V@ (V(9,2)Go((0,0,2))) Go((0,0,2))VeV (0,Z2)—N1Go ((0,0,2))V (6,2)

- %(VQV(O,Z) ~AyV (6, 2))

given (186). This means that in a sequence of propagators defining a graph, the vertex VoV (6, 7) can be
replaced by:

Gy ' ((0,0,2)) (Vo (V (0, 2) (Go (61,0, 2))))g, -0
= G, ((0,2)) (Vo (V(6,2)G0 (0, 2)))
It implies that when a vertex is inserted at the left of a propagator, it can be replaced by:

a({om),, ) )

,,,,,

UGy ((0,2) T (8, Z) Vw1 (J,6, Z) Go (0F, Z) W (0, Z) dZd6 + V ()]

l
DLW (0%, Z;,)|
i=1

[w(6,2)
=G0 (0,

)

N

o' [T (0,2) Vow™" (J,0,2) W (0,2)dZd0 +V (V)] ;.

l
UL 8 |w (00, 7,) |
L =1 |%(6,2)|°=00(0,2)

To compute the graphs series, the vertices (187) have to be expanded by taking into account the form of
the potential V.
2.2.2 Expanded form of the vertices

As presented in the text, the potential for maintaining and activating new connections is chosen to be equal

to:
_ G 2 z-z1 \[
V(p) = —2/<|\I/(0,Z)| \IJ(H—C,Z> )
s} . n—1 Z_Z’L 2
+Z§n,/|w(e,z)|2<ﬂ xp(e— - |,ZZ-) ) (188)
n=1 : =1
(e’ 1 n—1 Z*Z,‘ 2
- ZMC(’”/I\P(@,Z)IQ(H w(o- 222 2) )
n=2" " i=1
with:
(W= g i>2
P = G-
C(l) - 0
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The second term represents the limitation in increasing the number of connections. This amounts to shift
the vertices by +(5. The factor —(; accounts for a minimal number of connections maintained. It depends
on external activity J.

The first term modifies the 4-th vertices by —(;. The vertices involved in the 2n points correlation function
are given by an expansion of V (¥) around Gy (0, Z). The first order expansion in |¥ (0, Z)|* modifies the 2
points propagator by replacing o with:

IO 1 ¢k
. Z Hck AR—1 Z (k— 1)l AF—1
k>2 k>l
which modifies the values of A and A;.
For n > 2, the 2n vertex is then:
N , 1 |8 [[YT(0,2)Vew™t(J,0,2)V (0,2)dZdo
Vs (9(’),Z¢> _ [J9T(0,2) Vow ( )V (0, 2) ] (189)
i=1,..,n 2 (1)! IL[5|‘I/(9(i) Z4)|2
i=1 o v (6,2)]?
=G0(0,2)
5 (k=1 g 2
o (Sahe® 1w o.2)P (T o (o - 252.2)[) )
i=1
1
§1U (0,2
L o185 2) 9(6,.2,)|?
=G0(0,Z;)

To do so, we decompose (189) in two types of vertices for n given points (9(1), Zl),...,(e("), Zn):

P ((9(1‘)7 2).{2,.09 }j#)

1| (09, 2) 61 [Vow™ (4,09, 2;)] W (69, Z3)] 5,
= 1 !
20 [1 slw (o(j),zj)|2
J=1,j# ¥ (6,,7;)1°=60(0,Z;)
k—1
L | gt [Zi"_z L) (-Hl v (0222 7,) 2)}
o ! 1 -
J=1,j#i | W (0;,2Z5)1°=60(0,2;)

1| [S91(0,2) Ve [ (J,0,2)] W (0, 2) dZdb]

7 ( A ) = ; (190)
( )1:1 n 2(1)! 5|\I/ (9(1‘)’Zi)}2
1

£

K2

| (8,2)|?=G0(0,2)
1 0o 1 (k) ke |Z—Z| 2
5 {Zk—l%!c <}1:[1 v (012521, 7) )]

l
l_[l 51w (05, 2|
=

- / Go (0,2) dZdo

[©(0;,2Z;)
=G0(0,Z;)

As explained before, the index Gy denotes the contraction between the field on the left with the one on
the right when the vertex has a propagator on its right. It is equivalent to introduce Gg (0, Z) inside the
gradient, to remove W (0, Z) and ¥ (6, Z) and multiply by G, (0, Z).
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To complete the computation of the vertices ‘72(11) and ‘72(12) we can regroup the terms involving the
coefficients of the potential V. To do so, we simplify the derivatives of the potential by writing:

2
W<€_|2_217ZZ> )
C

Sy D g (ﬁ
i=1 oK1

l
h=l [T 616, 2,)" \i=! ,
j=1,5#1 11%(0;5,2;)|
=G0(0,Z;)
k—1 2\ 7]
: o[(ifro-222.2))
LAk i=1
+ sz,g /go (0,2)dZdo l -
h=l IT 61w (8,2l )
J=1 112(0;.2;)]
=G0(0,Z;)
I o l
1 oyoq ¢ Z - Zi|
= > oGl I o(e-——-9
i=1 k=l j=1,j%i
> Z -7
ka /goeazcklﬂa( 1Z-2] 92-)
k=i+1
1 1 ( \Z — 7| )
= s, —=—=" 9,
—i a1 o[ )
20 -DN & k(k—DIART 2L c
1S 1 gUf : 1z-z) Z|
l
1 |Z—ZZ»| 12 - zi| Z|
— A )] = A ) (I+1) )
et > b [ ls(o- 25

with:
C(k)

(191)

=3 !

k>l

For ¢(®) slowly varying and A >> 1, this is approximatively equal to ¢(). We keep the notation Cél) — ¢
As a consequence, Vz(ll) and V2(12) write:

zn:f/ 2 ((9“ ) {Zj,eﬂ }j#) (192)

=1
"1 8 [Vew ! (J,09), Z;) Go (0, Z; 1 ! 7z -7
3 STt [Vow (l ) G0 (0, Zi)] _2(171)&(0 11 5(9i_| g z|_9j>
ST G0,z 11 8lw (09,2) B
J=1,j#i | (0;,2;)|?
=G0(0,Z;)
and:
o (2) (i) 7
V2l ((9 7Zz)izl,...,n) (193)
1 w(J,8,Z ! —Z
= 3m /ve ) QO(O,Z)dZdG—/C(”l)Hd(Q—|ZZ|—0i)
C
0| 9( A i=1
H | )‘ [®(6,2)?
=G0(0,2)
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with Cél) given by (191). For ¢(®) slowly varying and A >> 1, this is approximatively equal to (). For
the sake of simplicity we keep the notation (e o, — ¢,

As explained before, the vertex V2(l2) ((0(1) )l 1. ) can be neglected with respect to V2(l1) ((9(1) )l 1
in first approximation. We will compute the graphs associated to VQ(ll) ((0(“, Zi)i:1 n) in the next para-

graph, and will then compute the contributions due to V2(12) ((G(i), ZZ-)Z,=1 n) as corrections.

Ultimately, and for later purpose, we also define:

- - ¢® e
=2 > A 2T
=2 {k}l7...,k?lfl}c{lw..,n—l},ktj;ﬁi =1
For example:
_ 2 _ (3) (2)
Go= Sy G = S 3

If we express (,, as a function of the initial set of variables ¢ O, we have:

I YR 1 ) ¢ n 1 ¢®
= >1 (k—D)! AF— !
D NIRRT L
so that: " "
- 1 < IS
2= (k —2)! Ak— Z ) AR—T
k>2 k>
and:
_ 1 ¢k 3 ¢
G T G T A G
<(2) ¢

1 1 ¢
= +3Z = 2'A’€*1+kz(k73)!/\k*1
>3

_ 4(2) I Sup (1, (k — 3)) ¢®
- +3Z (k= 2)l AF- 1+§>:3 (k — 2)IAF-1

We will assume that ¢, < 0 and ¢,, > 0 for n > 2. This is possible under the conditions:

1 6] L™ Sup (1, (k - 2)) (W)
Z(k—Q)!Ak1< <Z AT T2 3(k — 2)IAk-1

k=3 k>3

that are satisfied for a certain range of the parameters, since:

Sup (1, (k —2))¢® 1 ¢k B (Sup (1,
2 3(k —2)IAF—1 _I;)(k—m!Ak—l =2 3(

k>3 k>3

(k—2)) —3)¢™
fe— 2)IAR—1

is positive for ¢(¥) large enough for k > 5.
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2.2.3 Integral form of (184)

The expansion of (184) can be performed using the previous results. Each vertex of valence v can be
attributed a factor 4. In (192) we also change the variables §1) = () — ;. We also define:

0(7) 0( J)
Stk 1S ys
=0 (4) c{1,...,n—1} k; kj
=0 (200942} 1) = oA (194)

51 [Vow™ (1,69, Z;) Go (0, Z;)]

X
l
Go(0,7;) ]I 5|\Ij (9(1‘) _lkj’ij)’2
J=1,j#1 |¥(0,2)|>=60(0,2)
20) @) =) (@) ¢
= (Zia 0 v{Zj}j;éi) =5 (Zh 0 7{Zj}j¢i) - W (195)
*(l) . 1 5l [wil (J,@,Z)]
AV (2,0,32;,00 = Vo Go (0,2) dZd6 (196)
{ i=1,...1 2 ()AL ! 2
’ [16]¥ (69, 2)]
i=1 |¥(60,2)|*°=Go(0,2)

A (ng, {Z“H(i)}i_l,...z) g (z,e, {Zi,e)(i)}i_ly___l) - C(:;l)

The propagators induced by the vertices in (??) have been included in the definition of Egl) (Zi7 00, {Z; }j#) .

The functions depend implicitely on the border of the timespans {H;j ),Hfj )] Actually, the integrations
o) (")

f 7
‘z,ﬁz

i

dly; induces the presence of products of Heaviside functions H (Qy) — ngj ) CJ>

c

We first compute the full sum of graphs arising from all combination of vertices V2l defined in (192)
between n initial points and n final points. The vertices Vz(l ) (see (193)) will be included later. The vertices
172(11) ((H(i), Z), {Zj,ﬁ(j)}j#) can be associated to an initial point (), Z;) with [ — 1 final points among

the n — 1 others.
The factors associated to the vertices in the expansion of (184) have been found in the previous paragraph.

. exp(—A1 (X0, 000 -1, 017)) . o
We aasociate a global factor Am to a sequence of vertices. Then the insertion of
vertices at (Q(i), Zi), the sum over the final points and the integration over the {Zj7 0) }j# leads to a factor:

D> /V(”< )7{Zj,9<’ff>}km)de =20 (2,09, {2;},.,.)

{k1,eskio1}
c{1,....n—1}

For each line associated to Z;, the insertion of Zzn 1 k(i) vertices where k(i) vertices have valence [ implies

the integration over 92@ < 9§” <. 92 KO < 9 of the product of terms = ( (Z 09, {Z;}, #) forg=1
1= 1

to >, k:l(i). The number of [, equal to l is kl . Once an order [y, 1y, ... is chosen, there are Hkl( ! ways
to order the vertices satisfying this order. Then, summing over the various orders Iy, lo, ... and over the kl(’)
such that > ;" k:l(z) = m is fixed, the global factor associated to the vertices is:

/9< D<o <05 <0 ﬁ <Z = (Z“eql 1451, )) ( o - 91@) 0 (97(7? N e;i)) d&(g“ (197)

=2
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The delta functions accounts for the fact that without external legs, two vertices are set at the borders of
the interval. If we approximate ), égl) (Zi, 9((11), {Z; }j#) by its average on the interval {9(1) 9(1)} that is:

e(i) n A~ 7 i
fegi) 1=2 :g) (Zzﬁ 951 )a {Zj}j#i) d@é)
0;1‘) — 051‘)

As a consequence (197) becomes:

m

R N ) .
b Vi B (209,23}, ) d6® "

fei” =2 ( o J#) / 5(9(i)_9(i))5(9(i)_9(i))Hdg(i)
0\ — g 0o o< N mo ‘

6 n m
- m'( @ ZE Z“91 {Z} )d9(1)>

To obtain the expansion (184) due to the vertices at Z;, we sum over m and we multiply with a free propagator
on the left which amounts to introduce a factor % which leads to a contribution:

e(i) n
lexp /f Zégl) (Zi,e(i)7{Z.}. ) ot
A 0 15 o

The full sum of graphs is then obtained by taking the product over i of these contributions, introducing the
global factor exp (—A1 (Z?Zl 0;1) -3 01( ))> and suming over n. The sum of graphs is thus:

_ no () (@
e (- (Zi—fnf z ) exp<z/i)z (26942}, )d@“’)

exp (—As (2?195') - 07)) b <ZE (22,01 ),9@)))

9

with:
0L) n
’f‘ ,L) . f &\(l) . .
E10 (20423}, 00.00) = /9“) S 2 (2,69.(2,),,) do (195)

D I S U RV NN

=2 {k1,....ki }C{L,...;n},k;#i

o~
||
N

or alternatively:

é (Z“{Z y J#i? 0; ’9(1 ) = El,n (Ziv{Z } ;ﬁz’ez(z ) i ) Cn (9() (2))

I )
1=2 {k1,.... ki1 }C{1,...,n—1},k;5i

.....

21

We can include the contributions due to the vertices V> ((G(i), Zi)i:1 n) defined in (181) to the sum
of graphs. These vertices are inserted at some times #; < ... < 6, and at each insertion #; one has
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91@ < Ql(f) < 0. As before this leads to an overall factor:

en| 3 / H /  do0AY (Ze{zk o} 1)“1)019 = exp (Ao ({Z00.091))  (199)

{k1,...k1}
c{1,...,n}

As a consequence, the sum (184) of graphs with 2n external points becomes:

exp (*Al (ZL 0 =Y, 91(1)))
A’ﬂ

X exp (Zé (26423%0.00 6f ))> exp (Ara ({2::017,67}))

i

(200)

Given (194)
N . _ ) @

and (198):

2., (ZZ,{Z}#, N ) Zn: 3 20 (ZZ,{Zk },91(),9“)

=2 {kq,..., ki }c{1,...,n} k;#i

we can estimate in average the magnitude of = ,, (Zi7 {Z; }Hél , 91(1 ,9( ))

él,n (Zi, {Z }]7&“91(1)70(1)) ch <C(l )

if E(ll) (ZZ-, 0 {Z; }j;ﬁi) and ¢ are of the same order. For (V) decreasing faster than exp (=1), for example

¢W ~ exp (—1) with @ > 1, the sum is converging. Actually, writing C!, ~ exp (nlnn — (n —1)In(n — 1) — I1nl),
we have

)
Cl (CAZ ) 'zexp(—n(xlnx+(1—as)ln(1—x)+na 1 a_|_3;]nA))

with z = % As a consequence:

~ o (Y ' 1
ZCn (AZ)N/ exp (—n (zlnz + (1 —2)In(1 —2) + n* 2% + zInA)) dz
0

=2

and the integral converges for n — oo. For ¢((?) << 1 we thus have =1 n (ZZ, {Z, };;m , Zl), 9 ) << 1 and for

slowly varying parameters, we can replace Z; , (Zz, {23}, 9; 09, 0( ) by its limit = o (ZZ, {Z;},2:,0 Zz>,9 )

2.2.5 Convergence of the graph expansion (184)

An estimation of the expansion of graphs of order higher than 2 is given by:

S L [TIw (0. 22) exp (7)) [F20] [P H\D( 2)
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where all the graphs are taken into account. Given our previous results, this is equal to:

Z ;! /ﬂ i (0?), Zi) exp (él,oo (Zl)) (él,oo (Zi))2 ﬁ \ (gl(i)’ Zi)
=1 i=1

12

Il 1
/F £1]>
= 3
NP
[\v]
o 8
< M
VR
— S |~
<
-
N
~— ST
§<D L
S N
—~
£1]> gz
e ko)
g\ —
N
N 3
<N
—~ N
=N —
S=F
N [l
~— S
~ /‘%\
N
~—

where = o is the average of 21 o (Z;) over the thread. The perturbative expansion in =1 o is thus conver-

gent.

Appendix 3. Estimation of the effective action and its minimum

The previous section showed the convergence of the full graphs series expansion. To find the effective action
we have to restrict the sum to the 1PI graphs. Once the effective action will be found, we will write the
equation of its minimum and compute the background field.

3.1 Effective action at the lowest order

We have seen in equation (174) that the 2 points Green function are computed using the action:

Lo (U7, )

with:

and:

= —%/qﬁ 0,2) (vgajw) T (0,2)

) (5 [\Iﬁ 0,2)V, (w—l (J,e,z, |\1:\2) v (0, Z))]
45 [v6.2) ,
o1 (0,2)[?
- :gO(OaZ)
1 T
+f/mWam uatd) W (0,2)
2 SO ] w22
- =Go(0,2)
§[Su (U, ¥
— gt 0, 2) [w W (9,2)
J || v (6,2)[?
=G0(0,2)
1 2
Scl (\IIT’ \I/) = _§\IJT (H?Z) (V@ (O-QHVO - w_l (J797Z7 |\IJ|2)>) v (05 Z)

2+V(\If)

+a/‘\1’ (0<i>,zi)

5 [qﬁ 8,2) Vg (wfl (J,e,z, |\1/\2) v (0, Z))}
51w

|w(0,2)?
=Go(0,2)
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defined as:

5 {\Iﬁ 0,2)V, (wl (J,e, Z, |\I/|2) v (9,2))]]
9(0.2)]

5w
=G0(0,2
. 0w (1,2.90)] ;o
= W 1(gO(O,Z))V -I—(V ( g()(avng)>>
R 7 ((3,2) o=
B (CUI (go (Oa Z)) + Go (Oa Z) d [w(;go(;]o’ Z)QO)] > o d [w(;go({d ?)QO)} (v9g0 (9/3 0; Z))9=9/

As computed before, w™? (j, Z, QO) satisfies:

L - _— w(j7z,g0) w(j,Z1,go) Go (Z1,0) dZ,
w (J’Z’go)_G<J+N/T(Z,Zl)W<w(J,Zl,QO) w(j7Z,go)

3.2 General formula for the effective action

The perturbative corrections for the effective action are found by adding the 1PI graphs with 2n external
points with n > 2. The corrections are ordered by the number of vertices involved in them.

3.2.1 First and second order corrections

Using that, for n > 2:

[ [T (0,2)Vow ™ (J,0,2)¥ (0, Z)dzd0 + V (V)] | 0 [Sa (W, 0)]
Tl (00, Z,) 2 16w (69, )|

il;ll [ (60, 2] w(0.2)|? 131 [ (69, 2] v (0.2)]?

=G0(0,2) =G0(0,2)

the lowest order expansion of 1PI graphs, consists of graphs with n horizontal propagators, connected by
one vertex of valence n. The sum of these contributions becomes:

00 n ) n T .
To (\IIT, \I/) + Z l' H Al (91@7 Zi) f [Scl (\II 7\11)} N (951)7 Zi)
i [16|¥(60,2) |2
i=1 |v(6,2)
:gO(OaZ)

_ S (4) o [Scl (‘I’T»‘I’)] (4)
= ZEH\PT (HZ- Z) o _ ; \I/(GZ- Z)
[ o[v (00),2,) 2
i=1 [®(6,2)]
=G0(0,2)

so that, up to the field independent term [Scl (\IIT, \Il)] we have the effective action at the

first order in vertices:

[¥(0,2)1?=G0(0,2)’

Lo (W, 0) + T, (¥1,0) = S, (go(O,Z)JrI‘I’Iz)
= _;/<<v9 <"23v9_w1 (|\11(9,Z)|2)>) (Go (0,0, 2) + W (9’,2)@(9,2)))

+a/ (QO 0.2+ ‘\1, <9<v:>7zi) 2) +3 Ve (go 0,2;) + ‘\1/ (9“),2,») D
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To find the second order in vertices-number corrections, we need to define the notion of multiple point.
Consider, for ¢ = 1,...,n, the set ((95‘?), Zi) , (91@, Zz)) of n initial points and n final points and any graph
connecting the initial and final points . The index ¢ € {1,...,n} labels a multiple point of valence k of the
graph, if the line connecting (G(i), Z,-) and (91@7 Zi) is reached by k legs of the vertices defining the graph.
A multiple point of valence 2 is a double point and a multiple point of valence [ is also refered as a [-multiple

point.
At the second order in products of vertices the sum of 1PI graphs is:

exp (—A1 (G;kd) - 0?%))) n

[oh ¥ )3 T v (o). %) A [I v (5.2)

n>2 .ll11+l§>l2n+22{k1 ..... k_ll{%u{l;’}....,k{z} ka€D i=1,i¢D
I t l 1 n .
y 115 [Saa (07, )] 1252 [Saa (07, W)] H\If(af),zi)
[16|w (6%, z,) | . [16]w (6%0, 2, ) i=1
i=1 I_‘I’g(ﬂzﬂ i=1 19(8,2)|2=0G0(0,2)
= O(Oaz)

with D the set of double points of {1,...,n}, that is {k1, ...k, } N {kl, ..., k], }.

3.2.2 Including higher order corrections

Including all contributions is straightforward and generalizes (202). The sum of these contributions are:

Ser (G0 (0,2) +|/*)

Sy by s (I T v

n>2,p>2  Lit..p2n+2 {kl,_“,kl_} kq€D i=1.1¢D
2<lm<n  i=l...p J

={1,...,n}

X

) (ka) _ n
exp (- Algi): o)) . ljazj [Su (W1, 0)] [To (0. 2)

=L 6| (60, 7)) | i=1
=1

1w (0,2)[*
:QO(O’Z)

where D is the subset of multiple points of {1,...,n}, that is the elements belonging at least to two distinct
sets {kl, wey Koy } The sum is constrained to 1PI graphs.

The sum can be regrouped in a different way. The graphs can be gathered in classes with respects to the
number of multiple points and the legs ending at these points.

To do so, we split the multiple points on the the line I; connecting (9}2), Zi) and (951), Zi) into multiple
individual points by cutting the segments between any two vertices endpoints. The associated resulting graph
belongs to the reduced class. This is the class of graphs in which the vertices with n legs are connected to
n points once, and two different vertices are connected to different points.

The contribution of a graph in the reduced class with p vertices of valence I;, j = 1,...,p is a product:

P L ! ' i

H [Jo' (0%, 2.) li ]61 R [[v (0.2
i | Lo @ (60, Z2,) | %(0,2))° -

=G0(0,2)
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of independent terms, where (§l;) is the number of vertices of identical valence and the product runs other
the set of valences present in the graph. The graphs in the reduced class can be summed to produce global
contributions of the form:

lj

P L j
plZH I]v' (o(k) Zk) Zli 8% [Ser (27, )] H‘I/(e(k"’)7zki>
T v o )l wompE
=G0(0,2)
P
= Z%HS}; (', o)
1

where:

St (1, 9) = S (G0 (0,2) + | ¥[?)

The factor arises from the graph expansion of H S, (\II \I/) Actually, expanding the products yields
Jj=1

a multiplicity of the products of contribution which is H(pT;g)‘ Dividing by p! thus restores the factor H(+h)‘

Reintroducing the multiple points to compute the graphs in a certain class amounts to differentiate the
factors gcl (\I/T, \I/) with respect to |\If|2and to introduce products of fields corresponding to these multiple
points.

Actually, let us consider the graphs with p vertices and n = 3,5, " external points with I* points of
multiplicity i. We have [? = Zp 1 l;, where l; is the number of legs of vertex j connected to a point of
multiplicity ¢. The factor assoc1ated to the repartition of the simple and multiple points times the global

factor % is thus:
1
7Cl10l2
H (ll)

The attribution of the simple points yields the factors [] -+ - A factor
T

———=——— is associated for identical
II(x zm )

vertices. The multiple points are then connected to the vertices in all possible manners compatible with the
I,
J

Then, starting with a factor:

6 [Se (W1, 0)]

R 1;[ |\II (66, 2, ) | (6,2)? -
=Go(0,2)
and applying:
2
1/ J doD 1o
2 slw (om, 2)[ s |w (69, 2)|°
yields two factors of the form:
i 1 o [Su (UF, W)] bl
H il (9(’%),2,%) 0 e cl ) H U (9(ki)’Zki)
i= I 2 i=
! ! A H 5w (0%, Z,,) [ 6 |w (0042), Z)| v
=G0(0,2)
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or one factor:

lj—2 L t s
IT v (0.2) | i2) = o0 S (1, )] [T (") 2.)
i=1 ! A H 5"1' (G(k) Zk; )| 5|‘I’ (9(1) Z)| 5’\1’( Z)’2 |w(6,2)? -

=G0(0,Z2)

This corresponds to the introduction of a double point, with the required factors for simple points, the overall

_1 5 ; 1 — — 1. —
factor TG corresponding to e El>1 )1 with l = l; except for the two factors case where l =1l;—1and

I =1, or for the single factor I} =I; — 2 and I5 = 2.

To account for the global factors ll, and the propagators associated to the multiple points, the operator
corresponding to the introduction of k double points is then:

k
L (L[ oy exp (A1 (05 —03) o) 92 (1) gp®
k;'( /\1/ (67.2) e \I](Q“Z)/M\p(a(l TS Z)|2de d9

More generally, the introduction of [-multiple points are generated by operators:

k
11 exp (—Aq (0 — 6; 52 ——
k| A 2
[T o[w (09, 2)[" =
s=1
So that the whole series generating the multiple points is:
(v, (203)
l P
_ t eXP( A (0 —05) 82 (5) 1
= exp Zl./‘l’ (05,2 I U (0;,2) l 2Hd9 Z;H
1>2 A H 5 |\Il (0(5)7 Z)| s=1 j=1
s=1

_ b, 2 ! .
— exp Z /\IIT 9f7 exp( AlA(lef 97,))\1/ (9“ Z)/ l 0 H da(s) exp (Scl (\I/T7 \I/))
1>2 16w (0o, Z)|2 s=1
s=1

It is understood that only the 1PI graphs are kept in the series expansion.
The expansion can also be written in expanded form and yields the effective action I' (\I'T, \I'):

D (W) =S (U9, 0) + > > /(H\IfT 9(”,Zl)> (204)
j>2
20




with: _
J
tegm ((P]) = D Shsom i (205)
=1

and where:
6" < olki) < o)

The notation (p;) in (205) stands for the dependency of iy, ; ,, in the whole collection of indices (pf), i=1..m
and [ =1...5.

The sums over the indices in (204) represent the sum over the different class of graphs with respect to the
multiple points. Actually, to each of the m copies of S,y (\IIT, \Il) we associate a point P; and to each Z, we

; 2
associate a line L;. For each derivative of the copy with respect to ‘\I! (H(kl),Zl)‘ we draw a segment from

P; to L;. The number of segments between P; and L; is equal to pj. This produces a graph with multiple
points and the corresponding expression computes the sum of graphs in the class of this multiple-points
graph. The sum over the indices are constrained to produce 1PI graphs.

exp( -1 (00 -0")) L 500"

In the local approximation, we replace e A4 AT and as a consequence the
effective action writes:

L(ehw) = S, (v o)

0 S (1.9)

; - lnlkﬂla\ (6,2,)|? j .
2/ (H‘“@“*Zl))m L e s ( v (e )Zl)>

=1

521 P [S0 (W)

(00).2)

is for m = j and lel = 2. In this case the effective action rewrites:

rhe) =S, e 1YY /(Hqﬁ 9<z>7zl)>

j=2 u(zl 17
:<1,...,j>2

Note that, for << 1 when ), p! increases, the dominant part of graphs for j > 2

2

HP” H 5| v

k‘l

j 52 {S‘Cl (\IIT’\I/):| 1- |
e /{95%)’&)} slw (6. 2,) | 5w (62, Z%)‘zd@(ll)de(lz)

71




and it the local approximation, we have:

L (U7, ¥) =5, (T, 1)

Z/ (ﬁ vl (9”) g >> ﬁ - {Sd Sl \Ij)} do®agpti+)
+ PR / (1) gli+1D) : , vdet
j=2 =1 i=1 X[Eél(lfgﬁcwll] 0 |\II (0(1)a Zi) |2 0 |\II (9(1-&-1)’ Z¢+1) |2

SHE D

A2
=1

with the convention that i + 1 =1 for i = j.

3.3 Alternative form for the effective action

For later purposes, (204) can be written in developped form. To dos so, we first give an expanded form for

[T Se (¥, ¥) arising in (204).
i=1

3.3.1 Expanded form for [] S, (\IIT, \I/)
i=1

We start with:

1

S (W1, 0) = _2/<(v9"25v9_w1 (|\1/(9,Z)|2))(go(o’,9,2)+\1ﬂ(9’,2)@(9,2)))

+a/ <go (0,2:)+|w (9(i>,Zi)‘2> + Va (Go (0,2)+|w (9(0’21’)‘2)

0'=0

Given the form of V, (Qo (0,7;) + ’\I' (Q(i), Zi) ’2) and given that:

_%/ ((Veazsw -l (|q, (0, Z)|2>> (Go (0/,0,2)+ 91 (¢, 2) @(0,2)))

/=0
2
~ —l/qﬁ 0, 2) <v9”9v9 — ! (|x11(9,2)|2)> U (0, 7)
2 2
we can rewrite Sy (¥T, W), up to the constant « [ Gy (0, Z;):

/qﬁ ,2) (—; (ve (‘fvg —w! (|x11(9, 2)2)» ta+U (|\I/(0,Z)|2>> U (6,2)

/\Iﬁ (0,Z)L (V' (0,2),V(0,2)) T (0,2) (206)

¥ (9 - |Z‘Z',Z')

and collecting its terms of degree 2 and higher in fields.
Then, in (204), The product of m copies of S (\IIT, \I/) can be reordered as:

Ser (U1, W)

12

2
where U f

c

is obtained by the series expansion of Uy (go 0,Z)+ [ ‘\IJ <9 _|z-7| ’ Z’>

)

ﬁﬁd (Tf, 1) = m!/ Ut (0, Z:) L(UY(0:,Z:) , 0 (05, Z)) ¥ (0:, Z:)
i=1 ¢

1< <0,

and (204) becomes:
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r(ehw) =S (vhe)+ 30 3 /(ﬁ\w (9;”,Zl)> (207)

X/ m / 5Tk (W (6, 2,) L (W1 (ei,Zi),\I/(Gi,Zi))\I'(Gi,Z,-)]H ri
1< <Om 1 f[[e(l) 0] v P

nlnery {111 ol (60, 2)

) ()

IT G (G)AT 7\

3.3.2 Computation of the factor for i =m in (207)

To compute:

62[1)17” [ emaZm) ( emaZ (emvzm)) \I](emyzm)]
p

m (208)
J v 2
11 11 o (o Zz)
n (207), we decompose this term as a sum:
2P [L(UY (00, Zi) sV Oy Zn
VT (6, Zim) E E,m o Zn) 21 ; N 6,..2,) (209)
[T 11 6| (o), 2,)
I=1ki=1
N 52%”*1[ (foT Oy Zin) + ¥ (O, Zin)) ]
2
mi g pm )
> pﬁllzfllp;nfl 1H1 WH1 0 ‘\Ij ( ZL)

Each configuration (p}",) is reached by j configuration (p}*). We perform a change of variable p}”/ — p},
and the factor m for each configuration has to be replaced for each of the j configurations it is issued
J,m; N
k

from.
Now, we consider the second term in (209) multiplied by L= L

(s (GD) (D)

)Y ! [L (‘I’T (Oms Zin) ¥ (O Zim)) ]

[T (85,m.x)! J ?

g lnl ki=1 ‘\II ( Y Zl)

J §2uplt—1 [L (\I/T Om, Zm) ¥ (O, Zm))]
172::1 (Zz 15kzmlpi)' lj it "I’( ))Zl)’2
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In the computation of (207), this term can be replaced by:

zj: 1 st [L <\I/T Oy Zom, ) <9m7Zm)>]
A hmae)') e (000, 2)]
171;C
§Zin L ( '<9m,z ) ¥ (O Zim)) ]
b (0)) 11 11 o]0 (o002
where we define:
1 ’ 1
Hgm((pf)) I;I(ﬁﬂmk(( ; (Zz 1 O, E'"lpﬁrém) Y

As a consequence (208) can be replaced in (207) by:

ST (W (B0, Z) L (\Iﬁ Oms Zon) sV By Zon)) ¥ Oy Zn)]
lll[ i—=1 )\I,( )Zl)’Q

L K]
STl [L (U Oy Zin) s ¥ (O Zin))]
f[ T 5‘\11(9(’“2'),21) ’

1ki=1

(211)

— U (6,,,Z,)

v (9m7 Zm)

S

b () 5 [L (¥ (0, Z0) 9 (0. Z0)]

fim ((2})) J ki 2
lglkllld‘\p(o , ,Zl)

1

m

where:

tim ((01) = T (B5om (212)
k
and §;m ((p})) is defined by (210).

3.3.3 Reintroducing (211) in (207) and local approximation
The first contribution in the RHS of (211):

S5 [L (U (B Zn) ¥ (B Zun))]
Dy

j Pl ; 2
Ek}‘[lé‘\p(e kz),Z,)‘

T (O, Zin) U (O, Zn) (213)
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once reintroduced in the effective action (207), yields:

/01<m<9m ot O, Zon) 52”)?1&[ (Ih T‘; (Z m) s )\I/Z(H)W)L;Zm))] U (6,0, Zm)/ (l]i o (950[),21>> (214)
=1 kl— T
x ni_[l / 9<l> 9<l>] i ¥ (Qi’Zji)I;;_(‘I’T (9i7Zi)_ (QZ,QZ DAIGED] H ﬁ do(ki) d(9;,Z;)
e 11 11 s]w (6049, 2,) e
=1ki=1

><exp( A (0 —0)) (la (o0 Z)>

T A=\

>y t(
= / \IlT (97”7 Zrn) 6 : l [L (\IJ em, Z ) qj (9m7 Zm))]
Om

v (9m7 Zm)

J pl 2
11 11 o}w (019, 2)
S (00 @2 T oo 0L s
=1 =i B CR lﬁlkgla‘w(a(k?),zl) [y

e e (TT (0.

"o DT o (D) IS\

with:
Ser,, (U1, 0) = /gm vt (0, 2)L (V1 (0,2),9(0,2) ¥ (9, 2)

The second contribution in (211) is constrained by that, among the fields W (9;”, Zl) one of them is set to
Ut (0, Zm). This leads to the following contribution to (207):

/ 0, 2) sl (L [l(pw Os Zon) ¥ (O Zn))] (9§m>,zm) _—
- i o (0.2)f
= lk
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and the product of derivatives can be decomposed by isolating those corresponding to Z, :

-1 pi

0[S, (01,9
/j@[eyae;”]pfﬁﬁ s|w (600, 2,)| lHlkHlda

=1k
i ‘ 52111; S’c \I’T7\II i-1 p )
= /(l) w1t pi i dQ(kl)/ OO 1 { l’em( )} l de(’“f)
9T 51w (000, 2,0) G }”H f 5w (o4 Zz)%:lk;:l
ki=1 I= 1k—1
Gathering the contributions (214) and (215) yields T' (¥, ¥):
T (0, w) = 8. (91, ) (216)
2P T
'Y Y [eenZr D Y0D)] 6
j P i 2 7
J>>11 pi, (Pz)mxj H H ‘ (9(k1)7Zz)‘
P+, pi>2 =1 k=1
j m P {gdo(\pmp)} i A
) , ;
X/ (H\Iﬁ (9( Zl)) H /llI o 9”)] — . 2]‘_[ | dﬂ(kz)
e =1 |/ 11 111 6 \I’(Q(kll),ZJ I=1ki=
I=1ki=1
@ 0
exp (=1 (6 ~6)) Hq/(o“) 7)
m! T (4 ((1))!A% P\
ith
) exp (- (0-0)) 2 > ()
a1 (0,0;) = AS, P /[9<z> 9<z>] v 2d0
[T 6] (6%, Z,)]
ki=1
and
) . 0] m i
a;m (0,0;) = 5(9—9-)+ﬁj+1,m+1 (), (p))) eXp( M (0 ’ )) I1 i a0
ST R ((p0), (1)) AZi P W 17" P :
j+1,m+1 ((P1) 5 (P] 0;7,0 ] 11 §|\I/(9(k"),Zm)|2

ki=1

for j > 1. The derivatives i = 1,,,,m implicitly act independently on each factor:

T [Sup (W0)] H
/zljl[gil)’e;l)] ' ll[ ‘ (6(;@;‘)7&) 2 H H d9

=1 kli:1

TF :lﬁ»

n (216).
The notations §;11,m+1 ((p1), (p})) and §j11,m+1 ((p1) . (p})) are defined by (210) and (212) in which the
multi-indices (pl);zilm are replaced by the collection for m +1 and j + 1 obtained by gathering (p;);,_; .
1=1,.
and (pj),_ 1, l :
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In the local approximation, equation (216) simplifies and writes:

D (Uh,0) =S¢ (U1, v) (217)
' 0Zir [L (W (0,2),7 (0, 2))]
S S W (6,2)
aZh ee(ei),, I1 11 5w (60, 2,)|?
P+, P22 I=1ki=1
; o (20 S (07,9 (n (o1 z») ;
x <Hqﬁ (eﬂ),zl)) I1|— ' e Hledel
=1 i=1 H 5;}2‘ \P(Gl,Zl)‘Q m: H A
=1
with:
a1,m = 1
" b (), (1)
Qim =14 Hfbmtl by, p;
o fi+1,mt1 (), (0)))
for j > 1.

3.3.4 Recursive expansion of (217)
The procedure that led to rewrite (213), can be applied in (217), to the terms:

m | 5P| Sy g (U, W)
1 cl,f 5
EH ; [ } (218)
v (0, 2,))

Ti=1

Expression (218) can be expanded recursively. As we did above, expression (218) is replaced by an integration
over the restricted domain 61 < 0,,,...,0,,_1 < 0, < 6:

T | 62uri (W9, Z) L (U (0, Zi) W (6, Z:)) W (63, Zs)]

‘/01 <0m7---797n—1<97n <0 =1

<

5”1 v (61, Z,)I”

and formula (211) applies to replace:

5ZL pl I:\IJT 97”7 Z L (\IIT 97’”7 Z’Vﬂ) 7@ (9m7 Z’H’L)) W (G’WIJ ZTVI):I

J
[T v ¥ (61, Z,)?
=1
by:
W (0, Z) S LV O Z) ¥ O Ze) gy 7 i ((p1)) 92407 [L (VT O Zin) % (B Z))]
my m p'lm my m *. i le
H o |\IJ (Q(Z)’Zz)lz J,m ((pl)) H Ry (0(1)’Zz)|2
ki=1 ki=1

L

(219)
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Inserting the first term of expression (219) in (217) yields the contribution:

>y /\Iﬁ 0,2) 52”11[ 1( v, Z))]\II(Q,Z) (220)
a2z o), IR (9<“ z)[’

P+, pi>2 I=1kj=1
« /\IIT (Qm, Zm) 52#;{"’ [L (\I/T (Gm, Zm) 7\11 (am, Zm))] i} (am’ Zm)

[ (00,2,)]°

X /aj,m <ﬁ Val (9(1), Zl)> bni 5213”7?[5161’9 (\IJT’\IJ)} <i

=1 i=1 ﬁ 5ei o (9(1)7Zl)|2 (m—1)!
=1

ﬂ‘zb.

1%[1\1/ (91(1)’&)) |
I (5 (v ) IN 7 Udede

The second contribution of (219), after insertion in (216) yields:

5zlm (L (T (6,2),9(6,2))]
S ey v
SR / IT ot |[w (90 Z)’

P+, pi>2 =

x/qﬁ 07, T 1L (\Iff O Zon) U Oy Z))]

- U (O Zm)
H e (o0, z,) [

x/<jH1\IfT (g(ﬂ,zl)) nt |02 [Saa,, (¥, 9) b (01, (0])) <1H\Ij(9(l Zl)> Hdzlde)(l)
=1 g -

i=1 H &P W (), Z)|2 fim (0" (Pf))aj’m (m —1)IAZ:»i

Isolating the derivative with respect to |¥T (6,,, Zp, | in the first term of (221) allows to write:

Z{:1p T
3 /\Iﬁ 0,2 L(¥1(6,2), %06, Z))]\IJ(H,Z) (222)
(pr)>d svi W (00, )|

pm Sizip i
_ 3 s ut (0. 2) 620 $ [L(1(0,2),%(0,2))] ¥ (0.2)
5|0 (6, Zi)|? i 2
P (1) XU mo £m [T 6% |w (60, Z,)|
=1

T

~
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We replace (222) in (221) and change of variable j — 1 — j. Then we gather (220) and (221) to obtain:

i _ R fi+1m ((P1"), (Pm 0 "
L (vf, o) S (¥ ; . (%: <1+Z <ﬂ]+1m (), (7)) \ 31T (O Zo)
>1pz+Z pl22
x/\lﬁ 9,2) 521:1]7;[ (! (Q’Z)"I’(Q’Z))}xp(e, 7) (223)
[16% v (00, 7))
=1

ST [L (YT (B Zin) ¥ (Orms Zm))]

x /\Iﬁ (O, Zm) U (O, Zim)

ﬁ 5o [w (60, 2,) |
=1

. J 0) )
X /ajym (ﬁ il (9;}%&)) 71:[1 6le’ [ ch, 9 leT } (ll:ll v (91 ’Zl) ledH(l)
1=1

2 — 1A PP
e} H5p“1’( ) (m— 1)IAZ: P
This relation can be further iterated and we find:
T (v, o) (224)
J
= cl (of,w Z Z //(H 9(1),Zl))
]>1 =1
7n><]
Pl+z Pl>2

i 2P t( 7

DR e O RE)

‘ fi<tin [T ovi (9(1), z)|?
=1

" B+ ()« (p)) 5 "
<1+%: (Hj+1,i ((pa) > (0})) <5|\IIT (QZ,Z)| ) ))}
§Xin [L (1 (9,2),(6,2))]

1o (0. 2)

U (0;,Z;)

(fveo2) .

= Hde dz, Hd@“ dZ;
(m — 1)IAZi i=1 =1

v (0,2)

X jm /qﬁ 0, 2)
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3.3.5 Limit of slowly time dependent fields

In the limit of slowly time dependent fields ¥ (6;, Z;) and of a potential slowly varying in field ¥ (8;, Z;), w
have:

5P [L (WY (8;,Z:) , W (6, Z:))]
ﬁ5 (9<”, z)[’

/ Ut (6, Z;) W (0;, Z:)
0;<0;4+1

~

= / ot (05, Z) ;5Zzpf (V@w—l <9i, Zi, |\I}‘2) +U (9i7Zi, |\I/|2))
e lll 5Pi

(0, Z;)
v (00, 2,)[°

05 (Vg (03, 20,9 )

~ / vl (0:, Z;) ) j 2 v 6. 22)
0;<0;11 H 51’71 (Q(Z), ZL) |

If the field varies slowly, this expression reduces to:

/ vt (0;,Z;)
9i<9i+1

and equation (224) can also be rewritten in the approximation of slowly varying background fields:

2 (Vew_l (9i+1, Ziy1, “mz))

v (00, 2,)|"

521 P [L (\IIJr (Gi, Zz‘) W (92’7 Zl))]

i U (0541, Zis)|*
[1 ovi
=1

(9747 Z ) 2 j
v (60, 2,)| 1 ov
=1

r(vf,v) (225)

sy 5[] (fr )

3>1 pi,(p}) i
pz+Z pi>2

( L 0% (vgw—l (em,zm, |\p|2))
N

X W (0541, Zig1)[?

pn

i=1

x(l

X /qﬁ(e 2)2

5 :
- v (60, 7))
=

[1 6
i1, (i), () s P
Z(ﬁgﬂz(pz ), (p1)) <5|‘PT(01,Z)| ) )))%m
e (o)) ) Leena)

I=1 0)
BT Hd& dZ, l]"[lde dZ

v (9,7)
H(;pl |\I/(9<”,Zl)|2 (m
=1

with the convention that (041, Zm+1) = (0, 2).
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3.3.6 Strong field approximation

For relatively strong fields, the derivatives 7 are negligible and (225) reduces to:

6
STt (0:,25)

r (v, o) (226)

N m 521” Vow™? (Hi,Zi, |‘I’|2))
= S5q (¥t o)+ Z Z //H / (0:, Z:) 3 W (0:, Z:)
= -

i=1 lj §Zipi |\ (a(l), Zl) |2

pi+Y; pi>2

§Zir (Vw1 (6, Z,|0|?
x aj,m/ﬂﬁ(e,z) % j( o ) v (6,2)
11 om | (00, 2,)?

m

x (ﬁ v (09,2)| ) [] d6:4z, Hd&“ dz
=1

3.3.7 Weak field approximation

ti+1,i (i) (pi)) ( i} v)‘Q) in:

For relatively weak fields, the term o (o)
f1a ((02). (1)) i \"
1+Z<ﬁg+u i), (p})) <<5|‘1’T (0, Z:)I” ) )
5P [L (\Iﬁ Oms Zn) sV (Omy Zim)) ]
J P kl) 2
I 1L ajo (o Z,)
ﬂ_]-l—l m pm) ) ( m)) J "
<1+Z <ﬁ]+1m pm)7( ;n)) <5|\IIT (emaZm)|2> ))

Xj,m /\Iﬁ(o Z);(;Elpl (Vo (0.2.197))

is dominant and:

/ U (O, Zn) U (O, Zon)

v (0,2)

[1 o [w (60, 2,)"
=1

102" (Vo (O 2o 190)) s (7))

2 I oo (00, 7,) Bi1,m (00, (07)) 8|9 (B, Zin)|?
=1

— /\Iﬁ(em,z )=

@jm /we Z>;52'pl (Vo (0.2, 191%))

U (9, 2)

1 om |w (60, 2,)
=1
o b (00) 0P / " Z)laz,pl (Vo (6.2,9P)) 1 65 (Vo (Q’Z’W))W(e,@
it 1m ((Pm), (0])) 2 ﬁ(g v (60, 2,) [ 2 ﬁ v |w (00, Z,) |
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Tterating this relation yields:

T (v, o) (227)

- ey ([[Relon e

i>1 pz,(pl) 4ﬁj+1m(pm) (pl
m>1 mXj

pi+Y, P2

m | 55l (vgwfl (9,2, |qf|2)) SXim (vgar1 (0, Z, \\IJIQ))

//\Iﬂ 0.2)]] - v (0,2)
i H (00, 2,)[* [T om|w (60, 2,) |
=1
J 2
«I1 ‘\If (9<l>, Zl)’ 4oV dz,
1=1
and this reduces to:
r(vh, ) (228)
= S, (VW) + T Litrm () . (01")) | @jm
a2 PP
P> pi>2
m—+1
E,ipi-‘rpz véw_l 07Za|\11|2
//qﬁez , oz (j ( ) v (9, 2)
(1 5ot o (00, 2)[* | 11w (00, 2)
=1

x H ‘qf (9@, Zl> ‘2 a9V dz,

=1

3.4 First order condition and non trivial vacuum

3.4.1 Constant potential

3.4.1.1 First order condition for classical action We consider the saddle point equation at the lowest
order in perturbation. Given our assumptions ¢, > 0 for all n > 2, ¢t > 0, ¢ <0, the potential:

, 2 (n) ; Zi— 7, 2 "
a/‘\l/(e(l)’zi) dZi—i—Z% <g0(0,2)+/‘\1/ <9§>_|Ca|,zj> de>

has a minimum for o << 1 and for ‘C(2)| large. This minimum is reached for a value Xy of [ “1/ (69, 7;) ’2 dz;.

Up to an irrelevant phase, ¥ (G(i) Z~) = \I/T 0,2) = % where V' is the volume of the thread.

Moreover the operator O = Vg3 (Vg —w t(J(0),0,Z, Qo)) has positive eigenvalues. Developing
U(0,2) = > a,¥, (0,7) where ¥, (9 Z) are the eigenstates of O, the definition of ¥' (0, 2) (see [48]

and [49]) is given by:
> a,v

where Ul (6, Z) are the eigenstates of the adjoint operator of O. As a consequence

/—%\Iﬂ 0.2) (w ("fva —w (T (6),6.2, 90))) v(0,2)
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is positive, and null for constant ¥ (6, Z) and ¥ (0, Z). As a consequence, for |C(")’ >w 1 (J(0),0,7,G)
the minimum of ' (¥) is reached for ¥ (0, Z) = W, (0, Z) + 6V (6, Z) and ¥' (0, 2) = \I/g 0,2) +6VT(0,7)
where [0V (0, Z)| << |¥ (0, Z)| and [T (0, 2)| << ‘\I/(T) (0, Z)‘ We assume that the successive derivatives

of U decrease quickly and we neglect the terms involving U™ (Xo) for n > 3.
Expanding the potential around ¥q (0, Z) and setting V' = 1, yields at the second order:

r(v, o) = f%/aqﬁ 8, 2) (vg ("fvgwl (J(o),o,z,go+|\p|2)>>xo
-3 /w (0, 2) (ve (”;v —w™ (1(0).0,2.90+ IWIQ))) 0% (6.2)
%/&Iﬁ 0, 2)U" (Xo) 6V (0, Z)

with |¥)* = X, + vXo (6 (U7 +6W)). This leads to the first order condition for 6¥ (61, Z1):

1 2
0 = iﬁ\I/T (0,2) (—V@ <029V0 —wt (J(9),0,7,Go + Xo)) +U” (X0)>
1 Sw=t(J(61),01,Z1,Go + Xo)
—= [0V (61, 21) VXo [V e Xodb,dZ
2/ (01, Z1) o( 0 51 (0. 2)] oathadz,
with solution §WT (6, Z) = 0. This implies that the first order condition for §¥ (6, Z) becomes:
1 2
0=—3 (vg (";vg —w™? (J(o),o, Z,Go + \If|2)>> Xo (229)

1 2
—3 (V@ <029V9 —wt (J(H) ,0,2,G0 + |\If|2)>> oV (6, 2)
+%U” (X0)0¥ (6, 2)
Equation (229) also rewrites:
2
(— (Vg <029V9 —wt (J(H) ,0,7,Go + |\Il|2)>> +U” (X0)> (6W(0,7) + Xo) = U" (Xo) Xo (230)
Equation (230) can be used to write 6V (6, Z) as a function of w™! (J 0),0,2,Go + |‘~I/|2>:
(ve (%3% = (J (6),6,2,Go + |\1/\2)))
o 5 Xo (231)
U (Xo) ~ (Vo (550 —w= (7(0).0.2,Go + 9) )
Vo (w7 (1(0),0,2.G0 + 1))
U (Xo) = (Vo (590 —w' (7(0),6.2,Go + 19) ))

In first approximation, for U” (Xy) >> 1 and 03 << 1, this yields:

5 (9, Z)

Xo

Vow™! (J 0),0,7Z,Gy + \‘If|2)
0V (0,2) ~ — X, (232)
U” (Xo) + Vo™ (J(0),6,2,Go + ¥ )

Vot (J6).6,2,60+ [9*)
X
U" (Xo) 0
Note that for a slowly background field ¥y (0, Z), equation (232) becomes:
Vow ™ (J(0),0,2,G0 + 9F)
U (XO)

e 2—

ov(6,2) ~ —

Vo (0,2) (233)
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3.4.1.2 Solution of classical action’s first order condition To solve equations (232) and (233), the
dependency of w™! (J 0),0,7,Go + |\Il|2) in |\I!|2 has to be explicited Note that in first approximation, the
solution of (233) is:

V@W_l (J (9) ) 9, Z7 gO + |\1]‘2)
_ e U, (0, 2)
Vo (7(0),6,7,G0 + o)
= 2 \IIO (972)
U (Xo)w? (7 (0),6, 7,00+ |o[)

12

5 (0, 7)

and this approximation is sufficient as a first approximation.
However, to find a more precise expression for W (0, Z), we use (85) that defines w=! (J (0),0,7,Go + |\I/|2)
at the classical order:

w™! (J, 0.7, |\IJ|2) (234)

- G (J(a,z)Jr/]’;w(J’e—'lel,Zl,fo)T(Z,a,zhg_w—czl)

w (J,H,Z, |\11|2)

(o (o- 222 2)[ ) )

Using (234), the defining equation (232) for §¥ (6, Z) becomes:

12
G—1< U (Xo) / 50 (0 )

J6 2221 7, _ _
/N ) (2797Z1,9—ZZ1|> (go(Zlﬂ"‘I’ (9—|ZCZH721>

92|\1/|) c

2
) iz
This equation can be rewritten in the local approximation:

- (_ % /9 - Z)) s (- +1'V) (4,6, 2) (G0 (2) + |9 (6, 2))) )
0 w (J,e,z, |\1/|2)

where T and I are defined by:

7-Z 77
r — /H|1|T<Z,9,Zl,9|1|)dZ1
N c c

7-Z
ro— /;|Z—Z1|2T<Z,0,Zl,9—|cl|> dz,

At the lowest order in derivatives, equation (235) becomes:

,, I'Vow (J,0,2) (Go (Z (0, 2)
G (-U (Xo) /96\P(6,Z)> ~ J0.2) - — ( )( B0+ I )|> (236)
Xo w (J,a, Z, |x11|2)
5V (0,2)
— J(e,z)—rve|wa,2)\2+rw (go (Z)+|\I/(9,Z)|2)
N B Go (2) + Xo + VXod¥ (0, 2)
~ J(0,2) —T\/XoVedW (0,Z) +T v 6.2 5V (0, 2)
~ J(0,Z)+T wé\p(e,m
[°6w (6, 2)

84



We set:

Y =In </5\I/(9,Z)>

a1 (U)((f()) exp y) — J(0,2)+T (Go (Z1) + Xo) VoY (237)

and (236) writes:

~ (J)(2) +T (G0 (Z1) + Xo) VoY

where (J) (Z) is the current averaged over time. The solution of (237) is

/5\1/ (0,2) = exp (Y) = exp (H‘l (P(go (Zf) ) +d))

H(Y) =

with:
dY

/G—l( U (Xo) expy) (1) (2)

_ -1 U ( XO ex 4 _
ov(0,2) = (G ( p< ( Qo Z1)+\/)To)+d>)> <J>(Z)> (238)

p<H ( NS ))

The constant d is chosen so that limg_, o, 0¥ (0, Z) = 0. For slowly varyng currents, (J) (Z) can replaced by
J (0, Z) in the formula.

and:

Higher order corrections We use the series expansion (72) to compute higher order corrections to the
background field equation.

Se (¥F,9) + A (239)
with:
Zip
J ( ¢ 2
Z/ S [0V az <(9)> v (09,2)| (240)
217 (), 5 v (00, 2,)["
Z Pl>2
ﬁlfcexp (—c(&i —0;;)—« ( {zl,p#O ((c (0U=1D — g(0)) ‘Z( Zl(i) 2))) W (6, 70) 2 d6:dZs
—

(—2)™ DX i) I (ﬂk)!AﬂlAZi,LPz
k

(ot
The corrective term to 5861&# is g—é evaluated at v/Xg + 0. At first order in §V it is given by:
L n—1 2 2
1S [eexp (=et = a (023 (et = b)) = 120 = Z0a ) ) ) Xol
-y ¥ = ISR
= XgamDEu Pt ] (1) A AT
Ei pf?Q

o —1 AN P J
x <m + Zp;’> <m +3 pi - 1) X1 (W) dlidZi] x [[ dudz x /Xoow
i 7 =1

=1

where we have replaced w™! (J,0; — I;, Z;) by it’s static solution approximation wo_l (J, Zy).
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The integral may be computed and yield a constan —%C (Xo) times d¥. Equation (229) is thus replaced
by:

1 2
0=—3 (vg (U;ngl (J(é)),o, Z,QO+W|2)>>X0 (241)

1

. (vg (f’;v o (50).0.2.60 + |@|2)>) 5 (0, 2)

1
+5 (U" (Xo) = C(X0)) 0¥ (6, Z)
As a consequence, equation (231) is thus transformed into:

Vw1 (J(o),e, Z,Go + \\11|2)
SU(0,7) ~ — X, (242)
U (Xo) — C (Xo) + Vw1 (J (6),6,7,Go + |\p|2)

Vow ™ (J0),0,7,G0 + )
X
U (Xo) - C (Xo) '

e —

Solution (238) is thus still valid, with U"” (Xy) shifted: U” (Xo) — U"” (Xo) — C (Xo).

11.0.1 Time dependent potential

When the system is interacting with external signals, the average number of activations may be shiftted

and the assumption of a constant minimum \/% of the potential has to be modified. We consider a time
dependent potential with minimum ¥, (0, Z). Expanding the the effective action at the second order around

Uy (0, Z) yields:
rw = —%/aqﬁ 0,2) (v@ (vag —w ! (J(e),e, Z,Go + \If|2)>) o (0, 2)

5 [90.2) (%0 (Bva-m (1000264 19P) ) ) v 0.2)

3w 0.2) (9 (G907 (1002601 192) ) )30 0.2

% / 5T (8, 2) U (Xo) 50 (0, Z)

The second term can still be neglected for relatively slow variations of \I/Er) (0,Z). The solutions are thus
similar to the previous paragraph:
6wt (6,2)=0

and:
(Vo (%Vo—wt(706).6,2,60+ 9)))
U” (Xo) — (vg (”évt9 — Wt (J (6).0,2,Go + |xp|2)))
Vo (w7 (7(0),0,2,G0 +191))
U (Xo) — (ve (%3% — (J (6),6,7,Go + |\1/|2)))
Vot (1(0),0.2.Go +|9])

- <00 (0.2)
U (Xo) + Vow " (J(0),6,7,Go + |9I*)

S (0, Z)

Uy (6,2)

1

Uy (0, 2)

1
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Appendix 4. Correlation functions and corrections to frequencies
equations

4.1 Two points correlation functions

4.1.1 Second order effective vertex

The two points Green function is the inverse of the second derivative of the effective action I' (\IIT, \Il), defined
by:
5°r (\IJT, \IJ)

Fl,l ((efa Zf) ) (91', Zz)) = Swt ((9f Zf) o (9. Z')

where, in first approximation:
Tia ((0f, Z5) , (04, Zi))

o2 _ .
= Vs (;Ve —w (J(e)’e’ Z,G0 + ‘I’|2>> + T2 (05, Z5) 5 (603, Zi))
with Ty 1 (67, Z;) , (6;, Z:)) given by the second derivatives of (57). We decompose this vertex in two parts:

Dia (05, 25), (0, 20)) = T (05, Zp) (05, Z2)) + TC) (97, Z5) . (61, Z,))

where:

I (05, 25), (0, Z:), 01, W) (243)

m 5211’} {S’cl (\IJT7\IJ)] i n ) J
] [ | I I | i I | 0

. . /] [.9(1) ‘9“)} i P 2 -4 2 de(kl) x v (92» ’Zl)
= R i

i=1 |7 11 J (ki) =1 pi—1 1=1,1£l
l lljlkglé‘qj(e l7Z)‘ (Q(L})lef» (05,Z¢)
(002),21;) (9:,25)
and:
0 (05, 2y) . (05, Zi) W1, W) (244)
J
— Z Z 9;,Zf <H\I;T((l) )>
2 1) =
Zipz>2
52 m / 52 P |:Sl \IIT \Il)} J
x do(k)
5|‘I'(9faZf)|25|\I’(9ini)|27:1;[1 ' (k) » ll_[lkHI

P} ‘

J
I1[o® 9<1>]P zH

gL s =1k

J
e (~a: (0 —6")) /5
- m!H(ﬁknAwa% H‘I’(f’z(”vzl))wiazo
k

=1
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The second contribution corresponds to the influence of the propagation over the whole system and can be
neglected, as said in the text.

To find an approximate series expansion of fl,l ((0f,Zy), (s, Z;)), we work with the local series expansion
(151) of I’y ; (U7, ). Using (72) alongside with the associated notations, we can rewrite (151) as:

1((0,25),(0,2;), 91, 0) (245)
J
-y Z / [I wi(o9.2))~
]>>22 (Pz)mxj U=1,l,=1 I=1,1#1,
E'ipl>2
m . . i 2
_Ulfcexp (—C (92 — HZ‘J) -« ( ?:1 DI A0 ((C (9(5—1,1) — U, 1) ‘Zl( )1 _ Zl( ) ))) |\I/ (9i7Zi)|2 d6,dZ,;

( ) DZ LplmlH( A7AZ L P

> j
“1(2,00,Z o !
(Forz) (ol myma
|\Ij(9 7Zz)} 1=1,1£1/
e(z’)7zl}>:(0i,zf)

(9("')’212):(0‘,«,20

For A >> 1, the dominant contributions is obtained for each point connected by two vertices of valence
2. As a consequence ] (fx)! = j. Moreover there are j (j — 1) possibilities to choose the external points
k

(dismissing the same point) and m (m — 1) possibilities to differentiate with respect to |¥ (6;, Z;)|> and
|W (6, Zf)|2. For internal points that are integrated on, we can replace the sums over (9(”, Zl) by the values
of the quantities evaluated at their average (9, Z) and we have:

f‘1,1 ((G,Zf) 7(9’ Zz) >\PT7\IJ) (246)
w ' (6:,Zi) w (05, Zy)

- (7Z)> ot i
deZ \If 917Z1 \IIG,Z 2 2
= Y [ |waz(jv@.2))) <| va.of) O R v 6y 2y)

j=2
m>2

(Jeexo (=c(0-0)—a((c(6-)° —|2-2")) 1w (0. 2)doaz)"
(=2)™ D™ (m — 2)! (j — 2)!AJA%
(fcexp (—c(a —9)—a ((c 0 —0:))%— |7 - zi|2)) v (9,Z)|2d9dZ)

n—2

X

y o5 (247)
—c (0 — —al(c(d— 2|z - z4? 2))”
L

We can replace the exponentials:

/cexp (~e0-0) —a((cO-0) |z 2]")) ¥ (0. 2) doidz

by its dominant contribution:

/cexp (=c(0—0)) | (6:.Z + (0 — ) e) | dbde
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where e is a unit vector. As a consequence:
fl,l ((97 Zf) ; (0, Zz) ) \Iﬁa \II)

w6, Zi) w05, Zy) exp (/ °”1(9’Z)d§dz>

U (0,,Z;) Wt(0f,Zy) A

12

X exp (‘/QDCAGXP(_C(Q—G))]\P(G,Z+c(9—9)e)]2d6de)
8 (/ 21§A eXp(_C(e_ei))|\I}(97Zi+0(9—91)e)|2d9de>

X(/ 755 P (¢ ((’_"fm‘l’(@azf+0(9—0f)e)|2d9de>

w03, Zi) w (05, Zy) w(6,2) - _
‘P(O,-,Zv) oF (9ff,sz) exp (/Aldedz> X exp (_/QDAN’( 2)° d9dZ>

=7 [¥ (05, Z)]”

12

= w0, Z)w (07, 2Z5) Y (0, Z5) OT (0, 2;) C (@, 7)
We thus have:
Tia ((0,2),00,2), %", 0) =w™ (0;, Z)w™" (07, Zp) W (05, Z5) U (6;, Z) C (@, )

where:

Cou) =~ L W' (0.2) 57 U d0dZ
(@ %) = 55 3pA &P / A X exXp _/QDA’ ©.2)]

4.1.2 2 points correlation function
Inverting I'y 1 (6f,0;) yields the two-points Green function:
Ga (07,00 = G (07,00 + G+ > (1" (P11 (67, 2) , (61, Z2) , W1, ) + G)
n>2

where:

2

For relatively slow variations in frequencies, we can use (167) by replacing w=? (J, 8, Z, Go) by its average on
the interval [0, 0']:

(1,6, 2,G0) = XL > {7t (70).0.2.60+ 19F))

T

= ~—1 2
oo =7 (70,0260 +|vF)

n (164):

exp (_ (\/(wl(J<o>,iZ)z,go+|qJ|2))2 L2 wl(Jw),th,ngF)) 0 9,)>
Z;) H(O-0)

2
\F\/ J(e)azgo+|\If\ )> 4 20
02

As a consequence, the solution of (249) is a series expansion:

g(0f7915Zf7 )*5(Zf7
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G2 (07,00 21.2) = G(07.0:27,2)+G+ Y (1) (P11 %G)"

n>=2
- U (0, Z; e
= 9(9f79¢72f’21)+/ 11 dbwdzs g(9f,9me7Zf)u><Z(*1) '
1 W(9n7Z4f) n>2
= wt (0, Z:
1;[ (|\I’ (O, Z1)| ( -1 (91@,Zk))29(9k+179k,2k,2k)) w((ell’Zi))g(Qlaaz'aZhZi)

4.2 (k,n) points correlation functions

The (k,n) points correlation functions, are found using the standard techniques. We first derive the (k,n)
effective vertex, the associated connected correlation function, from which the (k,n) correlation function is
derived.

4.2.1 (k,n) effective vertices

The (k,n)-th effective vertex are defined by:

SFnT (U, W)

Tkn <<0§cl),Zl>l—1,».,k’ (05”7Zl)l—1,--,n) = 5 (\IIT (9?),21)) §n (\I/ (e(l) Zl))
1=1,..k v I=1,..,n

Neglecting the derivatives corresponding to the impact of propagation between ¢; and 6, we find:

Fk,n ((950T)a Zr) ) (955)7 Zs) )
: r=1,..,k s=1,..,n

10 IRRS]

J J
DD D SR A N | R A CE)
J>max(k n) (pl)mxj (l’ l’) l:l,lé(l;)
E pl>2 X(l/l l//)
C1)?

m g [Scl (whw)| ,
i
X.Ul /ﬁ o 21:[ ; do(ki)
= {111 ol (00, 7)==
=1 ki=
' (0(“) Zl,)=(9;”,z,)
(60,2, )=(61,2.)

><exp( Ay (9”_9 )) ﬁ \I/(QE”,Z)

| | Z’[ 1
m.l;[(ﬁk:)A Pl 1=1,0¢(17")
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. . 6P [Se (Wt v . . . . .
Under the approximation that — [Ser( ) is decreasing with p, the previous expression reduces to:

,il;I1 6|‘P(0(ki)’zki ) |2

Lo ((Q;T), ZT)T:I k' (91(8)’ Zs)s:1 . n) (250)

IRRE]

J 1=1,1¢(1})
j=max(k,n UL; .0

m=2 :2{1,“-’j} X((ll/l/;:):)

C(1,0,9)?

X / m &[S (9, 9)] [T 6%

=1 ] 5’\1/ <9<li),zli)’2 Ler

j 2
mfenep]” L e (o0 2 )= (05" )
(6(12/)7Z%/):(9§5)7Zs)
) @ j
exp (-Al (9f — 0 )) ﬁ v (9(” Zl>
i | t
m!: 1;[ (ﬁk) l:17l¢(l§l)

In first approximation:

SHLs [S*cl (', \If)]

ol (s ) L T (1 (007) 002 )

;€L

where 2{1,...,j} denotes two copies of {1, ...,j} and (?7) gives:

Vo,w™! (0(”),2) (251)

W/ o exp (—oz (92 — 01 — Zf:o M))

= Vo [J,w,0, 7, ] AkF1

k=0

k
< l[[/ w0~ 10, 7)) N

(leo ‘\I/|2) (9 — ll, Zl)
wo + Two |\m2) O —1,2)

dzydly | wo (J,0 — U, Z3) |% (6 — U, Z3,))?

4.2.2 (k,n) connected correlation functions

The link between connected correlation functions and effective vertices is obtained by the recursive relation:

60 ((09.z) _ (002) ) = ma((02) (002 )
+Z(—1)l Z Z[Fkl,m *G - *6 ko
l

Ski=k+l C
S ni=n+l

where the sum over G denotes the graphs with trivial fundamental group obtained by drawing [ vertices

labelled 'y, ;. The vertex I'y, , has two types of valences, denoted in and out, of order (k1,7n1). The I', »,
are connected by segments issued from a valence of type out to a valence of type in. Only (k,) valences

labelled (6.2,) . (007.2,) _are left free.
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The expression [['x, n, *g ..-%gI 'k n,] is computed for each graph G by associating a propagator G to
each leg of the graph: and convoluting all expressions that are connected. For slowly varying S, (\IIT, \I/) in

& (o
> P [Saa(w7.0)] ~| << 1 and in first approximation:
11 s|w (00,2, )|
i=1 v

(09 2) o (002) L) = e (082),

4.2.3 (k,n) correlation functions

fields,

E’ (9§8)’ Zs)s:L..,n)

IRRS] IRRE]

The Green functions can ultimately be computed in the usual way. They are defined by:

Gim <(9§g>, Zl) , <9§l)7 Zl> )
1=1,..,k I=1,..,n
- 2 S II e?. ((aﬁf”'),Zz,r) ’(9§1,3>,Zl,5> )
mMs 1=1,...k, I=1,..,n,

1=1,j=1 P;(k),P;(n) reP;(k)
s€P;(n)

where P; (k) and P; (n) denote the partitions of k and n in ¢ and j subsets and:

U, (9””),2 ) - (9(”,2)
Y b 1=1,...k, f ! 1=1,...k

Us (HEZ’S)7ZZ7S> = (ez(l)7Zl)
1=1,..,ns l=1,...,n

In first approximation, the Green function can thus be written:

G ((Qy)’zl)z_l ok (QEZ)’ Zl)l—ly-w”)

inf(k,n) w

- 2 Y e (7). (40.2)
ko  u=0 =0

k—u,n—u

< S (=pt Y II Tro <(9§cz,r,u>,zl,m) L 7(95175,11)721737“) 71 >
i=1,5=1 Pi(k—u) reP;(k—u) =l =1,..,ms
Pj(n—u) s€Pj(n—u)
where UT (0?77.7’“)’ Zl,r,u) = (0?)3 Zl) and Us (010787”)7 Zl,s u) = (ez(l) Zl)
=1,k I=u+tl,. .k I=u+tl,. I=u+1,..,

as ordered sets and the sum over oy, and o, is over all permutations of the (9(1) Zl> and (0(1) Zl)

1=1,..,n

300y

respectively.

4.3 Corrections to (97)

4.3.1 Series expansion
The corrective terms to w™! (J 0),0,7Z,Gy + |\IJ|2) are obtained by isolating Q (0, Z) in (82):

I (0, 0) ~ /qﬁ 0,2) (-ve ("fvg —w! (J(e) ,0,7,Go + |q/|2)> 5(0; —60,)+Q (9,Z)> U (6, 2)

and by integration over 6 (see (84)). As explained in the text, we study the weak field case in the local
approximation, so that we use formula (228) for the effective action. Combining (228) with (84) we obtain

w;t (J(e) .0,Z.Go + |\IJ|2):

Wil (J(e) ,0,7,Go + |x1/|2) — ! (J (0),0,7,Go + |\1/|2) +z (252)
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where:

/edez 3 (H fi+1,m ((Pm;, (9] ))))aj,m (253)
= ")) 2

; S ﬁ]+1m i (pl
711/21 pl’(pl)mxj 7

p+>2; 22
x/ﬁ 6lei (V‘M_l (H’Z’N"Q)) 6le; <V9w_1 <9’Z’|‘I"2>> H v (e(l)7Zz)‘2d9(l)de
=1 [T 67 |w (00, 2,)[* [Tov |w(60,2)[ =1
=1 =1

Equation (252) is a series in Vyw™? (J 0),0,2,Go + |\I/|2) We provide below a detailed computation of

the lowest order terms.
To conclude, note that the series can be divided in two different parts and writes:

l n
=ADO /\Iﬂ 00, Z) U (01, Z0) ———do,
I AL | (6;, Z; )\

1>2

DI <Vew_1 (6.2.19F) + w6, 2) Vo' (0,2, 19%) w (5, Z))”}

W(9,2)=Wt(0,2)=0
and that this can also be written by using the exponential form given in (203) in the local approximation:

5l
= lexp (Z I / (05, Z:) Y (6, Z;) 1\1(51|‘I/(9“Z)|dei) (254)

122

exp (vgw* (9, Z, |\1/|2) + Ut (0, 2) Vow™! (9, Z, |\If|2> v (0, Z))}
W(0,2)=V1(0,2)=0

4.3.2 Lowest order corrections

Given that p; + >, p} > 2, the lowest order correction in (??) is form=1,j=1,p =pi = 1:

w! (J(o),e, Z,Go + \\If|2) (255)

- ! (J(a),a,z,goH\PIQ)

+i//9 6(V9w_1 (J(9)79,Z,go+|\11|2)) ) 5<V9w_1 (J(H),G,Z,go+|\11|2)) (xp(a(l),z,) )

5|w (00, z,)|" 5|w (00, z,)|"

We rewrite the second term in the RHS of (255):

L //a 5(v9w*1 (J(e),o,z,gsﬂqfﬁ)) 5(v9w*1 (J(e),o,z,gsﬂxpﬁ)) ‘\I, (9<l> Zl) )
s (00, 2,)| 5w (00, 2,)|

using an integration by part for the variable 6:

Z/a(wl (J(e),a,z,go+\qf\2)) 5(veorl (J(e),a,zgwl\p\?)) \\1:(9@ Zl) )

m(eamf 5w (60, 7,) ] ’
ol s ) s 0025 00) |
w (00.2,) 5[ (00, 2,)[" -
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We then use the local frequency equation (97) to rewrite Vaw ™! (J 0),0,2,Go + |\Il\2) in the last term. In

first approximation:
fQ0,7)— LN Vo (0,2) — 2 f3sViQ (0, Z)
) 0,2) 1 4 ) 3Vz )

3 (0.2) (b — Va)

V2w ! (J 0),0,2,Go + |\p|2) ~

We will neglect the term c? ngQZQ (0, Z) assuming that (6, Z) varies slowly for a given time 6 across space.
Consequently, we have:

(e (00 280 ) s (v (0 05w
Z = / 6’\11( l)Z)|2 5|\IJ(9(Z)7Z1)‘2 ‘\I/(H(l)7Zl)‘

//95 9290+|\11\))

5|x1/ (00, 2)|*
5 £9(0,2) - (w(e - +N1> Ve (0, 2) — 239200, Z)

X 2
5|‘IJ (9(1),ZZ)‘ wo (0,2) (w(@ Z) N2>

‘xp(e)(l),zl) ’

Regrouping the terms in the previous expression yields:

L /5(w1 (7(0).6.2.90 + 1¥°) ) 6 (Vo™ (76,6, 2,60 + [¥I°) ) v (00,2,

5w (60, z,)| 5w (60, z,)["
2 2
//e 5 ( 02,60+ 9*)) 8w (7 (6) 6,2, + |9*) o (00.2) )
5\‘1’ (00, 2,)[" w8 (6,2)5]% (00, 2,) "
2
_w(g 7+ N //95 0.2,Go +¥*)) 6V (7 (60) 6, 2,60+ |9*) ]\1/(9@,2,) )
sz — N 5|‘I’( 0, z)[" 5w (60, )|

/5(w_1< (0),6,2,Go + V| )) 6 (Vow ™ (7(0).6,2,G0 + |91*)) v (00,2,

- a|w (o0 Z)l2 5w (60, 2,)|"
,0, 7, ) ’
// go+| | )) ‘\If (H(l),Zl)r
2 —1 2
u,<e 7+ N //"5 0.2,G0 + 0)%) ) 6V (J(e)’a’z’ggﬂlp ) ‘\p(a(z),zl) ’
S0~ 5!‘1’ (60, 2,)[" 01w (00, 2,)]
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and this rewrites ultimately as:

03 (Voo (10),0.2,60+ 1)) 5 (Vo (10).0. 2.0+ 0)) AP
/1 [ (00.2) [ (00.2) v (o)

L [0 (url (J 0),0,2,Go + |q/|2))
~ /7V9 3
5w (9“)’ZL)|

9 2
// (9) 0. %,Go + || )) ‘\p(a(l)%)‘z

5w (60, 2,)|?

%wl 5 (w0 (10).0.2,60+ 19F))\ z
Ty AT v (e.2)]
(w(O,Z) _NZ) 5“1’ (9(),21)]

Which is the result stated in the text.

Appendix 5 Estimation o 5|\1/(9 117Z1)|

To compute the effective action, the vacuum, the Green functions and to find non local solutions of (84) we
w1 (J,0,2)

- appearing in (126). In Appendix 6 we
H 8w (0—1:,7;)|

will need to compute w=! (J, 0, Z) and its derivatives

will show that, in first approx1mat10n the computatlon rehes on the case n = 1.

The first order derivatives % can be computed recursively. To do so, we will need to approxi-
mate the results around some static solution. We define @ as solution of:
- ; k@ (J,21)
J.Z2) = GJ2Z)+ | =———=——G0(0,0,2,)T (Z,2,)dZ 256
(2.2) (() N5 (7 2) 9 O0AT (222 (256)

. o (J.2)
+/N 2
2 (723 () + 2

where J (Z) is the average of J (6, Z) over the full timespan. We also define:

T(Z,7,)dZ,

Gy(L,2)=G | J(Z)+ Al Wk aly I'(Z,7Z,)dZ 257
0(J.2) G( (2) /N,(J’&Z)Gozl(oo) ( 1) 1) (257)
These quantities will be useful below.

5.1 Computation of the first order derivatives in (126)
5.1.1 General formula

Using the recursive definition of w™! (J,0, Z):

J@_ |Z— Zl\ 7 _
1(1,0,2)=G | J(0,2)+ / )W w(6,2) ‘\I/(HZZ”,&)
N J 9 Z) w (97 lZZZ1‘7Z1) Cc

(258)

2
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with:

Ot AW (bt «(0.2)
©(1,0.2) T w(6.2) w(o- 12220 7,)
Sw™1(J,0,2) .

we first compute 575

Sw=t(J,0,2)
S|W(6—1,2))

- (w(Je-1Z=Al 7, z-2z'
5G (J(H, Z)+ [ =W <( S )> ‘xp <9— lz-z] |,Z’>

§1W (0 -1y, Z0)

(259)

2

T(Z,2') dZ’)

Sw™1(J,0,7)

W on the left yields:

Expanding the right hand side and regrouping

Sw=t(J,0,2)
§|W (0 —1y,21)

_ w J,07‘27Z1‘7Z —
o <(W”)>) T(2,21) G [J,w,0,2,9]5 (1 - Z521)

w(g0-12=71

w(J,0,2)

2
T(2,2)dz' | G'|[J,w,0, Z, V]

2!

L= ([ 5w (no- 1220 2w w (012221, 2)

2

Sw <J,97LCZ/|,Z'>
T(2,2')dZ'G' [J,w,0, Z, V]

; - (w(ge-12=Al g z-z'
w(J,la,Z) fNé\I}(ez—czll’Zl)ﬁW/( ( w(7.0,2) 1 ) “I’ (9_ | c |7Z/>
w(Jﬁle_CZ/l
w(J,0,2)

+

2 2

1 f%w(J79_\Z;CZ’|7Z/)W/ ‘w(e_@,z/) T(2,2)dZ' | G’ [J,w,0,Z, V]

. Z -7
= w([,0-0U,Z1)T1(0,Z,Z1,w,¥)§ <l1 — 1|)

C
5w <J,0 _ =z Z/)

2

¢ VA .
+/ 5 ‘\II <9 — |,Z’) T(0,2,7' ,w,¥)dZ’ (260)
S0 (0 —11,721)] c
where we defined:
. 1
T (0,7, Z )= ———— 261
1(7 y 41,W, ) W(J,H,Z) (6)

w(mi‘z;fl',zl)

;;T(Z,ZI)VV/( —— )G’[J,w,@,Z,\I/]

w(ro-12=21 7
w(J,0,2)

’ - ’ 2
1— f%w(J,e—@,Z/)W/ ‘w(e—@ﬁ) T(Z,2))dZ" | G [J,w,0, 7, V]
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Sw=1(J,0,2)

Equation (259) shows that we also need TG

dw(J,0,Z) E to compute

m This is obtained by

fw J,G—chl,z> 22| 2
SFJ0,2)+ [2w |~/ ‘w<9—6,2’> T(Z,2")dZ'

w(J,0,2)
ow(J,0,7) B
5|‘~IJ(9—Z1,Z1)|2 5|‘I/(9—l1,Z1)|2
a 7 — 7
= w(J’e_l17Z1)T(0aZaZhw>\I’)5(Zl—|Cl>
_ |Z_Z/| /
6w(J,6‘ A Z-2| NP / /
" S1W(0—1y, 7)) v o-—077 70,2,2,w,V)dZ (262)

— 1,41

with:
T(G,Z7Z1w7\lf) (263)
_ ( 9—1Z= Z1I Z1)
w(J,aZ)T(Z,Zl)W/( —— )F o0.0.2,9]

lz=2'] 5
, _ wl J,0— Z , 2
2(J,0,7) + (wa( IZ_Czl,Z')W/( < TS >)’\IJ< IZ_cZ|’Z/) T
Equation (262) and (263) define M‘Jie?)lg recursively. Actually, writing:

S[T(0—1y
5 (J,G—'Z Z Z’>
S1W(0—11, 7))
7 7/ R 7l 7l 7/
— /W(J,G—Z Z|_|Z Z |,Z”)T(9—|Z Z|7Z/7ZN,(JJ,\I/>6<|Z Z|+‘Z Z|_l1)d2//
C C

C & &
S <J,9 lz-2] _ |Z"Z"|,Z"> ‘

S|1U(0—1y, 7))

(Z,2") dZ’) F'[J,w,0,2, 7]

Z-7 |Z2-z" z zZ-7
+/ \11(9_| |_| |7z//) T<9—|7Z/,ZH,M7\I/>d 1!
C

C Cc

we have:

ow (J,0,7)
S1W (6 -1, 20

zZ-z . Z-7
= /w (J,a— |C|,Z’> T(G,Z,Zl,w,\ll)é(|c| —11> dz'

Z-7' |7 -2z . zZ-7
+/w<J,9—| || |,Z”)T(9—||,Z’,Z”,w,\ll>
C C C

Z -7 2 Z-7 |2 -z
x’\l’(&—' I’Z,> | |+| |
C

T(0,2,7' ,w,¥)6 ( - 11> dz'dz"

C C
|Z Z’| |Z’ Z”\ 1
- 7
o (” z-z| |z-2' )|

+ U(6— - A

5|\IJ(9—11,Zl)| c c
. A A 2

xT (0— | |,Z’,Z”,w, sz) ‘xp (9— | |,Z’> T,2,2' ,w, V) dZ' dZ"

C C
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By a redefinition of T and 13:

— / 2 ~
T(0,2,7' ,w,0) ‘\11 (9 — |ZZ|,Z’> — T(0,2,Z' ,w,0)

C

2

N 7z 7 N
T (G,Z,Z’,w,\ll)‘\ll (9—|C|,Z’> — T (0,2,7 ,w, W)

which yields the series expansion:

dw(J,0,7) R |Zl 1 _ l>|
SO0, 2 ; —l1,Zl)| / (Jg Z % (264)
<

=1 761 _ 7G)
Z' 3

Z=1) _ Z(l
7= 7O L w51 _E |— dz®
¢ ’ y W, ( 1 H

=1

j=1

and:
-1 e Zl N _zO .
ow (J797Z) . — Z —/ J 6 — Z | ‘ j"1 (97Z, Z(l),w, \I/) (265)
§|W(0— 11, 21)| SO -0, 2)f

XﬁT Z|Z( AU 1),Z(l),w,\Il ( i| z1- 1)_Z(l )Hdz(l
=2

I=1
with the convention that Z(©) = Z and Z(™ = Z;.
We can write (265) in a more symetric way. Defining:

-1 _ Z(J)|

T (9, 7,70 \IJ) = w2 (J,0,2)T (e,Z, AL \11)

Relation (260) writes:

Sw™t(J,0,2)
S|1U(0—1y, 7))

. 7 -7
= w ' (J0-11,2)T(0,2,7Z1,w,%)6 <11 — |1|)
C

Suw (J9 |2~ Z‘

5|0 (0 —1, 2

2
T6,2,7 w,v)dZ'

ZI)
‘\IJ (9—' i Z’)
c )

and we have:

Sw™1(J, 8,2 > n o |z0-1) _ 7O
w(J,0,2) . = Z—/“fl J,H—ZQ,& (266)
5|\I](9*11’Z1)‘ n=1 7l1321)| 1=1 ¢

=1 ZG-1) _ 70)
Z| )

ACEAC]
VAGERACKER S F A B _E ’— Ildz(l)
¢ ) y W, (1

j=1 =1

5.1.2 Static approximation

We now use the static approximations (256) and (257). Actually, the values of T} (0, Z, Ziw, ¥) and
T (0,7, Z1w, W) can be estimated for w~! (j, Z). Moreover, in the limit of small fluctuations, w~! gj, Z),
F'[J,0,Z,%] and G’ [J, &, Z, ¥] can be approximated by their average over Z, denoted @1, F’and G’. We
also have:

w(z) 1
w(J,Z2)
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1

——————— Moreover for &, both Ty and T can be considered independent of
(o) v

We also replace |¥|* by
0:

10,2, 210,%) ~ T1(Z,21,®)

10,2, 2w, V) ~ T(Z,7,,o)
1 KT(Z,Z,) F'
F' [ £T7(Z,2')dZ'

2 _
™ 1 + 21 W+
2 \ 02X, o2 1( e ) +2ag

as a consequence Ty (Z, Zy,w) and T (Z, Z1, ) are functions of |Z — Z;| denoted T} (|Z — Z1|). As a conse-
quence (265) can be estimated by:

Sw=t(J,0,2) i

— w01, Z2)T (|Z - 2zD 267
5|\Ij(0—l1,21)|2 n—=1 |\I/ —117Z1| / ! 1) 1(‘ ’) ( )

xHT(’Z(l 1) _ 70 D (ll_Z]Z(l D _ 7z ’>

=2
%6 (Z 7, — Z( —z0 )) H AL

and (264) is

ow (1,6, 2) N 1 / |z0-1 - 20| T (et 0
WA Zm(e—zl,zl)\? <J9 Z HT(‘Z 4 D

n=1 =1

n 1 Z0-1) _ Z0) n-1
X3 (zl -3 M) ) (Z — 7 - Z (ZU*U - Z<l>)> [] 4z (268)
=1 =1

=1

5.2 Estimation of (267) and (264) close to the permanent regime

The series (267) can be computed by using the Fourier transform of the Dirac functions:

2 50.171 (J,H,Z
W (0~ 1, Z1)] ETWAT: Z/ (J,0 — 11, Zy) x Ty <‘Z Z<1>D (269)
X HT (’Z(Fl) — Z(Z)D exp (i)\ (ch — Zn: ’Z(lfl) — Z(l)‘>>
=2 =1
X eXp (Ml. (Z 7 - zn: (ZU—U _ Z”)))) dAd),

=1

«T1 ‘Z(l‘l) - ZU)‘Q d ‘Z(l‘l) - Z(l)‘ du;
=1

where the unit vectors v; are defined such that:

ZU=1) _ z() =y, ’Zufn _ Z(l)’
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We also define:

)\1.(Z7Z1) = |)\1||Z7Z1|COS(91)
Arup = M| cos(6;)

The angles 0; are computed in the plane (A1, Z — Z;) between the projection of v; and Z — Z;.
Before computing the integrals in (269) for arbitrary transfer functions, we develop the particular case
of an exponential transfer function.

5.2.1 Exponential transfer function

We first choose:

exp (—c|z(t=D — zW])

A (| -1 _ 0 ) -
r (’Z Z ’ |Z=1) — ZO)| (270)
i (|70 _ 50 A (15070 _ L0
Tz -2) = (|2 -2v)
and discard the factor % that will be reintroduced in the end of the computation.
Using that Y-, (20D — ZW) = cly, the right hand side of (269) becomes:
exp (—cly) % Z /exp (i)\ (cll - Z ‘Z(l—l) _ Z(l)D)
n=1 =1
X exp <i)\1. <Z — 71— Z (Z(l’l) - Z(l))>> dMd)\q HC ’Z(lfl) _ Z(l)’ d ‘Z(lfl) — 7 du,
1=1 1=1
that can be written in terms of the angles as:
exp (—cly) x Yy /exp (ixcly + i |\1||Z — Zy| cos (6y)) (271)
n=1

X exp (—iz (A + A1 cos (6,)) ‘Z(l‘l) - Z(”D dan [[ ¢ ‘Z(l‘l) - Z“)‘ d ’Z(l‘l) — 20| dy,
=1 =1

The integration over 6; is:

77/ exp (—i (A =+ A1 cos (61)) ‘Z(l_l) = Z(Z)D sin (0;) db,
0

™

_ |)\1| ‘Z(l_l) _ Z(l)‘

e (o (50 1 [0~ 20]) s (0 200 < 20])

(exp (—i (A —=1A1) ’Z(l_l) - Z(Z)D — exp (—i (A1) ’Z(l_l) — Z(Z)D)

and (271) rewrites:

= —mi : : . :
exp (—cly) X Z / ™NZ =71 (exp (iAcly + i | M| Z — Z1]) — exp (iAcly — i |\ || Z — Z4]))
n=1

x ﬁc:; (exp (=i A+ A [ 200 = Z(”D —exp (—i (A= \i)) ‘Z(l‘l) - Z(l)D) d ‘Z(l‘l) — 2O ax |\ P d |\
=1

We can then perform the integrals over the norms ‘Z -1 _ zO {, which yields:
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— —L . . . .
exp (—cly) x Z / NZ =71 (exp (iXcly + i | M| |Z — Z1]|) — exp (idcly — i | M| Z — Z4]))
n=1

o 1 1 5
x[Tc~— - X M) d A
11;[1 ] <A+|>\1|is )\|>\1i5) Pal"d Al

Performing the sum yields then the following expression for (271):

exp (—cl1) x /i(exp (iXcli +i|M|1Z — Z4]) — exp (idely — i M| 1Z — Zu]))
|M[Z = Z4|
o
A+ A1 —1e)(A—|A1|—1e 2
dA AP d A
e T A" d A

(A [A1]—ie)(A—|A1]|—ie)
= exp(—cly) x /_77” (exp (iAcly + i | M| Z — Z1]) — exp (iAcly — i |\ Z — Z4]))
MlZ = 24|

—2nC

dX AP d A
A+ [A1| —ie) (A — [A\y| —ie) + 2xC Pl d

T

Ultimately, the previous formula can be reduced to a single expression, by performing the change of

variable z = — |\1] in the term with exp (iAcly —i|A1||Z — Z1|) in factor. We obtain:
—Th . . —27C )\
—cl —_— Acl MIZ—-Z dAdA
exp ( cl)x/|Z_Z1|exp(z cly +iXt | 1‘)()\+)\1—i5)()\—)\1—i5)+27r0 1

where the integral over A; is now performed with A; € R. This integral is computed by the residue theorem,

where the residues satisfy:
A2 = (\—ig)? +2nC

leading to write (271) as:
exp (—cly) X /|Z_7MZ| exp <i)\cl1 +iv/ (A —ie)* +2nC|Z — Zl|) d\ (272)
—Z

+exp (—cly) x /%exp (z’)\cll —iy/ (A — i5)2 +27C|Z — Zl|) d\
-

We then perform the change of variable:

T = A+ VI +27C
A
dr = 1+ ———— ) d\
( \/)\2+27rC’>

x 22

—_———d\ = ——d\
VA2 +27C 22+ 27C

and rewrite the exponents in (272) as:

Z -7
st/ —ief 2nc iz - z) = DHZZAL (G /aae)
i VA
s 22 (G aae)

o+ |Z - Zy| 5 ch—1Z — 74| 2nC
B
_ Cl1+|Z—Z1|$_Cl1—\Z—Z1|2ﬂ'C

B 2 2 x
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and:
ll — ‘Z*Zﬂxi Cll + |Z*Z1| 2wC

C
ely — /(N —ie)2 +2xC|Z — 74| =
Cl1 ( ZE) +7TC‘ 1| B B -

As a consequence, expression (272) becomes:

e (—cl)x/ie i CZ1+|Z_Z1|x_Cll_‘Z—Zl|2ﬂ'C e
B 1z =7, P 2 5 ,

i ch =2 =2  ch+|Z—Z|2aC
+exp (—clp) x = Z1|exp( ( ! ‘2 1| ! |2 1 . ))dx
ch+1Z2 -2 ch —|Z - Z1| 2nC 1
+27C exp (—cly) /lZ Z|exp< ( ! |2 1|:1:f ! |2 ! . )) de
Cl1—|Z Z1| Cll+‘Z—Zl|27TC 1
2nC — —d
+27 X/|Z Zlexp<< 5 T 5 o ol
Performing the change of variable y = = in the two last expressions yields:

—T1 . Cl1+|Z—Z1| Cll—‘Z—Zl|27IC
—cly) (1427 - -
eXp( Cll)( C) X (/ | 1‘ exXp (Z ( B) X 5 dx

/ exp ch—|Z 2| _cht|Z-Z|21C\
Z — 21 2 2 x

and by analytic continuation x — iz, this becomes:

Cll-‘r|Z—Z1| Cll—‘Z—Zl|27TC
_ 2 _ _
exp (—cly) (1 + 27C) (/ = Zl ( ( 5 x 5 - dz

+/ o (_(1=1Z=21| _ci+|Z=2zi|2mC N\
Z— 2, P 2 2 x

Ultimately, reintroducing the constraint H (¢ly — |Z — Z;]|) and the factor %, (269) writes:

Sw™t(J,0,2) Ay exp (—cly) ch —|Z — 74| ch+|Z — 74|
U (0—11,2))? Ak = (1+42xC +
26 =h, 2)l 5161, 2) ( ) Zz=z) Nansz=2 \a-1z=2
L—|Z-2 Z-z
x K1 (Cl |2 1|27rC’d1+|2 1|)w(,],9—l1,Z1)

Ay exp (—cly) cly —|Z — Z| ch +1Z — Zy|
= (1+27
(+ O) —Z| " ch —|Z = 7y

|Z Zl| CZ1+|Z Z1|

—Z -z
¥ K, <7rc(d1) |2 1 >w(J,<9—ll,Zl)

In first approximation, the right hand side of (273) is:

exp (—cly) (¢l + |Z — Z1)) ()’ =1z -z B
BIZ— 7] exp | —nC 5 w(J,0—11,721)

exp (—cly) exp (—ﬂ'CCll cly —|Z — Z4]

B B )H(Cll—Z—Z1|)w(J,9—Z1,Z1)

for ¢ly >> |Z — Z;|. This can also be replaced by a simplest form:

sw=1(J,0,2) exp (—cl1 -« ((cll)2 —

Ak ~
U (0 — 11, Z1)| AT AL 5
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(274)

|Z — Z4|
))H(Cll — |Z—Z1|)w(J,9—l1,Z1)

(275)



where B and « are constants. .
Using (266), the same computation can be performed by replacing 7' with 7" and we obtain:

> Swl(1,0,Z7)  oXP (—cll -« ((cl1)2 —1Z - 21\2))

U(O—-1,,2 ~ Hcy —|Z—-Z\\)w tJ0-1,,2

(W (0 — 11, Z1)| S0 0120 5 (cly —| 1w™( 1, 21)
(276)

with D a constant.

5.2.2 General formula

For an arbitrary transfer function:

(- 29]) = o o - 20 (- 2)
we can factor Cexp (—cl) as in the previous paragraph. It amounts to replace:
(- 20 5 (- 20)
We rewrite (269) as:
dwt(J,0,Z
(01,2 L0 2) (277)

51001, Z)
= Z/M(J,G — ll,Zl> X Tll/ (/\—i—)\l.vl)dle/ T ()\—‘r)\l.ﬂl)d’l)l exp (i)\cll + iA1. (Z— Zl))d)\d/\l
n=1 =2

— 5%~ Z|— )T (’Z o

)W(Jaf)*ll,zl)

Tlll ()\ + )\1.’[)1

[T (A A
+(71)n/w(J,9711,Z1) X B) )dvln/wdvl exp (Z)\Cll +’L)\1(Zle)) d/\d)\l
=2

n
With the convention that for n = 1, the product [] is set to be equal to 1. The functions 77 and T are the
=2
fourier transform of 71 H and TH respectively, and H is the heaviside function. Remark that the first term
of (277) expresses the Dirac function § (|Z; — Z| — ¢ly) as a Fourier transform:

exp (z’)\ (cll — Z ‘Z(O) — Z(l)D)
=1

n 2
X exp (ml. (Z ~z -y (Z<0> _ Z<1))>> drd\ ‘Z(O) _ Z<1>( d }Z@) AC) ’ doy
=1

Some terms of (277) can be written in a useful form for the sequel:

1 ™
§/T" A+ X)) dy = 71'/ T" (X + |A1] cos (6;)) sin (6;) d6,
0

= 7r/1 T" (A + | M| u) du
-1
2m (T" A+ M) = TP (A = M)
2| A1l
T (M M) (278)
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2 (7 (A + M) = T (A = (M)
2 {1

/ Tlll ()\ + Al.vl) du;

Ty (A, [A1])

exp (Z)\l(Z—Zl))d)\l = exp(icos (91)|)\1| |Z—Zl|)Sll’l(91)|)\1|2d|)\1|d91
= e (iu|M][Z - Z1)) M d M| du

Remark that the functions of z:

2r (T A+ 2) = T (A —
2x

m(T{(A+a2) - T{ (A —2))
2x

T (\z) = z)) and Ty (\,x) =

are even.

5.2.3 Estimation of (277)
Using (278), (279) and (280), equation (277) becomes:

Sw=t(J,0,2)

V(0 —11,21))°
¥ 0=h,2) 516 —1,2)

o0

(279)

(280)

= Z (71)" /w (J,g — ll, Zl) X T1 (/\ + )\1.1)1) d’Ul H/ T(/\ + Al.UZ)dl}l exXp (Z)\Cll + 7)\1 (Z — Zl)) d)\d)\l

n=1

Ty (M X !
- —/w(J,G—ll,Zl) X Mexp(i)\cll)/ exp (iu | M| |Z — Z1]) M ]* d | M| dudA

-1

T1 (N M) , sin (|M\1] |Z — Z1))
= - J,0 =1, Z — Acly) | 2 A1l ) d|A1]dA
[0 =121y x R A exp iaety) (22

We remark that for even functions f, the following identity holds:

e sin (|\]|Z - Z
[ e GHZZ A0 gy
0

Z — Zi|
too . 7 .
_ /0 (@) exp (ix |Z — Z1||)Z e?l)( ix|Z — Zl|)xdx
= [T i@ I ey [y SOOI,
- /_:o f o) SR 1
so that (281) becomes:
(011, 20 Sw=t(J,0,2)

S| (0 -1y, 7))
_ T1 (A A1) A1 . )
_ /w(m b 20 X T O T2 ] P (el i 12 = Zal) ddy
(T A+ A1) — T, (A= A1) M\
— 0—1,.7
/“’(J’ L 1)X/\1+7r(T’()\+)\1)—T’(A—Al))i|Z—Z1\
x exp (iAcly + i\ |Z — Z1]) dhdA
T(T{ (A4 A1) — T{ (A= A1) A
- 0—1,.7
/“’(‘]’ b 1)XA1+7T(T’()\+)\1)—T’()\—)\l))i|Z—Zl\
x exp (tu (cly + |Z — Z1])) x exp (v (cly — |Z — Z1])) dArdA
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As in the previous paragraph, we also simplify (282) by writing 7 as a function of T:

Ay

TyA+M) =TI (A=) = a (T" A+ M) =T (A= A1)

and by setting:

A+ N
“ T T
A+ N
YT T
so that we are lead to:
dw™! (J 0 Z) Ay (T/ (/\+)\1) T/ ()\—)\1)) A
U (0—1y, 7)) A :—/wJ,Gl,Z x =L L 1 :
T, W b ) N = (T O ) — T O - A1) i1Z — 4
x exp (iu (cly +|Z — Z41])) x exp (iv (cly — |Z — Z1])) dA1dA (283)

Remark that the particular case of the exponential transfer function is encompassed in (282). Actually, if
we choose:

T (’Zum _ Z(z)D _ CeXp (—c |Z(l—1) . Z(l)|)

|Zz(-1) — ZzW)|
we have: .
[17 (2070 = 20) = exp (=et) H [Z0-0 = Z0]
For such a choice, we have formally: 7' = —iC [ (FH) where H is the heaviside function. As a consequence:
C
T'(\)=CFH = —
() A +ie

and (283) is equivalent to the expressions of appendix 1.3.2.1.
In the general case, we write /\Y), r = 1,... the solutions to the pole equation of (283):

MAT(T"A+M) =T (A=) =
For regular functions T’ (A + A1) such that for A — oo:

g(A+ A1)
A+ )

oo

with [ > 0 given and g bounded, the poles equation implies that for A — oc:

T A+ A1) =~

)\12:':)\

and as a consequence, we can write:

A7 = /X2 ke (V) (284)
where h,. (A\) is bounded.
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T (A+2) =T (A=X1) .

We can compute the values of the residues at each pole by the first order expansion of 1+ ~

T’ - T'(A—
L DA A) = TP A= M)

A1

~ PO+ - T (A T (A7) =1 (=)
~ T )\1 - Agr)

% + 7" (,\ + /\Y)) + T ()\ _ )\gr))
~ T /\gr)

4 (M _pr(y_y (M)

T// ()\ + )\g’r‘)) + T// ()\ _ )\gr)) _ T ()\+)\1 )}\ET;T (/\ Al )

~ T )\gr)

For regular functions T’ (A + A1), this can be expanded as:

") T(2k+2) ()) (1)) 22 T(2k+2) (\) (r)) 2k 2
2mAL (Z (2k)! (Al) -2 2k + 1)! (A1>

k>1 k>1

and for relatively slowly varying functions, this reduces to:

/ _ g _ (4)
L+ T"A+M)—T' (A=) o 270\57«) T (N (285)
A1 3
and the residue theorem implies to replace:
T(TT A+ A1) =TT (A=) A1 (256)
)\1 +7T(T/()\+)\1) - T’()\—)\l))Z|Z—Z1|
1 3

T TR Z =2 T (N

in (283). Using (284) and (286) in (283) leads to:

Sw=1(J,0,2) i 1
V(0 —1y, 7)) A ~ —7/90 J.0—1,,2
2=, 20)] 51U (6 — 11, 2] ZW|Z—Z1| ( L2)

T

3 . .
XT(T()\) exp (tu (cly + | Z — Z1|)) x exp (i (cly — |Z — Z4])) dX

1 1
= Zﬂ_lZ—Zﬂ/w(J,e—ll,Zl)

T

3 . .
XT(T()‘) exp (tu (cly + | Z — Z1|)) x exp (i (cly — |Z — Z4])) dX

where:

A+ A7 A4 O

o= 2 2
oA AW
v= 2 2

AS a consequence:
v o= A=VX2+h. (N
3 hr (A)
A4 /A2 4+ hy (A)
hy (A)

u
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For h, ()\) varying slowly, we can replace h,. (A) by its average h,., and we have:

Replacing T™ ()) by its average 7™, we find:

sw=1(J,0,2) i1
V(0 —1,2)? A ~ fi/w J0—1,7Z
V(6 b, 2)] S (011, 7Z1)) Zw\Z—le ( b )

r

3 _ oy
X @) eXP (tu(clh +|Z = Z1])) x exp <—zu (clh —|Z — Z1|)> X

We can then apply the results of the previous paragraph for each r, and has a consequence, we obtain:

Sw™1(J,0,2) - 3 exp (—cly)
V(01,72 A ~ 1+ hy) —w(J,0 -1, 2) —— 287
R T AT Z:( ) (h =B g (287

cy —|Z — 7| ey +|Z — 7| — ()= |Z -z,
K
x(\/cl1+|Z—Zl|+\/cl1—|Z—Z1| L\ 4

5w—1 (J, 07 Z) exp (—Cll — Oy ((Cl1)2 — |Z — Z1|2)>
S|1W(0—1y, 2 B,

T

that becomes in first approximation:

(0 — 1y, Z1)) H(cy—|Z - Z|)w(J,0 =11, Zy)

where the B, are constant coeflicients and a, = Z—T. As for (276), this also writes:

5w (J.0,2) exp (fcll — ((cl1)2 —1Z - Zl|2))
SIW(0—1,2)) D,

T

W (60— 1y, 2)))° H(cy—|Z - Z|)w(J,0 =11, Zy)

(288)
for some constants D.,..
5.2.4 Application: Gaussian transfer function

We apply the previous method to the case of a Gaussian transfer function. The results will be similar to the
exponential case, confirming that the results obtained in appendix 5.2.1 are quite general and can be used
generally in first approximation

5.2.4.1 Estimation of the poles We can refine (287) by computing more precisely the poles in (283).
To do so, we perform the change of variable:

u = )\4‘)\1
= A—-X\

before computing the poles, and equation (283) becomes:

Sw1(J,6,2) A
U(0—1, 7)) Al :—%/wjﬁ—l,Zx
‘ ( 1 1)| (5|\I/(9—l1721)|2 21A|Z*Zl‘ ( 1 1)

m (1" (u) — T" (v))
1+ 27 T @=T"(0))

—

(289)

X exp (zg (chh +|Z — Z1]) + zg (chh — |7 — zl|)) dudv

We first estimate the v integral using the residues theorem. The poles are solutions of:
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u—v+27 (T (u)— T (v)) =0

we write the solutions vy, (v) with k > 1. As a consequence (289) rewrites:

Sw=1(J,0,2) Ayim —2m (v (1) — u)®
U(0—11, 7)) AL = =) / (J,0 —11,Z
OIS oz T T & Az 7] B T e )

vg (u)
2

X exp (z; (cly +|Z — Z1]) +i (cly — |Z—Z1|)> du

To compute (289), we study its two components independently:

7T (u)
X exp (ﬂ (cly + |Z — Zu|) +ie (cly — |Z — Zl|)) dudv
2 2
and:
7T (v)
_ (J,0—11,7 291
A7 - Zl\/ LA T (291)

X exp (ZE (ch +|Z — Z1]) + 13 (ch — |7 — Zl|)) dudv

In the integral (290), we first estimate the v integral using the residues theorem. The poles are solutions of:

T'(u) = T' (v)

u—v

1+ 27 =0

That is:
v+27T (v) =u+2rT (u) (292)
with v # w.
Now, we consider the following gaussian form for the transfer functions:

)\2
T (\) = Aexp <7}4> (1 — erf (iy/nA)) (293)
and its derivative satisfies: \
() = a5 T ()~ i
As a consequence of these two identities, the solutions of (292) are given by:
v(1l—mnT (v)) =z (294)

with:
z=u(l—mnT (u))

To solve (294) it will be useful to expand T ()\) as a series expansion. In first approximation, one has (see

Abramovitz stegun):
+oo 2
exp (—k?) sinh /A \/ﬁ
=A
2 -

Im T'(A) ~ Af( \fexp< nA2>nA2)

as a consequence Im z > 0 and asymptotically, equation (294) reduces to:

v(mT (v)) = —2

Imerf (iy/nA) ~

>Hl\3

and:
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that is:

(Arnu)? exp (—n”;) (1 — erf (iy/nv))”* = 22

Amnu\? v\
(757) e () =

and the poles arising in (290) are given by the Whittaker functions Wy:

2 —222
n (Am)"n

for k > 0. They are approximatively equal to:

v~ £ 2 <1n <2u22> +i(2k+1)7r>
n (Am)"n

The terms involved in (290) can thus be evaluated at the poles. First, for (Ar)? << 1:

’U2
exp { =1

V2u?
Amnexp <ln (W)) = \/%u

Asymptotically, for v/2nu >> 1, this formula justifies our previous approximation v (1 — 7T (v)) ~ —vmn T (v).
For v/2nu << 1, the solution is v = u and there is no pole. Second, we have:

(H%(T’(u)—T’(v)))’

for n << 1

™ |T (v)] Amn

1

[0

= 2T (T L)
14277 (v)
and (290) becomes:
2 A, (u—v) 1" (u)
D AZ -7y / (J:6 =, Z1) 2(1+ T" (v))

k0

2 2u?
X exp i%(cll—i-\Z—ZlD— n(ln(@%)—i—z(?k—i—l) >|cll—|Z—Z1| du
m

Note that for (Am)*>n << 1, we recover 0 (cly — |Z — Z1]) as needed in the lowest order approximation.
The second integral (291) is obtained by inverting the role of u and v. It yields:

2w Ay / (u—v) T (v)
— (J,0—1,,7
2 Az-zl LAV T W)
2 2u? ) v
xexp | =4 |=[In| ——— | +iRk+1)7 | (ch +|Z — Z1|) +i5 (chh — |Z — Z41]) | du
n (Am)"n 2

and this can be neglected, since cly +|Z — Z1| > 0 and for (Am)®n << 1 this becomes 8 (cly + |Z — Z1]) = 0.
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Gathering the results for (290) and (291), we are left with:

Sw=(J,0,2)
§|W (0 — 1, Zy)[

B 2w Ay (uw—v) T (u)
=2 az- zu/ (10 =0 2) X ST 7 ()

X ety 17—z — |2 (o (<2 ) ik ) el - 12— 2] | d
exp 12 cly 1 ; n (A7T)277 ) m | |cly 1 U

Ulitmately, some simplifications can be performed on (295). Actually, we have the following identities for T

W (01, Z1)|? (295)

T" (\) = —gT(A) + <y;> T () + Ai (ﬁ)?’%

v(l—mnT (v)) = uw(l—mT (u)) =u
T () ~ v—u
and this two equations imply that, for A ( )3 << 1:

14 277" (v) (296)

= 1—mnT(v)+2r (ng)z T (v) + 27iA (v)® g

2
~ (U—u)(—l—l—wnv):i(v—u)\/gC

where C' = \/(ln ((A 7 ) +i(2k+1) ) A consequence of (296) is that:
1+2rT" (v) 1
u—v T am/2nC

Moreover, for (A7r)2 1 << 1, the function T’ (u) can be replaced by the multiplication by 4
are thus led to rewrite (295):

cll+|Z Zl\ We

Sw™t(J, 0,2
(0 — 1y, Z)) ( )2 (297)
5| (0—11,7)
o Al (Cll + ‘Z — Zl|) T(U)
= 2 2Z_Zl|/w(J,9l1,Zl)x NeTe

k0

U 2 2u? ‘
xexp iz (ch +|Z—Z1]) = | = |In| ——— | +i@Rk+1)7 | [clh — |Z — Zi]| | du
2 U (Am)"n

A
_ XlEOZl —Z],lh,@)w(J,0 =11, Zy)

Remark that, for (A7r)>n << 1:

2 2u2 .
Jn (111 ((Aﬂ')277> +i(2k + 1)71')
X exp (Ji <ln <(AQ:;QT]> +i(2k+1)ﬂ> el — |ZZl|)

~ 5(Cll—|Z—Zl‘)
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so that one recovers the first order term.
For (An)®n << 1, 2(|Z1 — Z|,l1,®) is a function of | Z; — Z| written E (|2, — Z| ,@).
Finally, the sum in (297) can be estimated in the following way:

2 2u?
ex -l =lIn|———+iRk+1D7w||clh —|Z—-Z
S o (-2 (1 (225 ) stk 40w o 12 - )

k#0
2 2u? 2k+1
= Zexp — | =1In <u2> 1+i%w|el1—|Z—Zl||
70 oA In (o)

1

™

2 1 D) 1 .
= ¢ Re/ exp (—C’\/; (14 2*)* exp <; arctan (x)) lely — | Z — Z1||> dx
™ 0

c? ! 2
—Re/ exp (—C’\/;\/l +ix|cly —|Z — Zl|) dx
0

with:

The upper bound of the integral is set to 1, in agreement with our approximation In (%) >> 1. It

amounts to neglect the poles for £k >> 1, whose contributions are decreasing quicly with k as given by
oscillatory integrals of frequencies proportional to k.
By a change of variable, the last integral is also given by:

207 1 \/5 02
— Re exp | —C 7( 1+v2+iv> ch—\Z -2 >( 1+v2+)dv
Cre [Cow (-2 e 17 - 711} (V o
and we are left with the estimation for the first vertex:

Swt(J,0,2)
S1W(6—1,2)))

W (0 — 11, Z1)) (298)

A1 (Cll + |Z — Zl‘) T (u)
= _ -—_— — Z
A 27 — 7] /w(']’o b Zu) x s du
k#0
2C? ! 2 v?
= )2 (VT2 +i —z-z2) (ViFer+ 22—
- Re/o exp( C’\/;( +o +w)|cll | 1|)< o+ HUQ)dv

5.2.4.2 Gaussian approximation We can estimate the integral fol dv in (298) by integrating between 0

and +o00.
2 2 +oo 2 1
iRe/ exp <—C\/7( 1+v2+iv) cll—|Z—Zl||> (2 1+v2—) dv
™ 0 n 1402

= 2CQRe/JrOOex (—C\/g(ma—i—ivb)) (2 1+v2—1)dv
I 0 Vit
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with a = b =|cly — |Z — Z;||. The last integral can be rewritten:

2 +0oo
20 —l—C\/?/da ERe/ exp (—C\/§ (\/l+v2a+ivb)) dv
eNE " m 0 1

2 o0
= _ 20 +C\/§/da gRe/ exp (—C\/§< b2 4 022 +iv>) dv
Cc./2 n b 0 n b
n
20, 2 202 too 2 a ab
+C\/7/da —Re/ exp (—C\/7<— <(+i>v+ >)>dv (299)

C % i ) 0 n b 2v

for a ~ b << 1. We use that:

(_sz/% \/g/da) 27T021>w,/0+0o exp (—C\/z (= ((e+ibyo+ ;}))) dv
= (;\a/angC\/z/da) QTCQRe %Kl <2C a(an“b)> (300)

where K3 is a modified Bessel function, and that the following identity holds for K;:

2a a(a+ ib) \/ 2a ™ a(a+ ib)
K [2C ] —2C | ——=
a+ib ! ( n ) a—i—ibJ 40, [ elatib) oxp ( n
n

for C >> 1. Then computing the integral [ da in (300) yields:

\[/ \/E\/ ‘““*“’) (_ 2a + ib )exp(—QC a(a—i—z’b))
)

12
|

Q _ 2a+ib
(a+zb) n P ((L + b n
2a uy
\/ a+ib a(ati
AR VETVE a(a + ib)
~ (O4/- & et exp | —2C4| ———=
no oA U
n /% (a+ib)
1
4C\ /% (a+ib ib
= —Qﬁai"(. Sl exp | —20, | LT (a +ib)
2a + 1b n
for C' >> 1. For a = b, this identity reduces to:
i oy (2% 1) (301)
V/(1+1i)V Ca Vi
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The derivative arising in (300) can be estimated by:

20, 2a ™ a(a+ ib)
— ) S
C \/E \/a+ib\J 4, [alatit) eXp( ¢ U )
n n

T o e
) /o=

12

1 <1 _ ;Z) v &P (_2\/3mc %2) ((12 — 4d) mCa2)

8 2 C?2a3n

() Jor=
) g <; - ;Z) exp (—2 ;Zima) (12— 40) YT D)

(302)

Gathering (301) and (302), we find that for C >> 1, For a = b = |cl; — |Z — Z1||, we find for (300):

9
) _23 cos(%)C . .
LVI30 /1 \ 1 P ( i lh =12 Zl”) 2% cos (L) C
C — | —= cos lely — | Z — Z4]|
57 \V2 Clel =12 Z1]| Vi
NG
exp —M\cl 1z~ 74| .
_ o VOV2 o o [BVVRZHIC
- 57 Cleli—Z—Z4]] V1 ' '

v

In the sequel, for (A7T)2 n << 1, we approximate:

C= ln(mﬂz)z ln< 22>
J (A7m)"n (A7m)"n

Finally, the integral over u in (298) is:

T(U) .U - 1 ~ Cl1—|—|Z—Zl‘
/\/%CeXp<22(CZI+|Z_Z1))du_\/%CT( 5 du

so that, using that

T Cll—|-|Z—Z1‘ :éj—' cl1+|Z—Zl\
! 2 A 2

The result for (298) is:

Sw™ ' (1,0,2) V65 DeXp(—D\cz1 —1Z - 7))

10 (0 —1, 201 5wt (V2+1) ClehTZ=A]

X(Cl1+|Z_Zl|)T1 Cll+‘Z—Zl|
2|Z - 4|

cos (D |cly — | Z — Z4]))

[

where:
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We also write this result in a more compact form:

swl(],0,2) A

5|\Ij (0 l Z )‘2 IEGZl 7Z|,l1,w)w(J,0711,Z1) (303)
— 1,41
for % < 1, and 0 otherwise, with:
V65 D —Dlcly —|Z -7
=(2 - 7], l1,0) = exp (=D Jeh — | il cos (D|cly — |Z — Z1]])  (304)

symes (vV2+ 1)t VDl —1Z - Zi]

(Cll + |Z_Zl|)T cly + ‘Z—Zl|
212 — 7] 2

Similarly:
dw (J,0,7)

S1W(0—1y, 7))

=E2(Z1 - Z],lh, @) w (1,0 = 11, Z1) (305)

The appearance of the cos (D |cl; — |Z — Z1||) in (304) is a consequence of our approximation computing the
integral between 0 and +oco. This approximation breaks down when the cos function becomes negative. As
a consequence, for D |cly — |Z — Z1|| > T, we can set = (|2, — Z|,l1,@) ~ 0.

As stated in the beginning of this paragraph, formula (304) is similar to the case of an exponential
transfer function.

Appendix 6 Non local expansion for w (6, Z)

6.1 n-th derivatives of at |¥|* = 0
6.1.1 General formula

Based on the results of Appendix 5, we can now compute w (J,0,72), w='(J,0,Z) and their derivatives

n n, —1
_0w(0.7)  apq e (102D) It allows to compute the expansion of the effective action, and also to
[T 81w (0—1:,2:) 12 [T 81w (0—-1:,2:)I?
i=1 i=1

study the solutions of (84) without the locality assumption.

6.1.1.1 Series expansion for the first order derivative of w (0, 7) Recall that w (6, 7) is solution of

(85):
w (6 — =2l
w®,2) = F J(9)+%/T(Z,Zl) (9w(0’cz) %) .
N (g_wl(gj) %) <go o2+ (o- 52 2,) 2) iz,

Go (0,21) = Go (0, Z1) + Xo

and w™! (0, Z) is solution of:

w(o—12=4l 7
wl(9,2) = G J(0)+%/T(Z7Z1) ( 6.7 )
2
X W w(0,2) <g0(0,zl)+‘x11 (9—|Z_Zl7zl> >le
w(0- 1220 2) ¢
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To find the internal dynamics of the system we will consider J () = J, a constant external current, usually
J = 0. We use a series expansion in ‘\I/ (H(j), Z1) ’2 of the right hand side of (306) and write:

w(e(“,z) - w(9<i>,z)lwzo (307)

> 5w (J,0,2)
N 2 H|\11 1 Z)*
S\ elw 1.2
=1

[w[*=0
The first term (307), i.e. w (6%, Z)|\If\2=0’ is a solution of:
|Z— 2,
K w(@— c ’Zl) w (8, 2) .
Fl\J+—=|T(Z,Z ’ 0,71))dZ
+N/ ( I 1) (JJ(G,Z) w(9_|Z_21‘7Z1> (go( ) 1)) 1

One solution is the static frequency (88) solution of:

F (J+ %/T(Z,Zl) “:}(Zl)w < w(Z) ) Go (O,Zi)d21>

“(J.2) 2 " \ez)
F [J,w, Z]

but any time dependent solution for |¥|* = 0 is also possible. This arises for non constant current J (6).
Equation (307) is the expansion of w (G(i), Z) around this solution, the dynamics depending on |\If (Q(j), Zl) |2.

We set:
90, Z) — wo(J. 7
@ ( |w|2=0 wo ( )
in (307) has been computed in Appendix 5. It is given by:

|Z(l*1)_Z(l)|
ow(1,0,2) Z/ (” S e
51w (0 — b, 1) 0(0,20) + [ (0~ 11, Z1)*)

ow(J,0,2)

The first derivative W (0—11,21)%

(308)

7G=-1) _ 7() zU=1) _ 71
xHT 0— Z’ | ASIVACNAR 3 ) ll—Z—’ | HdZ”)
=1 ¢ =1
where:
10,2, Zyw, V)
_ (w(re-2=0l 20N - 12— 24| 2
£w(10.2)T(Z.20)W (2 g ) F 17.0.0, 2,9 (Go (0.21) + ’\1/ (9 . f,zl)‘
‘Z—Z/l /
, _ w( J,0———,Z B o 2

W2 (1,0,2) + | [ Sw (J,e - @,Z') W (w(”Z) (go 0,27 + ’\I/ (9 - LCZ',Z') ) T(Z,2')dZ'

with the convention that Z(®) = Z and Z(™) = Z,. The derivative (308) was then evaluated in Appendix
5 using combinations of K; functions, but for the purpose of the computation of the successive derivatives

of w(J,0,7), we will work, temporarily, with the general formula (308). Equation (308) yield recursively
sw(J,0,2)

61 Z)F in terms of past frequencies. Applied to the case |\If|2 = 0, the factor (309) simplifies:

T(0,2,Zy,wo) = T(0,2Z, Zywo,0) (310)

e (1,0, 2) W' (25Z5) T (2, 20) F' [J,,0, 2,91 Go 0, 2)

7))
W (7,60, 2) (f Lo (J, Z1) W (‘“0 Zl)) (Go (0,2)) T (2, 2') dZ') F'[J,w,0, Z,7]
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or in first aproximation:

T(aazazlaWOv\P) T(Z7Zhw0) (311)
%T (Z, Zl) F/ [J, wo, 0, Z] go (0, Zl)

wo (J, Z)

1

and (308) becomes:

|20-1 70|
Sw(J,0,2) ) (J 0—> 1 ,Z1>

— = ~ 312

(5@(911,21)?)@'2_0 nz_:/ Go (0, Z1) (312)

n -1 i 1
H ZM,ZU—M,Z(!),%O
C

Jj=1

|Z(l H_z

X8 |l — 29 dz®
L)

6.1.1.2 Graphical representation of the successive derivatives The n-th term in (312) can be
understood graphically as a sum over the set of broken paths with n segments, each path linking Z(—1) and

. . zU=1) _7(1) . .
Z® during a timespan of % To each point of the segment, we associate the factor:

. = 1‘2(3 DI A

(G=1) _ 7@ _
%T (Z(l—1)7Z(l )F/ [J wo, 0 — Zl 1 |Z . 4 | Z(l 1) } Go (07 Z(l))

T 9-2 AN ONAINE T
— c 0s ll
j=1 J0 Z

|Z(J 1) Z(J)| Z 1)

(313)
Ultimately, the product of factor is multiplied by the frequency at the last point:

(1=1) _ ()
o (J’e_ s IZCZ|7ZI>
Go (0, 21)

(314)

and by |¥ (0 — Iy, Z1)|>. The integrals over the points Z() and the sum over n, the length of the broken
paths, yield the first order contribution to the expansion (307).

6"w(J,0,7)

which are obtained
I1 61%(6-1:,2:)|?
i=1

The next terms in the expansion of (307) are the derivatives

|¥|?=0
by successive derivations of (308) and (309) by |¥ (6 — I3, Z5)|* and evaluated at |¥|* = 0. The [; are ordered
such that [y < ... <[,. These derivatives are obtained by differentiating either:

n (=1 _zO
. <J,9_Z\Z(:Z!7Zn>
=1

or the successive factors:

no =1 7 (-1) _ (
HT9 Z‘Z CZ |Z(l1)Z(l)w\11
=1 j=1

% using (308). Graphically it amounts to write broken lines

from Z; to Zs and associate to each broken line the factor (313), (314) and |¥ (6 — Iy, Z5)|*.

The first possibility amounts to write
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The second possibility is obtained by computing for each I:

ot (0 - iy 2, 200, 20,0,

S| (60— 1o, Z5))?

(315)
Which can be written as:

5T <92l 1|26+ 1>C Z(n‘ - 1),Z(l),w,\11>

j=1

§|W (0 — 1o, Zo)|
<—Zl 1M (=1, 70 4 )&u(J@ Zl 1|20V -2z0] A,Z’)

Jj=1 c

/dAdZ/
(J@ Zl 1260 Z<J)| A,Z’) 5|\IJ(9—Z2,Z2)|

This derivative can be described graphically by assigning to some point Z() of the initial line the factor:

5T (9 it 2920 gy g0, \p)

C

<,]9 Zl 1 |Z(J 1) Z(J)| A, Z’)

|Z(J 1) _ z(J)|
sw( Loy A7

51U (0—12,22)°
A and Z'. In first approximation, we can set A =0 and Z’, so that the factor is:

issuing a new succession of segments representing and then summing over

C

(JG Zl 1 ‘Z(J 1) Z(])| Zl 1))

5T (9 B 22;11 |26-D_20)| AG) Z(l),W,‘I/)

|o[2=0

7z(—=1) _z(3)
dw | J0-34% [zo7-20] . |,Z<H>>

5| U (0—12,Z2)]?

and the new succession of segments represents

More generally, differentiating successively T (9, Z, Z w, |\If|2 , corresponds to insert the vertices:

J=1 ¢ wo(J,6,2D)

ST (G—Zl 1 |z0D z<J)| -1, 70 \If) s (]'\‘]T(Z,Z(l))p/[J,é),wo,Z(l)]go(O,Z(l)))

~

IE[ <J9 Zl 1 |zG-n- Z(J)| N Zz) B §kwo (1,0, 20)

=1

c

|Z(J 1) Z(J)‘
Swl J,0— 21317 AL Z

with & new segments representing ISR

Gathering the two possibilities forementionned and iterating this procedures yields a graphical represen-
tation for:

57w (J,0, 7
_ w(1,0,2) H\\II Ak (316)
T161Y (6 —1i, Z)|?
=1

|w|?=0

We associate the squared field |¥ (6 — I;, Z;)|? to each point Z; . For m = 1,...,n, we draw m lines. At
least one of them is starting from Z. These lines are composed of an arbitrary number of segments and all
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the points Z; are crossed by one line. Each line ends at a point Z;. The starting points of the lines have
to branch either at Z, either at some point of an other line. There are m branching points of valence k
including the starting point at Z Apart from Z the branching points have valence 3, ...,n — 1. To each line
i of length L;, we associate the factor:

F (line;) =

~

i

1

T (20D, 20) B [j w0, — 1 1270220 g 1)] Go (0, 2)

=k

(317)

(J@ Zl 1 |Z(J 1) Z(J)| Z(l 1)>

s ZU=1) _ 7(1)
os0 i 72 )

X

NG

Go (0, 2;)

L; ZU=1) _ 7()
S|z —29] 0 (Jﬁ -4 ||Z>
— .z 7 v -
c ) ) , Wo, go (07 Zl)

j=1

and to each branching point (X, ) = B of valence k + 2 arising in the expansion, we associate the factor:

and (316) writes:

wo(J,0,Z1)

F((X,0)) = S (1,0, 200) (318)

s ( 7(2,20)F'[1,0,w0,20]Go 0, Z<l>)>

151w (0-1:.2) 1

i=1 |¥|2=0

zn: i > I F tine) H (B) ﬁ (0 —1;, Z)| (319)
m=1i=1 (liney,...,line,,) 1 =1

The integral over the branch points is implicit. The factor F'(B) for a branch point B is defined in (318)
The graphical representation is generic. While integrating over the set of lines, the degenerate case of lines

that share some segments is taken into account.

6.1.2 Approximate expression
The results of the section 5 can then be used with (319) to compute:
0w (J,0,2)
e 2
H 6|W(0—1i, Z)|

i=1

in the approximation of the dominant contribution. To each line from a branching point 6 -1}, Z} to 6 —1;, Z
(the branching point can be one of the 6 — I;, Z;) we associate a factor of the type, as in (275):

exp (_C(li —53) _’V(C(li _l;) - ‘ZJ/ _Zi|))H(Cl1 . |Z— Z1|)

B
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The dominant contribution is obtained when the set {I}, Z}} is equal to {l;, Z;} and the product over the
branching points yields a contribution whose form is:

5w (J,0, Z) e (fcln — (Z;:ll ((c (li —li41))” — | Zi — Z¢+1\2))) (320)
olwe-n.z)P

Bn

n—1 n
wo (J,0 —1;, Z;)
H (Cln - E |Z; — Zi+1|> | I TG0 (0.2)
i=1 >

=1

with Z; = Z and l,, > ... > [; and B a constant coefficient (see (276)).
Formula (266) shows that the previous computations are also valid for the derivatives of w=!(J,0,Z).
We thus obtain the generalization of (276):

5701 (1.0, 2) e (—cln —a (Z;:ll ((c(li — i) = |Zi — Zi+1|2))) o)
Mowe-1.z)P

Dn

n—1 n —1
wy ' (J,0 =15, Z;)
(oS 2 IS

i=1 i=1

The only difference is the appearance of different coefficients o and D in the expression.

6.2 Equation for w (0, 2)
6.2.1 Reordering the graphical sum (319)

We now sum the series expansion (307):

w(e(“,z) - w(e(i)’Z)W:o (322)

= "w (J,0,72 .
+/Z - OJ(, ) ) H|\p<9_lz7zz)|2
=1

n=t \ TI 6| (0—1;, ;)
=1

w|2=0

by reordering the sums in the RHS of (319).
To do so, we first compute the sum over the lines between (Z, ) and (Z1,6;) and of given length L; = n of

. -1 |Z26-D_70)| ) _
the product of factors T' | 6 — ijl — ZU=1 7MW o, W ) in F (line;) (see (317) for the definition

of F (line;)). This sum is computed in (312). We call the result G(()n) ((Z2,0),(Z1,61)), so that:

|Z(] 1)—Z()]

G ((2,0),(Z1,61)) /HT - AGRAORR

Z=1 — zO]\ 2
oo £
( () (-1 _ z0)
/HT 0 — Z L|z0-0 — 20)| | 701 70 5((9(1)_9(1—1)) _’Z”CZl’> HdZ(l)dgl

=1

with (Z©,0)) = (Z,0) and (Z™,0M) = (Z4,6,).

119



Then, we sum over the length n of the lines and the factor associated to the sum of lines, written

Go ((Z7 9) 5 (Z1,91)), 1S

Go ((Z2.6) .(Z1.61)) Z/HT o Z
(-1 _ 7]\ 7=l
5 ((,9(1) B ‘9(171)) B M) T] 4z s,

=1

|ZJ 1) (j)| 200 70

The function G ((Z, ), (Z1,01)) is a series expansion that can be summed:

-1
Go ((2,0),(21,60) =T (1-T) ~ ((2.6).(Z1,61)) (323)
with:
Lt ACES VN {0)) =1 _ z®
A (-1 gli-1) W oY) =7 [g_ ‘Z—| -1 1) W _ pa-n)_ 12170 = 20|
T((Z 9 )(z 0 ))_T 0 ; - wo 5((9 9 ) -

As a consequence, equation (319) can be rewritten as a sum over the branch points.:

w (e(i)’ Z) v (9(1)’ Z>|\p\2:0

/Z _ 6"w (J,0,72) H|‘I’ —1;, Z)Pdl;dz;  (324)
m \ T161w (0 -1, 7))
i=1

220 > G lre Tlwe-nzF

m=1i=1 (lznel, lznem)

The sum Z(
the constraint given above (317). If line; connects two branch points ((X1,61),(X2,62)), then G (line;)

Timex...Timen) is over the finite set of m segments connecting two branch points and respecting

is equal to Go ((X1,601),(X2,62)). At each branch point we insert 9Ol Z0® 214 for a terminal point

Go(0,Zk)
— . — . 2 . . ~ . — . 2
wo (0 l"gf’gélgg L2l We will normalize 1| by Go, so that |¥ (0 — Iy, Zi)|* will stand for %.

Now the sums in (324) can be reordered in the following way. We consider the lines from (6, Z) to a final
point, and sum over the branch points of valence 2 crossed by these lines, that is points crossed or reached

only by this line. We then sum the contributions over all these lines. For instance, if a line crosses only one
. -1
branch point, the associated contribution will include two propagators Gy =T (1 -T ) , one between the

initial point and the branch point, one between the branch point and the final point plus the factors inserted
at each point. Summing over all possible branch points crossed by a line yields the factor associated to the
overall sum of single lines crossing the points Zy:

Z/l_f{/ (0~ 1, 201 dZyt) T (1—T>1} 061, 2 (QJOH(O,Z) Zn)

n>0
. -1 1 wo (J,0 — 1y, Zy,
(1_T) S - 1 ‘\Il(e_ln;Z’n)'z O(G (O Z ) )
1 |¥(8,2) T(l—T) 0(0; Zn
1 QWO(Jagflnazn)
|U (0 — ln, Zn)] =
1= (14 W) T Go (0, Zy)

|
N

T

(325)

0

with Zp = Xy and Zp41 = X5 and ][] is set to 1. The [; are ranked such that: I; < ... < I We sum over
=1

all contributions of field insertions between (X1, 61) and (X2, 02) and integrate over the intermediate points.

The factor |¥|* is seen as the operator multiplication by |¥ (6, Z)|* at the point (6, Z).
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The sum (325) over the single lines is the Green function of the operator 1 — (1 + |\Il|2) T with T and

| (0 — 1, Zn)|? wo (J,0 — Ly, Zy,) inserted at the starting and ending points. This quantity can be seen as a
blOCk [()(17 91) 5 ()(27 92)]

6.2.2 Path integral formulation

Then, the series (324) can ultimately be rewritten as a sum over the number m of branch points (X;, 6;) with
valence k; > 2: we draw all connected graphs whose vertices are the branch points (X1,61) ... (X, 0,,). We
attach k; blocks to the vertex (X, 6;), the endpoint of one of them and the starting point of the others are
fixed by the vertex. To each vertex, the factor F ((X;,0;)) defined in (318) is associated. The extremities of
the blocks that are not fixed are free and integrated over, except one of them which is equal to (Z,8). Then
the series (135) is the sum over m and over all types of graphs with m vertices.

Note that the sum of graph can be computed without ordering in time the fields. It amounts to replace
(324) by:

o (69 2) —w (69, 7 :/l _O"w(],6,2) T 1w (6., 20 d6sdZ,
( ) ( )|\p\2:0 n! ; 1160 (6 L, Z)? };[1
i=1 |w|2=0

n
As a consequence, the symetry factor of equivalent graphs factored by [] |V (6, Zi)|2 and integrated over

i=1

s

i=1

where the product is over the vertices of valence ky of the graph. The factor n! comes from the exchange

n
between the vertices ] |¥ (6;, Z;)|* The ky! accounts for the exchange of the ky vertices among the same
i=1

graph.

The sum of lines connected by vertices can then be computed using the Green function W
connecting the vertices of all possible valences.

As a consequence, the generating function for the graphs is equal to the partition function for an auxiliary
complex field A (X, 6) with free Green function equal to m and interaction terms generating the
various graphs with arbitrar vertices. The free part of the action for A (X, 8) is thus:

/A(X, 0) (1 - (1 + |x11|2) T) AT (X,0)d (X, 0)

and the interaction terms have to induce the graphs with factor (318). The k + 2 valence vertex, with k > 1
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is thus described by a term involving (318) and writes:

k |z0-22] 2
5 ( (0<1 —,2M, 23w 20 — 7]
/A (Z(l)’g(l)) Az g0 127 Z 27

k+2 c
KT oo (7,60, 20))
=3

I (2000). (00.20) (3 (00.20) T (0°.2°)
O)> A <Z<2>79(1> _ M)

_20-2%] S0y S,
c ) ) )

5t <T (0<1>
/A (Z(1)79(1))

k+2
U TT S (.00, 200)

k+2 k+2
y ﬁ 7 <9<1> !Z(” - z¢ )\ <1>7Z<z)7w0> Al (9(1)’ Z<l>) a0 [ dz®

=1

Having found the free part of the action and the required vertices, the sum of all graphs (324) yields, for

WOBZIE s |0 (J,60:, )|
i=1
wo (J,6,2) + Z_: exp (—S (A)) DA
[TAY(Z,6) exp (—S (A)+ [A(X,0)wo (J,0,2)|¥ (J,0, 2)* d (X, 9)) DA
= wo(J,0,2)+ (326)
Jexp (S (A)) DA
with:
S(A) = /A(X,a) (1—(1+|W|2)T)AT(X,9)d(X,9)
sk (7 (o — 120 Z<2)| ), Z(2)
(1) g o ) ) i (g g 120 = 2]
—/A(Z 0 )Z — AT 2,00 - =—=—
: KIUTI 6%wo (1,60, Z0)
=3
k+2 71 _ Z(l)| k+2
W _ 1227 0 40 t (o0 70 4o 0
xHT(@ .20,z ,wO>A (9 Z )do 11;[1dZ
2\ o . VAR .
_ /A(z,o) (1-1w T)AT(Z,a)d(z,a)_/A(z,e)T 0 E=2 7,20, 4+ TAT
AASY
x AT <Z<1>,9 - H) dzdz™Mdg
C
where:

. zM 7z .
T (9 g,z“%z,wo +TAT>
C

. AR . AAC) AASY
T(G—H,Z(l),Z,wo (Z,9)+/T<9—‘,Z(1),Z,w0 Af Z<1>,9—g dz®
C C C
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6.2.3 Saddle point approximation
The saddle point approximation yields the equations for AT (Z,6) and A (Z, 6):

((1=19PT) A7) (2,0) = (T 201AT) (Z,0) = wo [9I* =0 (327)
A(Z,6)=0
Using that:
~ ~ wo ~
(v ) wo + TAT
equation (327) writes:
(1—|x1/|2T) At 0 PAT e |9 =0 (328)
wo + TAY
This can be rewritten as an equation for w. Actually, using (326), under the saddle point approximation:
w(J,0,2) =wo(J,0,2Z) +TA (Z,6) (329)

and:
TAN(Z,0) =w(J,0,Z) —wo (J,0,2) =Q(J,0,2)

so that (327) writes:
wo

AT —(© w? - Q=0 330
(4 0) [ = =2 (330)
Applying the operator T on the left leads to:
. . Q
Q-1(Q ]y e L 331
(@ wo) [0 — T2 (331)

Then using the expression for the background field:

Vow (J(e),e, Z,Go + \\IJO|2)
U(h,2) = Vo (0,2)
U7 (Xo)w? ((0) .60, 2,00+ |%l*)
_ ng
- U’ (Xo)wzlllo (072)
XoVed

U” (Xo) (wo + Q)°

and:
Xg Vo2

v? =
| | U (XO) (WO+Q)2

Equation (331) becomes:

2 2
O_17 H)(O VQQ QQ _ WQQ _ 7 H)(O wOV(;QQ -0
U" (Xo) (wo + Q) wo+ QU (Xo) (wo+9Q)

that is: )
g kg VoL + wof
wo + 0
Remark that this equation is still valid for any background field related to w by a relation of the type:

U* = f (w, Viw) (333)

Q (332)

which yields:

W — wo)

Q—wa(w,vlew)—fwo(w =0

The second order expansion in derivatives of the right hand side of (332) yields a second order linear
differential equation similar to the type of equation derived in the text.
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6.2.4 Solution as function of external field and series expansion

We can also write a series expansion for the solution of (327) in terms of propagation functions for an external

field [W|?. We write (327) as an operator equation:
24 7 2
(1= 0P T =T, s ) AT = o O

which leads to:
N . 1

TAY = T s wo |
V=[O T =T, s
3 1
= T 2 n = N w0|\II|
1= (14 19P) T = (T, 0 = T)
T 1
~ w0|\l’\2

1—(LHM§T1—@‘HN—T

wo
1
= A - ————wp [P
1= (Tyyanr = T) 714

where:

T
A:1<1+|\If|2>f

6.4.1 Recursive expansion of (334), first approximation
Equation (334) can be solved recursively, by expanding Two SPAT T order by order:
1
1 - (Tw0+A 1 - (—UOI\I’|2 - T) T_lA

17< )T*lA

Two+tat =T

TAT = A

wo ||

and so on. In first approximation,the series expansion for TAT is:

. 1
TAT = A4 . L1
1- (TWO+AWO|‘1,|2 - T) T-14
1
~ A - wo |U]?
T wotAw |2

or written in expanded form:

wo 2
w=wp + A Awo |V
nz>:0 ( wo+Aw0|\IJ|2>

We use (335) to write A as:
i 7 1 (tepp)7
(1) T P (1) T

Operator A is defined by successive convolutions, it can thus be approximated by:

1 (1+ (o)) 7
L (JeP) - (14 (JuP)) 7
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where % can be computed as -~ Given formulas (270), (274) and (276), it amounts to replace
the constant C' by (1 + <|\IJ\ C in the expansion of ——=

. This modifies formula (276) by introducing a
dependency in field inside the exponential function. We thus have:

—cli — a 2 e 2 2
A((Z,0),(Z1,0 — 1)) = P( " (1 Zli?\l%)z;)( ]:) e )) H(ch —|Z—2Z)  (337)

Inserting formula (337) in the expression (336) for w leads to

w(Z,0) = wo(J,6,7) (338)
= exp (—eX2f ol —a (14 (JU) ) (i () - oy B2l
—’—/Z BE+1
k=0
k
» H( (0 zz,Z)2 ) wo (J,0 — Iy, Z1,) (0 — 1y, Z0)| dZsdl;
i1 \wo (0 =i, Zi) + Awo [7(0 = 1, Zi) (1 - <|\I/|2>)
and:
w(Z,0) = wy'(J,0,2) (339)
+G [J,w,0, 2, 0] / o exp (—e i ol —a (14 (J01*)) (Sh, () - iy 2=z
"Jw,0,Z,7]

)
DFk+1

(9 . %) wo ' (J,0 =k, Z)
XH( (0 = Ui, Zi) + Awo [W]* (6 —uZi)> (1 .

()

Formula (338) can be refined by including the full series expansion of (334). In a first step we can approximate

1

— I, Z3)|? dZydl;
6.4.2 Recursive expansion of (334), full series expansion

1
N - -
L= (14 19P) T 1= (T, 00 = T) )
N 1 1
B 1+ \112) _ 7
( | m TATl_(H_l‘I/‘Q)T
so that:
) 1
TAT = A—— wo | V|
g
1— Z0TATA
g R n
Ay (5“10 TATA> wo ||
n=0 T

. . l k
oT 0T - 2
= A — —TAT
= (2 (o (o) ) wome))
k>0 1>0

wo |¥|° =
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The iteration of the previous relation amounts to the successive action of the operator:

5T
0~ [az0 2 @) ([ 41202 )o@ 0)a(2.0) (340)
6
x [ d(Z,0), A((Z,6), wo V% (Z1,01) ———
[ 420,420, 20w 8P 20,00
where m does not act on A ((Z,0),(Z,0),). As a consequence:
TAT =" O"wA|¥|* = woA\\m

n=0

with % accounting for the permutations between the powers of \\Il|2 Setting (Z,0) = X the series expansion
of TAT can be obtained as:

TAT = > > A (X %) A (K, X0 ) A (Xo, X7 wo [ WP (X]) X}
l1,...,ln,i li=n—1 fe{l,.. ’n}{l ,,,,,
=1 Ik )¢{Zl+1 Z:li}

n 1 n ) R )
< TT— x T4 X, X LAlX X AlX,. X U2 (X)) dX]
kH k! kUQ B bt ok wo [¥|” (X}) dX,
= = = =1 i=1
n 0T R
<1 %2 (x)s (k= Xse0) (341)
k=2

with the convention that for [; = 0 the successive products of convolution reduces to:
A(Xp, X3) wo |9 (XY dX'
The factors #k are defined by:

th= ik

l;i=1

The series expansion can be written in a more compact way:

MW=y 3 3 Al (X, R, Ry Xo, XT ) wo (97 (XT)dX] (342)
" bt 3 timnmt S L),
a f(k)ez{ ; Li+1,... ; z,-}

n 8T

n X n R . o A
H R CTTA™ | X Xies e X XG | wo [0 (X5) dXE x [T 22 (X0) 6 (Xk —Xf(k))
woy GRS > it popt iy T
with:
A | Xp, Xy X XL =A X X LCAlX, X |A[X. X,
Z I; +1 S Z 1;i+1 i >l
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Slf
In a second step, all the derivatives ;0 can be included and yield the series expansion:

VUSSR 3 3 Al (X, Xy Xy, Xo, X7 ) wo |97 () dX]

P n
dX .
[T LA (XX X X wol W (X)) dX;
o B bt b
- - i=1 i=1
p _oUT
0w X; ~
Xnﬁné(Xk_Xf(k)) (343)
i T k=2
The propagators A'* | Xz, X,_. s X , X}, | can be computed using (337):
> i+l >l
=1 =1
7 o (tepp) 7
A= -

1= (1) T 1+ (14 eP) T
Operator A being defined by successive convolutions, it can be approximated by:

) (1+<|\If|2>)T
+ (e )= (14 (o)) T

and % can be computed as 1_TT Given formulas (270), (274) and (276), it amounts to replace

the constant C' by (1 + <\\II|2>) C. This modifies (276) by introducing a dependency in field inside the

exponential function:

AU(Z.6) . (Z0.6— 1)) = exp (—ch -« (1 + <|\P2) ((cl1)2 -1Z - Z1|2)> Hch 17— 7)) (344)

n (342) the vertices 5““ (X x) and the wy arising in factor can be approximated by the average ﬁ and
(wo), so that (342) ertes

Q=TAT=%" %} 3 Al (X, X Xy, Xo, X1 ) 0P (XT) dX]

n X n R A . A
TR A X, Xiey e X L Xp | 1R (X0 aXgo < [0 (X — Xp 345
U gk! ,};[2 : 54 ézi k| 1917 (XG) dX, ]};[2 ( k f(k)) (345)

i=1
6.2.5 Corrections to the saddle point

The corrections to the saddle point approximation are obtained by expanding S (A, Ag + AT> around the
solution of (327) Af. Given that:
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S (A,Ag + Af) ~ /A (Z,9) (1 - |\I/|2T) A (Z,0)d(Z,0)

7 — 7Q) . 7 — 71
/A(Z 9) (9 |z-27] R AVASINAN +TA$> At (Z(U,a _lz-2%) dzdz™Mde
C

T
1 _ (1)
( < |2 Z‘ A Zwo+T(AT+AT)> T(@‘Z0| 1>Zw0+TAT>>

229

c

xAJ <Z<1>, 0 — ) dzdzMde

It yields the second order corrections to S:
S (AT,A)
s(aa)+at) =5 (0,a)

1

/A(Z, 9) (1 - |\1/\2T) A (2,0)d(2,6)

Z—zW . Z—zW
/A (2,0)T (9 lz=217] VAN +TA$> Af (Z(U,e - H) dzdzMde

c

. @ - . .
—/A (Z,0) (&uon,e)T (9 - |ZCZ‘,Z(1),Z, wo + TA0>> (TAT> (Z,0)

Z—7zW
XA} <Z<1>,9 — ||> dzdz™de
C

1 52 . |z — Z| .
_t o e T4 L
2//\(279) (mg(z,é))T(e - L ZW 7 wo +TA

TANY (2,0)) A | 2zW,0 - =—=_ 1) dzdzMag
y 2 |Z CZ(1)|

and the quadratic expansion of S is:

5 . 6T yARAC)
S (AT,A) ~ /A(Z, 0) (1 P Ty =T, a1 — #JFZT%ATT ) Af <Z<1>,9 - |C’> dzdzVde

The corrections to Ag are computed using this second order expansion of:
/TAT (Z,0) exp (—S(A) + /A (X,0)wo (J,0,2) | (J,60,2))* d(X, 9)) DA

around A = 0 and AT = A(JS as well as similar expansion of [ exp (=S (A)) DA around its minimum A = AT =
0. Given that all correlations function with a different number of At and A is null, including the first order
corrections yield the following expression for w:

w = Wy

0T

(346)

*FemsyoaT M f o (_/ AZ0) <1 (e wP) T (1 ~Toirng ~ g g M. >>

|Z - 2zM)]

x AT [ 20 g —
’ c

) dzdz® d9> DA
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The factor [exp(—S (A)) DA is computed by expanding around Ay = Ag =0:

/exp (_ /A (X,0) (1 - (1 + \\1/|2) T) A (X,0)d (X, 9)) DA
det (1 - (1 + |\If\2) TA)f1

and the equation (329) is replaced by:

-1
~ o oT,
(det (1 —~ (1 + |\Il\2) T+ (1 — T stal — aiigat AT )))
1

R

/exp (=S (A) DA

w ~ wy+TA} — (347)
det (1 - (1 + |x1/|2) T)
. ~1
. . orT, A\ 1
= wo+TAf <det <1 + (1 — T, ol — W}T%ATT ) (1= (1+w) 7) ))
Using that TwO+TA$ is of order m and:
wo + TAT
we have:
5Tw0+TA0 ~ _ wo T
owo (Z,0) (wo +TAT)2
. 5
and the factor —T,, 7y, — 4273 AYT,, arising in (346) writes:
. oT, . . Ay -
Ty iiay — RN = - 7L+ e
0 0 dwy (Z 9) wo +TA, (WO + TA?;)
- @ 7
= N2
(wo + TAI,)
and (347) becomes:
1 -1
. wo <2w0 + TAT)
w=cwo+TAL [ det [ 14 | 14— 27 (14 u*) 7 (348)
(wo + TAE))
Equation (113) is considered along with the defining equation (328) for AEF):
A= (1P + —2 ) TAS —wo |92 =0 349a
0<|| oy ) Tl (3492)

and the relation (333) between background field and frequency:

W = f (w, Viw)

We set again 2 = w — wy and we have:

-1

. 2+ Q) - i

PAL ~ Qdet {14 (14 20T D q g4 p i w7
(wo + )

129



so that applying 7" to (349a) yields:

Qdet <1+ <1+ MT (1+f(w,Vl9w))T> )

(WO—‘rQ)
= 7| | f (@ Viw) + = —
womdet(H(1+WT(1+f(w,vgw))T) )
-1
wcrdet [ 14 (14 2020 D a4 p b)) 7)) | 4 wof (@ Vi)
(WO+Q)

6.2.6 Time dependent background field
For non constant background fields, the link between ¥ (6, Z) and w™* (J 0),0,2,Go + \\Il|2) is:
U = §0 + 0,

and thus:

v(0,.7) = (Vo (370 w7 (70).6. 2.0 + 12F) ) )
2 (U// o) (90 (B w1 (10).0.2:60 + 1¥P)))

Vow (7(6),6, 2,0+ W)
(w2 (716).6,2,G0+ W) U" (Xo) = Vow (7 (6) 6, Z,Go + |9

) Vo (0,2) + ¥ (0,2)

R

)) Vo (0,2) + Vo (0, Z)

v (9,2) =¥} (60, 2)
Vow (J(e),a,z, Go + |\1/\2) (
Uy
w? (J(e),e, Z,Go + |\1/|2) U” (Xo) — Vow (J(e) ,0,7,Go + |q/|2)

|\I’(0,Z)|22|\I’0(9,Z)|2+‘1/$(9,Z) ( 072)

Equation (331) leads to:

Q—T (Q+wo) [ % (0,2)) + V] (0, 2) Qve(“’o*ﬂ) U (0,2)| —T wolt
(w0+Q) u” (XO) — Vo (wo +Q) wo + 8
At the lowest order, this becomes:
. N Q
Q=T (Q+wo) W (6, 2)) —Tw‘:iﬂ —0
~ 2 ~ WOQ T 2
Q=T (0, 2) ~ T =T (w0 ¥ (0. 2)°)
for 2 << wy, this becomes:
(1 — 7 (1 NG Z)\2>> Q=" (wo T (0, Z)|2)
with solution:
1 .
Q = T (w0 1 (6,2) ) (350)

1-7 (1 + W, (9,Z)|2)

1 T 2
— = AWO|\IIO(072)|
T (6,2)|? T
1 ‘10—(T 1
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The operator % summing over all lines between two given points has been estimated in Appendix 5.

Between two points (Z1,61) and (Za, 63) the factor associated to the sum of paths is of order:

2 2

7 exp (—0(92—01)—a<62 (02 —01)" — | Z2 — Z4| )) |Zy — Z4]

= ((Z1,601),(Z2,02)) = H|0, -0, — ———

L (2.00),(22,02) . (0200~ 1222
(351)

with o and A are some parameters and H is the heaviside function. The insertion of the field in (350) yields:

/ oo exp ( +£) (02— 61) - Zf:o %>) (352)

Ak+1

X <H/ (W (60— 1L, Zl)2ledll) wo (J,0 = L, Zi) W (0 — L, Z) |
=1

This value of 2 represents the fluctuations in frequencies due to the time dependency in potential. In first
approximation, this combines with

6.3 Extension: Excitatory vs inhibitory interaction
6.3.1 Series expansion for the frequencies

The method of section 6.2 can be extended straightforwarly in the case of two types of interactions. We will
derive a path integral description for the frequencies.

We consider n populations, each caracterized by their frequencies i = 1,...,n. They interact positively
or negatively. Each population is defined by a field ¥; and freqncies w; (6, Z). Equations for frequencies are
defined by:

0 — |Z—2Z:] Zl)
(0,2) = F, J(9)+E/T(ZZ) ’ ¢ i (353)
Wz( ) [ N )y 41 Wi (0’ Z)
(0,7 _ 77 2
< W 2 I(Z Z)I <g0j 0,21) + ‘qu (9— Ill,Zl> )dZ1
Wy (9— %,Zl) ¢

For example, if 7,7 = 1,2, a matrix g of the form:

GZ(—lg 19)

represents inhibitory interactions between the two populations. More generally, the matrix G is n X n with
coefficients in the interval [—1,1]. The sum over indices is understood for j. The resolution of (353) follows
the same principle as for (306), with a n components vector of frequencies w (J, 6, 7). Writing the series
expansion for w (J, 0, Z):

Z
w(J,0,2) = _ 5w (J,0,2) H|\p — 1, Z) (354)
r 5| (0 -1, Z)|”
i=1 [w|2=0
= (X2 2 Ilrtme][r®) | []1vE -tz
m=11=1 (liney,...,liney) 1 B 1=1
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where:
0w (J,0,2)
[161T©0 -1, 2)
i=1

(355)

|¥|?=0
and:
@ (0 — 1, Zi)|?

are considered as (1,7) and (1,0) tensors respectively, the expansion of the first order derivative is similar
to (264) and is given by:

oo n (G-1) _ 7z
( o 2) - Z/HT 0 - ZMZ”’”,Z(”,%O
S (0 =1, 2017 ) 420 n=1" 1=1 j=1 ¢

n Z(l 1) l) 7 Z(l
« (J,o— |C| Zl> ><5<zl—2|> HdZ 1

. - . AR A :
with wo a n component vector describing a solution for |¥|* = 0 and € <J, 0—> 1 ‘70|, Zl> is a

. . no 20D _z0)|
diagonal matrix with components wo; ( J,0 — ), ——, Z1 |.

For practical purposes, we also define the diagonal matrix D (|\I/\2) with |¥;|? on the diagonal. More gen-
erally, for any expression H (wm , \\I/i|2>, we define D (H (wo, |\Il|2)> the diagonal matrix with components
H (wm, |\111-|2).
The quantity € (J,0, Z) |¥|? is a vector with components w; (.J,8, Z) |¥;|*. The expressions (M> o

S| W(0—11,21)]?

~ zG=1) _7() .
and T (9 — Z; 11 ‘70| =1 zO W, O) are n X n matrices:

< 5w (J,0,2) ) B < Swi (J,0,Z) )
2 - 2
5‘\11(9 - llaZl)| |T|2=0 y 5‘\11] (9711721” [T [2=0

and:

Tij (97 Z, lea \I/)
G %w; (1,0, Z)T (Z, Z1) F] [J,w,6, Z, 9]

W2 (J,0,7) + G (f fewoy (1.0 - 12221, 2) (g‘oj (0,2') + |w; (0 - 1222, 77)

2
) T (Z,2") dZ’) F'[J,w,0, 2,V

The successive derivatives (355) in (354) are similar to (319) along with (317) and (318):

_ 6w (J,0,2) 2 Xn: i ) [T F Gine:) HF (356)
4H1 1) |\I/ (9 — li, Zz)‘ o m=1i=1 (liney,...,line,,) 1
1= U|“=0

where F (line;) is n X n, in other words a (1,1) tensor, given by:

(-1 _ 5

2 oo ( J0— ok 120020 )
_ = % 1 y0-1) 0

[F (line;)],,, = H 0 Z . AN A QNN G0 0.2

- ab

(357)
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To each branching point (X,6) = B of valence k + 2 arising in the expansion, we associate the (1,k+ 1)

tensor:
5k ( %T‘lb(zvz(l))F’[J,a,wU,Z(l)]QO(O,Z(U) )

F((X.0 wou(£0.20) 358
[ (( ) ))]abcl,..‘,ck - Swoc, (J,@,Z(l)) ~-~6W0ck (J’Q,Z(l)) ( )

We attach 1 line, coming in, and k£ + 1 lines, coming out, to each branching point. As a consequence,
the contraction of a branching point of valence k 4+ 2 and k + 2 lines yields a (1,k + 1) tensor. The factor
associated to the sum of single lines (325) crossing the points Z; generalizes straightforwardly and is given
by:

n—1

T (1 - T)fl 11 {(D (|\11 01, Zl)|2) ledll) T (1 - T)l} D <|\1/ 0 — 1, Zo)|>wo (J,0 — L, Zn))

=1

B A -1 h 1 - Qw —Iny4n
. 1 )
e (HD(W))TD(Iﬁf(e—zmzn) w0 (1.0~ 1. 2,)) (359)

6.3.2 Path integral form for the frequencies

Then, as in section 6.2, the series expansion (356) can be reordered to compute w (J, 6, Z) as a path integral
for the action of an auxiliary field (A, AT) with n components. The result is the same as in section 6.2. The
action S (A) is:

S(A) = /A(Z,e)(1—D(|\1/|2)T)AT(Z,9)d(Z,9)

1 —zm
_ /A(Z,g)jﬂ (9 _ u7 ZW . 7wy —|—TAT> AT (Z(l),g _ M) dzdzM o)
c c

where A (Z,0) is a two components vector, and AT (Z,6) is the hermitian conjugate. The frequency vector
is thus given by the integral:

[TAY(Z,0)exp (_5 (A)+ [A(X,0)D (|\m2w0 (J,0, Z)) d(X, 9)) DA
exp (=S (A)) DA

w(J,0,Z2) =w(J,0,2) + (360)

6.3.3 Saddle path approximation

The solution of (360) is obtained in first approximation by considering that AT satisfies the saddle point
approximation:

((1 D (|x1/|2) T) AT) (2,0) — (wa(wow)/\*) (Z,0) — D (|\I/|2 wo) =0 (361)
In the sequel, we will define the vector:

w(J,0,2)
w (J,0, Z)+T((|\Il|2wo))

as the vector with components:
Wy (J, 9, Z)

wi (4,6, 2) + (7 ((19P w0))).
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More generally, we will define for any F, the vector VF (w, ¥, ...) with components F (w;, ¥,, ...).
Using that:

. w(J,0,2) .
T P oy~ D = w
(J+T( ol Y| ) w<J7072)+T((‘\II|2WO)) 0
the saddle point equation (361) becomes:
_ 2\ ) At D0\t _ 2
((1 D(|\11\ )T)A ) (Z.0) D<WO+TAT)TA (Z,0) — D (wo) [¥]* ~0 (362)

Equation (362) can be used in two different ways: first by writing a non-local equation for w (J,6, Z) and
second by solving recursively (362) for an externaly-shaped background field.

6.3.4 Non local equation for w (J,0, 2)

As for the basic case, (362) can be rewritten as an equation for w. Actually, under the saddle point approx-
imation:

w(J,0,2) =wy(J,0,2)+TA (Z,6)

and:
TAN(Z,0) =w(J,0,Z) —wo (J,0,2) =Q(J,0,2)

so that (327) writes:

At — (Q+wo) [P — 0 =0
Applying the operator T on the left leads to:
Q-T(Q+w) |V =T 0 Q=0 363

where (Q + wp) |¥|? and (wa?Q) Q2 are defined as the vectors with components (€ + wo); |\Il\22 and (w:’fg) Q;
respectively.

Then we can generalize the expression (231) defining the background field with several component
U, (0,Z). We assume a stabilization potential U; for each component, with minimum X;y. Using the

notation V defined after equation (361), the expression for the vector background field becomes:

Vow (7(0),0,7,G + W[
ve,7) = V 0, (6, 2)
U7 (Xo)w? (1(0),0, 2,60+ |%l*)
. ng
V(e e-2)
X
U" (Xo) (wo + Q)
and the vector of squared norms is:
2
i = &t 0
(wo + Q)7 U" (Xo)
Equation (332) is then replaced by:
X0 Vy0 + w2
-7y | T T TET) g (364)




6.3.5 Recursive solution of (362)

Alternatively (362) can be solved recursively for a given bachground field. As in the one component field
case, we find in first approximation:
- 1 2
TAT = A - — wo | ¥ (365)
1 (T o = ) 714

1
A wo |

1-D <w0+:w00|\11\2) A

with:

~»

. ) ) (1+D(\\1/|2>)T
1- (1+D (|x1/|2))T (1 +D (|\11\2)) 1 (1+D (|x1/|2)) 7

1—T—D(|@|2)T

= 1TTZ<D(|\I'2) 1TT>"

n=0

(366)

~»

and the generalization of (344) is obtained by diagonalization of T.

6.3.5.1 Case n =2 To obtain explicit formula, we consider that n = 2, that is, there are two type of cells.
Writing:

O\ e Ty ( 1+ <|‘I’1\2> W01) —gT» (1 + (\‘1’2|2 )woz)
(1+D<|\m ))T: . ) . ,
—gT1 (1 + (l‘l’1| )wm) Tg ( 1+ (l\y2| ) w()g)
and assuming wg; and wpe changing slowly in time, we have:

(1 D (|\11|2)) T =UTpU"

. R PR R AN\ 2
3 <T1 + Ty — \/ 121Dy + (Ty - 1) ) 0
T = o R
0 LTy + Ty + (492 Ty Ty + <T1 - Tg)
1 7 7 ‘2l s 7 T 2 7
=95 | 11 — T2 —\/49°Th T2 + (Tl - Tz) T
U = A o -

7 L =T\ a2y + (T - 1)

As a consequence:

F—UD exp (—cll -« (TD) ((cl1)2 —1Z - Z1\2>)
N B (Tp)

H(clh —|Z—2Z,|) | U
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with «a (T) and B (T) are vectors. That is, given our conventions:

exp(—cll—ul(TD)((cll)Q—\Z—Zﬂz))

0
P By(T) -1 iz
T=U 0 exp(—ch—az(TD)((cll)2—|Z—Z1\2)> v H (Cll ‘Z Zl|)
B»(T)

For transfers functions T; (Z, Z1) that are proportional T; (Z, Z1) = C;Ty (Z, Z1), the change of basis yields
the diagonalized transfer function:

1 (01 +Cy—\/4g3C1Ca + (C1 - 02)2> 0

Tp (Z,7:) = Ty (Z,Z1)

0 % (01 +Cy + \/49%0102 + (C1 - 02)2>
Appendix 5.2 shows that «; (T) and B; (T ) are proportional to the averages of Ti pand 1+ TZ D, more

precisely:

(ot 1 (01 +Cy — (46301 Co + (€ — 02)2) 0
") = 0 1 (01 +C +1/463C1Cs + (C1 - 02)2>

b(5(2) 1 (01 +Cy—\J4g3C1Ca + (C1 - 02)2> 0
) 0 1 (cl +C +1/4g3C1Cs + (C1 - 02)2>

As a consequence, by multiplication with U and U~!, we find that:

| (1(f [()\Ef;)%; e (- - (140 (@m?) A((eh)? - 12 - 22?)) .
- (G 8
B = 1+27r(1+D(<\\I/|2>)>A

where the constants C and Cy are as in Appendix 4.3 to define Tl and TQ.

6.3.5.2 General case The formula of the previous paragraph generalize to a system with n interacting
components, and with have the generalization of (367):

A((Z.0),(Z1,0- 1)) ~ D ! (368)

(o ()

exp (—ca = (14D ((0F))) A ()~ 12 - 21)) H (cly — |Z — Z4))
B

X
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As a consequence, the expansion of (365) is

W(Z,0) = w(J.6,2) / < A 1exp i = (14D ((121*)) ) A ((et)” - 2=2l))

B

k=0 i=0

“D (0 — Ui, Z:) wo (1,0 — I, Z1)
wo (0 — i, Z;) + Awo |9|* (0 — 1, Z;) (1 +D (<\\1/|2>))

exp (—cl;€ - (1 +D (<|\II|2>)> A ((cli)Q _ M

B

X

)) U (0 — I, Zy,)|* dZidl; (369)

w(Z,0) = w'(J6,2)

(G zy) pigoeCe (e (o)) (r - )

F'[J,w,0,Z,7] D

k=0 i=0

D 0 —1;,2;) wo (J,0 — 1, Zy)
wo (0 — 1, Z;) + Awo |9[° (0 — 1, Z;) (1 +D <<|\Il\2>)>

(= (1D (1)) (1 -

5 )) W (0 — i, Z3,)|* dZsdl;  (370)

X

and the full series expansion is obtained as in the previous paragraph:

TAT=Y" ) > 3 Al (X,Xl,...,f(ll,Xo,Xg)w0|\1/|2(X;)dX1
np 2 i

> ri=n—1l1,...,ln, /

dXe 1T 4 . .
A [ X, Xy X

i=1 i

677T

xH‘MO ﬁ(s(xk—xf ) (371)

k=2

The corrections due to the fluctuations around the saddle point can be derived as in the previous para-

graph, but the computations will be omitted here.

Appendix 7. Dynamic equations for connectivity functions

7.1 General formula

We adapt the description of ([52]) to our context. The transfer function 7' from ¢ to j satisfies the following
equation:

Voo nT (209 (i) i (n2)) 4 (23,09 (ng) 05 (1) )) )
- —%T ((Ziyg(i) (n;) ,wi (le)) ’ (Zj, 09 (n;) ,w; (m)))
A (T ((Zi,em (ni),wi (n Z)) (Z 09 (n;),w; (nj)))) 5 (9( D (ny) — 09 (n) — |Z—ZJ>



where T' measures the variation of 7' due to the signals send from j to 4 and the signals emitted by 7. It
satisfies the following equation:

Vo T ((zl,e( (ne) i (), (25,09 (ny) . w; (ny)) ) (373)
= 08 (09 ) — 09 ) - 51

c

{(h(Z Z) —T ((zl,o ), w (n,;)) , (zj,eu') (n;) ,w; (nj)))) C (9@) (n— 1)) he (wi (1))
-D (9(1 n—1) ) (( 1,9( i) (n;), w; (nl)> , (Zj,e(j) (nj),w; (%))) hp (w; (”3))}

where he and hp are increasing functions. We depart slightly from ([52]) by the introduction of the function
h(Z,Zy) (they chose h (Z,Z1) = 1), to implement some loss due to the distance. We may chose for example:

h(Z,Z,) = exp <_M)

vc

where v is a parameter. Equation (373) involves two dynamic factors C' (8 (n — 1)) and D (; (n — 1)). The
factor C (9(’) (n— 1)) describes the accumulation of input spikes. It is solution of the differential equation:

(0% (n- 1)

TC

t+ac (1= (09 (0 -1)) ) w; (zj,e@ (n—1) - 'Z_ZJ>

c

Vo (n-1)C (0(2‘) (n— 1)) = (374)

In the continuous approximation, the solution of (374) is:

) 9@ (n — 1) — (@) 6 (n—1) 7. 7.
C(G(Z)(n—l)) - /exp<—<< (n—1) )+ac/ w; (Zj,e’—| ! J>d9’
TC pG) c

e, <Zj,9<i>/ _ |Z—ZJ|> 2000

c

If a static equilibrium wy (Z;) exists, expanding around this equilibrium leads to approximate the integral:

0.
’ Ly — 4
/ W (Zj,QI — |C]|> d@’

wo (Z;) (9(” (n—1) - 9(i>')

C (Q(i) (n— 1)) = /exp <— (TIC + acwo (Zj)) (Q(i) (n—1)— 0(1‘)1)) (375)
X (CO +wj (Zjﬁ(i)' - WCZJ')) dv),

The term D (6; (n — 1)) is proportional to the accumulation of output spikes and is solution of:

D (69 (n —1))

™D

by the quantity:

so that:

Vo m_n)D (9@') (n— 1)) _ +ap ( (9@) (n — ))) wi (Z) (376)

In the continuous approximation, the solution of (376) is

D (G(i) (n— 1)) = /eXP <— (Tl +apwo (Z )) (9( K (n—1)- 9(71)/)) (Do +w; (Ziﬁ(i)/» o’ (377)
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As a consequence, the dynamics for transfer functions is a set of two equations:

= (2069 o) (m0)) (2,09 (my) 5 (my))

and:
Voo T ((Zi,e(i) (ni) , w; (ni)) : (Zj, 09) (n;) ,w; (nj))) (379)
— 6 (gm( )= 09 () — |Z—Z|)
<{(n(2.20) =T (2.6 (n) w1 (1)) (25,09 (n3) 5 (n7)) ) ) € (67 (= 1)) he (wi ()
(9(” )T((Z 0" (ni) ,w; (nz)) : (Zj79(j) (nj),w; (W))) hp (w; (nj))}
with C (6@ (n — 1)) and D (§< 9 (n — 1)) given by (375) and (377).

The field translation of (37
action for the field:

8) and (379) is obtained by including the following potential terms in the

T((Zﬂ,w) ) <Z17917w1>)

/ (veT((Z,e,w) (Z1,01,01)) + : (380)
) (T((Z,G,w) , (Zl,Hl,wl))) 5 (a — 9 — Z‘f“))
X | W (8, Z,w)|* | (01, Zy,w1)|
corresponding to (378) and:
/ <veT((z,o,w> (Z1,01,01)) = po (9“” ()~ 69 (ny) ~ 2 CZ”> (381)

<{(1(2,20) =T (2.0,0),(21.01,1))) C (0,2, 21) he () = D (6, 2) T ((2.6,0) ,(Z1,61,61)) hp (w1) })
X |W (0, Z,w)|* |V (61, Z1,w1)|°

for (379), with C (0, Z,Z) and D (0, Z) are defined as:

C(0,2,2)) = /9 exp (— (Tlc + acwo (zg) = 9')) (co +w (Zl,a’ - 'Z_CZ”» 49

D0, 7) = /6 exp (— (; + apwo (Z)) 0 9’)) (Do +w(Z,0)) do’

For
1
¢ (Z1) = —4acwy(Z) <1
TC
1
TD(Z) = f—i-Oszo(Z)<1
TD

and if the transfer function adapts slowly with respect to w(Z,6), we can simplify the expressions for
C(6,Z,7Zy) and D (0, 2):
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C(0.2,2) = C(z1)= W

1

D6, 2)

After projection on the dependent frequency states the transfer functions become functions 7' ((Z, 9) , (Z1,61))
and T'((Z,0),(Z1,01)) respectively. Moreover, we can simplify the action by finding the configurations for
T((Z,0),(Z1,601)) and T ((Z,0),(Z1,01)) that minimize the potential terms (380), (381). It corresponds to
set:

T((Z,H,w) , (21,017601))

0 = VT ((Z,0,w),(Z1,61,w1))+ i )
- (T((Z’9>W) ’ (21791,w1))) 5 (9 — 0, — IZ—CZ1|)
and:
( [ (4) G) |Z — 74|
0 = (VT ((2,0,0),(21,01,01)) — po (9 n)— 09 () — =20 .

< {((2,20) = T (2,6,0),(Z1,601,1))) C (6,2, Z1) he (@) = D (6, 2) T ((Z,6,0) ,(Z3,61,01)) b (1) |

We look for solutions of the form:

T <Z,9,Z1,9 - |Z_CZ1|> = T(Z6,7)

T (2,9,21,9 - 'Z_Z”) = 1(2,0,2))

C
so that T'(Z,0, Z,) and T (Z,0, Z,) satisfy:

(2,0, 7,)

Vol (Z,0,7,) + (T — X\ (2,9, Zl)) =0 (384)

Vol (Z,0,7,) (385)
= ((h(z, 2) = T(2,0,21)) C(Z1) he (0 (2,0) = T (2,6, 21) D (Z) hp (w (Zhg _ IZ—le))>

¢
Using (384), we replace T'(Z, 6, Z;) in (385):

VGT(Zaaazl) T(Zve,Zl)
+
A AT

T(Z707zl) =

and we arrive to the differential equation satisfied by T (Z,0, Z1):

VaT(Z9:20) | 11 () V4T (2,6, 2:) + Us () T (2,8, 1) = pC (Z2) h(Z, Za) he (w0 (Z,6)  (386)

A

where:
0w = (545 (c@newazn @ (o (ze- 240
) = £ (C@he @@+ o@m (o (z0-E20))
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If we consider that the transfer function varies slowly compared to the oscillations of the thread, we can
approximate (386) by a quite static equation:

Uz (W) T(2,0,21) = pC(Z1) h(Z, Z1) he (w (Z,0))

whose solution is:

ATC(Z1) h(Z, Z1) he (w (2, 9))

T(2.0,21) = .

| ) C(Z1)he (w(Z,0))+D(Z) hp (w (Zl,e_@)) (387)
>\Th (Za Zl)

D(z) o (w2 0- 22
L+ 52 — hew@en

12

Thus T (Z,0, Z,) is a decreasing function of w (Zl, 0 — @) and an increasing function of w(Z,0), as
hypothesized in the text. The fully static solution associated to (387) is:

Ath(Z,Z1)

1 4+ D(Z) hp(wo(Z1))
C(Z1) he(wo(Z))

Tv(Z,7,) =

7.2 Linearized dynamics

We conclude this section by giving the linearized version of (386) around the static solution (wg (Z), Ty (Z, Z1)).
It is:

ViT (2,0, 71)

0 \ +U1 (WO) VQT (Z,9, Zl) +U2 (UJ())T(Z,Q, Zl) (388)
C () <1 . T<fZ>) W (w0 (2)) 9(2,6)
SBEZ) (21, w20 (22,0~ 2221
where:
Uiln) = 5-+5(C () he (w0(2)+ D (2)ho (w (7))
Ua(wn) = 5= (C(Z1) he (wn (2))+ D (Z) hp (w0 (2))))
Ath (Z, Z4)
T (Zv Zl) = w 1
i L+ S i)
n2.2) = 2T
T(2,0,2)) = T(Z’e’fz)z_zﬁ) 2. 2)
0(Z,0) = w(Z,0)—w(2)
for wo (Z) = wo, this reduces to:
w—FUl (LL)Q) VQT(Z,9721)+U2 (M)T(Z,G,Zl) (389)
Ty (Z, Z1) D (Z) W, (wo) @ (21,6 — Z=2l
- ! b o) DiTO) ( - ) + pC (Zy) <1T0(f;Z1)> he (wo) Q(Z,0)
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where:

1
U (w) = ;+§(0hc (wo) + Dhp (wo))
Us (W) = %(Chc(onth(wo))
ATh (Z7 Zl)
T0(Z,Z,) = 41 | D hn(wo)
C hc(wo)
c = Co+w0
- I
D o DO +w0
- e

which can also be written, up to the second order in derivatives:

V2T (Z,0,71)

2 +U1 (CU())VQT(Z,H, Zl)+U2 (w)T(Z,G,Zl) (390)
_ (pC’(Zl) B (wo) — pTo (Z,2,) (D (2) hl/:))\(Two) + C(21) he (wo)) Q(2,0)
pTo (2. 21) D (2) hip (wo) (E22V00(2,6) - L35 Lv30(2,0) - E220vE0(2,6)
_|_
AT

Then, to separate the dependences in time and position, we define:

T(Z,0) = /h(Z,Zl) T(Z’Q’ZZ”
2(+) +3a
() = — n2,2)C (%)
(%) v
_ 1
Co(2) = — [nzz)c@n(z2)
(%) oo
To(Z) = ! - /h(Z, Z) Ty (Z,Z7)
(%) a0
and T (Z,0) satisfies:
w+U1 (WO)VGT(Z,9)+U2 (w)T(Z,G)
_ (pc Dt () - LL DTV () + o) g <w0>)>Q 2.0)
+pD (Z2) Wy (wo) (T1Ve(Z,0) — (T1VEQ(Z,0) + PT2V%Q(Z,0)))

AT
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