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ON EVOLUTION EQUATIONS FOR LIE GROUPOIDS

JEAN-MARIE LESCURE AND STÉPHANE VASSOUT

Abstract. Using the calculus of Fourier integral operators on Lie groupoids developped in

[18], we study the fundamental solution of the evolution equation ( ∂
∂t

+ iP )u = 0 where P is

a self adjoint elliptic order one G-pseudodifferential operator on the Lie groupoid G. Along

the way, we continue the study of distributions on Lie groupoids done in [17] by adding the

reduced C
∗-algebra of G in the picture and we investigate the local nature of the regularizing

operators of [32].
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1. Introduction

The main motivation of this paper is the construction of an approximate solution to the

problem

(1)




(
∂

∂t
+ iP )u = f

u(0) = g

in the framework of a Lie groupoid G ⇒ M . This means that P here is a suitable order 1

pseudodifferential G-operator, that f, g live in suitable spaces of distributions and that the

approximate solution will be seeked among Fourier integral G-operators. The present article

can be considered as a continuation of [17], where properties of distributions on Lie groupoids,

and convolution of them, are studied in a certain generality, and of [18], where Hörmander’s

notion and calculus of Fourier integral operators on manifolds [11, 12] are exported to the

framework of Lie groupoids. We will frequently refer to the results of these papers, and one of

their cornerstones, namely the symplectic groupoid structure of T ∗G [6]: s
Γ
, r

Γ
: Γ = T ∗G⇒

A∗G, will be of great importance here again.
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2 JEAN-MARIE LESCURE AND STÉPHANE VASSOUT

The Cauchy problem (1) has been and can be of course investigated in many situations

under many different assumptions. We refer more precisely to [12, Theorem 29.1.1] to illus-

trate the kind of results that we want to achieve on Lie groupoids. This can be summarized

by the following problem:

(P) Under an ellipticity assumption on P , the fundamental solution of (1) should have, up

to suitable regularizing error terms, an explicit approximation by Fourier integral G-operators

that describes in a simple and geometric way how the singularities of the initial data g prop-

agate at time t under the action of the principal symbol of P .

To set the problem on firm foundations, we first study in Section 3 existence and unicity

conditions for (1) in the general framework of C∗-algebras and Hilbertian modules, and

we require there that P is an unbounded self-adjoint regular operator on a C∗-algebra A

[2, 3, 33, 13, 32, 30]. Then the fundamental solution of (1) denoted by E(t) = e−itP is

obtained by continuous functional calculus, which yields the existence of solutions, while

easy computations identical to those for Hilbert spaces show the uniqueness. We get in

particular:

Theorem 1. Let A be a C∗-algebra, let H be a Hilbertian A-module and P be a selfadjoint

regular operator on A. Let H∞ = ∩k dom P k. Then for any f ∈ C∞(R,H∞) and g ∈ H∞,

the Cauchy problem (1) has a unique solution in C∞(R,H∞), given by

(2) u(t) = e−itP g +

∫ t

0
ei(s−t)P f(s)ds.

This preliminary result allows us to speak about the fundamental solution of (1) in the case

of a Lie groupoid G with compact units space M and of a first order elliptic symmetric and

compactly supported, polyhomogeneous pseudodifferential G-operator P . Indeed, we then

know by [32] that (the closure of) P is selfadjoint and regular on, for instance, the reduced

C∗-algebra of G, denoted by C∗
r (G). In particular, the theorem above applies and the task

to find a nice approximation to E(t) among Fourier integral G-operators is meaningful. Note

that, because of (2), the error term will automatically belong to the spaceH∞ = H∞∩(H∞)∗.

Our answer to the problem (P) is the main result of the paper:

Theorem 2. There exists a C∞ family Λt ⊂ T ∗G of G-relations and a C∞ family of com-

pactly supported Fourier integral G-operators U(t) ∈ I(n
(1)−n(0))/4(G,Λt; Ω

1/2) such that :

(3) (
∂

∂t
+ iP )U(t) ∈ C∞

c (G,Ω1/2),

and for any t, we have: E(t)− U(t) ∈ H∞.

Let us now explain in some details the ingredients and the intermediate results, some of

them being interesting on their owns, required in the proof of the main theorem.

First of all, Theorem 2 immediately rises the preliminary question of the regularity of

elements in H∞. Strictly speaking, elements of H∞ live in a noncommutative C∗-algebra so

dealing with their local properties makes a priori no sense. We manage on the one hand to

prove that elements of the reduced C∗-algebra C∗
r (G) of a Lie groupoid G are distributions

on G, in a canonical way, and on the other hand, to precise the regularity of elements in

H∞. These intermediate tasks are the subject of Sections 4 and 5 and the details can be

summarized as follows.
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The space of distributions we deal with, denoted by D′(G), is the one of distributions on

G with values in the density bundle Ω1/2 := Ω1/2(r∗AG) ⊗ Ω1/2(s∗AG) and thus the space

of test functions we use, denoted by D(G), is the one of compactly supported C∞ sections

of the density bundle Ω
1/2
0 := Ω−1/2 ⊗ Ω1

G. Thus D′(G) = (D(G))′ and the choice of Ω1/2

is relevant because C∞
c (G) := C∞

c (G,Ω1/2) ⊂ D′(G) is in a canonical way an involutive

algebra, whose a certain completion is precisely the algebra C∗
r (G). Also, we have proved

in [17] that the product ⋆ in C∞
c (G) (called the convolution product for obvious reasons)

widely generalizes, by continuity, to distributions in D′(G). For instance the space E ′
r,s(G) of

compactly supported distributions on G whose pushforwards by the source and range maps

are C∞ onM (transversal distributions) forms a unital involutive algebra for the convolution

product. Another justification for these choices of densities comes from the present work,

indeed we prove that transversal distributions also act by convolution on D(G) in a nice way,

and that weak factorizations in the sense of [10] are available:

Theorem 3. Let 〈·, ·〉 denote the pairing D′(G) × D(G) → C and ι the inversion of the

groupoid.

(1) ∀(u, ω) ∈ D′
r,s(G)×D(G), 〈u, ω〉 = 〈ι∗u, ι∗ω〉 = 〈δM , ι∗u ⋆ ω〉.

(2) The space D(G) is a bimodule over E ′
r,s(G) and:

∀u, v ∈ E ′
r,s(G),∀ω ∈ D(G), 〈u ⋆ v, ω〉 = 〈v, ι∗u ⋆ ω〉 = 〈u, ω ⋆ ι∗v〉

(3) Let ω ∈ D(G). For any neighborhood V of M into G , on can write ω as a finite sum

of elements ξ ⋆χ where ξ ∈ C∞
c (G), supp(ξ) ⊂ V and χ ∈ D(G), supp(χ) ⊂ supp(ω).

This material allows us in Section 5 to answer to the question about the local nature of

elements in H∞, and along the way, that of elements in C∗
r (G):

Theorem 4.

(1) There is a continuous embedding C∗
r (G) →֒ D′(G). This embedding extends the pairing

〈·, ·〉 between C∞
c (G) and D(G).

(2) The inclusions C∞,0
orb (G) ∩ Cc(G) ⊂ H∞ ⊂ C∞,0

orb (G) ∩ C∗
r (G) hold true.

Here C∞,0
orb refers to the space of continuous functions on G that are C∞ on the

subgroupoids GO = s−1(O), as well as all their derivatives along the fibers of s and

r, for every orbits O = r(s−1({x})) in M .

Next, we explain how the principal symbol p of P gives rise to the family of Lagrangian

submanifolds Λt, t ∈ R, that will describe the propagation of singularities as expected in

Problem (P). By definition, P ∈ I1+(n(1)−n(0))/4(G,M,Ω1/2) is a polyhomogeneous conormal

distribution, thus posseses a homogeneous principal symbol p00 ∈ C∞(A∗G\0). If one consid-
ers the family (Px)x∈M of ordinary pseudodifferential operators in the fibers of s and collects

their principal symbols into a homogeneous function p0 ∈ C∞(T ∗
sG \ 0), T ∗

sG = (ker ds)∗,

that will be called the principal G-symbol of P . After lifting p0 to a function on T ∗G\ker r
Γ
,

one gets the following identity:

∀(γ, ξ) ∈ T ∗G \ ker rΓ , p(γ, ξ) = p0(rΓ(γ, ξ)).

Here rΓ is the range map of the symplectic groupoid Γ = T ∗G. The computations also give

a local expression for the sub-principal G-symbol of P , that is, for the collection of the sub-

principal symbols of the operators Px. Now it turns out that the Hamiltonian flow χ of the

principal G-symbol p is complete and right invariant, and we get the required Lagrangian
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submanifolds that will describe the evolution of singularities:

∀t ∈ R, Λt = χt(A
∗G \ 0).

This already produces a C∞ family of homogeneous Lagrangian submanifolds of T ∗G\0 that

satisfies the group relation, with respect to the product in T ∗G:

Λt.Λs = Λt+s.

Moreover Λt ⊂
.

T ∗G := T ∗G \ (ker rΓ ∪ ker sΓ), that is, in the vocabulary of [18], every Λt is

a G-relation, while the global object coming with the family (Λt)t:

Λ = {(t, τ, γ, ξ) ; τ + p(γ, ξ) = 0, (γ, ξ) ∈ Λt} ⊂ T ∗
R× T ∗G

is a family R ×G-relation. As in [18], this construction highlights the important role of the

symplectic groupoid structure of T ∗G in analysis.

There is a last result, of technical nature, that intervenes in the proof of Theorem 2. Indeed,

assuming that the Lagrangian submanifolds Λt provide the good candidate for Theorem 2,

we are led to search a first order parametrix U0 for ∂t + iP among the Fourier integral G-

operators associated with (Λt)t. This amounts to solve the transport equation for principal

symbols:
∂

∂t
σpr(U0) + iσpr(PU0) = 0

and thus it requires to express the principal symbol of the convolution product PU0 of the

lagrangian distributions P and U0. Since by construction and on purpose, the principal

symbol p0 vanishes on r
Γ
Λ, we need to look for the next term in the asymptotic expansion of

the total symbol of PU0. This is what is achieved, modulo some technical details, by using

the following result:

Theorem 5. Let Q ∈ Ψm
c (G), with principal G-symbol q, sub-principal symbol q1s, and let

C be a G-relation such that q vanishes on C. Let A ∈ Im
′

(G,C; Ω1/2) and a be a principal

symbol of A.

Then

QA ∈ Im+m′−1(G,C; Ω1/2) and σpr(QA) = −iLqa+ q1sa.

Here Lq is the Lie derivative along the Hamiltonian vector field Hq of q.

Many interesting situations produce non compactly supported operators P : for instance,

if ∆ is a Laplacian on G then
√
∆ = P + S with P as above and S ∈ H∞ [32]. The main

theorem trivially extends to such non compactly supported operators: one just needs to

replace C∞
c (G) by H∞ in (3). We describe at the end of the paper several situations where

Theorem 2 applies:

(1) The usual pseudodifferential calculus on a compact manifold without boundary X.

We use the pair groupoid G = X × X ⇒ X. Since X itself is an orbit, we have

C∞,0
orb (G,E) = C∞(X ×X,E) and we just recover the classical result on manifolds.

(2) The longitudinal calculus on foliations [4]. We use the holonomy groupoid. We recover

a construction in [15] by a quite different approach.

(3) Right invariant calculus on a Lie group G. We use G as a groupoid with units space

{e}.
(4) The b-calculus on manifolds with corners [23]. We use the b-groupoid [25].

(5) The calculus on manifolds with fibred boundary or with iterated fibred corners [20, 8].

We use the groupoid of [8].
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As far as we know, the results obtained for cases (3), (4), (5) above are new.

The next section contains the basic definitions and notation necessary for the sequel and

can be considered as an extension of the introduction for the unfamiliar reader.

Acknowledgments The authors are grateful to Claire Debord, Omar Mohsen, Victor Nistor

and Georges Skandalis for helpful and stimulating discussions or remarks. The first author

is thankful for the hospitality of the IMJ-PRG, Paris University, where part of this project
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14-CE25-0012-01 SINGSTAR.

2. Notation and reminders

Densities on manifolds. If E is a real vector space of dimension n and α ∈ R, we

denote by Ωα(E) the vector space of maps ω : ΛnE \ 0 → C, called α-densities, such that

ω(tV ) = |t|αω(V ) for any t 6= 0 and V ∈ ΛnE \0. For any C∞ real vector bundle E → X, the

vector bundle Ωα(E) = ∪xΩα(Ex) → X is a C∞ line bundle, with transition functions given

by |det(gij)|α if (gij) is a set of transition functions for E. Sections of Ωα(E) are called α-

densities on E and sections of ΩαX := Ωα(TX) are called α-densities on X. Densities bundles

are always trivialisable, but not canonically in general: one can construct an everywhere

positive section using local trivializations.

A fundamental point is that compactly supported one densities on X can be integrated

over X. More precisely, there is a unique linear form
∫
X : C∞

c (X,Ω1
X) −→ R such that if

f = f(x)|dx| is compactly supported in a local chart U with local coordinates x = (x1, . . . , xn),

then ∫

X
f =

∫

Rn

f(x)dx.

Above, |dx| is the one density defined by |dx| = |dx1∧· · ·∧dxn|. Diffeomorphisms φ : X → Y

provide isomorphisms φ∗ : ΩαY → ΩαX given by φ∗ω(V ) = ω(φ∗V ). By construction, the

integral of one densities is invariant under the action of diffeomorphisms. Densities are

usually handled with the following canonical isomorphisms:

- Ωα(E)⊗ Ωβ(E) ≃ Ωα+β(E)

- Ωα(E ⊕ F ) ≃ Ωα(E)⊗ Ωα(F ),

- Ωα(E∗) ≃ Ω−α(E)

- if 0 → F → E → G→ 0 is exact, then Ωα(E) ≃ Ωα(F )⊗ Ωα(G).

Lie groupoids. A Lie groupoid G ⇒ M is a pair of manifolds (G,M) of respective dimen-

sions generally denoted by n = n(1) + n(0) and n(0), together with the following data and

required properties. The data are:

(a) two surjective submersions r, s : G→M , called range and source,

(b) a C∞ section υ :M → G of both r and s, assimilated to an inclusion,

(c) a C∞ map ι : G→ G called inversion, noted: γ−1 := ι(γ),

(d) a C∞ map G(2) = {(γ1, γ2) ∈ G2 ; s(γ1) = r(γ2)} → G called multiplication: γ1γ2 :=

m(γ1, γ2).

The required properties are those giving a sense to the following intuition: a groupoid is the

algebraic structure obtained from a group G after spreading out its unit into a whole subset

M , that is

(i) r(γ1γ2) = r(γ1), s(γ1γ2) = s(γ2) whenever it makes sense,

(ii) υ(r(γ))γ = γ, γυ(s(γ)) = γ for all γ,
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(iii) r(γ−1) = s(γ), s(γ−1) = r(γ) for all γ,

(iv) γγ−1 = υ(r(γ)), γ−1γ = υ(s(γ)) for all γ,

(v) (γ1γ2)γ3 = γ1(γ2γ3) whenever it makes sense.

It follows that υ is an embedding (often omitted in the notation), that ι is an involutive

diffeomorphism and m a surjective submersion. We note Gx, the s-fiber at x ∈M , Gx its r-

fiber, and we set TsG = ker ds, TrG = ker dr. We note Lγ , Rγ the left and right multiplication

by γ. The Lie algebroid AG of G⇒M is by definition here the vector bundle ker ds|M →M .

The differential map dr : AG → TM is denoted by a and called the anchor map. To any

C∞ section X ∈ Γ(AG) corresponds a right invariant vector field X̃ ∈ Γ(TG), defined by

X̃γ := dRγ(Xr(γ)), and conversely. The right invariance means X̃γη = dRη(X̃γ). This allows

to define a Lie algebra structure on Γ(AG) that satisfies

∀X,Y ∈ Γ(AG), ∀f ∈ C∞(M), [X, fY ] = f [X,Y ] + (a(X)f)Y.

We refer to [24, 19] for a detailed account on Lie groupoids and Lie algebroids.

We will use several α-densities bundles over G, often for α = ±1/2,±1:

- The bundles Ωα(ker dπ) of densities along the fibers of π = s, r. They are conveniently

replaced for computations by the respective isomorphic bundles Ωαs = Ωα(r∗AG) and Ωαr =

Ωα(s∗AG). The isomorphisms are induced by:

(4) R : r∗AG −→ TsG, (γ,X) 7−→
(
γ, (dRγ)r(γ)(X)

)
,

(5) S : s∗AG −→ TrG, (γ,X) 7−→
(
γ, (dLγ ◦ ι)s(γ)(X)

)
.

- The “symmetrisation” of the preceeding ones: Ωα = Ωαs ⊗ Ωαr , which is suitable for convo-

lution on G.

- The bundle Ω
1/2
0 = Ω−1/2 ⊗ Ω1

G necessary for the pairing:

f ∈ C∞(G,Ω1/2), ω ∈ C∞
c (G,Ω

1/2
0 ), 〈f, ω〉 =

∫

G
fg.

Actually, there is a natural isomorphism Ω
1/2
0 ≃ Ω1/2(r∗TM)⊗ Ω1/2(s∗TM).

The cotangent groupoid The cotangent space T ∗G has a non trivial groupoid structure:

Γ = T ∗G⇒ A∗G, with structure maps r
Γ
, s

Γ
,m

Γ
, ι

Γ
defined as follows:

- r
Γ
(γ, ξ) =

(
r(γ), tdRγ(ξ|TγGs(γ)

)
)
and s

Γ
(γ, ξ) =

(
s(γ),−td(Lγ ◦ ι)(ξ|TγGr(γ))

)
,

- (γ1, ξ1)(γ2, ξ2) = (γ1γ2, ξ) with ξ(dm(t1, t2)) = ξ1(t1) + ξ2(t2),

- (γ, ξ)−1 = (γ−1,−tdι(ξ)).

This is a symplectic groupoid, which means that the graph of m
Γ
is a Lagrangian submanifold

of (T ∗G)3 provided with the symplectic form ω ⊕ ω ⊕ −ω, with ω the canonical symplectic

form of T ∗G. We refer to [6, 19] for a detailed account on symplectic groupoids and on

the related notion of V B-groupoids, as well as to [17, 18] for the interest of this symplectic

structure regarding the theory of distributions on groupoids. We will denote

T ∗
.
G = T ∗G \ ker r

Γ
and

.

T ∗G = T ∗G \ (ker r
Γ
∪ ker s

Γ
).

We will consider in this paper homogeneous lagrangian submanifods of T ∗G\0 that avoids

the kernel of r
Γ
and s

Γ
. We call them G-relations, in reference to the term canonical relations

often employed for (product) manifolds. Under mild assumptions, G-relations compose well

in the groupoid T ∗G [18]. G-relations Λ such that s
Γ
|Λ and r

Γ
|Λ are diffeomorphisms onto
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their ranges are called invertible. We will sometimes use densities along the sΓ and rΓ-fibers

of the cotangent groupoid T ∗G. Both are naturally isomorphic and:

Ωαs
Γ
≃ Ωαr

Γ
≃ Ω̂α ⊗ Ω̂−α

G

where Ê denotes the pull back to T ∗G of the bundle E → G. Also, we note that Ω1
s
Γ
|A∗G =

Ω1(AT ∗G) = (Dtr
AG)

−1 where Dtr
AG is the transverse density bundle of AG [7].

The convolution algebra Throughout this paper we make the convention:

C∞(G) := C∞(G,Ω1/2),

that is, we omit the ubiquitous density bundle Ω1/2 in the notation. We apply the same

convention for other sections of Ω1/2 with various regularity and support conditions. When

the sections of a different bundle are considered, this bundle will be always mentionned.

The convolution algebra structure on C∞
c (G) refers to the product ⋆ canonically defined

from any of the following three intuitive formulas:

(6) f ⋆ g(γ) =

∫

γ2∈Gs(γ)

f(γγ−1
2 )g(γ2) =

∫

γ1∈Gr(γ)

f(γ1)g(γ
−1
1 γ) =

∫

(γ1,γ2)∈m−1(γ)
f(γ1)g(γ2)

This is justified as follows. Write f = f(µsµr)
1/2, g = g(µsµr)

1/2 with f, g ∈ C∞
c (G,C),

µs = r∗µ ∈ C∞(G,Ω1
s), µr = s∗µ ∈ C∞(G,Ω1

r) for some positive µ ∈ C∞(M,Ω1(AG)).

Then, whenever γ1γ2 = γ:

f(γ1)g(γ2) = f(γ1)g(γ2)µ
1/2
r (γ1)µ

1/2
s (γ2)(µsµr)

1/2(γ) and µr(γ1) = µs(γ2).

We now may set rigorously:

(7) f ⋆ g(γ) =
(∫

γ2∈Gs(γ)

f(γγ−1
2 )g(γ2)R∗µs(γ2)

)
(µsµr)

1/2(γ).

This gives consistance to the first formula in (6). The second and third formulas are obtained

from the first one using the diffeormorphisms Lγ ◦ ι : Gs(γ) → Gr(γ) and (Lγ ◦ ι, Id) : Gs(γ) →
m−1(γ). Equivalently, one can directly define them as we did for the first one using the

suitable structural isomorphisms to create the appropriate one densities on Gr(γ) andm−1(γ).

With the notation above, this concretely means:

f ⋆ g(γ) =
(∫

γ1∈Gr(γ)

f(γ1)g(γ
−1
1 γ)S∗µr(γ1)

)
(µsµr)

1/2(γ)(8)

=
(∫

(γ1,γ2)∈m−1(γ)
f(γ1)g(γ2)M∗µs(γ2)

)
(µsµr)

1/2(γ).(9)

with, for the last line:

(10) M : r∗AG|Gs(γ)
−→ Tm−1(γ), (γ2,X) 7−→

(
γγ−1

2 , γ2, d(Lγγ−1
2

◦ ι)(X), dRγ2 (X)
)
.

By C∞,0
π (G), we denote the space of elements in Cc(G) that belong to C(U(0), C

∞(U(1)))

over any local trivializations κ : U
≃→ U(0) × U(1) of π (here π = pr1 ◦κ). The topology is

modeled on that of C(U(0), C
∞(U(1))) and is Fréchet. We write C∞,0

π,c for C∞,0
π ∩ Cc, and

equip it with the corresponding LF-topology.

The reduced C∗-algebra of a groupoid. The space C∞
c (G,Ω

1/2
s ) comes with a natural

prehilbertian C(M)-module structure:

(11) f, g ∈ C∞
c (G,Ω1/2

s ), 〈f | g〉s(x) =
∫

Gx

f(γ)g(γ).
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Its completion as a hilbertian C(M)-module is denoted by L2
s(G). The homomorphism λ :

C∞
c (G) −→ L(L2

s(G)) given by:

∀f ∈ C∞
c (G), g ∈ C∞

c (G,Ω1/2
s ), λ(f)(g)(γ) = f ⋆ g(γ) =

∫

Gs(γ)

f(γα−1)g(α)

is well defined, injective, and the reduced C∗-algebra of G, denoted by C∗
r (G), is the comple-

tion of C∞
c (G) with respect to the C∗-norm ‖f‖ = ‖λ(f)‖op. The extended homomorphism

λ : C∗
r (G) −→ L(L2

s(G))

is called the left regular representation. Starting from C∞
c (G,Ω

1/2
r ), we get a Hilbert C(M)-

module L2
r(G) and the right regular representation ρ : C∗

r (G) −→ L(L2
r(G)). The adjunction

map ∗ : L2
s(G) −→ L2

r(G) provides a unitary anti-homomorphism. The unfamiliar reader

may consult [29, 5, 14] for groupoids C∗-algebras and [33, 13, 30] for Hilbertian modules.

Distributions. We consider in this article various spaces of distributions on G, always

valued in Ω1/2, which thus is safely omitted. We set:

D′(G) := D′(G,Ω1/2).

This is the topological dual of the space:

D(G) := C∞
c (G,Ω

1/2
0 ),

where Ω
1/2
0 := Ω−1/2 ⊗Ω1

G. The elements of D(G) will be called test functions, with a slight

abuse of vocabulary. We denote by E ′(G) the subspace of D′(G) consisting of compactly

supported distributions. We set:

(12) D′
π(G) = {u ∈ D′(G) ; ∀f ∈ C∞

c (G,Ω1/2
s ), π!(uf) ∈ C∞(M,Ω1/2(AG))}

where π! denotes the pushforward of distributions and π = r, s. Elements of D′
π(G) are

called C∞-transversal distributions with respect to π [1, 17, 31]. The convolution product

⋆ extends by continuity to transversal distibutions, providing E ′
π(G) with the structure of a

unital algebra and E ′
r,s(G) = E ′

s(G)∩E ′
r(G) with the structure of an involutive unital algebra.

The unit is δM (f) =
∫
M f and the involution is u∗ = ι∗u. Elements of D′

π(G) can be restricted

fiberwise, giving C∞ families over M of distributions in the fibers, the space of whose families

being denoted by C∞
π (M,D′(G)), or viewed as C∞(M)-linear continuous operators, the space

of whose operators being denoted by LC∞(M)(C
∞
c (G), C∞(M,Ω1/2(AG))), and there are

canonical isomorphisms:

D′
π(G) ≃ C∞

π (M,D′(G)) ≃ LC∞(M)(C
∞
c (G), C∞(M,Ω1/2(AG))).

We will also consider continuously transversal distributions with respect to π = r, s:

(13) D′
π,0(G) = {u ∈ D′(G) ; ∀f ∈ C∞

c (G,Ω1/2
s ), π!(uf) ∈ C(M,Ω1/2(AG))}.

By rephrazing the arguments in [17], one gets:

D′
π,0(G) ≃ Cπ(M,D′(G)) ≃ LC(M)(C

∞,0
π,c (G), C(M,Ω1/2(AG))).

G-operators: they are the continuous linear maps C∞
c (G) → C∞(G) given by right

invariant families of (linear continuous) operators acting in the s-fibers. More precisely, P is

a G-operator if there exists a family Px : C∞
c (Gx,Ω

1/2
Gx

) −→ C∞(Gx,Ω
1/2
Gx

), x ∈M , such that

for all x ∈M , γ ∈ G, f ∈ C∞
c (G):

(14) P (f)|Gx = Px(f |Gx) and Pr(γ) ◦Rγ = Rγ ◦ Ps(γ), ∀γ ∈ G.
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This is equivalent to requiring that P maps C∞
c (G) → C∞(G) continuously and that:

P (f) ⋆ g = P (f ⋆ g) for any f, g ∈ C∞
c (G).

A G-operator P as an adjoint if there exists a G-operator Q such that (Pf)∗⋆g = f∗⋆(Qg) for

any f, g. We denote by OpG (resp. Op∗G, Op∗G,c) the space of (resp. adjointable, compactly

supported and adjointable) G-operators.

It is proved in [17] that the map

D′
r(G) → OpG, u 7→ u ⋆ ·

is an isomorphism, with inverse P 7→ kP , given by kP (γ) = pr(γ)(r(γ), γ
−1) where px denotes

the Schwartz kernel of Px. The same map induces an isomorphism:

Op∗G,c ≃ E ′
r,s(G).

Pseudodifferential G-operators and regularizing operators. Among the class of G-

operators one finds the well known subclass of pseudodifferential G-operators (G-PDO) [4,

26, 28, 32], that is, of right invariant families of pseudodifferential operators in the s-fibers:

they coincide with left convolution by distributions in:

(15) Ψ∗
G = I∗+(n(1)−n(0))/4(G,M ; Ω1/2).

where here I refers to the space of conormal distributions. One has a principal symbol map:

σ0 : Ψ
m
G −→ S[m](A∗G)

with kernel Ψm−1
G . Here S[m] = Sm/Sm−1. It is well known that (Ψ∗

G,c, ⋆) is an involutive

unital algebra and σ0 an algebra homomorphism. When P ∈ Ψ1
G,c is elliptic and symmetric,

then its closure, as an unbounded operator on C∗
r (G) with domain C∞

c (G), is selfadjoint and

regular [32, 2, 3, 30]. There is a canonical scale Ht, t ∈ R, of Hilbert C∗
r (G)-modules, that

we call intrinsic Sobolev modules, which do not depend, up to isomorphism of Hilbertian

structures, on the symmetric elliptic operator P ∈ Ψ1
G,c used to define them:

Ht = C∞
c (G)

〈·|·〉t
, 〈f | g〉t = 〈(1 + P 2)t ⋆ f | g〉 ∈ C∗

r (G),

where 〈a|b〉 = a∗b. Then anyQ ∈ Ψm
G,c gives a bounded homomorphismQ ∈ L(Ht,Ht−m) and

for any m > 0, the inclusion Ht →֒ Ht+m is a compact homomorphism of Hilbert modules.

All of this material is developped in [32]. Although we call the spaces Ht Sobolev modules,

we may think of them as modules of abstract pseudodifferential operators of order < −t.
Indeed, Ht is also the completion of Ψ<−t

G,c for the norm ‖Q‖t = ‖(1 + P 2)t/2Q‖C∗
r (G). Scales

of Hilbert modules closer to the usual notion of Sobolev regularity of order t for functions or

distributions will be obtained using the left regular representation of Ht.

The algebra Ψ∗
G,c is too small for practical purposes. For instance, the inverse of an

elliptic element in Ψ∗
G,c which is invertible as an operator between Sobolev modules, has

no reason to be compactly supported. This phenomenom propagates to operators obtained

by holomorphic functional calculus and we will eventually face it also when building an

approximation of E(t) = eitP by Fourier integral G-operators. A suitable enlargement of

Ψ∗
G,c is provided by:

(16) Ψ∗
G := Ψ∗

G,c +H∞, where H∞ = H∞ ∩ (H∞)∗

and H∞ = ∩tHt ⊂ C∗
r (G). Actually, H∞ coincides with the ideal of regularizing operators

introduced in [32].
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Fourier integral G-operators. Another remarkable subclass of G-operators is given by

that of lagrangian distributions on G with respect to arbitrary G-relations. We call them

Fourier integral G-operators (G-FIO) and we set for a given G-relation Λ:

(17) Φ∗
G(Λ) = I∗+(n(1)−n(0))/4(G,Λ;Ω1/2).

where here I refers to the space of Lagrangian distributions. The convolution product gives

a map

(18) Φ∗
G,c(Λ1)× Φ∗

G(Λ2) → Φ∗
G(Λ1Λ2)

as soon as Λ1×Λ2 has a clean intersection with T ∗G(2). This proves in particular that Φ∗
G(Λ)

is a bimodule over Ψ∗
G,c and that F−1PF ∈ Ψ∗

G,c if P ∈ Ψ∗
G,c and F ∈ Φ∗

G,c(Λ) is invertible.

Also, when Λ is invertible, one gets Φ0
G,c(Λ) ⊂ M(C∗

r (G)) and Φ<0
G,c(Λ) ⊂ C∗

r (G). In general,

if A ∈ Φ∗
G(Λ), the corresponding family (Ax)x∈M consists of operators Ax given by locally

finite sums of oscillatory integrals and when Λ is transversal to T ∗
LG, for any L = s−1(O) and

O ∈M/G, (this is for instance the case if Λ is invertible), then each Ax is a genuine Fourier

integral operator on the manifold Gx. All the statements here about G-FIOs are proved in

[18].

3. The one parameter group e−itP , t ∈ R

Before analyzing evolution equations on groupoids, we study the functional analytic aspects

of them in a reasonably general and simple framework. So, let us consider the Cauchy

problem:

(19)

{
( ∂∂t + iP )u = f

u(0) = g

in the following situation: P is a regular self-adjoint operator on H [2, 3, 30, 32] where H is

a Hilbert module over some C∗-algebra A. It turns out that under natural assumptions on f

and g, this problem has a unique solution given in term of the operator e−itP . This operator

is first defined in term of the unbounded continuous functional calculus for regular operators

[30, Paragraph 14.3.3]. We recall that any nondegenerate representation

π : C0(R) −→ L (H)

extends into a map π̃ from C(R) (viewed as regular operators on C0(R)) to the set of regular

operators on H. The map π̃ is defined through the identification C0(R) ⊗π H ≃ H and the

formula:

π̃(f) = f ⊗π Id .

Moreover, there exists a unique such representation π such that π̃(IdR) = P and we fix this

particular one from now on. Introducing ft ∈ C(R), ft(λ) = e−itλ, we set:

e−itP = π̃(ft).

Actually, the restriction of π̃ to Cb(R) is a strictly continuous homomorphism [30, Proposition

5.19] :

π = π̃|Cb(R) : Cb(R) −→ L(H).

Here, strict continuity refers to the topologies of Cb(R) and L (H) as multiplier algebras of

C0(R) and K(H) respectively. The map R ∋ t 7→ ft ∈ Cb(R) being strictly continuous, the

map R ∋ t → e−itP ∈ L(H) is thus strictly continuous too. Specializing the semi-norms
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giving the strict topology to rank one operators, this means that t 7−→ e−itPx ∈ C(R,H).

The following properties are valid:

(20) e−i(t+s)P = e−itP e−isP

and defining (Ef)(t) = e−itP f(t), t ∈ R, for f ∈ Cb(R,H) we also get:

(21) E ∈ L(Cb(R,H)).

To further analyse e−itP , we introduce the sequence of Hilbert A-modules associated to P :

∀s ∈ R+, H
s = dom(1 + P 2)s/2 and H0 = H

Note that Hk = dom P k for k ∈ N. The Hilbertian structure of Hs is given by:

〈u, v〉s = 〈(1 + P 2)su, v〉.

For negative order s, we define Hs to be the completion of dom P with respect to the pre-

hilbertian structure given by the scalar product above. We refer to this family of Hilbert

A-modules as the intrinsic scale of Sobolev modules of P . It was introduced in [32] in the

framework of groupoid C∗-algebras.

We recall that π̃(ft(λ)λ
k) = π̃(ft(λ))π̃(λ

k) and that π̃(λk) = P k for any k ≥ 0, therefore:

e−itP (Hk) = Hk and e−itPP k = P ke−itP .

In particular, we get eitP ∈ L(Hk) and t 7−→ e−itPx ∈ C(R,Hk) for any x ∈ Hk. Since
1
t (e

−itλ − 1)
t→0−→ iλ uniformly on compact subsets of R, we get using [9, Appendix] that

1
t (e

itP − 1) converges to iP strongly, that is,

‖1
t
(eitPx− x)− iPx‖H t→0−→ 0, for all x ∈ H1.

Therefore

(22) ∀x ∈ H1, (t 7−→ e−itPx) ∈ C1(R,H) ∩ C0(R,H1)

and

(23) ∀x ∈ H1, ∀t ∈ R,
d

dt
e−itPx = −iPe−itPx.

Repeating the previous arguments gives for any natural number k:

(24) ∀x ∈ Hk, (t 7−→ e−itPx) ∈
⋂

0≤j≤k

Cj(R,Hk−j).

This eventually implies:

(25) ∀x ∈ H∞, (t 7−→ e−itPx) ∈
⋂

k

C∞(R,Hk) =: C∞(R,H∞),

where H∞ = ∩kHk has Frechet space structure given by the seminorms ‖ · ‖Hk , k ≥ 0. We

can now state the result:

Theorem 1. Let k be a positive integer. For any f ∈ Ck−1(R,Hk) and g ∈ Hk, the Cauchy

problem:

(26)

{
( ∂∂t + iP )u = f

u(0) = g
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has a unique solution in
⋂

0≤j≤k C
j(R,Hk−j), given by

(27) u(t) = e−itP g +

∫ t

0
ei(s−t)P f(s)ds.

Proof. That e−itP g is in the required space and satisfies the equation when f = 0 is done

before the statement of the theorem. Straightforward arguments prove that the second term

in the expression of u(t) in (27) is in the required space too, and it is then obvious that u

solves (19). For unicity, consider the case f = g = 0 and let u be a solution. Pairing the

equation with u on both sides gives the relations

−i〈 ∂
∂t
u, u〉+ 〈Pu, u〉 = 0

i〈u, ∂
∂t
u〉+ 〈u, Pu〉 = 0.

Since P is selfadjoint, substracting both relations gives

∂

∂t
〈u, u〉 = 〈 ∂

∂t
u, u〉+ 〈u, ∂

∂t
u〉 = 0.

Therefore, ‖u(t)‖2H = ‖〈u(t), u(t)〉‖A = ‖〈u(0), u(0)〉‖A = 0 for any t. �

Keeping the previous setting, let B be a C∗-algebra, L be a Hilbert B-module and λ :

A −→ L(L) be a representation. Then Hλ = H⊗λL is a Hilbert B-module and Pλ = P ⊗λ Id

is a selfadjoint regular operator acting on it. Then, Proposition 1 applies to Pλ and we get

the following corollary, using [30, 14.3.2].

Corollary 2.

(28) for k > 0, dom P kλ = Hk
λ

and we have the equality:

(29) eitPλ = eitP ⊗λ Id .

4. Distributions, test functions and weak factorizations for a Lie groupoid

From now on, and in the remaining parts of this article, we fix a Lie groupoid G of

dimension n = n(1) + n(0) with compact basis G(0) =M of dimension n(0). We recall that:

Ω1/2 := Ω1/2
s ⊗Ω1/2

r = Ω1/2(r∗AG) ⊗Ω1/2(s∗AG) ≃ Ω1/2(ker ds)⊗ Ω1/2(ker dr).

and that the bundle Ω
1/2
0 used in the space of test functions D(G) = C∞

c (G,Ω
1/2
0 ) satisfies:

(30) Ω
1/2
0 := Ω−1/2⊗Ω1

G ≃ Ω1/2
s ⊗Ω−1/2

r ⊗s∗ΩM ≃ Ω1/2
r ⊗Ω−1/2

s ⊗r∗ΩM ≃ r∗Ω
1/2
M ⊗s∗Ω1/2

M .

All the isomorphisms above are easily checked using the isomorphisms

ΩαG ≃ Ωαs ⊗ s∗ΩαM ≃ Ωαr ⊗ r∗ΩαM

that result from the exact sequences:

0 −→ ker dσ −→ TG
dσ−→ σ∗TM −→ 0, σ = s, r

as well as straight properties of the calculus of densities. To finish with this description,

we mention that Ω
1/2
0 is related, but distinct, to the transverse density bundle Dtr

AG of [7].

The latter is G-invariant and serves to produce geometric transverse measures useful for the

geometry of groupoids and stacks, while our choice of “transverse” bundle is required for the
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pairing with densities in Ω1/2, but only equivariant with respect to R-actions provided by

invariant vectors fields.

Moreover, besides its pairing with distributions, the space D(G) appears to be a bimodule

over C∞
c (G), with left and right multiplication given by the canonically defined integrals:

(31) f ⋆ ξ(γ) =

∫

Gs(γ)

f(γα−1)g(α) and ξ ⋆ f(γ) =

∫

Gs(γ)

ξ(γα−1)f(α).

Finally, we recall that the embedding C∞
c (G) ⊂ D′(G) is given by:

∀u ∈ C∞
c (G), ω ∈ D(G), 〈u, ω〉 =

∫

G
u(γ)ω(γ)dγ.

The inversion map ι : G → G acts on sections of Ω1/2 and Ω
1/2
0 in the natural way. This

gives involutive isomorphisms:

(32) ι∗ : D(G) −→ D(G) and ι∗ : C∞
c (G) −→ C∞

c (G).

The second one extends to an involutive isomorphism ι∗ : D′(G) −→ D′(G).

Proposition 3.

(1) For any (u, ω) ∈ D′
r,s(G) ×D(G), we have

(33) 〈u, ω〉 = 〈δM , ι∗u ⋆ ω〉 = 〈δM , ω ⋆ ι∗u〉 = 〈ι∗u, ι∗ω〉 (trace property).

The trace property 〈u, ω〉 = 〈ι∗u, ι∗ω〉 is still valid with u ∈ D′(G).

(2) The map ι∗ is an anti-isomorphism of the algebra E ′
r,s(G):

(34) ∀u, v ∈ E ′
r,s(G), ι∗(u ⋆ v) = ι∗v ⋆ ι∗u,

(3) The space D(G) is a bimodule over E ′
r,s(G) and ι∗ is a bimodule antisomorphism:

∀u, v ∈ E ′
r,s(G),∀ω ∈ D(G), ι∗(u ⋆ ω ⋆ v) = ι∗v ⋆ ι∗ω ⋆ ι∗u,

(4) For any u, v ∈ E ′
r,s(G) and ω ∈ D(G), we have:

〈u ⋆ v, ω〉 = 〈v, ι∗u ⋆ ω〉 = 〈u, ω ⋆ ι∗v〉 = 〈δM , ι∗u ⋆ ω ⋆ ι∗v〉

Proof. That D(G) is a bimodule over E ′
r,s(G) follows directly from [1, 17]. If u is C∞, the

quantity 〈u, ω〉 is the integral of the one density on G defined by the product uω, whose inte-

gral is then invariant by action of diffeomorphisms. In particular, 〈u, ω〉 =
∫
G u(γ

−1)ω(γ−1).

On the other hand, one is allowed to write

〈u, ω〉 =
∫

M

( ∫

Gx

ι∗u(γ−1)ω(γ)
)
dx =

∫

M
ι∗u ⋆ ω(x)dx.

Both identities together give (1) when u is C∞, and the general case follows by density and

continuity. The identities given in (2) and (3) are then checked easily. �

Let X ∈ Γ(AG). Since AG ⊂ TG, the vector field X provides at any x ∈ M a local

derivation Xx : D(G) → Ω1(TxM) and x 7→ Xxω is C∞ for any ω ∈ D(G). Therefore

X ∈ Γ(AG) provides a distribution

τX ∈ Diff(G) = {u ∈ Ψ∗
G ; supp(u) ⊂M} ⊂ Ψ∗

c(G),

via the formula:

∀ω ∈ C∞(G), 〈τX , ω〉 =
∫

M
Xω.
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We recall that the algebra isomorphism

op :(E ′
r,s(G), ⋆) −→ (Op∗,cG , ◦)(35)

u 7−→ u ⋆ ·

maps Ψ∗
G,c (resp. Diff∗

G) to the algebra of uniformly supported and equivariant C∞ family

of pseudodifferential (resp. equivariant C∞ family of differential) operators on the fibers of

s [28, 25, 17].

Note that the action of τX as a differential G-operator is given, up to inversion, by the

right invariant vector field X̃ associated with X:

∀u ∈ C∞
c (G), ι∗τX ⋆ u = X̃u.

Let ϕ be the flow of the vector field X̃. By compacity of M , there exists ε > 0 and a

neighborhood U ofM into G such that ϕ is defined on ]−ε, ε[×U . Since X̃γ = dRγ(Xr(γ)) for

any γ we get the relation ϕ(t, γη) = ϕ(t, γ)η whenever both terms are well defined. Therefore

the flow ϕ is well defined on ]− ε, ε[×G, and then on R×G using the one parameter group

property. This proves that the flow of X̃ is complete and commutes with right multiplication

in G:

(36) ∀t ∈ R,∀γ, η ∈ G(2), ϕ(t, γ) ∈ Gs(γ) and ϕ(t, γη) = ϕ(t, γ)η.

In other words, X provides an action of R on the manifold G, which is equivariant with

respect to right multiplication. Also, the map ψ := r ◦ ϕ : R ×M −→ M is the flow of the

vector field a(X) ∈ Γ(TM) where a = dr|TM is the anchor map of G [19] and the map:

ϕ : R⋉ψ M −→ G, (t, x) 7−→ ϕ(t, x)

is a (C∞) homomorphism of groupoids over M . We recall that a groupoid homorphism h :

G1 → G2 over (the identity map of) X = G
(0)
1 = G

(0)
2 is a map satisfying h(αβ) = h(α)h(β)

whenever it makes sense and r ◦ h = r, s ◦ h = s.

We record the following simple fact:

Proposition 4. Let G,H be two Lie groupoids with same units space M .

(1) Let h : G −→ H a C∞ be a homomorphism over M . Then the pushforward map h!
gives rise to a (unital, involutive) algebra homomorphism:

(37) h! : E ′
r,s(G) −→ E ′

r,s(H).

(2) Let h1, h2 : G −→ H be two C∞ homomorphisms overM and set h12 := m◦(h1⊗h2) :
G(2) −→ H. Then for any u, v ∈ E ′

r,s(G), we have

(38) h1!u ⋆ h2!v = h12!(u⊗ v|G(2)).

Proof. First of all, h! : E ′(G) −→ E ′(H) is well defined. Indeed, if ω ∈ D(H) and u ∈ C∞
c (G),

then ω(h(γ)) ∈ Ω
1/2
M,r(h(γ)) ⊗ Ω

1/2
M,s(h(γ)) = Ω

1/2
M,r(γ) ⊗ Ω

1/2
M,s(γ) and therefore:

〈h!u, ω〉 := 〈u, ω ◦ h〉 =
∫

G
u(γ)ω(h(γ))

is canonically defined. The algebraic remaining assertions come from the identities: m ◦ (h⊗
h) = h ◦m on G(2), hι = ιh on G, from the functoriality of pushforwards: f!g! = (fg)!, and

from the definition of the convolution product of distributions: u ⋆ v = m!(u⊗ v|G(2)). �
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The goal now is to export to Lie groupoids (with compact unit spaces) a classic result by

Dixmier and Malliavin about Lie groups [10]. This will be the main technical tool used to

embed reduced C∗-algebras into distributions.

Theorem 5. Let V be an open neighborhood of M into G and ω ∈ D(G). Then ω is a finite

sum of elements:

(39) ξ ⋆ χ

where ξ ∈ C∞
c (G), supp(ξ) ⊂ V and χ ∈ D(G), supp(χ) ⊂ supp(ω). The result is still valid

with the factors flipped in the convolution above.

We adapt the proof of [10, Theorem 3.1] to groupoids. Firstly, [10, Lemma 2.5 and Remark

2.6] gives rise to:

Lemma 6. Let X ∈ Γ(AG) and ϕ, ψ be the associated actions of R on G and M . Let

ε > 0. For any test function ω ∈ D(G), there exists a1, b1 ∈ C∞
c (] − ε, ε[) ⊂ E ′

r,s(R ⋉ψ M)

and ω1 ∈ D(G) with supp(ω1) ⊂ supp(ω) such that

(40) ω = ϕ!a1 ⋆ ω1 + ϕ!b1 ⋆ ω.

Proof of the Lemma. First of all, we pick up a sequence (pj) of semi-norms characterizing the

topology of D(supp(ω)), and set βk = k−2 inf{(pj(D2i
Xω) + 1)−1 ; i, j ≤ k}. Then the series∑

(−1)kαkD
2k
X ω converges in D(G) for any sequence 0 ≤ αk ≤ βk. Next, we choose by [10,

Lemma 2.5 and Remark 2.6], two functions a1, b1 ∈ C∞
c (]− ε, ε[) and a sequence 0 ≤ αk ≤ βk

such that

(41) δ = a1 ⋆
∞∑

k=0

(−1)kαkδ
(2k) + b1 =

∞∑

k=0

(−1)kαka
(2k)
1 + b1 in E ′(R) ⊂ E ′

r,s(R⋉ψ M)

Now (1) of Proposition 4 gives the identity (40), with ω1 =
∑∞

k=0(−1)kαkD
2k
X ω. �

Proof of the theorem. Let X1, . . . ,Xℓ be a family generating the C∞(M)-module Γ(AG), and

ϕi : Gi := R⋉ψi
M → G

be the associated homomorphisms. Applying the lemma to ω with ϕ = ϕ1, we get

(42) ω = λ1 ⋆ ω1 + µ1 ⋆ ω in E ′
r,s(G),

with λ1, µ1 in ϕ1!(C
∞
c (] − ε, ε[)). Applying the lemma to ω and ω1 with ϕ2 we get, with

intuitive notation:

(43) ω1 = λ2,1 ⋆ ω2,1 + µ2,1 ⋆ ω1 ; ω = λ2 ⋆ ω2 + µ2 ⋆ ω in E ′
r,s(G).

Inserting (43) into (42), we get:

(44) ω = λ1 ⋆ λ2,1 ⋆ ω2,1 + λ1 ⋆ µ2,1 ⋆ ω1 + µ1 ⋆ µ2 ⋆ ω2 + µ1 ⋆ µ2 ⋆ ω in E ′
r,s(G),

where all the λj•, µj• are in the range of C∞
c (] − ε, ε[) by ϕj!, j = 1, 2, and all ω• are test

functions with support in supp(ω).

Repeating the argument with ϕ3!, . . . , ϕℓ! we get that ω is equal to a sum of 2ℓ distributions

of the form:

(45) ξ1 ⋆ ξ2 ⋆ · · · ⋆ ξℓ ⋆ χ
where ξj = ϕj!(kj) ∈ D′(G) for some kj ∈ C∞

c (]−ε, ε[) and χ ∈ D(G) with supp(χ) ⊂ supp(ω).

Setting as in Proposition (4):

(46) ϕ = ϕ1···ℓ : R
ℓ ×M ≃ G1 ×

M
· · · ×

M
Gℓ −→ G
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and after an obvious induction, we get

(47) ξ1 ⋆ ξ2 ⋆ · · · ⋆ ξℓ = ϕ!k with k = k1 ⊗ · · · ⊗ kℓ ∈ C∞
c (]− ε, ε[ℓ).

Since ∂tjϕ(t, x)|t=0 = Xj(x) and ϕ(0, x) = x for any 1 ≤ j ≤ ℓ and x ∈ M , we get that ϕ

is a submersion on ] − ε, ε[ℓ×M if ε > 0 is small enough. Since the push forward of a C∞

distribution by a submersion is C∞, we get that ϕ!k:

(48) ∀η ∈ D(G), 〈ϕ!k, ω〉 =
∫

Rℓ×M
k(t)η(ϕ(t, x))dtdx,

is C∞ and supported in ϕ(] − ε, ε[ℓ×M). Taking ε > 0 small enough ensures that this last

set is contained in V . �

5. Embedding C∗
r (G) into D′(G) and regularizing operators

From now on and in the remaining parts of this article, we fix a compactly supported, first

order elliptic pseudodifferential G-operator P ∈ Ψ1
G,c and we denote by C∗

r (G) the reduced

C∗-algebra of G.

Theorem 7. There is a continuous embedding:

(49) C∗
r (G) →֒ D′(G)

that extends the pairing:

(50) ∀u ∈ C∞
c (G), ∀ω ∈ D(G), 〈u , ω〉 =

∫

M
ι∗u ⋆ ω

Proof. Let v, ξ ∈ C∞
c (G) and χ ∈ D(G). We have:

〈v, ξ ⋆ χ〉 = 〈ι∗ξ ⋆ v, χ〉
= 〈ι∗v ⋆ ξ, ι∗χ〉 (trace property)

=

∫

G
ι∗v ⋆ ξ(α)ι∗χ(α).(51)

Let µ and µ0 be positive sections of, respectively, the degree 1 densities bundles of AG and

TM . We define µr ∈ C∞(G,Ω1
r) and µs,0 ∈ C∞(G, s∗Ω1

M) by

(52) µr(γ) = µ(s(γ)) and µs,0(γ) = µ0(s(γ)).

We observe:

(ι∗v ⋆ ξ).µ−1/2
r = ι∗v ⋆ ξ′ ∈ C∞

c (G,Ω1/2
s ) with ξ′ = ξµ−1/2

r ∈ C∞
c (G,Ω1/2

s )

and

χ′ = χ.µ1/2r .µ−1
s,0 ∈ C∞

c (G,Ω1/2
s ).

This allows us to write

〈v, ξ ⋆ χ〉 =
∫

G
ι∗v ⋆ ξ(α)ι∗χ(α) =

∫

M

( ∫

Gx

ι∗v ⋆ ξ′(α)ι∗χ′(α)
)
dµ0(53)
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and to use the Cauchy Schwarz inequalities for the Hilbert spaces (L2(Gx,Ω
1/2
Gx

), ‖ · ‖x) in the

following computations:

|〈v, ξ ⋆ χ〉| ≤
∫

M
dµ0. sup

x∈M
|
∫

Gx

ι∗v ⋆ ξ′(α)ι∗χ′(α)|

≤ cM sup
x∈M

‖ι∗v ⋆ ξ′‖x‖ι∗χ′‖x

≤ cM‖ι∗v‖C∗

r (G)‖ξ′‖L2
s(G)‖ι∗χ′‖L2

s(G)

≤ c‖v‖C∗
r (G)(54)

Now let ω ∈ D(G) and pick up a weak factorisation ω =
∑

j ξj ⋆χj . Let u ∈ C∗
r (G) and choose

a sequence (uk) with uk ∈ C∞
c (G) and uk → u in C∗

r (G). Using the previous estimates, we

see that the sequence 〈uk, ω〉 ∈ C satisfies the Cauchy criterium and thus converges. Setting

u(ω) = limk→+∞〈uk, ω〉 with get that u ∈ D′(G) and that uk → u in D′(G). �

We now give some complements to the properties of the regularizing operators:

Ψ−∞
G := {R ∈ L(C∗

r (G)) ; R ∈ L(Hs,Ht) for all s, t ∈ N}(55)

= {R ∈ L(C∗
r (G)) ; P1RP2 ∈ L(C∗

r (G)) for all Pj ∈ Ψ
sj
G,c, sj ∈ N, j = 1, 2}.(56)

introduced exaclty in this form in [32] and in an equivalent form in [16]. In both references,

this ideal of the C∗-closure of ΨG,c is proved to be stable under holomorphic functional

calculus. Here Hs denotes the scale of intrinsic Sobolev C∗
r (G)-modules.

Proposition 8. Operators in Ψ−∞
G are exaclty convolution operators by elements of H∞. In

other words, as subsets of the multipliers algebra M(C∗
r (G)), these sets coincide:

Ψ−∞
G = H∞ ⊂ M(C∗

r (G)).

Proof. We know that Ψ−∞
G ⊂ K(C∗

r (G)) = C∗
r (G). Let T ∈ Ψ−∞

G . For any k ∈ N, we have:

(1 + P 2)kT = Sk ∈ C∗
r (G) and T (1 + P 2)k = S′

k ∈ C∗
r (G)

Then T = (1 + P 2)−kSk = S′
k(1 + P 2)−k ∈ H2k ∩ (H2k)∗ for any k, which proves the first

inclusion. The second one is obvious. �

All the previous statements hold true for the maximal C∗-algebra of G but we stay in the

framework of the reduced C∗-algebra, because the embeddingC∗
r (G) →֒ D′(G) and the regular

representation allow us to precise in what extent elements of Ψ−∞
G = H∞ are regularizing.

For that purpose, we let Ψ∗
G act not on the scale of intrinsic Sobolev modules Hs, but on

their representation via the left regular representation. These C(M)-modules are concretely

given as follows, for k ∈ Z:

(57) Hk
s = C∞

c (G,Ω
1/2
s )

〈·|·〉k,s
, 〈ω | η〉k,s = 〈(1 + P 2)k ⋆ ω | η〉s ∈ C(M).

Lemma 9. We have:

(58) H∞
s :=

⋂

k∈Z

Hk
s ⊂ C∞,0

s (G,Ω1/2
s ) and H−∞

s :=
⋃

k∈Z

Hk
s ⊃ E ′

s,0(G,Ω
1/2
s ).

Proof of the lemma. Let ω ∈ H∞
s . Since pointwise multiplication operators by compactly

supported C∞ functions are in L (Hk
s ) for any k, we can assume that ω is compactly sup-

ported in the domain U of a local trivialization κ : U → R
n(1) × R

n(0)
, κ(x) = (x′, x′′) of the

submersion s. By assumption, we have

(59) ∀k ≥ 0, ∆k
Gω ∈ C0

c (R
n(0)

, L2(Rn
(1)
)).
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Here ∆G = d∗d ∈ Diff2(G) is the Laplacian associated with a given euclidean structure on

AG. The ellipticity of each term of the C∞ family (∆G,x′′)x′′∈Rn(0) and the compactness

of supp(ω) imply using usual Garding inequality that ω ∈ C0(Rn
(0)
,H2k(Rn

(1)
)) for any k,

where H∗ denotes here the usual Sobolev spaces of euclidean spaces. We then conclude that

ω ∈ C0(Rn0 , C∞(Rn
(1)
)) = C∞,0

pr2 (Rn
(1) × R

n(0)
). This proves H∞

s ⊂ C∞,0
s (G,Ω

1/2
s ).

Let u ∈ E ′
s,0(G,Ω

1/2
s ). The result [12, Theorem 4.4.7] extends immediately to continuous

family of distributions so there exists k ∈ N and finite collections: uI ∈ Cc(G,Ω
1/2
s ), DI ∈

DiffkG such that

(60) u =
∑

I

DIuI .

Since Cc(G,Ω
1/2
s ) ⊂ L2

s(G) and (1 + P 2)−k/2DI ∈ L(L2
s(G)), we then conclude that u ∈

H−k
s . �

We recall [24, 19] that for any x ∈ M , the orbit O = r(s−1({x})) ⊂ M is an immersed

submanifold, the map r : Gx −→ O is a submersion (actually a Gxx principal bundle) and

that GO ⇒ O is an immersed subgroupoid. We set:

(61)

C∞,0
orb (G,E) = {u ∈ C(G,E) ; ∀x ∈M,∀D ∈ Diff(G),Du ∈ C∞(GO, E), O = r(s−1({x})}.

Theorem 10. The following inclusions hold true:

(62) C∞,0
orb (G) ∩ Cc(G) ⊂ H∞ ⊂ C∞,0

orb (G) ∩ C∗
r (G).

In particular, since H∞ is an ideal in C∗
r (G):

Corollary 11. Any h ∈ H∞ provides continuous operators :

h ⋆ · : C∗
r (G) −→ C∞,0

orb (G) ∩ C∗
r (G) and · ⋆h : C∗

r (G) −→ C∞,0
orb (G) ∩ C∗

r (G).

Proof of the theorem. Let u ∈ H∞. By [32] and the left regular representation, u maps

H−k
s → Hk

s continuously for any k ∈ N. Therefore, the previous lemma implies that u maps

E ′
s,0(G,Ω

1/2
s ) → C∞,0

s (G,Ω
1/2
s ) continuously. In particular for every x ∈ M , the distribution

κx(γ1, γ2) = u(γ1γ
−1
2 ) ∈ D′(Gx ×Gx,Ω

1/2
x ) extends to a continuous map:

(63) κx : E ′(Gx,Ω
1/2
Gx

) → C∞(Gx,Ω
1/2
Gx

)

which implies that κx ∈ C∞(Gx × Gx,Ω
1/2
x ) for fixed x. Next, consider x ∈ M , O =

r(s−1({x})) the orbit of x in M and fix (γ1, γ2) ∈ Gx × Gx ⊂ G ×
s
G. We denote by

π : G ×
s
G −→ M the obvious submersion. Since r : Gx −→ O is a submersion, there exists

a C∞ local section η : U ∈ y 7→ ηy ∈ Gx of r such that ηx = x, defined on some open

neighborhood U of x into O. Then V = π−1
O (U) = {(η1, η2) ; s(η1) = s(η2) ∈ U} is an open

neighborhood of (γ1, γ2) into GO ×
s
GO and we have:

(64) ∀(η1, η2) ∈ V, κy(η1, η2) = κx(Rηyη1, Rηyη2)

which proves that κ is C∞ on GO ×
s
GO, and thus that u is C∞ on GO. It is clear that

C∞,0
orb (G) ∩Cc(G) is contained in C∗

r (G) and is invariant under the left and right convolution

by P . The inclusion C∞,0
orb (G) ∩Cc(G) ⊂ H∞ follows. �
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Summarizing the content above, we have proved that regularizing operators are actually

convolution operators by distributions on G lying in the class H∞, the latter class being

included in the class of functions that are continuous on G and infinitely differentiable over

any orbit, and thus in particular along the fibers of s and r. Closely related results were

obtained in [16] under the assumption of bounded geometry for G. In the following sections,

we are going to prove that E(t) = eitP is a family R×G-FIO [18], modulo such regularizing

operators.

6. Principal and Subprincipal symbols of G-PDOs

As a conormal distribution, any element of Ψm
G = Im+(n(1)−n(0))/4(G,M ; Ω1/2) has a prin-

cipal symbol [12, Theorem 18.2.11] in:

(65) S[m+(n(1)−n(0))/4+n/4](A∗G,Ω
1/2
A∗G ⊗ Ω̂1/2 ⊗ Ω̂

−1/2
G ).

The density bundle above is canonically trivial:

(66) Ω
1/2
A∗G ⊗ Ω̂1/2 ⊗ Ω̂

−1/2
G = Ω1/2(TM ⊕A∗G)⊕ Ω1(AG) ⊗ Ω−1/2(TM ⊕AG) ≃M × C,

and since half densities on A∗G contribute with a value of n(1)/2 to the degree of symbols,

the simplification above lowers the degree by the same value. In conclusion the principal

symbol map is a well defined map:

(67) σ0 : Ψ
m
G −→ S[m](A∗G).

Alternatively, given P ∈ Ψm
G , one may consider the family P̃ = (Px)x∈M , Px ∈ Ψm(Gx,Ω

1/2
Gx

)

associated with P by the isomorphism (35) and collect the family of principal symbols σ(Px) ∈
S[m](T ∗Gx) into the element σ(P ) ∈ S[m](T ∗

sG), where T
∗
sG = (ker ds)∗, defined by:

σ(P )(γ, ξ) = σ(Ps(γ))(γ, ξ).

In this point of view, the principal symbol is a map :

(68) σ : Ψm
G −→ S[m](T ∗

sG).

Both notions are related by:

Proposition 12. With the notation above, the following identity holds true:

(69) σ = σ0 ◦ rΓ .

Remark 13. Strictly speaking, the target map r
Γ
is defined on T ∗G. It is by construction the

composition of the natural restriction map T ∗G → T ∗
sG with the natural map T ∗

sG → A∗G.

It is understood in the Proposition above that rΓ means the latter.

Proof. Let P ∈ Ψm
G . Without loss of generality, we can assume that P is supported in a local

chart U around some point of M and satisfying:

- the local coordinates trivialize the source map, that is γ = (x′′, x′) with s(γ) = x′′ on U ,

- the domain U is invariant for the inversion map : U−1 = U .

We then pick up a positive one density µ on AG such that:

∀x ∈ U ∩G(0), µ(x) = |dx′|,

and define µs ∈ C∞(G,Ω
1/2
s ), µr ∈ C∞(G,Ω

1/2
r ) by:

µs(γ) = µ(r(γ)) and µr(γ) = µ(s(γ)).
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We can set on U :

(70) P (γ) = P(γ).µ1/2s µ1/2r

where P is a scalar oscillatory integral conveniently given in the following form:

(71) P(γ) =

∫
e−iγ

−1.ξ′p0(r(γ), ξ
′)dξ′.

Let us describe the various ingredients of this formula. First, p0 ∈ Sm(A∗G) is a (classical)

symbol, and the integral (in the distribution sense) is performed with respect to (0, ξ′) ∈
A∗
r(γ)G ⊂ T ∗

r(γ)G. Secondly, it is understood that γ−1 = ι(γ) stands for the n-tuple of

coordinates of the inverse of γ in G, and then γ−1.ξ′ stands for its scalar product with (0, ξ′)

in R
n. We could use the inverse of an exponential map to give an invariant meaning to γ−1.ξ

with ξ ∈ A∗
r(γ)G, but since we already work in local coordinates, this is pointless. Finally, we

read from (71) that:

(72) σ0(P ) = p0 mod Sm−1(A∗G),

and since the symbols used here are classical, we may identify σ0(P ) with the leading ho-

mogeneous part p00 of p0. Now let u ∈ C∞
c (G) with support in a local chart V of G, and

set:

(73) u(γ) = u(γ).µ1/2s µ1/2r

with u ∈ C∞
c (V,C). To express Pu in local coordinates in terms of P and u, we need to recall

the necessary identifications of densities allowing the convolution product:

(74) P (u)(γ) =

∫

α∈Gs(γ)

P (γα−1)u(α).

For that purpose, note that for any γ, α with same source point:

µs(γα
−1) = µ(r(γ)) = µs(γ), µr(γα

−1) = µ(r(α)) = µs(α), µr(α) = µr(γ).

Hence:

P (γα−1)u(α) = P(γα−1)u(α)µs(α)µ
1/2
s (γ)µ1/2r (γ).

It remains to express µs(α) in term of a one density on Gx ∩ V . We also assume that the

coordinates fixed on V trivializes the source map s:

V ∋ α = (α′′, α′) with s(α) = α′′

In the coordinates fixed on U and V , we get using (dRα)r(α) : (r
∗AG)α

≃−→ (ker ds)α:

µs(α) = |dx′| = |(dRα)r(α)|−1|dα′|.

It follows that, setting P̃ (u) = vµ
1/2
s µ

1/2
r on W :

v(γ) =

∫
P (γα−1)u(α)|(dRα)r(α)|−1dα′(75)

=

∫
e−iαγ

−1.ξ′p0(r(γ), ξ
′)|(dRα)r(α)|−1u(α)dα′dξ′.(76)

Actually, the action of the induced family of operators Px ∈ Ψm(Gx,Ω
1/2
Gx

) on half-densities

f ∈ C∞
c (Gx,Ω

1/2
Gx

) is given by the same formula:

(77)

if f = fµ1/2s , then Px(f) = vµ1/2s with v(γ) =

∫
e−iαγ

−1.ξp0(r(γ), ξ)f(α)|(dRα)r(α)|−1dα′dξ.
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Let us set

(78) ϕ(α) = |(dRα)r(α)|−1.

Since αγ−1 vanishes at α = γ ∈ Gs(γ), there exists a linear map

(79) ψ(α, γ) : Rn
(1) −→ R

n(1)

which is C∞ in (α, γ), bijective for α in a neighborhood of γ and satisfies:

(80) αγ−1 = ψ(α, γ)(α − γ).

By construction we have:

(81) ψ(γ, γ) = (dRγ−1)γ = (dRγ)
−1
r(γ).

Now we work on (77) to find the amplitude and symbol of Px in local coordinates on V :

v(γ) =

∫
e−i〈α−γ,

tψ(α,γ)ξ′〉p0(r(γ), ξ
′)u(α)ϕ(α)dα′dξ′

=

∫
ei〈γ−α,ξ

′〉
(
p0(r(γ),

tψ(α, γ)−1ξ′)ϕ(α)|tψ(α, γ)|−1 u(α)dα′dξ′

=

∫
ei〈γ−α,ξ

′〉p̃(γ, α, ξ′)u(α)dα′dξ′

=

∫
ei〈γ−α,ξ

′〉p(γ, ξ′)u(α)dα′dξ′(82)

where we have set

(83) p̃(γ, α, ξ′) = p0(r(γ),
tψ(α, γ)−1ξ′)ϕ(α)|tψ(α, γ)|−1

and

(84) p(γ, ξ′) = ei〈Dα′ ,Dξ′ 〉p̃(γ, α, ξ′)|α=γ
which gives the asymptotic expansion:

(85) p(γ, ξ′) ∼
∑ 1

k!
〈iDα′ ,Dξ′〉kp̃(γ, α, ξ′) |α=γ .

Since (r(γ), tψ(γ, γ)−1ξ′) = (r(γ), t(dRγ)r(γ)ξ
′) = r

Γ
(γ, ξ′), the expression of the principal

symbol of Px over V is the first term in the sum (85):

(86) σ(Px)(γ, ξ
′) = p0(rΓ(γ, ξ

′)) mod Sm−1(T ∗
sG),

or equivalently using homogeneous expansions: σ(P ) = p0 = p00 ◦ rΓ . �

Remark 14. We will often consider C∞ functions on T ∗
sG as C∞ functions on T ∗G, thanks

to the convention a(γ, ξ) = a(γ, ξ|Ts(γ)G).

We now turn our attention to the sub-principal symbols. It is not obvious to us how

to define the sub-principal symbol for general conormal distributions, but in the case of

Ψ∗
G = I(G,M,Ω1/2), we may again consider the family of usual sub-principal symbols of the

operators Px ∈ Ψm(Gx,Ω
1/2
Gx

) and set:

(87) (γ, ξ) ∈ T ∗
sG, σ1s(P )(γ, ξ) := σ1s(Ps(γ))(γ, ξ) ∈ S[m−1](T ∗

sG).

This gives a well defined map:

(88) σ1s : Ψm
G −→ S[m−1](T ∗

sG),
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When P is given by (71), we recall that the sub-principal symbol above is given in terms of

the homogeneous expansion of total symbol p, expressed in the last proof (see formula (83),

(84) and (85)), by:

(89) p1s(γ, ξ′) := σ1s(P )(γ, ξ′) = p1(γ, ξ′)− i

2
〈Dγ′ ,Dξ′〉p0(γ, ξ′),

We now consider p0 = σ(P ) as a C∞ homogeneous function on T ∗
.
G = T ∗G \ ker r

Γ
(see

Remark 14) and we denote Hp0 ∈ Γ(TT ∗
.
G) the hamiltonian vector field of p0. We recall that

the latter is defined by dp0(·) = ωG(Hp0 , ·), and in local coordinates (γ, ξ) we get:

Hp0 =

n∑

j=1

∂p0

∂ξj

∂

∂γj
− ∂p0

∂γj

∂

∂ξj
.

Now we shall compute the principal symbol of a product PA where P is a G-PDO and A a

G-FIO in the situation later encountered in the construction of the parametrix of eitP . To

that purpose, we recall that the principal symbol of G-FIO is a homomorphism [12]:

(90) Im(G,Λ;Ω1/2) −→ S[m+n/4](Λ,MΛ ⊗ Ω
1/2
Λ ⊗ Ω̂1/2 ⊗ Ω̂

−1/2
G )

where MΛ is the Maslov bundle and Ê denotes the pull back of the vector bundle E → G

over Λ. By [18], we know that there is canonical isomorphism:

(91) Ω̂1/2 ⊗ Ω̂
−1/2
G ≃ Ω1/2

r
Γ

= s∗
Γ
Ω1/2(AT ∗G)

This isomorphism uses the product and inversion map of G but their contributions cancel and

thus, elements in Ω̂1/2 ⊗ Ω̂
−1/2
G do define, without any other data, pull back of half densities

on the vector bundle AT ∗G −→ A∗G. We thus may consider the principal symbol of Fourier

integral G-operators as a homomorphism:

(92) Im(G,Λ;Ω1/2) −→ S[m+n/4](Λ,MΛ ⊗ Ω
1/2
Λ ⊗ Ω1/2

r
Γ
)

We recall that for a manifold X and a vector field V on X with flow φt, the Lie derivative of

a α-density a is the α-density given by, in local coordinates a = a|dx|α:

(93) LV (a|dx|α) =
d

dt
φ∗t a|dx|α|t=0 =

(
V · a+ αdiv(V )a

)
|dx|α.

This is the same for sections a ∈ C∞(Λ,MΛ ⊗ Ω
1/2
Λ ) and vector fields V ∈ Γ(TΛ). Indeed,

the transition functions of MΛ are locally constant, so the bundle MΛ can be factorized out

of (93).

On the other hand, we are mainly interested in Hamiltonian vector fields V = Hf that are

also right invariant, which happens if and only if f = f0 ◦rΓ [6], and such that f |Λ = 0, which

implies that V is tangent to Λ. For such vector fields, we can extend the Lie derivative above

to a map Lf = LHf
acting on sections of the line bundle appearing in the symbols space in

(92). To do that, consider νr
Γ
= ν ◦ s

Γ
∈ C∞(T ∗G,Ω

1/2
r
Γ
) with ν a positive density on AT ∗G.

Since by assumption ss
Γ
◦ φt = s

Γ
, we get:

Lf (νrΓ ) :=
d

dt
φ∗t (νrΓ )|t=0 =

d

dt
ν(s

Γ
◦ φt)|t=0 =

d

dt
ν1/2(s

Γ
)|t=0 = 0.

Combining the usual action of V |Λ recalled in (93) with the above trivial one, we obtain that

V = Hf acts on C∞(Λ,MΛ ⊗ Ω
1/2
Λ ⊗ Ω

1/2
r
Γ
) by the formula:

Lf (aµ1/2Λ ν1/2r
Γ
) =

(
Hf · a+

1

2
div(Hf )a

)
µ
1/2
Λ ν1/2r

Γ
.(94)
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In the important particular case where the G-relation Λ is a bissection, that is, when sΓ, rΓ
are diffeomorphisms from Λ to open subsets of A∗G, then

(95) TΛ⊕ ker ds
Γ
|Λ = TΛT

∗G.

Since v = Hf0◦rΓ
is tangent to both Λ and to the s

Γ
-fibers, we conclude that v vanishes on

Λ, which implies that Lf = 0 in (94).

Theorem 15. Let Λ be a G-relation and Q ∈ Ψm
G,c with principal and sub-principal G-

symbols q0 and q1s. Assume that q0 vanishes on Λ. Let A ∈ Im
′

(G,Λ;Ω1/2) and let a ∈
Sm

′+n/4(Λ,MΛ ⊗Ω
1/2
Λ ⊗ Ω̂1/2 ⊗ Ω̂

−1/2
G ) be a principal symbol of A.

Then

(96) QA ∈ Im+m′−1(G,Λ;Ω1/2)

and PA has a principal symbol represented by

(97) − iLq0a+ q1sa.

We could consider the distribution QA as the family of operators Qx ◦ Ax and apply [12,

Theorem 25.2.4]. However, we are going to consider QA as a single lagrangian distribution

on G given by the convolution in G of two distributions, and then make the minor necessary

adaptations of the proof of [12, Theorem 25.2.4]. This yields more conceptual and self-

contained explanations for the assertion to be proved.

Proof. We keep the assumptions and notation introduced for Q in the proof of Proposition

12. Using a partition of unity and [18], we can assume that A is supported in the domain

V of local coordinates trivialising s such that there exists a conic open set C in R
n and a

homogeneous C∞ function h such that:

(98) Λ ∩ T ∗V = {(h′(ξ), ξ) ; ξ ∈ C}.
The existence of such coordinates follows from [12, Lemma 25.2.5 and Theorem 21.2.16]. We

can write in these local coordinates above:

(99) A = A.µ1/2s µ1/2r with A(γ) =

∫
ei(<γ,η>−h(η))a(η)dη,

where a ∈ Sm
′−n/4(Rn) has support in a conic neighborhood of C. Then on V :

(100) QA = Bµ1/2s µ1/2r with B(γ) =

∫
ei(−<αγ

−1,ξ>+<α,η>−h(η))q0(r(γ), ξ)a(η)ϕ(α)dαdξdη.

Remember that, according to the decomposition η = (η′′, η′) provided by the local trivialisa-

tion of s, the symbol q(γ, η′) of Qs(γ) (see (82) and above) is given by

(101) q(γ, η′) = e−i〈γ,η
′〉Qs(γ)(e

i〈α,η′〉) =

∫
ei(−<αγ

−1,ξ>+<α−γ,η′>)q0(r(γ), ξ)ϕ(α)dαdξ.

Since γ, α ∈ Gs(γ), the same identity is licit for q considered as a function of (γ, η), but

does not define anymore a symbol in general (it satisfies symbolic estimates of order m in η′

but is independent of η′′). However, the assumption on the wave front set of A implies that

the symbol a is or order −∞ in some open cone around (η′′, 0). Indeed, (η′′, 0) ∈ ker(sΓ)

and by assumption Λ is a G relation, hence WFA ∩ ker(sΓ) = ∅. Therefore, the product

b(γ, η) = q(γ, η)a(η) is a symbol of order m+m′ − n/4. We get from (100) and (101):

(102) B(γ) =

∫
ei(<γ,η>−h(η))q(γ, η)a(η)dη,
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It is a lagrangian distribution of order m+m′ a priori, but since the leading part of b, which

is represented b0(γ, η) = q0(γ, η)a(η), vanishes on Λ, it is actually of order m +m′ − 1 and

we need to work out more the expression (102) to get its principal symbol. To this end, we

set:

(103) q(γ, ξ) = q0(γ, ξ) + e(γ, ξ),

and using the assumption: q0(γ, ξ) = 0 whenever γ = h′(ξ); we make the factorisation:

(104) q0(γ, ξ) =
∑

j

qj(γ, ξ)(γj −
∂h

∂ξj
).

Now, after an integration by parts in (102), we get:

(105) B(γ) =

∫
ei(<γ,ξ>−h(ξ))(ea−

∑

j

Dξj (qja))dξ.

It follows that QA has principal symbol represented by

(106) (ea −
∑

j

Dξj (qja))(h
′(ξ), ξ)|dξ|1/2(µrµs|dγ|−1)1/2

while A has principal symbol represented by

(107) a(ξ)|dξ|1/2(µrµs|dγ|−1)1/2.

Since Hq0 is tangent to Λ we have on Λ parametrized by ξ:

(108) Hq0(ξ) = −
∑

j

∂q0

∂γj
(h′(ξ), ξ)

∂

∂ξj
= −

∑

j

qj(h
′(ξ), ξ)

∂

∂ξj
.

Then, as a vector field on Λ, the divergence of Hq0 ∈ Γ(TΛ) is given by:

(109) div(Hq0) = −
∑

j

∂

∂ξj

[
qj(h

′(ξ), ξ)
]
= −

∑

j,k

∂2h

∂ξk∂ξj

∂qj
∂γk

−
∑

j

∂qj
∂ξj

.

On the other hand we have:

∂2q0

∂ξk∂γk
(γ, ξ) =

∂

∂ξk

∑

j

(
∂

∂γk
qj).(γj − h′j(ξ)) + qk

=
∑

j

∂2qj
∂γk∂ξk

.(γj − h′j(ξ))−
∑

j

∂qj
∂γk

∂2h

∂ξk∂ξj
+
∂qk
∂ξk

,

which gives after evaluation at γ = h′(ξ):

(110)
∑

k

∂2q0

∂ξk∂γk
(h′(ξ), ξ) =

∑

k

∂qk
∂ξk

−
∑

j,k

∂qj
∂γk

∂2h

∂ξk∂ξj
= 2

∑

k

∂qk
∂ξk

+ div(Hq0).

Setting

Lq0(a) := Lq0(a)(µrµs/|dγ|)−1/2 = −
∑

j

qj
∂a

∂ξj
+

1

2
div(Hq0)a,
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we get, still for γ = h′(ξ):

(ea −
∑

j

Dξj (qja)) =
(
e+ i

∑

j

∂qj
∂ξj

)
a+ i

∑

j

qj
∂a

∂ξj

=
(
e+ i

∑

j

∂qj
∂ξj

+
i

2
div(Hq0)

)
a− iLq0(a)

=
(
e+

i

2

∑

k

∂2q0

∂ξk∂γk

)
a− iLq0(a)

= −iLq0(a) +
(
e+

i

2

∑

k

∂2q0

∂ξ′k∂γ
′
k

)
a.(111)

In the last line, we have decomposed ξ = (ξ′, ξ′′) where ξ′ is cotangent to the s-fibers and

used the fact that q0 does not depend on the ξ′′ variables. This proves, looking at formula

(89), that −iLq0(a) + q1s.a is a principal symbol of QA. �

7. The Hamiltonian flow of the principal symbol and the associated

G-relations

We set:

Λ0 = A∗G \ 0, T ∗
.
G = T ∗G \ ker r

Γ
and

.

T ∗G = T ∗G \ (ker r
Γ
∪ ker s

Γ
).

The operator P being elliptic, we have WFP = Λ0. Recall that p00 ∈ C∞(Λ0) denotes

the homogeneous representative of σ0(P ) and that p0 = p00 ◦ rΓ is then the homogeneous

representative of σ(P ) ∈ C∞(T ∗
sG \ 0).

For every a ∈ R and (γ, ξ) ∈ T ∗G, we let a.(γ, ξ) = ρa(γ, ξ) = (γ, aξ).

Proposition 16. The flow χ of Hp0 satisfies the following properties:

(1) It is complete.

(2) It commutes with dilations in T ∗G:

∀a ∈ R
∗
+, t ∈ R, (γ, ξ) ∈ T ∗

.
G, a.χ(t, γ, ξ) = χ(t, γ, aξ).

(3) It provides at each time t a section of sΓ and commutes with right multiplication:

∀t ∈ R, (δ1, δ2) ∈ Γ(2), s
Γ
(χ(t, δ1)) = s

Γ
(δ1) and χ(t, δ1δ2) = χ(t, δ1)δ2.

In particular, the integral curves of Hp0 go along the fibers of sΓ.

Proof. This is essentially contained in [6]. More precisely:

(2) The homogeneity of p0 implies: (ρa)∗(Hp0) = Hp0 and therefore ρa ◦χt ◦ ρ−1
a = χt,

which gives the result.

(3) By definition, we have ω(Hp0 ,X) = dp0(X) = dp00(drΓ(X)) which yields Hp0 ∈
(d ker r

Γ
)ω = d ker s

Γ
. Using the last part of the proof of [6, Lemma, p.22], we get

that Hp0 is a right invariant vector field, which proves that the flow goes along the

s-fibers and is right invariant.

(1) Now, by compacity of M = G(0) and the homogeneity of Hp0 in the fibers of Λ0, we

get the existence of ǫ > 0 such that χ :] − ǫ, ǫ[×Λ0 → T ∗
.
G is well defined. By right

invariance, we extend χp onto ]− ǫ, ǫ[×(T ∗
.
G) and using the group property of flows

we can choose for any t an integer N such that |t|/N < ǫ and set

χ(t, α) = χt/N ◦ . . . ◦ χt/N (α)
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which proves completeness of the flow.

�

Remark 17.

(1) The compacity of M = G(0) is only needed here for the completeness of Hp0.

(2) By construction, χt is a diffeomorphism of T ∗
.
G and since sΓ ◦ χt = sΓ, we have:

(112) χt(
.

T ∗G) =
.

T ∗G.

We now set:

(113) ∀t ∈ R, Λt = χt(Λ0) ⊂
.

T ∗G.

Proposition 18. For any real number t, the set Λt is an invertible G-relation and:

(114) ∀t1, t2 ∈ R, Λt1 .Λt2 = Λt1+t2 .

Proof. Since χ is the Hamilton flow of a homogeneous function, each χt is a homogeneous

symplectomorphism. Since Λ0 is a homogeneous Lagrangian, its image Λt by χt is then

a Lagrangian homogeneous submanifold, contained by construction in
.

T ∗G. Thus, Λt is

a G-relation. Since sΓ ◦ χt|Λ0 = IdΛ0 , we get that sΓ|Λt is a diffeomorphism. The same

conclusion is true for rΓ|Λt because the vector field Hp0 is right invariant and therefore

rΓ ◦ χ|R×Λ0 is the (complete) flow of the vector field (rΓ)∗(Hp0) ∈ C∞(Λ0, TΛ0) defined by:

(rΓ)∗(Hp0)(δ) = (drΓ)δ(Hp0(δ)), δ ∈ Λ0. That sΓ|Λt and rΓ|Λt are diffeomorphisms mean

precisely that Λt is an invertible G-relation [18] (or a lagrangian bissection, if one accepts as

bissections submanifolds of Γ onto which rΓ and sΓ are diffeomorphisms onto open subsets

of A∗G = (T ∗G)(0)).

Let us proceed to the proof of the one parameter group relation. Let δj = χtj (uj) ∈ Λtj ,

j = 1, 2, be two composable elements. Then u1 = sΓ(δ1) = rΓ(δ2) and by commutation of χ

with right multiplication:

δ1.δ2 = χt1(rΓ(δ2))δ2 = χt1(δ2) = χt1(χt2(u2)) = χt1+t2(u2) ∈ Λt1+t2 .

The converse inclusion is then obvious. �

8. Global aspects of the family (Λt)t

In the vocabulary of [18], the family (Λt)t∈R admits a gluing into a single Lagrangian

submanifold Λ ⊂ T ∗(R × G). The expression of Λ is actually straightforward and we shall

study it in relation with the both groupoid structures on R×G.

Proposition 19. Let it : G→ R×G be the inclusion γ 7→ (t, γ). The set

(115) Λ =
{
(t,−p0(χt(x, ξ)), χt(x, ξ)) ∈ T ∗(R×G) ; t ∈ R, (x, ξ) ∈ A∗G \ 0

}

is a conic Lagrangian submanifold of T ∗(R ×G) satisfying:

∀t ∈ R, i∗tΛ = Λt.

Proof. the map F (t, δ) = (t, χt(δ)) being a diffeomorphism of R× (T ∗
.
G), the set F (R× Λ0)

is a submanifold of R × T ∗G and therefore Λ, as a graph, is a submanifold of T ∗(R × G),

obviously homogeneous and φ(t, x, ξ) = (t,−p0(χt(x, ξ)), χt(x, ξ)) is a parametrization.
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We check that Λ is lagrangian, which is equivalent by homogeneity of Λ to the vanishing

on it of the canonical one form αR×G = τdt+αG, that is to the vanishing of the one form on

R× Λ0 defined by φ∗αR×G. We have:

φ∗αR×G = −p0(χ)dt+ χ∗αG

= −p0(χ)dt+ αG(
∂χ

∂t
)dt+ (χt)

∗αG

Since χt is a homogeneous symplectomorphism of T ∗
.
G, the one form (χt)

∗αG vanishes on

Λ0. On the other hand, by homogeneity of p0 and Euler formula:

(116) αG(
∂χ

∂t
) = αG(Hp0(χt)) =

∑

j

ξj
∂p0

∂ξj
(χ) = p0(χ),

which proves the required assertion. �

There are two natural structures of groupoid on R×G, with different unit space:

G̃ = R×G⇒ R×G(0) and G+ = R×G⇒ G(0)

The first is the (constant) family of groupoids Gt = G parametrized by the space R, and

the second one is the cartesian product of G with the additive group R. The corresponding

symplectic groupoid structures on T ∗(R×G) will be denoted by:

(117) Γ̃ = T ∗(R×G) ⇒ pr∗2A
∗G and Γ+ = T ∗(R ×G) ⇒ R×A∗G

where pr2 : R ×M → M is the second projection and R × A∗G denotes the bundle over M

with fibers R×A∗
xG.

We will say that a subset A ⊂ R×X is R-proper if pr1 : A→ R is proper, that is

A ∩ [a, b]×X is compact for any a, b ∈ R.

We will call support of A ⊂ E the set supp(A) = π(A) ⊂ X for any bundle map π : E → X.

Proposition 20. The submanifold Λ of T ∗(R×G) satisfies the following:

(1) It is contained in (T ∗
R \ 0)×

.

T ∗G and closed in T ∗
R× (T ∗

.
G).

(2) It is both an invertible G̃-relation and a family G+-relation.

(3) The support of Λ is R-proper.

Proof. (1) We first check that Λ is closed in T ∗
R× T ∗

.
G. The map

φ : R× T ∗
.
G −→ R× T ∗

.
G, (t, λ) 7−→ (t, χ(t, λ))

is a diffeomorphism and R × Λ0 = R × T ∗
.
G ∩ R × A∗G is closed in R × T ∗

.
G since

R×A∗G is closed in T ∗(R×G). Thus φ(R×Λ0) is closed in R×T ∗
.
G. It follows that

Λ = {(t,−p0(λ), λ) ∈ T ∗
R× T ∗

.
G ; (t, λ) ∈ φ(R× Λ0)}

is closed in T ∗
R× T ∗

.
G.

(2) By remark 17, the inclusion Λ ⊂ T ∗
R ×

.

T ∗G holds true and by ellipticity of P , the

function p0 = p0 ◦ r
Γ
does not vanish on

.

T ∗G, hence

Λ ⊂ (T ∗
R \ 0)×

.

T ∗G.

(3) Since r
Γ̃
(t, τ, λ) = (t, r

Γ
(λ)) and s

Γ̃
(t, τ, λ) = (t, s

Γ
(λ)), we immediately deduce the

invertibility of Λ from the invertibility of the G-relations Λt for all t.



28 JEAN-MARIE LESCURE AND STÉPHANE VASSOUT

(4) Since r
Γ+

(t, τ, λ) = (τ, r
Γ
(λ)), s

Γ+
(t, τ, λ) = (τ, s

Γ
(λ)) and Λ ⊂ (T ∗

R \ 0) ×
.

T ∗G we

get Λ ∩ ker r
Γ+

= ∅ and the same for s
Γ+

so Λ is a G+-relation. Moreover, denoting

by π, π0, π2 the natural projection maps:

π : T ∗(R×G) → R×G, π0 : A
∗G→M, π2 : T

∗(R×G) → T ∗G,

since (t, τ, λ) ∈ Λ 7→ s
Γ
(λ) ∈ A∗G is a submersion, the composition

π0 ◦ sΓ ◦ π2 = sG+ ◦ π|Λ : Λ −→ A∗G+ −→M, (t, τ, γ, ξ) 7−→ s(γ)

is a submersion. This proves that Λ is a G+-family by [18, Remark 15 and below]

(5) This is a straightforward consequence of the compacity of M = G(0), of the homo-

geneity of χ, and of standard continuity arguments.

�

9. Approximation of e−itP by G-FIOs

The manifold R×G will be provided by the pull back of the half density bundle used for

G, and it will still be denoted by Ω1/2.

Let Λ be the G̃-relation defined by P as in (115). Since Λ is a family G̃-relation, any

U ∈ Im(R ×G,Λ;Ω1/2) is a Fourier integral G̃-operator (see [18] for the details), also given

as a distribution on G̃ by the C∞ family U(t) ∈ Im+1/4(G,Λt; Ω
1/2) of G-FIOs defined by

U(t) = i∗t (U). Here it : G → R ×G is the inclusion it(γ) = (t, γ). The converse is true: any

such family gives a single distribution in Im(R×G,Λ;Ω1/2).

Theorem 21. There exists a Fourier integral G̃-operator U ∈ I−
1
4
+(n(1)−n(0))/4(R×G,Λ;Ω1/2)

with R-proper support such that:

(118) (
∂

∂t
+ iP )U ∈ C∞(R ×G,Ω1/2).

Moreover, if E = (e−itP )t∈R denotes the one parameter group defined in Section 3, we have:

(119) E − U ∈ C∞(R,H∞).

Remark 22.

(1) It follows that (E(t))t∈R is a C∞ family of distributions, equivalently E ∈ D′
pr1

(R ×
G,Ω1/2).

(2) Recall that H∞ ⊂ C∞,0
orb (G) by Section 5, in particular the error term (119) is C∞ on

R×GO for any orbit O ⊂M .

(3) Theorem 21 also gives information about the operators eitPx on the (usually non com-

pact, complete, with bounded geometry) manifolds Gx, x ∈M . In the latter situation,

we refer to [21] for related results.

Proof of the theorem. Let U ∈ Im(R×G,Λ;Ω1/2). We first check that:

(120)
∂

∂t
U ∈ Im+1(R×G,Λ;Ω1/2) and PU ∈ Im+1(R×G,Λ;Ω1/2).

The distribution PU is given by convolution product in G̃ of the G̃-PDO P with the G̃-FIO

U . Therefore, the composition theorem of [18] applies and proves PU ∈ Im+1(R×G,Λ,Ω1/2).

Note that PU is also a convolution of distributions in G+:

(121) PU = (δt−s ⊗ P ) ∗G+ U,

but this time it is not a composition of G+-FIO because δt−s ⊗ P fails to be in general a

G+-PDO. The other assertion in (120) can be checked either by directly differentiating with
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respect to t the family (U(t))t expressed in local coordinates with oscillatory integrals, or by

composing the differential G+-operator
∂
∂t with the G+-FIO U .

The next task is to prove that the sum ( ∂∂t + iP )U is actually of order m and has principal

symbol given by:

(122) Lτ+p0(u) + iσ1s(P )u.

Since ∂
∂t + iP is neither a G̃ nor G+ pseudodifferential operator, we can not directly apply

Proposition 15 to extract the principal symbol of (120). We propose two ways to overcome

this difficulty, both containing useful technics.

First approach. Both distributions ∂
∂tU and PU are G̃-FIO. Working as before in suitable

local coordinates (t, γ, ξ), and using for instance [18, Theorems 5 and 6], there exists a C∞

function h(t, ξ), homogeneous of order 1 in ξ, and a symbol u(t, ξ), such that:

(123) (t, τ, γ, ξ) ∈ Λ ⇐⇒ τ = −h′t(t, ξ), γ = h′ξ(t, ξ),

(124) U(t, γ) =

∫
ei(〈γ,ξ〉−h(t,ξ))u(t, ξ)dξ.

It immediately follows that

(125)

(
∂

∂t
+ iP )U(t, γ) =

∫
ei(〈γ,ξ〉−h(t,ξ))

∂u

∂t
(t, ξ)dξ +

∫
ei(〈γ,ξ〉−h(t,ξ))i(p(γ, ξ) − h′t(t, ξ))u(t, ξ)dξ.

The right hand side is again a sum of Lagrangian distributions. The principal symbol of the

first term in the right hand side of (125) is just the restriction to Λ of:

(126)
∂u

∂t
= Lτu

In the second term, although p − h′t does not satisfy symbol estimates in ξ, the product

i(p(γ, ξ) − h′t(t, ξ))u(t, ξ) does and its leading part, which is represented by i(p0 − h′t)u,

vanishes on Λt for any t. We then reproduce the computations starting with (102), just

replacing h(ξ) by h(t, ξ), q(γ, ξ) by p(γ, ξ)− h′t(t, ξ) and a(ξ) by u(t, ξ), without omitting an

extra factor i. The reminder e is unchanged e = (p − h′t) − (p0 − h′t) = p − p0. The vector

field Hp0−h′t
being tangent to Λt for any t, we get, since h′t is independent of γ:

Hp0−h′t
= − ∂

∂γj
(p0 − h′t)

∂

∂ξj
= −∂p

0

∂γj

∂

∂ξj
= Hp0 .

Now we can read the expression for the required principal symbol in (111):

(127) Lp0(u) +
(
ie− 1

2

∑

k

∂2(p0 − h′t)

∂ξk∂γk

)
u.

Again, since h′t is independent of γ and p0 independent of ξ′′, the last expression simplifies

to:

(128) Lp0(u) +
(
ie− 1

2

∑

k

∂2p0

∂ξ′k∂γ
′
k

)
u = Lp0(u) + iσ1s(P )u.

Summing up (126) and (128), we conclude that the principal symbol of ( ∂∂t + iP )U is (122).

Second approach. We wish to use Proposition 15 in the framework of the groupoid

G+. However, we need to have the convolution of a pseudodifferential G+-operator with a

G+-FIO. The problem is that the distribution ( ∂∂t + iδt−s⊗P ) is not a G+-pseudodifferential
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operator, unless P is differential. The trick (similar to the one used in the proof of [12,

Theorem 25.2.4]), consists in finding a suitable microlocal approximation δt−s⊗P = P1 +P2

of δt−s⊗P by a G+-PDO P1 such that P2U ∈ C∞(R×G). For that purpose, observe that we
can deduce from (115) that there exists constants c1, c2 > 0 such for any (τ, x, ξ) ∈ rΓ+(Λ),

we have

(129) c1 ≤
|τ |
|ξ| ≤ c2.

Indeed, we know that (τ, x, ξ) = rΓ+(t,−p(λ), λ) = (−p(λ), rΓ(λ)) for some t ∈ R and λ ∈ Λt.

Denoting λ = (γ, η) ∈ T ∗G \ 0 and rΓ(γ, η) = (x, ξ) ∈ A∗G \ 0, we then get by homegenity of

p0,

|τ |
|ξ| =

|p0 ◦ rΓ(γ, η)|
|ξ| =

|p0(x, ξ)|
|ξ| = |p0(x,

ξ

|ξ|)|

and the result follows by continuity of p0 and compacity of M = G(0) (which implies that

S∗G = {(x, ξ) ∈ A∗G \ 0, |ξ| = 1} is compact.) We will use

Lemma 23. The distribution δt−s ⊗ P on G+ can be written δt−s ⊗ P = P1 + P2 with P1 a

G+-pseudodifferential operator and P2 a distribution on G+ such that WFP2 ⊂ {(t, τ, λ) ∈
T ∗G+ \ 0, s

Γ
(λ) = (x, ξ) with |ξ|

|τ | < ε}. In particular the total symbol of P1 and P coincide in

a neighborhood of rΓ+(Λ) and one has that P2U ∈ C∞(G+) if U ∈ Im(R×G,Λ,Ω1/2).

Proof. Consider a map χ on A∗(G+) = Rτ ×A∗G such that χ is homogeneous of degree 0 in

the cotangent variables outside a compact set, and such that for a chosen ε , one has

(1) χ(x, ξ, τ) = 0 unless 1 < ε|τ | and |ξ| < ε|τ | ;
(2) χ(x, ξ, τ) = 1 if 2 < ε|τ | and 2|ξ| < ε|τ | .

If P (x, ξ) is a total symbol for P , then one can write

P (x, ξ) = p1(x, ξ, τ) + p2(x, ξ, τ) = (1− χ(x, ξ, τ))P (x, ξ) + χ(x, ξ, τ)P (x, ξ).

It is clear that p1(x, ξ, τ) ∈ S1(A∗G+), so that the corresponding operator

P1(t, γ) =

∫
ei<κ(γ),ξ>+i<t,τ>p1(r(γ), ξ, τ)dξdτ µ

1/2
s (γ)µ1/2r (γ) ∈ Ψ1

G+
.

Moreover, in the neighbourhood of rΓ+(Λ), one has that χ(x, ξ, τ) = 0, because of (129) and

hence the symbol of P1 is the symbol of P .

Now the wave front of the distribution :

P2(t, γ) =

∫
ei<κ(γ),ξ>+i<t,τ>χ(r(γ), ξ, τ)P (r(γ), ξ)dξdτ µ1/2s (γ)µ1/2r (γ)

is such that if (t, τ, λ) ∈ T ∗G+\0 and sΓ(λ) = (x, ξ) ∈ A∗G\0 , rΓ(λ) = (y, η) ∈ A∗G\0, then
(t, τ, λ) ∈ WFP2 =⇒ max( |ξ||τ | ,

|η|
|τ |) ≤ ε. This implies in particular that WFP2.Λ = ∅. �

To conclude this second approach, note that the principal symbol of ( ∂∂t + iP1) is equal to

τ+p0 in a neighboorhood of rΓ+(Λ) and vanishes on rΓ+(Λ), because (τ+p0)◦rΓ+ = τ+p0◦rΓ
vanishes on Λ. Thus we may apply Proposition 15 with G+ as underlying groupoid to the

operators ( ∂∂t + iP1) and U , which allows to recover the formula (122) for the principal

symbol of their product by remarking that the subprincipal symbol of P1 is also equal to the

subprincipal of P in a neighboorhood of rΓ+(Λ).
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The rest of the proof is essentially identical to the proof of [12, Theorem 29.1.1]. Indeed

the (transport) equation

(130)

{
( ∂∂t + Lp0 + iσ1s(P ))u0 = 0

u0(0, .) = 1

has a unique solution u0 ∈ C∞(Λ), and u0 homogeneous of degree 0 with respect to the R+

action on each Λt. Let us fix a R-proper set V ⊂ R × G such that supp(Λ) ⊂
◦
V. choose

U0 ∈ I(n
(1)−n(0)−1)/4(R ×G,Λ,Ω1/2) with principal symbol u0 and support in V. Note that

U0(0) ∈ Ψ0
G,c because Λ0 = A∗G \ 0. It follows that:

(131) I − U0(0) ∈ Ψ−1
G,c and (

∂

∂t
+ iP )U0 = F 1 ∈ I−1+(n(1)−n(0)−1)/4(R ×G,Λ,Ω1/2).

Next one chooses U1 ∈ I−1+(n(1)−n(0)−1)/4(R × G,Λ,Ω1/2) with support in V and principal

symbol u1 solving the transport equation

(132)

{
( ∂∂t + Lp0 + iσ1s(P ))u1 = −f1
u1(0, .) = σ(I − U0(0))

and so on. We construct in this way a sequence U j ∈ I−j+(n(1)−n(0)−1)/4(R × G,Λ,Ω1/2).

Finally we choose U ∈ I(n
(1)−n(0)−1)/4(R×G,Λ,Ω1/2) with support in V such that:

U ∼
∑

U j.

By construction, we get

(133) R := (
∂

∂t
+ iP )U ∈ C∞(R×G) and S := Id−U(0) ∈ C∞

c (G).

Modifying U into U + ϕS with ϕ ∈ C∞
c (R) and ϕ(0) = 1, we can directly assume that

U(0) = Id. Also, the support of R is contained in

V ′ = V ∪ (R × supp(P )) ·G̃ V = V ∪ {(t, γ) ; γ ∈ supp(P ) · Vt}.

The set V ′ is again R-proper. This implies:

R ∈ C∞(R, C∞
c (G)) ⊂ C∞(R,H∞)

We obtain, using (27) and following verbatim the proof of [12, Theorem 29.1.1]

(134) U(t)− e−itP = R̃(t) := i

∫ t

0
ei(t−s)PR(s)ds

Using the results of Section 3, we get R̃ ∈ C∞(R,H∞), which ends the proof. �

The previous theorem is only stated for compactly supported operators, but it admits the

following slight generalization:

Corollary 24. Let T = Pc + S ∈ Ψ1
G, with Pc ∈ Ψ1

G,c satisfying the assumption of Theorem

21 and S ∈ H∞. There exists U ∈ I−
1
4
+(n(1)−n(0))/4(R × G,Λ;Ω1/2) with R-proper support

such that

(135) (
∂

∂t
+ iT )U ∈ C∞(R,H∞).
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Proof. Apply Theorem 21 to Pc and let U ∈ I−
1
4
+(n(1)−n(0))/4(R × G,Λ;Ω1/2) be the corre-

sponding parametrix. Then

(136) (
∂

∂t
+ iT )U = iSU +R, R ∈ C∞(R,H∞).

Using the continuity theorems for G-FIO [18], one gets that for any t, Ut acts continuously

on the scale of Sobolev modules, which immediately implies that SU ∈ C∞(R,H∞). �

As examples of situations into which Theorem 21 and Corollary 24 apply, we mention:

(1) The pair groupoid G = X × X ⇒ X of a compact manifold without boundary X.

SinceX itself is an orbit, we have C∞,0
orb (G) = C∞(X×X,Ω1/2) and we just recover the

classical result (see [12, Theorem 29.1.1] for instance), after the obvious identification

between G-operators and continuous linear operators C∞(X,Ω
1/2
X ) → C∞(X,Ω

1/2
X ).

(2) The holonomy groupoid G of a compact foliated manifold X. We recover the con-

struction of the leafwise geometrical optic approximation of eitP given in [15]. The

latter is worked out for small time and by solving eikonal equations to find the re-

quired phases in local coordinates as well as by solving transport equations. Our

construction here can be viewed as a complement, available for arbitrary time and

regarding the evolution of singularities as well as the kind of Fourier integral operators

involved in the problem.

(3) G ⇒ {e} a Lie group. Here again, there is only one orbit so C∞,0
orb (G) = C∞(G).

The result applies for instance to the square root
√
∆ of any elliptic laplacian ∆ =

−∑X2
j ∈ Diff2

G, viewed as right invariant operators on G. That
√
∆ = Pc +S ∈ Ψ1

G

with σ0G(Pc) =
√∑

ξ2j follows from [32] and we get here the existence of a C∞ family

Ut of right invariant FIO on G [27, 18] such that ( ∂∂t + i
√
∆)Ut ∈ C∞(G) ∩ C∗

r (G)

for any t.

(4) The groupoid Gb ⇒ X of the b-calculus of a manifold with embedded corners X [25].

We recall that Gb is the open submanifold with corners of the b-stretched product of

R. Melrose X2
b in which all the lateral faces are removed. Identifying Gb-operators

with pseudodifferential operators in the b-calculus, and their restrictions at boundary

hypersurfaces with indicial operators, we get for any elliptic symmetric P ∈ Ψ1
b(X) in

the small calculus the existence of a C∞ family Ut of b-FIO on X [22, 18] such that

(137) (
∂

∂t
+ iP )Ut = Rt ∈ C∞((X \ ∂X)2) ∩ L(L2

b(X)).

and for any boundary hypersurfaces H (with normal bundle trivialized with a bound-

ary defining function):

IH(Rt) = (
∂

∂t
+ iIH(P ))IH(Ut) ∈ C∞(H2 × R) ∩ L(L2

b(H × R)).

The error term Rt is C
0 on Gb and there is no reason neither to expect that it is C∞

on Gb, nor that it extends continuously to X2
b .

(5) This discussion is similar to the previous one for the groupoid Gπ ⇒ X [8] and its

associated pseudodifferential calculus, where X is a manifold with iterated fibred

corners. In both cases, the regularity result that we reach for the error term R is

likely not optimal. This will be investigated, among other applications to singular

spaces, in future works.

As far as we know, examples (3–5) above are new.
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