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ABSTRACT: An expedient synthesis of a new family of configurationally stable dioxa[6]helicenes was established using a sequential
helicoselective organocatalyzed heteroannulation/eliminative aromatization via enantioenriched fused 2-nitro dihydrofurans
featuring both central and helical chiralities. Starting from simple achiral precursors, a broad range of these previously unknown
chiral heterocyclic scaffolds were obtained with good efficiency, and their aromatization proceeded with very high enantiopurity
retention in most cases.

Helicenes are ortho-fused polycyclic aromatic compounds
angularly arranged in a more stable screw-shaped

conformation resulting in an inherent helical chirality.1

Compared to carbohelicenes,2 the presence of one or more
heteroatoms in a chiral nonracemic helix induces structural
modifications, significantly affecting their configurational
stability and usually resulting in enhanced or more specific
properties. Hence, heterohelicenes have been revealed as
promising scaffolds for numerous recent developments, such as
catalyst design and their utilization in enantioselective
reactions;3 molecular recognition;4 material sciences, including
cryptography,5 light-emitting devices;6 spin filters;7 molecular
machines;8 and some biologically active agents.9 However,
these developments are hampered because of the lack of
general synthetic approaches to optically active derivatives, and
only a few direct metal-catalyzed approaches have been
proposed within the past decade.10 Therefore, the design of
innovative and widely applicable enantioselective strategies to
access new families of chiral nonracemic π-conjugated
heterohelicenes is highly desirable.
In 2014, List’s group reported the first and still unique

enantioselective organocatalytic approach to azahelicenes
(Scheme 1a).11 This elegant chiral phosphoric acid-catalyzed
(CPA) enantioselective Fischer’s indole synthesis probably
involves a central-to-helical chirality conversion through the
transient generation of two sp3-stereogenic centers. The
following heteroaromatization leads to a series of new
configurationally stable nonaromatic indolohelicenes with
moderate to good enantioselectivities. On the basis of our
recent interest in the synthesis of axially chiral 3-arylfuran
atropisomers,12 we devise a new expedient helicoselective
access to hitherto unknown helically chiral fused furans
(Scheme 1b). We thus reasoned that the use of an extended
aromatic bis-nucleophile 1 in combination with a chloroni-
troalkene 2, in the presence of a bifunctional organocatalyst
(cat*), would give the centrally and helically chiral fused
dihydrofuran 3 through an unprecedented helicoselective
Michael/O-alkylation heteroannulation sequence. The follow-

ing aromatization by elimination of nitrous acid would provide
the corresponding dioxa[6]helicene 4 with conservation of the
helical chirality.
The required helical configurational stability is anticipated to

be secured by a remote steric effect of the bulky aryl group at
the 3-position of the furan ring of both 3 and 4, ensuring
increased barriers to diastereo- and enantiomerization,
respectively.13 In the case of helical dihydrofuran 3b (R =
H), this crucial effect is clearly described by our DFT
calculations, showing a kinetically affordable but thermody-
namically impossible diastereomerization (Figure 1). Indeed,
the diastereomer (P,S,S)-3b with an inverted helix is 40 kJ/mol
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Scheme 1. Enantioselective Organocatalytic Approach to
Azahelicenes and Our Proposal to Dioxahelicenes
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less stable than the (M,S,S)-3b, with a transition state at only
69 kJ/mol. Hence the “return barrier” from (P,S,S)-3b to
(M,S,S)-3b is as small as 29 kJ/mol, arguing for the totally
helicoselective formation of (M,S,S)-3b upon heteroannula-
tion.
In the case of the targeted dioxa[6]helicenes 4, the

importance of the remote steric effect is corroborated by
comparison of their configurational stability with the
corresponding carbo[6]helicene (Figure 2). The presence of

two five-membered furan rings results in a more open helical
pitch14 responsible for a much lower barrier to enantiomeriza-
tion of ΔG⧧ = 71 kJ/mol for configurationally labile
unsubstituted dioxa[6]helicene 4a compared to the exper-
imental ΔG⧧ = 151 kJ/mol that we computed at ΔG⧧ = 155
kJ/mol for stable carbo[6]helicene.15 Gratifyingly, a strong
beneficial remote steric effect of the phenyl substituent at the
3-position of the furan ring in 4b increases the barrier to
enantiomerization up to ΔG⧧ = 137 kJ/mol, corresponding to
a half-life of about 7 days at 100 °C, arguing for a high
configurational stability.
With these encouraging observations validating our initial

conceptual approach, we started our investigations using
dinaphthofuranol 117 as the bis-nucleophile with chloroni-
troalkene 2b (Ar = Ph) in the presence of the bifunctional
quinine-derived squaramide organocatalyst, and the use of
weak base (K2HPO4, 2 equiv) was necessary to trap HCl
formed in situ (Scheme 2, Cat*). We were delighted to observe
the smooth formation of the desired dihydrofuran 3b in 63%
yield and 96% ee, and only one diastereomer could be detected
in the crude reaction.

With optimized reaction conditions in hand (see the
Supporting Information for details), we next explored the
generality of this new domino organocatalyzed helicoselective
synthesis of dihydrofurans 3. Substituents at the para-position
of the phenyl ring were all compatible with this protocol as
well as a naphthyl group, affording the corresponding products
with excellent stereocontrol (3c−i and 3l, 93−99% ee), even if
the yield was moderate in the case of the 4-methoxyphenyl
group (3i, 51% yield). Substituents in the meta (3j,k) position
of the phenyl ring were also tolerated with slightly diminished
yield, but again, excellent enantioselectivities were observed.
Chloronitroalkenes bearing heteroaryl rings such as furan,
thiophene, and benzothiophene behave with comparable
efficiency, with good yields and excellent enantioselectivities
(3m−o).
To ascertain the expected helicoselectivity resulting in the

simultaneous control of central and helical chiralities, we
needed an accurate assignment of the relative and absolute
configurations of the chiral dihydrofurans. Because no
exploitable crystals could be obtained, we tackled this key
point by a complete chiroptical spectroscopy study with 3d
combining vibrational and electronic circular dichroisms (VCD
and ECD) with density functional theory (DFT) calculations
(see the Supporting Information for details).18

A good agreement between experimentally recorded VCD
and ECD spectra of 3d and the simulated VCD and ECD
spectra of the (M,S,S)-3d enantiomer allowed the determi-
nation of the absolute configuration of 3d as (M,S,S).
To the best of our knowledge, this represents the first

example of simultaneous control of central and helical
chiralities by a catalytic chemical transformation19 offering
unprecedented chiral platform molecules for the synthesis of a
new family of heterohelicenes.

Figure 1. Computed diastereomerization of 3b.

Figure 2. Barriers to enantiomerization for carbo[6]helicene and
representative dioxa[6]helicenes 4a,b. aExperimental value.16 bCalcu-
lated values with the PBE0 DFT method.

Scheme 2. Reaction Scope for the Dihydrofuran Synthesis

aSimulated structure of 3d.
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For this endeavor, we next explored the aromatization step,
via a simple base-promoted elimination of HNO2.

20 After a
short optimization (see the Supporting Information for details)
the use of DBU as a strong organic base in THF at 100 °C for
20 min under microwave irradiation was required. Most
importantly, under such relatively harsh conditions, the
aromatization proceeded with very high enantiopurity
retention in most cases, leading to a broad range of highly
configurationally stable dioxa[6]helicenes (Scheme 3).

A simple phenyl group (4b) or para-substituted aryl groups
(4c−i) are suitable, affording good to excellent yields as well as
excellent retention of the helical stereogenic information (94−
100% retention). The presence of a substituent in the meta
position or a 2-naphthyl group gave the corresponding
products (4j−l) in good yields but with slight erosion of the
enantiopurity (79−83% ee). Interestingly, smaller heteroaryl
groups such as furan and thiophene could be introduced at the
peripheral region of the final helicene (4m and 4n, 80% ee and
78% ee, respectively) with a more efficient helical retention for
the bulkier benzothiophene (4o, 92% ee).
The same complete chiroptical spectroscopy study (VCD,

ECD, and DFT) with 4d as model compound allowed the
definitive determination of its absolute configuration as (M)-
4d (see the Supporting Information for details).
Considering the high configurational stability of dioxa[6]-

helicenes 4, we are confident that they could serve as synthetic
scaffolds for further post-transformations. This is illustrated by
converting 4d to the biphenyl derivative 4h via Suzuki cross-
coupling reaction with phenyl boronic acid (Scheme 4).

Expectedly, 4h was isolated in excellent yield, and the
enantiopurity was retained even after prolonged time at 110
°C, accounting for a very high barrier to enantiomerization for
this class of compound.
From a mechanistic point of view, the aromatization with

conservation of the helical chirality raises some questions
whether it follows a syn- or an anti-elimination (Ei vs E2). First,
the recent base-promoted atroposelective aromatization
involving a syn-elimination of HNO2 at room temperature21

was discarded, because DBU at room temperature or up to 60
°C was revealed to be inefficient (see the Supporting
Information for details). Moreover, in a control experiment,
compound 3c was heated in toluene (MW, 100 °C, 30 min)
without DBU leaving it unchanged, which also excludes a
thermal Ei elimination.
With these experimental observations, an alternative base-

promoted E2-type mechanism was envisaged. The cis relative
configuration between the nitro group and its β-hydrogen
atom in (cis)-3 (Scheme 5) would then require a prior

epimerization to (trans)-3 via nitronate intermediate A.
Compound (trans)-3 would subsequently undergo a rapid
aromatization via DBU-promoted E2-elimination of HNO2.
Finally, as an even more challenging goal, we tried to use the

present method for the enantioselective synthesis of oxa[5]-
helicenes (Scheme 6). Hence, from benzo[c]phenanthren-2-ol
5 and 2c in the presence of the bifunctional organocatalyst
(cat*), we were delighted to observe the helicoselective
formation of 3p in 41% yield as a single diastereomer with high
enantiopurity (91% ee). This shows that the remote steric
effect of the p-chlorophenyl group is powerful enough to bring
configurational stability even to oxa[5]helicenes, with similar
diastereomerization profile as compared with 3b (see the
Supporting Information, p SI-104). The following aromatiza-

Scheme 3. Scope of the Synthesis of Dioxa[6]helicene

aSimulated structure of 4d.

Scheme 4. Synthetic Transformation of 4d

Scheme 5. Mechanism for the DBU-Promoted E2-
Elimination
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tion step allowed access to the desired oxa[5]helicenes 4p
(39% yield), albeit with complete racemization, under these
conditions (100 °C, 20 min). Its relatively low barrier to
enantiomerization experimentally determined at 103 kJ/mol
(see the Supporting Information) and confirmed by theoretical
calculations (ΔGcalc

⧧ = 109 kJ/mol, see the Supporting
Information) explains the fast racemization under these
reaction conditions. Further investigations are needed to
increase the enantiomerization barrier of this appealing family
of oxa[5]helicenes.
In conclusion, we have developed an expedient synthetic

access to a new family of configurationally stable dioxa[6]-
helicenes from simple achiral precursors. The helicity is created
and controlled during an organocatalyzed domino Michael/C−
O alkylation step, which delivers 2-nitrodihydrofurans featuring
both two stereogenic carbon atoms and an helical shape.
Interestingly, this represents the first case of a catalytic
chemical transformation in which both central and helical
chiralities are controlled simultaneously from simple achiral
substrates. The required configurational stability, even in the
challenging oxa[5]helicene series, is secured by a remote steric
effect ensuring kinetically affordable but thermodynamically
impossible diastereomerization. This approach offers unprece-
dented chiral platform molecules for the synthesis of
enantioenriched heterohelicenes by simple base-promoted
elimination of HNO2 with excellent conservation of the helical
information in most cases.
Calculation Details. All the calculations were performed with

Gaussian22 at the PBE0/def2TZVP//PBE0/def2SVP level23

and included the “GD3” Grimme correction for the
dispersion.24 Hence, a single-point energy calculation with
the def2TZVP basis set was performed on top of a PBE0/
def2SVP optimization and frequency calculation.
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(11) Kötzner, L.; Webber, M. J.; Martínez, A.; De Fusco, C.; List, B.
Asymmetric Catalysis on the Nanoscale: The Organocatalytic
Approach to Helicenes. Angew. Chem. 2014, 126, 5303−5306.
Angew. Chem., Int. Ed. 2014, 53, 5202−5205.
(12) (a) Raut, V. S.; Jean, M.; Vanthuyne, N.; Roussel, C.;
Constantieux, T.; Bressy, C.; Bugaut, X.; Bonne, D.; Rodriguez, J.
Enantioselective Syntheses of Furan Atropisomers by an Oxidative
Central-to-Axial Chirality Conversion Strategy. J. Am. Chem. Soc.
2017, 139, 2140−2143. (b) Bao, X.; Rodriguez, J.; Bonne, D.
Bidirectional Enantioselective Synthesis of bis-Benzofuran Atropiso-
meric Oligoarenes Featuring Two Distal C−C Stereogenic Axes.
Chem. Sci. 2020, 11, 403−408.
(13) The remote steric effect can be defined as the introduction of
substituents at one or both termini of the helicenes’ fjord region,
significantly increasing their configurational stability. For pioneer
examples, see: (a) Newman, M. S.; Wise, R. M. The Synthesis and
Resolution of l,12-Dimethylbenzo[c]phenanthrene-5-acetic Acid. J.
Am. Chem. Soc. 1956, 78, 450−454. (b) Newman, M. S.; Mentzer, R.
G.; Slomp, G. The Synthesis, Nuclear Magnetic Resonance Spectrum,
Resolution, and Rate of Racemization of l-Fluoro-12-methylbenzo
[c]phenanthrene. J. Am. Chem. Soc. 1963, 85, 4018−4020. For
selected more recent examples, see: (c) Delgado, I. H.; Pascal, S.;
Wallabregue, A.; Duwald, R.; Besnard, C.; Gueńeé, L.; Nanco̧z, C.;
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