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SPECTRAL ASYMPTOTICS FOR THE SEMICLASSICAL

BOCHNER LAPLACIAN OF A LINE BUNDLE WITH CONSTANT

RANK CURVATURE

LÉO MORIN

Abstract. The goal of this paper is manyfold. Firstly, we want to give a short
introduction to the Bochner Laplacian and explain why it acts locally as a mag-
netic Laplacian. Secondly, given a confining magnetic field, we use Agmon-like
estimates to reduce its spectral study to magnetic Laplacians, in the semiclassical
limit. Finally, we use this to translate already-known spectral asymptotics for the
magnetic Laplacian to the Bochner Laplacian.

1 – Introduction

1.1 – Motivations and context

The spectral theory of the magnetic Laplacian, and the Bochner Laplacian, has
given rise to many interesting questions. First motivated by the Ginzburg-Landau
theory, bound states of the magnetic Laplacian (ihd+A)∗(ihd+A) on a Riemannian
manifold in the semiclassical limit h→ 0 were studied in many works (see the books
[2, 12]), and appears to have very various behaviours according to the variations of
the magnetic field B = dA and the boundary conditions. The first main technique
consisted in the construction of approximated eigenfunctions (see for instance the
works of Helffer-Mohamed [6] and Helffer-Kordyukov [3, 4, 5]). More recently, an
other approach was developped, which consists in an approximation of the operator
itself, using semiclassical tools such as microlocalisation estimates and Birkhoff nor-
mal forms (As in Raymond-Vu Ngoc [13] and Helffer-Kordyukov-Raymond-Vu Ngoc
[7]). In the semiclassical limit h→ 0, we recover the classical behaviour of a particle
exposed to the magnetic field B, since the magnetic Laplacian is the quantification
of the classical energy.

If we are given a magnetic field B which is not exact, there is no potential A and
we cannot define the magnetic Laplacian. However, the Bochner Laplacian 1

p2
∆Lp

appears to be the suitable generalization in this case, since it acts locally as a mag-
netic Laplacian. In this context the semiclassical parameter is p = h−1. Its spectral
theory appears to be deeply related to holomorphic structures and to the Kodaira
Laplacian (or the renormalized Bochner Laplacian more generaly). For instance,
this is exploited in the works of Marinescu-Savale [9], and Kordyukov [8]. In this
last paper, the case of non-degenerate magnetic wells with full-rank magnetic field is
studied, and expansions of the ground states energies are given, using quasimodes.
In [11], similar results were obtained in the special case of the magnetic Laplacian,
using a Birkhoff normal form, but also giving a description of semi-excited states,
and a Weyl law. In [10], these result are generalized to constant-rank magnetic fields.
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2 LÉO MORIN

The spectral theory of the Bochner Laplacian is also deeply related to the global
geometry of complex manifolds. For instance, in [1], a Weyl law was proven for ∆Lp

,
and used to get Morse inequalities and Riemann-Roch formulas.

In this paper, we use Agmon-like estimates to reduce the spectral theory of the
Bochner Laplacian with magnetic wells to magnetic Laplacians. Then, we deduce
spectral asymptotics for the Bochner Laplacian using the results of [11, 10].

1.2 – The Bochner Laplacian on a line bundle

Let (M, g) be a compact oriented manifold of dimension d > 1. We consider
a complex line bundle L → M over M , endowed with a Hermitian metric h. In
other words, we associate to each x ∈ M a 1-dimensional complex vector space Lx,
and a Hermitian product hx on Lx. L is a d + 1-dimensional manifold such that
L =

⋃

x∈M Lx. A smooth section of L (or L-valued function) is a smooth function
s : M → L such that s(x) ∈ Lx. It is the generalisation of the notion of function
f : M → C, but here the target space can vary with x ∈ M . Similarily, L-valued
k-forms are sections of ∧kT ∗M ⊗ L. We denote by C∞(M,L) the set of smooth
sections of L, and Ωk(M,L) the set of smooth L-valued k-forms.

We take ∇L a Hermitian connexion on (L, h). It is the generalisation of the
exterior derivative d. The underlying idea is that the "derivative" of a L-valued
function should be L-valued too. ∇L : Ωk(M,L) → Ωk+1(M,L) satisfies:

(1.1) ∇L(sα) = ∇Ls ∧ α + sdα, ∀s ∈ C∞(M,L), α ∈ Ωk(M,C),

(1.2) dh(s1, s2) = h(∇Ls1, s2) + h(s1,∇
Ls2), ∀s1, s2 ∈ C∞(M,L).

One can prove that (∇L)2 : Ω0(M,L) → Ω2(M,L) acts as a multiplication. There
exists a real closed 2-form B on M such that:

(1.3) (∇L)2s = iBs, ∀s ∈ C∞(M,L).

Example : The trivial line bundle. The line bundle L = M × C, such that
Lx = {x} × C is called the trivial line bundle. We identify sections s ∈ C∞(M,L)
with functions f ∈ C∞(M) by s(x) = (x, f(x)). Similarily, L-valued k-forms are
identified with C-valued k-forms, and we recover the usual differential objects on
M . If L is endowed with the Hermitian product hx((x, z1), (x, z2)) = z1z2, we call
(L, h) the trivial Hermitian line bundle. We write h(z1, z2) for short. Hermitian
connexions on the trivial line bundle are given by ∇α = d+ iα where α ∈ Ω1(M,R)
and d is the exterior derivative. The curvature of ∇α is ∇2

α = idα, as shown by the
easy but enlightening calculation:

(1.4)
∇2

αf = (d + iα)(df + ifα) = d2f + iα ∧ df + id(fα) + ifα ∧ α
= iα ∧ df + idf ∧ α+ ifdα = ifdα.

Let us describe now the Bochner Laplacian ∆L associated to a Hermitian con-
nexion ∇L on a Hermitian complex line bundle (L, h). First note that the spaces
C∞(M,L) = Ω0(M,L) and Ω1(M,L) are endowed with L2-norms. The norm of a
section s ∈ C∞(M,L) is:

(1.5) ‖s‖2 =

∫

M

hx(s(x), s(x))dνg(x),
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where dνg denotes the volume form of the oriented Riemannian manifold (M, g). We
denote by L2(M,L) the completion of C∞(M,L) for this norm. The definition of the
norm of a L-valued 1-form α is a little more involved. First, using a partition of unity,
it is enough to define it for α ∈ Ω1(U, L) where U is a small open subset of M . If U is
small enough, there exists a section e ∈ C∞(U, L) such that hx(e(x), e(x)) = 1. Then
for any α ∈ Ω1(U, L), there exists a unique X ∈ TM such that αx(•) = gx(Xx, •)ex
(we identify 1-forms with tangent vectors using the metric g). We define:

(1.6) ‖α‖2 =

∫

M

gx(Xx, Xx)dνg(x).

The completion of Ω1(M,L) for this norm is denoted by L2Ω1(M,L): it is the space
of square-integrable L-valued 1-forms. These norms are associated with scalar prod-
ucts, denoted by brackets 〈., .〉.

The formal adjoint of ∇L : Ω0(M,L) → Ω1(M,L) for these scalar products is
denoted by (∇L)∗ : Ω1(M,L) → Ω0(M,L). The Bochner Laplacian ∆L is the self-
adjoint extension of (∇L)∗∇L. It is the operator associated with the quadratic form:

(1.7) Q(s1, s2) = 〈∇Ls1,∇
Ls2〉.

We denote by Dom(∆L) its domain. C∞(M,L) is a dense subspace of Dom(∆L) and:

(1.8) 〈∆Ls1, s2〉 = 〈∇Ls1,∇
Ls2〉, ∀s1, s2 ∈ Dom(∆L).

Since M is compact, one can prove that ∆L has compact resolvent, and we denote
by

(1.9) λ1(∆
L) ≤ λ2(∆

L) ≤ ...

the non-decreasing sequence of its eigenvalues. We will use the following notation
for the Weil counting function:

N(∆L, λ) := ♯{j;λj(∆
L) ≤ λ}.

In this paper, we are interested in the semiclassical limit, i.e. the high curvature
limit "B → +∞". We can increase the curvature B using tensor products of L. For
any p ∈ N, we denote by Lp = L ⊗ ... ⊗ L the p-th tensor power of L. Lp is still a
complex line bundle of M , with Lp

x = Lx⊗ ...⊗Lx. It is endowed with the Hermitian
product hpx(s1 ⊗ ...⊗ sp, s1 ⊗ ...⊗ sp) = Πp

i=1hx(si, si). The connexion ∇L induces a
Hermitian connexion ∇Lp

on Lp by the formula:

∇Lp

(s1 ⊗ ...⊗ sp) = (∇Ls1)⊗ ...⊗ sp + ...+ s1 ⊗ ...⊗ (∇Lsp).

The curvature of ∇Lp
is

(1.10) (∇Lp

)2 = ipB.

Hence, the high curvature limit is p → +∞. We want to invastigate the behaviour
of λj(∆

Lp
) and the corresponding eigensections in the limit p→ +∞.

1.3 – Main results

One can measure the "intensity" of the curvature B (the magnetic field) in the
following way. We denote by Bx : TxM → TxM the linear operator defined by

(1.11) gx(BxU, V ) = Bx(U, V ), ∀U, V ∈ TxM.
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Bx is real and skew-symmetric with respect to gx, and thus its eigenvalues lie on the
imaginary axis and are symmetric with respect to the origin. We denote its non-zero
eigenvalues by:

(1.12) ±iβ1(x), · · · ,±iβs(x),

with βj(x) > 0. Hence, the rank of Bx is 2s and might depend on x, but we will soon
assume that s is constant, at least locally. The magnetic intensity is the function
b :M → R+ defined by:

(1.13) b(x) =

s(x)
∑

j=1

βj(x).

This function is continuous on M , but not smooth in general. However, note that
it is smooth on a neighborhood of any point x0 where the (βj(x0))1≤j≤s are simple
(if s is locally constant near x0).

One of the purposes of this article is to show that the eigensections of ∆Lp
are

localized near the minimum points of b, and to deduce that the low-lying spectrum
of ∆Lp

is given by magnetic Laplacians on neighborhoods of the minimal points of
b.

We will do the following assumptions.

Assumptions. (A1) The minimal value of b is only reached at non degenerate
points x1, · · · , xN ∈ M . We denote by b0 = b(xj) = minx∈M b.

(A2) The rank of B is constant on small neighborhoods U1, · · · , UN of x1, · · · , xN .
We denote by 2sj the rank of Bxj

.

(A3) We assume b0 > 0, which is equivalent to say that sj > 0 for any j.

As noticed in several papers, one can prove using Agmon-like estimates that the
eigensections of ∆Lp

associated to low-lying eigenvalues are exponentially localized
near {x ∈ M, b(x) = b0}, in the limit p → +∞. Now let us present the local
model operators on Uj .

Recall that the 2-form B is closed: dB = 0. Hence, if the open sets Uj are small
enough, B is exact on Uj : there exists Aj ∈ Ω1(Uj) such that B = dAj on Uj . We

denote by L(j)
p the Dirichlet realization of (d+ ipAj)

∗(d+ ipAj) on L2(Uj). It is the
self-adjoint operator associated to the following sesquilinear form on C∞

0 (Uj):

(1.14) Qj(u, v) =

∫

M

(du+ ipAju)(dv + ipAjv)dνg.

We prove the following Theorem.

Theorem 1. Let α ∈ (0, 1/2). Under assumptions (A1) and (A3), if η, ε > 0 are
small enough, then:

(1.15) λk(∆
Lp

) = λk
(

L(1)
p ⊕ ...⊕L(N)

p

)

+O(exp(−εpα)),

uniformly with respect to k ∈ [1, Kp], where

Kp = min
(

N(∆Lp

, (b0 + η)p), N(L(1)
p ⊕ ...⊕L(N)

p , (b0 + η)p)
)

,
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and N(A, λ) denotes the number of eigenvalues of an operator A below λ, counted
with multiplicities.

As a corollary, we can deduce spectral asymptotics for ∆Lp
from already-known

results for L(j)
p . Let us recall some of these results here.

1.3.1 – The full-rank case

Under the assumptions (A1) − (A2) − (A3), we fix a j ∈ {1, · · · , N}, and we
denote by Bj = dAj . Hence, Bj is just the restriction of B to the small open set

Uj , where it admits a primitive Aj . L(j)
h is the magnetic Laplacian with Dirichlet

boundary conditions on Uj , with magnetic field Bj . We first focus on the full-rank
case, when the rank of Bj is maximal: 2sj = d. We define rj ∈ N by the condition

(1.16) ∀n ∈ Z
sj , 0 <

sj
∑

ℓ=1

|nℓ| < rj ⇒

sj
∑

ℓ=1

nℓβℓ(xj) 6= 0.

Note that, if the βℓ(xj) are pairwise distinct, we can choose rj ≥ 3. Moreover, if the
open set Uj is small enough we have, for all x ∈ Uj and n ∈ Z

sj ,

(1.17) 0 <

sj
∑

ℓ=1

|nℓ| < rj =⇒

sj
∑

ℓ=1

nℓβℓ(x) 6= 0.

The following Theorem was proved in [11].

Theorem 2. We assume (A1)− (A2)− (A3) with 2sj = d and r ≥ 3 in (1.16). Let
η, ε > 0 small enough. Then there exists a symplectomorphism ψ : Uj → T ∗

R
d/2

such that:

(1.18)
1

p2
λk(L

(j)
p ) = λk

(

⊕

n∈Nd

N [j,n]
p

)

+O(p−rj/2+ε),

uniformly with respect to k ∈ [1, K̃p], where N [j,n]
p is a pseudo-differential operator

with principal symbol:

σ(N [j,n]
p ) =

1

p

sj
∑

ℓ=1

(2nℓ + 1)βℓ ◦ ψ
−1(x, ξ),

and
K̃p = min

(

N(L(j)
p , (b0 + η)p), N(⊕nN

[j,n]
p , (b0 + η)p−1)

)

.

Hence, we have a description of the semi-excited states of L(j)
p . In the same paper,

Weyl estimates are proven for L(j)
p . We directly deduce the following Weyl estimates

for ∆Lp
. A Similar formula was proven in [1] using a local approximation of the

magnetic field by a constant field.

Corollary 3. Assume (A1)− (A2)− (A3), and for any j ∈ {1, · · · , N} that sj = d/2,
and that (βℓ(xj))1≤ℓ≤N are pairwise distinct. Then, for η > 0 small enough,

(1.19) N(∆Lp

, (b0 + η)p) ∼
( p

2π

)d/2 ∑

n∈Nd/2

∫

b[n](x)≤b0+η

Bd/2

(d/2)!
,

in the limit p→ +∞, where b[n](x) =
∑d/2

ℓ=1 nℓβℓ(x).
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Finally, we also deduce asymptotic expansions of the first eigenvalues.

Corollary 4. Assume (A1)− (A2)− (A3), and for any j ∈ {1, · · ·N} that sj = d/2
and that (βℓ(xj))1≤ℓ≤N are pairwise distinct, and r := minj rj ≥ 5. Then, for any
k ∈ N and ε > 0,

λk(∆
Lp

) = b0p+

r−5
∑

i=0

αi,kp
−i/2 +O(p2−r/2+ε),

for some coefficients αi,k ∈ R.

Remark. We also have geometric interpretations of the coefficients. First, the full

expansion comes from the effective operator N [j,0]
p , which is the reduction of L(j)

p

to the lowest energy of the Harmonic oscillator describing the classical cyclotron
motion. Moreover, α0,k is given by an eigenvalue of an other Harmonic oscillator
whose symbol is the Hessian of b at xj (for some 1 ≤ j ≤ N): it describes a slow drift
of the classical particle arround xj . If the eigenvalues of this oscillator are simple,
then a Birkhoff normal form can be used to show that αi,k = 0 if i is odd.

1.3.2 – The constant-rank case

In the non-full-rank case, the kernel of B (which corresponds to the directions of
the field lines), has a great influence on the spectrum of ∆Lp

. Fix 1 ≤ j ≤ N . If the
rank of Bj is constant, equal to 2sj , then its kernel as dimension kj = d− 2sj. The
partial Hessian of b at xj , in the directions of the Kernel of Bj, is non-degenerate.
we denote by

(1.20) ν2j,1, · · · , ν
2
j,kj

its eigenvalues. For simplicity, we will make the following non-resonance assumptions
(however, we can deal with resonances using a resonance order r as in the full-rank
case).

Assumptions. (A4) For every j, (βℓ(xj))1≤ℓ≤sj are non-resonnant in the following
sense:

∀n ∈ Z
sj , n 6= 0 =⇒

sj
∑

ℓ=1

nℓβℓ(xj) 6= 0.

(A5) For every j such that kj > 0, (νj,ℓ)1≤ℓ≤kj are non resonnant in the following
sense:

∀n ∈ Z
kj , n 6= 0 =⇒

kj
∑

ℓ=1

nℓνj,ℓ 6= 0.

Applying the results of [10] to get spectral asymptotics for L(j)
h , we deduce from

Theorem 1 the following corollary.

Corollary 5. Assume (A1) − (A2) − (A3) − (A4) − (A5), and let n ∈ N. Then
λn(∆

Lp
) admits a full asymptotic expansion in powers of p−1/2:

λn(∆
Lp

) = b0p+ κp1/2 +
∑

i≥0

αi,np
−i/2 +O(p−∞).

Moreover:
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• If there is at least one j such that kj = 0, then κ = 0.

• If ∀j ∈ {1, · · · , N}, kj > 0, then κ = minj=1,··· ,N

∑kj
ℓ=1 νj,ℓ.

2 – Some Remarks

2.1 – The Bochner Laplacian and the magnetic Laplacian are

locally the same

If U is any open subset of M such that there exists a non-vanishing section e ∈
C∞(U, L), then any s ∈ C∞(U, L) can be written s = ue for some u ∈ C∞(M).
Hence,

∇s = (∇e)u+ e(du) = e[(d + iA)u],

with ∇e = eiA. Moreover,

∇2s = ∇e ∧ [(d + iA)u] + ed[(d + iA)u]
= e(iA ∧ du) + e(iA ∧ iA)u+ ed2u+ ieudA + edu ∧ iA
= ieudA = (idA)s,

and thus B = dA. Hence ∇ acts locally as d+iA, and ∆L as the magnetic Laplacian
(d + iA)∗(d + iA). This is the core of Theorem 1.

2.2 – On the quantization of a magnetic field

If we are given a closed 2-form B (the magnetic field), the quantization question
constist in finding a quantum operator associated to B. If B is exact, this question is
answered by the semiclassical magnetic Laplacian (~d+iA)∗(~d+iA), with B = dA.
Here, ~ > 0 is the semiclassical parameter (Planck’s constant) and the semiclassical
limit is ~ → 0.

If B is not exact, but if there exists an Hermitian line bundle with Hermitian
connexion such that ∇2 = iB, then the Bochner Laplacian ∇∗∇ acts locally as the
magnetic Laplacian and hence it is a good candidate. Moreover, we have locally

∆Lp

= (d + ipA)∗(d + ipA) = p2(
1

p
d + iA)∗(

1

p
d + iA),

so that the semiclassical parameter is now ~ = 1
p

(Also notice the p2 factor which

is important for the eigenvalue asymptotics). The limit ~ → 0 is equivalent to
p→ +∞ exept that the semiclassical parameter becomes discrete (p ∈ N).

A new question arises : When does such an Hermitian line bundle exists ? Weil’s
Theorem states that it exists if and only if B satisfies the prequantization condition:

(2.1) [B] ∈ 2πZ,

where [B] denotes the cohomology class of B. This condition also enlightens the
discreteness of the semiclassical parameter. Indeed, if one wants to quantize the
magnetic field 1

~
B, then one must have

[

1
~
B
]

∈ 2πZ, and thus 1
p
∈ Z, unless [B] = 0

which means that B is exact (and thus we can use the magnetic Laplacian !).
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3 – Proof of Theorem 1

3.1 – Agmon-like estimates

In this section, we prove exponential decay on the eigensections of ∆Lp
, away from

the set {x1, · · ·xN}. We need the following Lemma.

Lemma 6. There exist p0 > 0 and C0 > 0 such that, for p ≥ p0 and s ∈ C∞(M,L),

(1 +
C0

p1/4
)‖∇Lp

s‖2 ≥ p

∫

M

(b(x)−
C0

p1/4
)|s(x)|2dx.

Proof. Take a partition of unity (χα)α on M , such that suppχα ⊂ Uα with Uα a
small open subset of M , and

(3.1) 1 =
∑

α

χ2
α,

∑

α

|dχα|
2 ≤ C.

Then, for any s ∈ C∞(M,L) we have

(3.2) ‖∇Lp

s‖2 =
∑

α

‖∇Lp

(χαs)‖
2 −

∑

α

‖|dχα|s‖
2,

and χαs ∈ C∞
0 (Uα, L). If every Uα are small enough, we can find a non-vanishing

section eα on Uα which we can use to trivialize the line bundle. Writting χαs = uαeα
for some uα ∈ C∞

0 (Uα), we have

(3.3) ∇Lp

(χαs) = [(d + ipAα)uα] eα,

where Aα ∈ Ω1(Uα) is such that B = dAα. For the magnetic Laplacian (d +
ipAα)

∗(d+ ipAα), the desired inequality is well-known: There exist pα ∈ N, Cα > 0
such that, for every uα ∈ C∞(Uα), and p ≥ pα:

(3.4) (1 +
Cα

p1/4
)‖(d + ipAα)uα‖

2 ≥ p

∫

Uα

(b(x)−
Cα

p1/4
)|uα(x)|

2dx.

Using (3.2), (3.3), and (3.4), we deduce that

(3.5) (1 +
C0

p1/4
)‖∇Lp

s‖2 ≥ p

∫

M

(b(x)−
C0

p1/4
)|s(x)|2dx− (1 +

C0

p1/4
)
∑

α

‖|dχα|s‖
2,

with C0 = maxαCα, and for p ≥ maxα pα. Finally, (3.1) yields

(3.6) (1 +
C0

p1/4
)
∑

α

‖|dχα|s‖
2 ≤ C(1 +

C0

p1/4
)‖s‖2 ≤ C̃p3/4‖s‖2.

Hence, up to changing C0 into C0 + C̃, Lemma 6 is proved. �

Now we can use Lemma 6 to prove Agmon-like decay estimates.

Theorem 7. Let α ∈ (0, 1/2), η > 0, and Kη = {b(x) ≤ b0 + 2η}. There exist
C > 0 and p0 > 0 such that, for all p ≥ p0 and all eigenpair (λ, ψ) of ∆Lp

with
λ ≤ (b0 + η)p,

∫

M

|ed(x,Kη)pαψ|2dq ≤ C‖ψ‖2.
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Proof. Let Φ :M → R be a Lipschitz function. The Agmon formula is:

(3.7) 〈∆Lp

eΦψ, eΦψ〉 = λ‖eΦψ‖2 + ‖dΦeΦψ‖2.

Using Lemma 6, we deduce that:
∫

(pb(x)− C0p
3/4 − (1 + C0p

−1/4)(λ+ |dΦ|2))|eΦψ|2dx ≤ 0.

We split this integral into two parts.
∫

Kc
η

(pb(x)− C0p
3/4 − (1 + C0p

−1/4)(λ+ |dΦ|2))|eΦψ|2dx

≤

∫

Kη

(−pb(x) + C0p
3/4 + (1 + C0p

−1/4)(λ+ |dΦ|2))|eΦψ|2dx

We choose Φ:
Φm(x) = χm(d(x,Kη))p

α, for m > 0,

where χm(t) = t for t < m, χm(t) = 0 for t > 2m, and χ′
m uniformly bounded with

respect to m. Since Φm = 0 on Kη and pb(x) − C0p
3/4 > 0 for p large enough, we

have:
∫

Kc
η

(pb(x)− C0p
3/4 − (1 + C0p

−1/4)(λ+ |dΦm|
2))|eΦmψ|2dx

≤ (b0 + η)p

∫

Kη

(1 + C0p
−1/4)|ψ|2dx ≤ Cp‖ψ‖2.

Moreover, since λ ≤ (b0 + η)p and |dΦm|2 ≤ Cp2α,
∫

Kc
η

(pb(x)− C0p
3/4 − (1 + C0p

−1/4)(b0p+ ηp+ Cp2α)|eΦmψ|2dx ≤ Cp‖ψ‖2

p

∫

Kc
η

(b(x)− (b0 + η)− C0p
−1/4 − C̃p2α−1)|eΦmψ|2dx ≤ Cp‖ψ‖2,

for p large enough. But b(x) > b0 + 2η on Kc
η, so there is a δ > 0 and p0 > 0 such

that, for p ≥ p0:

δ

∫

Kc

|eΦmψ|2dq ≤ C‖ψ‖2.

Since Φm = 0 on K, we get a new C > 0 such that:

‖eΦmψ‖2 ≤ C‖ψ‖2,

and we can use Fatou’s lemma in the limitm→ +∞ to get the desired inequality. �

Corollary 8. Let ε > 0 and χ : M → [0, 1] be a smooth cutoff function, being 1 on
a small neighborhood of

Kη + ε = {x; d(x,Kη) < ε}.

Then, for any eigenpair (λ, ψ) of ∆Lp
, with λ ≤ (b0 + η)p we have:

ψ = χψ +O(e−εpα)‖ψ‖,

and
∇Lp

(χψ) = ∇Lp

ψ +O(p1/2e−εpα)‖ψ‖,

uniformly with respect to (λ, ψ).
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Proof. By Theorem 7, we have:

(3.8) ‖(1− χ)ψ‖2 ≤

∫

(Kη+ε)c
|ψ|2dq ≤

∫

M

e−2εpα|ed(x,Kη)pαψ|2dx ≤ Ce−2εpα‖ψ‖2,

which gives the first estimates. Moreover, we have with Φ(x) = d(x,Kη),

‖eΦpα∇Lp

ψ‖ ≤ ‖∇Lp

(eΦpαψ)‖+ pα‖dΦeΦpαψ‖,

and using Agmon’s formula 3.7 and Theorem 7:

‖∇Lp

(eΦpαψ)‖2 = λ‖eΦpαψ‖2 + p2α‖dΦeΦpαψ‖2 ≤ C2p‖ψ‖2.

Thus,

(3.9) ‖eΦpα∇Lp

ψ‖ ≤ Cp1/2‖ψ‖2.

We can use these Agmon estimates on ∇Lp
ψ to get our second result.

(3.10) ‖∇Lp

((1− χ)ψ)‖ ≤ ‖(∇Lp

χ)ψ‖+ ‖(1− χ)∇Lp

ψ‖

The first term is dominated by

(3.11) ‖(∇Lp

χ)ψ‖ ≤ C‖(1− χ)ψ‖

where χ is a cutoff function such that χ = 1 on Kη + ε and χ = 0 on supp(1 − χ).
We can apply (3.8) to χ to get:

(3.12) ‖(∇Lp

χ)ψ ≤ Ce−εpα‖ψ‖.

The second term of (3.10) is dominated as in (3.8), using (3.9):

(3.13) ‖(1− χ)∇Lp

ψ‖ ≤ Cp1/2e−εpα‖ψ‖.

Finally, (3.10) with (3.12) and (3.13) yields

‖∇Lp

((1− χ)ψ)‖ ≤ Cp1/2e−εpα‖ψ‖.

�

3.2 – Comparison of the spectrum of ∆Lp

and L
(j)
p

We recall that the minimum b0 of b is reached at x1, · · · , xN in a non-degenerate
way. For η > 0 small enough, the compact set Kη = {b(x) ≤ b0 + η} has N disjoint

connected components K
(j)
η such that xj ∈ K

(j)
η . We fix the value of η, and we take

Uj a neighborhood of K
(j)
η . For ε > 0 sufficiently small, K

(j)
η + 2ε ⊂ Uj.

We denote by Bj the restriction of B to Uj. L(j)
p is the Dirichlet realisation of

(d+ ipAj)
∗(d+ ipAj), with Aj ∈ Ω1(Uj , L) such that Bj = dAj . It is the self adjoint

operator associated to the quadratic form:

(3.14) Qj(u, v) =

∫

Uj

(d + ipAj)u(d + ipAj)vdx, ∀u, v ∈ H1
0(Uj).

Let us denote by

(3.15) Kp = min

[

N(∆Lp

, (b0 + η)p);N

(

N
⊕

j=1

L(j)
p , (0, b0 + η)p

)]

.

We split the proof of Theorem 1 into two Lemmas.
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Lemma 9. Let α ∈ (0, 1/2). We have:

λk(
N
⊕

j=1

L(j)
p ) ≤ λk(∆

Lp

) +O(exp(−εpα)),

uniformily with respect to k ∈ [1, Kp].

Proof. We prove this using the min-max principle. For k ∈ [1, Jp], let ψk be the
normalized eigenfunction associated to λk(∆

Lp
). We will define the quasimode uj,k ∈

C∞
0 (Uj) using a local trivialisation of Lp on Uj . Let ej ∈ C∞(Uj, L) be the non-

vanishing local section of L such that, for any u ∈ C∞(Uj),

(3.16) ∇Lp

(uej) = [(d + ipAj)u] ej.

Let χj ∈ C∞
0 (Uj) be a smooth cutoff function, such that χj = 1 on K

(j)
η + ε. We

define uj,k ∈ C∞
0 (Uj) by χjψk = uj,kej , and

uk = u1,k ⊕ ...⊕ uN,k.

Then

〈
⊕

j

L(j)
p uk, uk〉 =

N
∑

j=1

〈L(j)
p uj,k, uj,k〉 =

N
∑

j=1

‖(d + ipAj)uj,k‖
2.

Moreover, by (3.16),

‖(d + ipAj)uj,k‖
2 =

∫

Uj

|(d + ipAj)uj,k|
2dx =

∫

Uj

|∇Lp

(χjψk)|
2dx.

Now, χ =
∑N

j=1 χj satisfies the assumptions of Corollary 8 (with 2ε instead of ε).
Thus,

〈
⊕

j

L(j)
p uk, uk〉 =

∫

M

|∇Lp

(χψk)|
2dx = ‖∇Lp

ψk‖
2 +O(p1/2e−2εpα)‖ψk‖,

uniformly with respect to k. ψk being the eigensection associated to λk(∆
Lp
), it

remains:

〈
⊕

j

L(j)
p uk, uk〉 =

(

λk(∆
Lp

) +O(p1/2e−2εpα)
)

‖ψk‖.

This is true for every k ∈ [1, Kp]. Hence, for 1 ≤ i ≤ k ≤ Kp we have

〈
⊕

j

L(j)
p ui, ui〉 ≤

(

λk(∆
Lp

) +O(p1/2e−2εpα)
)

‖ψk‖,

and the Lemma follows from the min-max principle, because the vector space ranged
by (ui)1≤i≤k is k-dimensional (and p1/2e−2εpα = O(e−εpα)). �

The reverse inequality is proven similarily.

Lemma 10. Let α ∈ (0, 1/2). We have:

λk(∆
Lp

) ≤ λk(
N
⊕

j=1

L(j)
p ) +O(exp(−εpα)),

uniformily with respect to k ∈ [1, Kp].
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Proof. The k-th eigenvalue of
⊕N

j=1L
(j)
p is given by an eigenpair (µk, uk) of L(jk)

p

for some jk ∈ {1, · · · , N}. Let χk ∈ C∞
0 (Ujk) be a cutoff function equal to 1 on

K
(jk)
η + 2ε. Then, Agmon estimates (Theorem 7) for L(j)

p imply that

(d + ipA)uk = (d + ipA)(χkuk) +O(e−εpα)‖uk‖

uniformly with respect to k. We define sk = χkukejk , where ejk satisfies (3.16), and
we extend sk by 0 outside Ujk . Then,

〈∆Lp
sk, sk〉 =

∫

Ujk
|(d + ipA)χkuk|2dx

=
∫

Ujk
|(d + ipA)uk|2dx+O(e−εpα)

= µk‖uk‖2 +O(e−εpα).

Hence the min-max principle implies

λk(∆
Lp

) ≤ µk +O(e−εpα),

which is the desired inequality. �
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