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FACTORS OF E-OPERATORS WITH AN η-APPARENT
SINGULARITY AT ZERO

T. RIVOAL

Abstract. In 1929, Siegel defined E-functions as power series in Q[[z]], with Taylor
coefficients satisfying certain growth conditions, and solutions of linear differential equa-
tions with coefficients in Q(z). The Siegel-Shidlovskii Theorem (1956) generalized to E-
functions the Diophantine properties of the exponential function. In 2000, André proved
that the finite singularities of a differential operator in Q(z)[ ddz ] \ {0} of minimal order
for some non-zero E-function are apparent, except possibly 0 which is always regular sin-
gular. We pursue the classification of such operators and consider those for which 0 is
η-apparent, in the sense that there exists η ∈ C such that L has a local basis of solutions
at 0 in zηC[[z]]. We prove that they have a C-basis of solutions of the form Qj(z)z

ηeβjz,

where η ∈ Q, the βj ∈ Q are pairwise distinct and the Qj(z) ∈ Q[z]\{0}. This generalizes
a previous result by Roques and the author concerning E-operators with an apparent
singularity at the origin, of which certain consequences are also given here.

1. Introduction

An E-function is a power series f(z) =
∑∞

n=0
an
n!
zn ∈ Q[[z]] (where Q is embedded into

C) such that:

(i) f(z) satisfies a non-zero linear differential equation with coefficients in Q(z);
(ii) there exists C > 0 such that for any σ ∈ Gal(Q/Q), we have |σ(an)| ≤ Cn+1;

(iii) there exist D > 0 and a sequence of positive integers dn such that dn ≤ Dn+1 and
dnam is an algebraic integer for all m ≤ n.

From (i), we deduce that the an’s all live in some number field, so that there are only
finitely many Galoisian automorphisms to consider in (ii). A G-function at z = 0 is
a power series f(z) =

∑∞
n=0 anz

n ∈ Q[[z]] such that
∑∞

n=0
an
n!
zn is an E-function. The

exponential exp(z) =
∑∞

n=0
zn

n!
and Bessel function J0(z) =

∑∞
n=0

(−z2/4)n
n!2

are E-functions,

while − log(1 − z) =
∑∞

n=1
zn

n
and algebraic functions over Q(z) holomorphic at z = 0

are G-functions. Both classes of functions have been first introduced by Siegel in 1929
to generalize the results of the Diophantine nature of the exponential and logarithmic
functions of Hermite, Lindemann and Weierstrass.

Throughout the paper, by “a solution y of a differential operator L”, it must be un-
derstood “a function y solution of the differential equation Ly = 0”; a minimal non-zero
operator in C(z)[ d

dz
] for some given function is unique up to factor of C[z]\{0} and we make

the slight abuse of terminology of saying “the minimal operator”. Results of André [3],
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Chudnovsky [8] and Katz [11] all together imply that if L ∈ Q(z)[ d
dz

] \ {0} is the minimal
differential operator annihilating a non-zero G-function, then it is of a special type called
G-operator. In particular, L is Fuchsian with rational exponents and all its solutions at
any point α ∈ Q∪{∞} are (essentially) G-functions of the variable z−α or 1/z if α =∞;
see [3, p. 717, §3].

The Fourier-Laplace transform L̂ ∈ Q[z, d
dz

] of an operator L ∈ Q[z, d
dz

] is the image of

L by the automorphism of the Weyl algebra Q[z, d
dz

] defined by z 7→ − d
dz

and d
dz
7→ z.

André [4] defined an E-operator as a differential operator in L ∈ Q[z, d
dz

] such that L̂
is a G-operator. Transfering by Fourier-Laplace transform the properties of G-operators,
André initiated the study of the structure of E-operators. For instance, the regularity of
a G-operator at ∞ implies that 0 is the only possible finite singularity of an E-operator,
and André showed that it is a regular of singular regular with rational exponents.

Any E-function is solution of an E-operator so that the finite non-zero singularities of
the minimal non-zero operator satisfied by a given E-function are apparent. We recall that
an apparent singularity α of M ∈ C(z)[ d

dz
] is a singularity of M at which there exists a

local basis of solutions in C[[z − α]], which are automatically all holomorphic at z = α
(see [1, Appendix]); in other words an apparent singularity of M behaves like an ordinary
point of M in terms of a local basis of solutions. We say that α is an η-apparent singularity
for a parameter η ∈ C (for want of a better terminology) if M has a basis of solutions at
α all of the form (z − α)ηC[[z − α]], and again the involved power series are necessarily
all holomorphic at z = α (by the above cited result applied to z−ηMzη ∈ C(z)[ d

dz
]). If

η 6= 0, an η-apparent singularity is obviously a singularity of M but in the case η = 0, a
0-apparent singularity is either an apparent singularity or an ordinary point of M .

In [14], the following result was proved for E-operators for which 0 is an ordinary point
or an apparent singularity.

Theorem 1 (R.-Roques, 2017). Consider an E-operator R ∈ Q[z, d
dz

] \ {0} of order µ
having an apparent singularity or no singularity at 0. Then R has a C-basis of solutions
each of the form

P1(z)eβ1z + · · ·+ P`(z)eβ`z (1.1)

for some integer ` ≤ µ, β1, . . . , β` ∈ Q, and P1(z), . . . , P`(z) ∈ Q[z] not all identically zero.

In this paper, we generalize Theorem 1 to right-factors of E-operators with an η-apparent
singularity at 0. Note that η must be a rational number by the rationality of the local
exponents at 0 of E-operators.

Theorem 2. Consider an operator L ∈ Q(z)[ d
dz

] \ {0} of order µ, which is a right factor
of an E-operator. Let us assume that L has an η-apparent singularity at z = 0 for a
parameter η ∈ Q.

(i) Then L has a C-basis of solutions given by

Q1(z)zηeβ1z, . . . , Qµ(z)zηeβµz (1.2)

where β1, . . . , βµ ∈ Q and Q1(z), . . . , Qµ(z) ∈ Q[z] \ {0}.
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(ii) Let us also assume that L is of minimal order for one of its non-zero solution. Then
the β’s in (1.2) are pairwise distinct.

The paper is organized as follows. We make some remarks on Theorem 2 in §2. The
proof of Theorem 2 is decomposed into several steps in §3. In §3.1 and §3.2, we first prove
two general propositions that are used in §4.2 to prove Theorem 2. This proof is based on
a result of Halphen and is different from that of Theorem 1. As this may provide further
ideas to go beyond Theorem 2, we present in §4 another proof of Theorem 2(ii) based on
the Fourier-Laplace transform method used in [14]. We recall in §5 a result of [14] obtained
there as a by-product of the proof of Theorem 1 and for which it is not clear if it could be
obtained using Halphen’s Theorem instead; we then present two applications of it in §5.1
and §5.2 respectively. The first application concerns the solution of a functional equation
involving two E-functions, while the second is a Diophantine statement concerning the
values at rational points of E-functions with rational Taylor coefficients.

2. Some remarks about Theorem 2

(a) If L is an E-operator with an apparent singularity or no singularity at z = 0, then
both Theorems 1 and 2 can be applied (the latter with η = 0) and (1.2) is a stronger
conclusion than (1.1). Hence, Theorem 2 is indeed a generalization of Theorem 1.

(b) In (i), it is not possible to claim that the β’s are pairwise distinct without another
hypothesis, like in (ii). Indeed, the operator L := z( d

dz
)2− 2z( d

dz
)− z admits ez and zez as

a C-basis of solutions, so that 0 is an apparent singularity (which was of course obvious at

first sight), and L is an E-operator because L̂ = −(z− 1)2 d
dz

+ 2(z− 1) is a G-operator (it
is minimal for the G-function (z − 1)2). Note that L is in fact of minimal order for none
of its solutions.

(c) If we assume more specifically in (ii) that L is of minimal order for some non-zero
E-function, then L is automatically a right-factor of an E-operator by [4, p. 720]. If
an E-operator R can be factorized as R = ML with both L,M in Q[z, d

dz
], then L is

also an E-operator because the analoguous property holds for G-operators. On the other
hand, L might not necessarily be an E-operator if factorization is performed in Q(z)[ d

dz
].

For instance, d
dz
− z

z−1 (with (z − 1)ez for solution) is clearly not an E-operator but is a

right-factor of the E-operator considered in (b): z( d
dz

)2− 2z( d
dz

)− z = (z d
dz
− z)( d

dz
− z

z−1).

(d) The operator R = 6z2( d
dz

)2 + z(12z − 1) d
dz

+ 6z2 − z + 1 is an E-operator because

R̂ = 6(z − 1)2( d
dz

)2 + 23(z − 1) d
dz

+ 12 if a G-operator (it is minimal for the G-function

(1− z)1/2 + (1− z)1/3). Hence, Theorem 2 can be applied (trivially) to the two factors of
R given by L := 2z d

dz
− 2z − 1 with η = 1/2 and L := 3z d

dz
− 3z − 1 with η = 1/3, which

are minimal for z1/2ez and z1/3ez respectively.

(e) As example (d) shows, an E-operator may have a right-factor with an η-apparent
singularity at 0 without having itself an η-apparent singularity at 0. More generally, let R1

be an E-operator with an η-apparent singularity at 0, and let R2 be an E-operator with
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a true singularity at 0 of a different nature than R1. Then there exists an E-operator R
which is a common left multiple of both R1 and R2 (left Ore property, [4, p. 720]) and thus
without an η-apparent singularity at 0.

(f) Any E-function is a solution of some E-operator but the example considered in (d)
shows that an E-operator need not necessarily have a non-zero E-function for solution.
On the other hand, by the Théorème de pureté in [4, p. 706], an E-operator R necessarily
have a solution of the form zηf(z) where η ∈ Q and f(z) is an E-function. Denoting by µ
the order of R, f(z) is a solution of the E-operator zµ−ηRzη (see Proposition 2 in §3.3).

(g) It would be interesting to extend further the classification of (factors of) E-operators
of order µ with a singularity at 0 of a prescribed form. For instance, when the singularity
at 0 is not apparent and the µ exponents at 0 are positive integers, a C-basis of solutions
can be made of µ functions of the form

∑`
k=0 log(z)kfk,`(z), 0 ≤ ` ≤ µ−1, where the fk,`(z)

are E-functions. If a classification is possible in that case, Bessel functions like J0(z) will
appear in the result (see Eq. (5.3) in §5.2). The methods of the present paper do not seem
to be easily transposable though. If µ = 2, it might be possible to build upon Gorelov’s
results [9].

3. Proof of Theorem 2

In this section, we first state two results that will be important in the proof of the
theorem, which is then proved in §3.3.

3.1. A result of Halphen. The proof of Theorem 1 in [14] was based in particular on
the fact that Fourier-Laplace transform of an E-operator is Fuchsian (being a G-operator).
The following result of Halphen can be used instead, and it leads to a stronger conclusion.
It is proved in [10, pp. 372–375] by induction on the order of the operator using ad hoc
changes of functions and computations with local exponents.

Theorem 3 (Halphen). Let M =
∑µ

j=0 pj(z)( d
dz

)j ∈ C[z][ d
dz

] be such that

(i) deg(pj) ≤ deg(pµ) for all j ∈ {1, . . . , µ};
(ii) The finite singularities of M are regular;

(iii) The solutions of M are uniform on C.

Then, M has a C-basis of solutions of the form Rj(z)eβjz with Rj(z) ∈ C(z) \ {0} and
βj ∈ C not all necessarily distinct.

A solution ofM is said “uniform on C” if it has no monodromy after analytic continuation
along a closed loop around any point of C.

We recall that M ∈ Q[z, d
dz

] is an E-operator if, by definition, its Fourier-Laplace trans-

form M̂ ∈ Q[z, d
dz

] is a G-operator. André proved that for any E-operator M ∈ Q[z, d
dz

],

there also exists a G-operator L ∈ Q[z, d
dz

] such that L̂ = M . (In general, L 6= M̂ because
the Fourier-Laplace transform is not an involution, but is of order 4.)
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The G-operator L =
∑ν

j=0 qj(z)( d
dz

)j is in particular regular at z =∞, so that deg(qj) ≤
deg(qν) + j − ν ≤ deg(qν) for all j. This implies that the E-operator

M =
ν∑
j=0

qj

(
− d

dz

)
zj =

µ∑
j=0

pj(z)
( d
dz

)j
is such that deg(pj) ≤ deg(pµ) for all j and that pµ(z) = czν for some c ∈ Q∗, so that
z = 0 is the only possible finite singularity of M . Moreover, using the regularity of L at
the singularities z = 0 and z =∞, André [4, p. 726] proved that 0 is the only slope of the
Newton polygon of M at z = 0, which is thus an ordinary point or a regular singularity of
M .

It follows that every E-operator satisfies Conditions (i) and (ii) in Halphen’s Theorem
and this explains its relevance in the study of E-operators.

3.2. Minimal differential equation of exponential polynomials. The following pro-
position is probably well-known and we give a proof of it for the reader’s convenience.

Proposition 1. Let n ≥ 1 and β1, . . . , βn be pairwise distinct complex numbers, and
Q1(z), ..., Qn(z) ∈ C[z] \ {0}. The minimal non-zero operator in C(z)[ d

dz
] satisfied by∑n

j=1Qj(z)eβjz is the operator of order n with Q1(z)eβ1z, . . . , Qn(z)eβnz as elements of a
C-basis of solutions.

Proof of Proposition 1. Below, the various O(1/z) are with respect to z → ∞. We set
f(z) :=

∑n
j=1Qj(z)eβjz and for k = 1, . . . , n, gk(z) := Qk(z)eβkz. For every k, gk(z) is

solution of Nky(z) = 0 where Nk := d
dz
− ak(z) ∈ C(z)[ d

dz
] and

ak(z) := βk +Q′k(z)/Qk(z).

If n = 1, the assumption that β1, . . . , βn are pairwise distinct complex numbers is empty,
and there is in fact nothing to prove.

Let us assume that n ≥ 2 from now on. The functions g1(z), . . . , gn(z) are solutions of
a same differential equation Ny(z) = 0 given by N = LCLM(N1, . . . , Nn) ∈ C(z)[ d

dz
] of

order ≤ n a priori. (1) This order is equal to n because the gj’s form a C-basis of N (they
are even C(z)-linearly independent because the β’s are pairwise distinct; see [10, p. 136]).
The function f(z) is also a solution of Ny(z) = 0. Hence, the minimal non-zero differential
equation My(z) = 0 satisfied by f(z) is a right-factor of N . We shall now prove that the
order of M is equal to n, so that M = N up to a factor of C[z] \ {0}.

We first assume that none of the β’s is equal to 0. It is then checked by induction on `

that, for any integers k, ` ≥ 1, g
(`)
k (z) = a`,k(z)gk(z) for some a`,k(z) ∈ C(z) such that

a`,k(z) = β`k +O
(
1/z
)
. (3.1)

1The Least Common Left Multiple (LCLM) of k differential operators M1, . . . ,Mk of respective degree

µ1, . . . , µk is defined in [13, p. 40]. Its order is ≤
∑k
j=1 µj .
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For ` = 0, we set a0,k(z) := 1 for all k ≥ 1. Then, for any integer ` ≥ 0, we have

f (`)(z) =
n∑
k=1

a`,k(z)gk(z).

We claim that ∆(z) := det(a`,k(z))0≤`≤n−1

1≤k≤n
∈ C(z) is not identically zero. Indeed, one

readily checks that
∆(z) = det(β`k)0≤`≤n−1

1≤k≤n
+O

(
1/z
)

(3.2)

and the Vandermonde determinant on the right-hand side of (3.2) is non-zero because the
βk’s are pairwise distinct. Therefore, the functions f(z), f ′(z), . . . , f (n−1)(z) are linearly
independent over C(z) because the functions g1(z), g2(z), . . . , gn(z) are. In other words,
the function f(z) does not satisfy any non-zero linear differential equation of order < n
with coefficients in C(z).

It remains to deal with the case when exactly one of the β’s is zero, say β1 = 0. We
define the a`,k(z) and ∆(z) as above. For Q1(z) ∈ C[z] \ {0} of degree d ≥ 0, we have

a1,1(z) = d/z +O
(
1/z2

)
, a`,1(z) = O

(
1/z2

)
(` ≥ 2).

For every k ≥ 2 and ` ≥ 1, the estimate (3.1) still holds, and we recall that a0,k(z) = 1 for
all k ≥ 1. It follows that

∆(z) = β2 · · · βn det(β`k)0≤`≤n−2

2≤k≤n
+O

(
1/z
)
.

Hence ∆(z) is not identically 0 because β2, . . . , βn are all non-zero and pairwise distinct,
and we conclude again that f(z) does not satisfy any non-zero differential equation of order
< n with coefficients in C(z). �

3.3. Proof of Theorem 2. Let R ∈ Q[z, d
dz

] \ {0} be an E-operator of which L is a

right-factor: R = KL for some K ∈ Q(z)[ d
dz

] \ {0}. Since 0 is the only possible finite
singularity of R and since it is a regular one, the finite singularities of L are regular (and
even apparent if non-zero).

Let us denote by N(D) the Newton polygon of a differential operator D ∈ C(z)[ d
dz

].
Theorem 4.3 (iv) of [4] ensures that the slopes of N(R) at ∞ are in {0, 1}. Hence, the
slopes of L at∞ are also in {0, 1} because N(R) = N(K) +N(L) (where the + sign refers
to the Minkowsky sum of subsets of R2; see [13, p. 92, Lemma 3.45]).
R, and thus L as well, admits a C-basis of solutions in the Nilsson-Gevrey arithmetic

class NGA{0}−1 by the Théorème de pureté in [4, p. 706]. We recall that an element of
NGA{0}−1 is a function of the form∑

α,k,`

cα,k,`z
α log(z)kfα,k,`(z)

where α and (k, `) run through a finite subset of Q and N2 respectively, cα,k,` ∈ C and the
fα,k,`(z) are E-functions. But by assumption, L has an η-apparent singularity at z = 0, ie
it also admits a C-basis at 0 made of functions in zηC[[z]]. Hence, L admits a C-basis of
solutions zηf1(z), . . . , zηfµ(z) where each fj is an E-function.
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Consider now the operator M of order µ defined by

M := z−ηLzη =

µ∑
j=0

cj(z)

b(z)

( d
dz

)j
∈ Q(z)

[ d
dz

]
,

where, for each j, cj(z), b(z) ∈ Q[z]. The slopes of M at ∞ are the same as those of L.
Hence they are in {0, 1} so that deg(cj) ≤ deg(b) (see for instance [7, Eq. (13)]). The non-
zero finite singularities of M are apparent, and moreover M has a 0-apparent singularity at
z = 0, with a C-basis of solutions given by f1(z), . . . , fµ(z), which are all entire functions.
Hence, M satisfies all the assumptions of Halphen’s Theorem, from which it follows that
M has a C-basis of solutions given by

Q1(z)eβ1z, . . . , Qµ(z)eβµz (3.3)

where β1, . . . , βµ ∈ Q and Q1(z), . . . , Qµ(z) ∈ Q[z] \ {0}.
Since L = z−ηMz−η, L has a C-basis of solutions given by

Q1(z)zηeβ1z, . . . , Qµ(z)zηeβµz

where β1, . . . , βµ ∈ Q and Q1(z), . . . , Qµ(z) ∈ Q[z] \ {0}. This proves (i).

Let us now prove (ii). Let zηf(z) 6= 0 be a solution of L for which L is of minimal
order. Then, M is of minimal order for f(z) and by (3.3), there exists a non-empty set
J ⊂ {1, . . . , µ} such that

f(z) =
∑
j∈J

Q̃j(z)eβjz

where, for j ∈ J , the βj’s are pairwise distinct and Q̃j(z) ∈ C[z] \ {0}. By Proposition 1,

the minimal equation for f(z) is of order #J with a C-basis given by (Q̃j(z)eβjz)j∈J . Hence
necessarily, #J = µ and the β’s are all pairwise distinct.

Remark. Though this was not used, the operator z−ηLzη introduced in the above proof is a
right-factor of an E-operator, for a reason explained below. When L is itself an E-operator,
a more precise result holds. It will not be used in the paper (except in a remark in §2) but
we prove it here because it is of independent interest and apparently not yet recorded in
the literature.

Proposition 2. Let η ∈ Q and L ∈ Q[z, d
dz

] \ {0} be an E-operator of order µ. Then

zµ−ηLzη ∈ Q[z, d
dz

] is also an E-operator.

Proof. The argument is inspired by that of [12, Corollary 3.3.3] in a related but different
context. Note that z−ηLzη ∈ z−δQ[z, d

dz
] for some δ ∈ {0, 1, . . . , µ}, which justifies that

M := zµ−ηLzη ∈ Q[z, d
dz

]. For later use, we write M =
∑µ

k=0 bk(z)( d
dz

)k where bk(z) ∈ Q[z]

and bµ(z) = czκ for κ ∈ N and c ∈ Q∗. (The latter property holds because it does for the
E-operator L.) L, and thus M , have a C-basis of solutions in NGA{0}−1. Let f1, . . . , fµ
be such a C-basis of M . By [4, Theorem 6.1], each fj is solution of some E-operator

Rj ∈ Q[z, d
dz

]\{0} and moreover by the left Ore property (which holds for E-operators, see

[4, p. 720]) there exists an E-operator R =
∑ρ

p=0 rj(z)( d
dz

)j ∈ Q[z, d
dz

] \ {0} of which each
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Rj is a right-factor. M is then obviously a right-factor of R, ie there exists N ∈ Q(z)[ d
dz

]

of order ω such that R = NM , and ρ = ω + µ. Writing N =
∑ω

j=0 aj(z)( d
dz

)j, we claim

that each aj(z) ∈ Q(z) has at most a pole at z = 0. Indeed, we have

NM =

µ∑
k=0

ω∑
`=0

( ω∑
j=`

(
j

`

)
aj(z)bk(z)(j−`)

)( d
dz

)k+`
so that by equating on both sides of R = NM the coefficients of

(
d
dz

)n
for each n ∈

{µ, µ+ 1 . . . , ρ}, we obtain

rn(z) = bµ(z)an−µ(z) +

ρ−n∑
j=1

cj(z)an−µ+j(z),

for some cj(z) ∈ Q[z] for j ∈ {1, 2, . . . , ρ − n}. Since rn(z) ∈ Q[z] and bµ(z) = czκ, it

follows by induction on n = ρ, ρ−1, . . . , µ that an−µ(z) ∈ Q(z) has at most a pole at z = 0.
The claim follows.

We can thus write N = z−νK with ν ∈ Z≥0 and K ∈ Q[z, d
dz

]. Since the factorization

zνR = KM holds in Q[z, d
dz

], M is an E-operator by [4, p. 720] because zνR is an E-ope-

rator. Indeed, ẑνR = ẑνR̂ = (− d
dz

)νR̂ is a G-operator as a product of two G-operators. �

4. Another proof of case (ii) of Theorem 2

In this section, we present another proof of case (ii) of Theorem 2, which could be
useful in other contexts. It is based on the Fourier-Laplace method used in [14] to prove
Theorem 1, and it avoids Halphen’s Theorem. On the other hand, it is not clear how
case (i) of Theorem 2 could be obtained by this method. Since this section can be read
(essentially) independently of the rest of the paper, we repeat certain arguments used in
§3.

We first state a useful proposition, that will be used in the proofs of Theorem 2(ii) in
§4.2 below and of Theorem 6 in §5.2.

4.1. Taylor coefficients of solutions of differential operators. The following result
is a generalization of [14, Proposition 1]. Given a power series g(z) =

∑∞
n=0 bn(z − β)n ∈

Q[[z − β]] with β ∈ Q, we set gσ(z) =
∑∞

n=0 σ(bn)(z − σ(β))n for any σ ∈ Gal(Q/Q).

Proposition 3. Consider a differential operator L ∈ Q(z)[ d
dz

]. Let

F (z − α) =
∞∑
n=0

an
n!

(z − α)n ∈ Q[[z − α]]

be a local solution of L at α ∈ Q which is either an ordinary point or an apparent singularity
of L.

(i) Let dn denote the smallest positive integer such that dna0, dna1, . . . , dnan are algebraic
integers. There exists a positive integer Cα such that, for all n ≥ 0, dn divides Cn+1

α .
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(ii) If F σ(z) is an entire function for any σ ∈ Gal(Q/Q) and if the slopes of the Newton
polygon of L at ∞ are in {0, 1}, then F (z) is an E-function.

Proof of Proposition 3. Proposition 1 in [14] deals with the case where α is an ordinary
point, and we now consider the case where α is an apparent singularity of L.

It is then known that there exist L̃,M ∈ Q(z)[ d
dz

] \ {0} such that L̃ = ML and α is not

a singularity of L̃; see [1, Appendix] for instance. Hence, [14, Proposition 1(i)] applies to

the ordinary solution F (z − α) of L̃ and (i) follows.
Concerning (ii), we first note that for any σ ∈ Gal(Q/Q), F σ(z−σ(α)) is a local solution

of Lσ (obtained from L by the action of σ on the coefficients of L) at the point σ(α), which
is apparent for Lσ. The proof of (ii) uses (i) but the value of Cα is irrelevant; it thus
proceeds exactly as that of the corresponding statement in [14, Proposition 1], mutatis
mutandis. �

4.2. Proof of Theorem 2(ii). L 6= 0 is of minimal order for some non-zero solution,
which we denote by f(z). L is a right-factor of an E-operator R ∈ Q[z, d

dz
] \ {0} of which

f(z) is also solution. The slopes of L at ∞ are also in {0, 1} (see the beginning of §3.3).

We shall first prove the result in the case η = 0, to which the general case will then
be reduced. By minimality of L for f(z), L admits a C-basis of solutions in the Nilsson-
Gevrey arithmetic class NGA{0}−1 by the Théorème de pureté in [4, p. 706]. But by
the assumption η = 0, L also admits a C-basis at 0 made of functions in C[[z]]. Hence,
L admits a C-basis of solutions f1, . . . , fµ which consists of E-functions. Then, for any

σ ∈ Gal(Q/Q), the E-functions fσ1 , . . . , f
σ
µ form a C-basis of solutions of Lσ ∈ Q(z)[ d

dz
].

Indeed, if fσ1 , . . . , f
σ
µ were C-linearly dependent, they would also be Q-linearly dependent,

and using σ−1 on the induced Q-relations of Taylor coefficients, this would imply that
f1, . . . , fµ are Q-linearly dependent. In particular, for any σ ∈ Gal(Q/Q), any solution of
Lσ is an entire function.

Moreover, since an E-operator has at most 0 has finite singularity, the (putative) finite

non-zero singularities of L are apparent. Let us fix α ∈ Q∗. We can apply Proposition 3
to such an α and we deduce from the above remarks that L admits at z = α a basis of
solutions of the form F1(z − α), . . . , Fµ(z − α), where each Fj(z) is an E-function. We fix
j and set F (z) := Fj(z). Observe that R

(
F (z − α)

)
= 0 because L is a right-factor of

R. Since R is an E-operator, we are now exactly in the same situation as in the proof of
[14, Theorem 1] and by the arguments based on the Fourier-Laplace transform given there
(and that we don’t repeat), we obtain that

F (z) =
∑
κ

Qκ(z)eκz (4.1)

where κ runs through a finite set of algebraic numbers and the Qκ(z) ∈ Q[z] \ {0}. Of
course, the κ’s can be assumed to all be pairwise distinct in (4.1).

As F (z−α) represents any element of a C-basis of local solutions of Ly(z) = 0 at z = α,
it follows that L has a C-basis of solutions of the form (4.1) and that the non-zero solution
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f(z) can be written

f(z) =
ν∑
j=1

Qj(z)eβjz (4.2)

where ν ≥ 1, the βj ∈ Q can be assumed to all be pairwise distinct and the Qj(z) ∈
C[z] \ {0}.

The conclusion can now be obtained. Indeed, since L of order µ is of minimal order for
f(z), Proposition 1 applied to (4.2) implies that ν = µ and that L has a C-basis made
of Q1(z)eβ1z, . . . , Qµ(z)eβµz. Moreover, since L has algebraic coefficients, we can even take

Qj(z) ∈ Q[z] \ {0} for all j. This completes the proof of the case η = 0 of Theorem 2(ii).

Let us now prove the general case. By André’s Théorème de pureté again, L has C-basis
made of zηf1(z), . . . , zηfµ(z) where each fj(z) is a non-zero E-function. By assumption, L
is of minimal order for some function of the form zηf(z) where f(z) =

∑µ
j=1 djfj(z) 6= 0

for some dj ∈ C.

Let M := z−ηLzη ∈ Q(z)[ d
dz

] \ {0}. Then

— Mf(z) = Mf1(z) = · · · = Mfµ(z) = 0;
— M is of minimal order for f(z);
— M has an apparent singularity at 0 because f1(z), . . . , fµ(z) make up a local C-basis

of M at z = 0.

Fix any j ∈ {1, . . . , µ} and set Mj ∈ Q(z)[ d
dz

] \ {0} minimal for fj(z), of order κj ≥ 1. We
observe that we can apply the already proven case η = 0 of Theorem 2(ii) to Mj because:

— it is a non-zero right-factor of the E-operator of which fj 6= 0 is a solution;

— it has (at most) an apparent singularity at 0 because it is a right-factor of M , with
the same property;

— it is minimal for fj.

Therefore, Mj has a C-basis of solutions of the form Qj,1(z)eβj,1z, . . . , Qj,κj(z)eβj,µj z where

Qj,k(z) ∈ Q[z] \ {0} and βj,k ∈ Q (pairwise distinct). Consequently, the operator M :=

LCLM(M1, . . . ,Mµ) ∈ Q(z)[ d
dz

] \ {0}, which is of order δ ≤
∑µ

j=1 κj, has a C-basis of

solutions made from some of the functions Qj,k(z)eβj,kz, k = 1, . . . , κj, j = 1, . . . , µ. A

C-basis of M is thus of the form Pj(z)eαjz, j = 1, . . . , δ, with Pj(z) ∈ Q[z] \ {0} and

αj ∈ Q (not necessarily distinct).
Since f(z) is a solution ofM and M is of minimal order for f(z), M is a right-factor of
M. Hence, a C-basis ofM is also of the form Aj(z)eγjz, j = 1, . . . , µ, with Aj(z) ∈ Q[z]\{0}
and γj ∈ Q. Hence, there exists a non-empty set J ⊂ {1, . . . , µ} such that

f(z) =
∑
j∈J

Ãj(z)eγjz

where, for j ∈ J , the γj’s are pairwise distinct and Ãj(z) ∈ C[z]\{0}. M being of minimal
order for f(z), Proposition 1 implies that #J = µ, so that the γ’s are all pairwise distinct.
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By definition of M , we have L = zηMz−η and it follows that L has a C-basis of the form
stated in Theorem 2 (ii), given by Aj(z)zηeγjz, j = 1, . . . , µ.

5. Two applications of a result in [14]

We now recall a result obtained in [14] as a by-product of the proof of Theorem 1; see
also Eq. (4.1) above. It is not clear if it could also be obtained using Halphen’s Theorem.
It has two interesting applications we present in the next sections.

Theorem 4 (R.-Roques,2017). Let L ∈ Q(z)[ d
dz

] \ {0} be an E-operator. Let us assume

there exist a non-zero E-function F (z) and α ∈ Q∗ such that F (z− α) is a solution of the
equation Ly(z) = 0. Then

F (z) =
∑
κ

Qκ(z)eκz. (5.1)

where κ runs through a finite set of algebraic numbers and the Qκ(z) ∈ Q[z] \ {0}.

5.1. A functional equation between two E-functions. The exponential function
satisfies ez = e−αez+α, which can be interpreted as a functional equation of the form
F (z) = βG(z + α) between two E-functions F and G. Theorem 4 enables us to solve this

functional equation when α ∈ Q∗.

Theorem 5. Let F (z) and G(z) be two non-zero E-functions. Let us assume there exist

α ∈ Q∗ and β ∈ C∗ such that F (z) = βG(z + α) for all z ∈ C. Then F and G are both of
the form Q(z)eκz for some κ ∈ Q and Q(z) ∈ Q[z] \ {0}.

The converse is true: the E-functions F (z) = Q(z)eκz and G(z) = Q(z − α)eκz satisfy
the equation F (z) = βG(z + α) with β = e−ακ. It would be interesting to determine the

non-zero E-functions Fj solutions of the functional equation
∑d

k=1 βjFj(δjz+αj) = 0 with

given αj, δj ∈ Q∗ and βj ∈ C∗ for all j = 1, . . . , d.

Proof of Theorem 5. Let F (z), G(z) be two non-zero E-functions, α ∈ Q∗ and β ∈ C∗ be
such that F (z) = βG(z + α) for all z ∈ C.

Let L ∈ Q(z)[ d
dz

] \ {0} be an E-operator for F (z). Then G(z + α) is also a solution of
L and by Theorem 4,

G(z) =
r∑
j=1

Qj(z)eκjz

for some pairwise distinct κj ∈ Q and Qj(z) ∈ Q[z] \ {0}. The situation being symmetric,
we can consider an E-operator for G(z) of which F (z−α) is also a solution, and Theorem 4
implies that

F (z) =
s∑
j=1

Pj(z)eδjz

for some pairwise distinct δj ∈ Q and Pj(z) ∈ Q[z] \ {0}.
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The equality F (z) = βG(z + α) now reads

s∑
j=1

Pj(z)eδjz − β
r∑
j=1

eακjQj(z + α)eκjz = 0. (5.2)

Now, for any sequence of pairwise distinct complex numbers (ωj)j=1,...,n, the functions eωjz,
j = 1, . . . , n, are C(z)-linearly independent ([10, p. 136]). Therefore, Eq. (5.2) implies that
r = s and, up to relabelling, that δj = κj and Pj(z) = βeακjQj(z + α) for all j = 1, . . . , r.

Let us assume that r ≥ 2. Then, at least one of the κ′s is non-zero, say κ1. In that
case, eακj 6∈ Q because ακ1 ∈ Q∗. Therefore the equality P1(z) = βeακ1Q1(z + α) with
P1(z), Q1(z + α) ∈ Q[z] \ {0} forces that β = e−ακ1 . Hence, for all j = 2, . . . , r, we have
Pj(z) = eα(κj−κ1)Qj(z + α) with Pj(z), Qj(z + α) ∈ Q[z] \ {0}. This is impossible because

the κ’s are pairwise distinct algebraic numbers and thus eα(κj−κ1) /∈ Q when j ∈ {2, . . . , r}.
It follows that r = 1, which completes the proof. �

5.2. Irrationalité sans irrationalité. The second application was suggested to the au-
thor by André. As explained below, it is not a new result and it is even weaker than what
is currently known with the same hypothesis. But its proof is new, simple and fits into the
“transcendance sans transcendance” point of view developped by André in [5]. The latter
is based on the special properties of the differential equations satisfied by E-functions and
avoids the standard arguments in transcendence theory such as Siegel’s lemma, auxiliary
functions, zero lemmas, etc.

Theorem 6. Let f(z) ∈ Q[[z]] be an non-zero E-function and let L ∈ Q(z)[ d
dz

] \ {0} of
order µ be the minimal operator for f(z). Let us assume that Ly(z) = 0 has a non-entire
solution.

Then, for any α ∈ Q∗ which is not a singularity of L, the µ numbers f(α), f ′(α),
. . . , f (µ−1)(α) generate a Q-vector space of dimension at least 2. In particular at least one
of these numbers is irrational.

Proof of Theorem 6. Let α ∈ Q∗ which is not a singularity of L. The numbers f(α), f ′(α),
. . . , f (µ−1)(α) cannot all be equal to zero because α is an ordinary point of L and f(z) is
a non-zero solution of L. Hence, they generate a Q-vector space Fα of dimension ≥ 1.

Let us assume that Fα has dimension 1, i.e that Fα = Qβ where β := f (j)(α) 6= 0 for
some j ∈ {0, . . . , µ − 1}. The equation Lf(z) = 0 also implies that f (n)(α) ∈ Fα for all
n ≥ 0. The function

F (z) := f(z + α)/β =
∞∑
n=0

f (n)(α)/β

n!
zn ∈ Q[[z]]

is thus a non-zero E-function by Proposition 3 because the slopes at ∞ of L are in {0, 1}
(see the beginning of §3.3) and for any σ ∈ Gal(Q/Q), F σ = F is an entire function.

Let R be an E-operator for f(z), of which L is a right-factor. Since we have also
RF (z − α) = 0, Theorem 4 applied to R implies that F (z) is an exponential polynomial
of the form (5.1). Hence, by Proposition 1, the non-zero minimal differential equation
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Mα ∈ Q(z)[ d
dz

] satisfied by F (z) admits a C-basis of functions of the form Q(z)eβz with

Q(z) ∈ Q[z] \ {0} and β ∈ Q; in particular the solutions of Mαy(z) = 0 are all entire
functions.

Consider now Lα ∈ Q[z, d
dz

] obtained from L by changing z to z + α: clearly, Lα is of
minimal order for F (z) because L is minimal for f(z). Hence Mα = Lα (up to a non-zero
polynomial factor). But Ly(z) = 0 has a non-entire solution and this is also the case of
Lαy(z) = 0. This contradiction proves that Fα has dimension ≥ 2. �

Remarks. (a) This proof is not easily generalizable to an E-function with arbitrary algebraic
Taylor coefficients. The reason is the following: as we can no longer say that F σ = F for
any σ ∈ Gal(Q/Q), we need an argument to ensure that F σ is an entire function, in order
to be able to use Proposition 3. Such an argument is lacking at present.

(b) The minimal non-zero operator for J0(z) is L := z( d
dz

)2 + d
dz

+ z, which also has for
solution the non-entire function

log(z/2)J0(z)−
∞∑
n=0

(Hn − γ)
(−z2/4)n

n!2
, (5.3)

where Hn :=
∑n

k=1 1/k and γ is Euler’s constant. Hence, Theorem 6 applies: for any
α ∈ Q∗, J0(α) and J ′0(α) are Q-linearly independent. Of course, this is much weaker
than what was already known to Siegel, who proved in [16, 17] that J0(α) and J ′0(α) are

algebraically independent over Q for any α ∈ Q∗.
(c) Theorem 6 does not seem to follow from a direct application of the Siegel-Shidlovskii

Theorem [15]. A new proof of this theorem was given by André in [5] using his theory of E-
operators, which also led to new Diophantine results on E-functions, see [2, 6] for instance.
Beukers’ Corollary 1.4 in [6] implies Theorem 6: that corollary proves that the dimension
is equal to µ, and in fact this was also a consequence of a result of Shidlovskii [15, p. 115,
Lemma 17] (which is weaker than Beukers’ result in general but coincides with it over Q).
If, keeping the other hypothesis on L, we assume that L has only entire solutions, then by
Theorem 2, L has a basis of solutions of the form P (z)eβz with P (z) ∈ Q[z] and β ∈ Q;
hence any Diophantine consequence falls under the scope of the Lindemann-Weierstrass
Theorem.

(d) Theorem 6 is optimal when µ = 2, and the form of E-functions solutions of L is
given in [9]. Its conclusion might even be false if α ∈ Q∗ is allowed to be a singularity of
L. Consider for instance f(z) := (z − 1)2J0(z), whose minimal differential equation is of
order 2, singular at z = 1 and with a non-entire solution, while f(1) = f ′(1) = 0 giving
dimQF1 = 0. Similarly, the function f(z) := (z − 1)J0(z) gives a “‘singular” example for
which dimQF1 = 1.

(e) Because the non-zero finite singularities of L are apparent, the argument can be
adapted to prove the following: under the same assumptions as in Theorem 6, for any
α ∈ Q∗ which is a singularity of L, the numbers f(α), f ′(α), . . . , f (δ−1)(α) generate a Q-
vector space of dimension at least 2, where δ is the order of any operator M ∈ Q[z, d

dz
]\{0}

such that α is not a singularity of M and Mf(z) = 0, and δ is minimal for these two
properties. Note that δ depend on the singularity α.
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