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ARTICLE

The impact of anthropogenic inputs on lithium
content in river and tap water
Hye-Bin Choi 1,2, Jong-Sik Ryu 3*, Woo-Jin Shin 1 & Nathalie Vigier4

The use of lithium (Li) has dramatically increased during the last two decades due to the

proliferation of mobile electronic devices and the diversification of electric-powered vehicles.

Lithium is also prescribed as a medication against bipolar disorder. While Li can exert a toxic

effect on living organisms, few studies have investigated the impact of anthropogenic inputs

on Li levels in the environment. Here we report Li concentrations and Li isotope compositions

of river, waste and tap water, and industrial products from the metropolitan city of Seoul.

Results show that the large increase in population density in Seoul is accompanied by a large

enrichment in aqueous Li. Lithium isotopes evidence a major release from Li-rich materials.

Water treatment protocols are also shown to be inefficient for Li. Our study therefore

highlights the need for a global Li survey and adequate solutions for minimizing their impact

on ecosystems and city dwellers.
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During the last two decades, industrial demands for lithium
(Li) resulted in a dramatic increase in Li production and,
in 2017, the world production of Li from minerals and

brine was 43,000 t1. As the secondary Li-ion battery (LIB) is a
major and growing industrial channel for the element, approxi-
mately 660 million cylindrical Li-ion cells were produced in 2012,
of which Korea shared 21% of total LIB manufacturing capacity2.
Lithium is also incorporated into alloys and is widely used as a
therapeutic drug for treating bipolar disorder since its discovery
in 19703. Although future demands will continue to grow and Li
recycling may become an integral part of Li business4, there are
still few disposal process guidelines for waste LIB. Furthermore,
there is a gap in our knowledge concerning the impact of these
materials on Li levels in the environment as well as in municipal
waters. The biological effect of high Li levels on the diet of several
organisms and human beings has however been already reported
in several publications5–10. For aquatic organisms, most of pub-
lished studies have shown that elevated aqueous Li levels induce
toxic effects11,12. Concerning humans, a growing number of
studies have reported an inverse relationship between Li con-
centrations in drinking water and suicide mortality indices (in the
USA, Japan and Lithuania), consistent with its biological role in
brain cells13–15. In contrast, elevated Li concentrations in drink-
ing water may be deleterious and disturb Ca homeostasis during
pregnancy16. Interestingly, Li isotopes (the ratio of 7Li/6Li) have
been used by Earth scientists and geochemists since, when mea-
sured in rivers and soils, they provide key information on soil
sustainability and weathering rate on continents, and therefore on
the carbon cycle. They are considered as a key isotope proxy of
unraveling why and how global climate could be regulated over
geological timescale17–22. Thus, for all these reasons, it becomes
increasingly important and urgent to quantify the amount of
environmental Li that comes from anthropogenic activities.
However, determining the conditions under which Li con-
centration or Li isotope signature can be impacted by anthro-
pogenic activities remains a challenge.

Here, to test the effects of anthropogenic activities, we sampled
and analyzed different types of water from the Han River (HR)
basin. This river is the largest river system in South Korea, in
terms of discharge and drainage area, and drains the Seoul
Special Metropolitan City (Seoul), the capital and largest
metropolis of South Korea. The population of the HR basin is
estimated to be 12 million (Supplementary Table 1), of which
more than 82.7% live in Seoul. Thus, this basin offers a unique
opportunity to compare the upstream-inhabited part (although
characterized by several dams) with the area of Seoul, located
downstream of the Paldang Dam, and which is strongly impacted
by urban and industrial activities. The downstream section of
the Han River is also the main source of tap water for Seoul
citizens. Our study provides the first Li isotope data of industrial
products, allowing us to explain the significant Li-enrichment
measured in the wastewaters, as well as the high Li contents in
the Han River and tap water collected in the highly populated
agglomeration of Seoul.

Results and Discussion
Water lithium and its isotopes upstream of the city of Seoul.
Compared to other rivers worldwide, the upper HR (HR1 in
Fig. 1) and its two major tributaries (the Bukhan River, BR; and
the Namhan River, NR) carry small amounts of dissolved Li
ranging from 15.9 nM to 114 nM (see Methods section; Supple-
mentary Table 2). This amount of Li is 2 to 16 times lower
relative to the estimated global flow-weighted average (265 nM)17.
Dissolved Li concentrations in each tributary are slightly variable
over ~300 km down to the limit of Seoul city (Fig. 2). Lithium

concentrations in the NR are systematically higher than those
measured in the BR (Fig. 1), perhaps due to the occurrence of Li-
rich shales. The lithium isotope compositions of these tributaries
are significantly enriched in the heavy isotope (7Li), with δ7Li
values all greater than 25‰. This finding is consistent with
known mechanisms that fractionate Li isotopes during silicate
weathering, such as 6Li-rich clay formation in soils19–23. The
lithium isotope composition of both the BR and NR remains
remarkably constant over ~340 km. This finding confirms the
negligible impact of lithology on riverine δ7Li values, as generally
found in rivers of mixed lithology basins, since the major source
of riverine lithium remains weathering, and leaching of silicate
rocks and minerals24,25. Although the topography and runoff are
slightly different in both watersheds (Fig. 1), these differences do
not result in significant differences in Li isotope compositions,
suggesting that, on average, the leaching and neoformation rate in
soils are roughly equivalent over the whole watershed26. After the
confluence of both tributaries, Li concentrations and Li isotope
compositions of the HR upstream and downstream of the Pal-
dang Dam show the negligible impact of this dam on Li, through
its water regulation system.

Evidence for strong anthropogenic Li input downstream. In
contrast to the upper watersheds, where all water Li levels are low
(50.4 ± 29.2 nM, 1σ, n= 14), and the δ7Li values are high and
constant (31.4 ± 3.9‰, 1σ, n= 14), the downstream part of the
HR basin displays a strong and progressive evolution for both
parameters (Fig. 2; Supplementary Table 2). When the HR crosses
Seoul from East to West, Li concentrations abruptly increase by a
factor of 6, while δ7Li values decrease significantly from 30.1‰ to
19.2‰. Both the changes in Li concentration and in δ7Li covary
with large increase in the population density, which passes from 5
million people at the HR2 site (just after the Paldang Dam) to
more than 14 million people at the HR4 site (Supplementary
Table 1). This relationship suggests that anthropogenic activities
related to increasing urban activities are responsible for the
changes displayed by the HR.

The influents correspond to wastewaters coming from house-
holds, hospitals and industries within the city, and ultimately
arriving at the wastewater treatment plants (WWTP). The
effluents correspond to waters treated with various methods to
minimize their impact on the environment, and drained back to
the river (Supplementary Fig. 1). The Han River also represents
the major reservoir of drinking (tap) waters, which are used by
consumer households after rigorous purification processes
(Supplementary Fig. 2). Thus, any component enriched in
wastewaters can affect both the Han River and tap waters.
Interestingly, there is no significant difference between influent
and effluent wastewaters for both Li concentrations and Li
isotope compositions (Fig. 3). This finding demonstrates the
negligible effect of the various water treatment protocols used in
these plants on the Li level and its isotope composition in
waters27. At present, the classic treatment systems are not
adapted to Li pollution since there is no significant removal of
this element during water treatment.

If the first striking result is that all effluent wastewaters (leaving
the treatment plants) are strongly enriched in Li (up to >1 mM),
the second is that their δ7Li values are low (14.5 ± 4.3‰, 1σ,
n= 6) and may therefore explain the decrease of the δ7Li value
displayed by the HR in Seoul (Supplementary Table 3). As shown
in Fig. 4, the relationship between Li concentration and Li
isotopes can be explained by the release of isotopically light Li
from WWTP. This appears consistent since the only landfill of
the area (the Sudokwon landfill, Fig. 1b) is located at 35 km West
of Seoul and its drainage waters cannot contribute significantly to
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our samples. Lithium concentrations of both the downstream
HR waters and the effluent wastewaters correlate positively with
the population density, especially when it approaches 100
person km−2 (Supplementary Fig. 3), supporting the link
between population and volume of treated wastewater per unit
population. We observe that this influence is more visible when
the population density exceeds a certain threshold, typically
higher than 100 person km−2, and that there is also an influence
of the effluent water discharge rate from each WWTP on the HR
Li level (see Supplementary Fig. 4).

We analyzed several tap water samples collected in Seoul
Special Metropolitan City (Supplementary Table 4; Fig. 1). As

shown in Fig. 2, Li concentrations and δ7Li values of tap water
follow the same evolution from East to West, and are consistent
with the values measured in the HR sampled in the same area.
This finding strongly suggests that tap water is influenced by the
same anthropogenic sources as the river, and confirms that the
purification and wastewater treatment processes neither signifi-
cantly lower Li level nor bias Li isotope composition. Altogether
Li concentration and Li isotope composition show a binary
mixing between a natural end-member (characterized by
tributaries – BR and NR − draining rocks and soils upstream)
and an anthropogenic end-member, consistent with isotopically
light and strongly enriched wastewater (Fig. 4).
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Although the total population of mobile phone subscribers in
South Korea was >43 million in 2015 (i.e., 84% of total population
in South Korea)28, only 1% of mobile phones were either
exported or treated, due to no extended producer responsibility
(EPR) regulations for LIB in Korea29–31. Therefore, it is likely that
the high Li levels measured in waters would come from the
release from LIB waste, along with other anthropogenic inputs
such as therapeutic drug (Li carbonate), detergent and compost.
In order to investigate further this possibility, we collected and
analyzed several anthropogenic materials (Supplementary Table 5;
Supplementary Figs. 3 and 4). As expected, the most enriched
materials are the therapeutic drug, which contains about 10 wt%
Li, and the LIB, which contain between 4.1 and 7.6 wt% Li. Both
display systematically low δ7Li values, ranging from 2.4‰ to
13.3‰, consistent with the low δ7Li values displayed by the
wastewaters. The other analyzed materials contain much less Li
(0.53–2.92 µg g−1 d.w. for the detergents and <0.39 µg g−1 d.w.
for the food wastewater and compost) and display, on average,
slightly heavier δ7Li values (15.6‰). Thus, as shown in Fig. 4, this
first isotopic investigation of Li-rich materials allows us to explain
both the significant Li-enrichment of wastewaters and their low
δ7Li values. Since treated and untreated waters are similarly
enriched in Li, and explain the decrease of river δ7Li in Seoul
when the population density is high (Figs. 2c and 4), Li isotopes

confirm a major impact of the use of anthropogenic products on
Li levels in river crossing the city and in municipal waters.
Overall, our study shows that the large Li inputs observed in the
Han River come from LIB, therapeutic drug, and food waste, all
likely proportional to the population, combined with the
inefficiency of wastewater treatment for Li-removal.

Compared to other trace metals32,33, such as Zn, Cu, Ni or Hg,
for which contaminated zones are clearly identified and
monitored, and whose impacts on aquatic organisms and plants
have been carefully investigated for many years in ecotoxicology,
there is little information on environmental Li and its toxic effect.
By illustrating anthropogenic Li inputs in Seoul waters, our study
highlights the need to estimate the environmental and health
impact of Li-rich materials, particularly in highly populated areas.
Understanding the biological and metabolic effects of high Li
levels on aquatic ecosystems also remains to be investigated to fill
the gap compared to other contaminants. Finally, this study
highlights that in urban areas, Li isotopes are more sensitive to
anthropogenic inputs rather than local weathering inputs and
therefore should be used with caution as a weathering proxy.

Methods
Samples collection and field measurements. We collected 27 samples in July
2015 from 22 sites along a 422 km downstream transect between the uppermost
reaches and the estuary of the Han River (Fig. 1). Upstream, the HR includes two
major tributaries (i.e., the Bukhan River, BR; and the Namhan River, NR), which
join at the Paldang Dam to form the main channel of the HR that crosses the
capital city downstream. Due to the large population in Seoul, there are six major
WWTPs that flow out to the HR. The wastewater going in (influent) and going out
(effluent) of these plants was collected to estimate the impact of water treatment
protocols on dissolved Li. Finally, we compared our results to several tap water
samples from various locations in Seoul (Fig. 1) and to several anthropogenic
sources. Sample locations were documented with a Garmin GPSMAP 60CSx
handheld GPS meter. Temperature (±0.1 °C) and pH (±0.002) were measured
in situ using an Orion 5-STAR portable meter equipped with an Orion 3-in-1 pH/
ATC pH electrode. The electrode was calibrated twice per day using pH= 4.01,
7.00, and 10.01 buffers. Samples for dissolved cations, trace elements, and Li iso-
tope measurements were passed through 0.2 μm filters, collected in I-CHEM LDPE
bottles, and acidified to pH= 2 using concentrated, ultrapure HNO3. Samples for
dissolved anions and total alkalinity (AT) were passed through 0.2 μm filters and
collected in I-CHEM LDPE bottles.

Chemical analysis. Cation and trace element concentrations were measured using
a Perkin Elmer Optima 8300 ICP-AES and a Thermo Elemental iCAPTM Q ICP-
MS at the Korea Basic Science Institute (KBSI). Analyses of NRCC SLRS-4 and
CRM TMDW-A were within ± 5% of certified values. Anion concentrations were
measured using a Dionex ICS-1100 ion chromatograph equipped with a DionexTM

IonPacTM AS14 anion-exchange column. The total carbonate alkalinity in μeq/L
(AT=HCO3+ 2CO3) was measured using a Mettler Toledo T50A titrator with
0.01 M HCl acidimetric titration to an endpoint of pH= 4.5. The percent
charge balance error (CBE), as one measure of the data quality, is given by the
equation [CBE (%)= (TZ+ − TZ−)/(TZ++ TZ−) × 100], where TZ+= 2Ca2++
2Mg2++K++Na+, TZ−= Cl−+ 2SO4

2−+NO3
−+AT, and is on average

better than ± 2% (Supplementary Table 2).

Lithium isotope analysis. Samples containing ~100 ng Li were dried in Teflon
vessels, and the residues were treated with concentrated HNO3, dried, and re-
dissolved in a 1:4 (v/v) mixture of 6M HNO3 and 100% methanol. Lithium was
separated from matrix elements using an AG 50W−X8 resin (200–400 mesh)26.
Then, the sample was dried and re-dissolved in 5% HNO3 (~40 ppb Li). Lithium
isotope ratios were measured using a Neptune MC-ICP-MS upgraded with a large
dry interface pump at the KBSI and the Korea Institute of Ocean Science &
Technology (KIOST). Samples were introduced using a quartz dual cyclonic spray
chamber and analyzed with a blank-standard-blank-sample-blank-standard-blank
bracketing method. Sample intensities were matched to within 10% of the intensity
of the standard. The sensitivity was ~90 V ppm−1 on mass 7 at a typical uptake rate
of 100 μLmin−1. Prior to isotopic analysis, each sample was checked for the yield
and the concentration of matrix elements. The yields were approximately 100%,
and the matrix concentration did not exceed 1.5% of the Li concentrations. The
lithium isotopic composition is reported in delta notation relative to NIST RM
8545, where δ7Li= [(7Li/6Li)sample/(7Li/6Li)NIST RM 8545 – 1] × 1000. The accuracy
and reproducibility of the whole method was validated using the USGS rock
reference materials (BCR-2, BHVO-2, and BIR-1) and seawater standard (IAPSO).
BCR-2 yielded +3.6 ± 1.7‰ (2σ, n= 14), BHVO-2 yielded +4.5 ± 0.0‰ (2σ,
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n= 2), BIR-1 yielded+4.1‰ (n= 1), and IAPSO yielded +31.2 ± 1.5‰ (2σ,
n= 15), which were all in good agreement with reported values21,34–38.

Data availability
All data generated or analyzed during this study are included with this published article
in its Supplementary Information.
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