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Grounding rules for (relevant) implica-
tion

Abstract

In Poggiolesi (2020a) a definition of the notion of complete and im-
mediate formal grounding in the background of a relevant framework
has been introduced; this definition generates some intuitively acceptable
grounding principles for relevant implication. In the present paper our
aim is to construct a logic for the notion of complete and immediate for-
mal grounding in a relevant framework based on that definition. Our logic
will have the form of a calculus of natural deduction and will formalize
the relation of grounding both as a meta-linguistic relation and as a con-
nective. The calculus will contain grounding rules for relevant implication
and will be proved to be sound and complete with respect to the original
definition. Finally we will prove the deduction theorem at the ground-
ing level, i.e. we will show that grounding formalized as a metalinguistic
relation is equivalent to grounding formalized as a connective.

1 Introduction

In the last ten years there has been a growing interest in the concept of ground-
ing which is usually taken to be a relation amongst truths (or facts) that is
non-causal and explanatory in nature. Grounding may be conveyed by the ex-
pression because although not every use of ‘because’ corresponds to the relation
of grounding. Typical examples of grounding sentences are:

1. the glass is fragile because it has a certain molecular structure,

2. John is a bachelor because he is a man and he is unmarried,

3. the ball is red and round because the ball is red and the ball is round.

In each of these sentences the antecedent, i.e. what comes after the because
(“the glass has a certain molecular structure,” “John is a man and he is unmar-
ried” and “the ball is red and the ball is round”), determines or explains the
consequent, i.e. what comes before the because (“the glass is fragile,” “John is
a bachelor,” “the ball is red and round” respectively). In other terms, in each of
the sentences listed above, the antecedent constitutes a reason for or a ground
of the consequent.

The literature often distinguishes between different types of grounding (e.g.
see Fine (2012a)). Correia (2014) for example distinguishes between metaphys-
ical grounding (an example of metaphysical grounding is sentence number 1),
conceptual grounding (an example of conceptual grounding is sentence number
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2) and formal1 grounding (an example of formal grounding is sentence num-
ber 3). The relation between these different types of grounding is currently a
topic of debate (e.g. see McSweeney (2020); Smithson (2019)). Without wishing
to enter into the debate, in this paper we only focus on the notion of formal
grounding that we take to be a non-causal explanation of sentences in virtue of
their logical connectives.

Whatever type of grounding one is willing to take into account, other dis-
tinctions might be made. Here we focus on two, namely the distinction between
complete and partial grounding, as well as the distinction between immediate
and mediate grounding. The multiset2 of all, and only, those truths each of
which contributes to ground a truth A is a complete ground of A.3 On the
other hand, each of the truths that compose the complete ground of A, as well
as each strict sub-multiset of them, is said to be a partial ground of A. As
for the distinction immediate and mediate, if we could describe it in proof-
theoretical terms, we would say that immediate grounding corresponds to a
single (irreflexive) grounding(proof)-step, while mediate grounding corresponds
to a sequence of several steps of immediate grounding. In other words, while
immediate grounding is a relation that does not seem to be reducible further,
mediate grounding is definable as the transitive closure of immediate grounding.

There are several studies dedicated to the formalization of the notion of
grounding (e.g. see Correia (2010); Fine (2012b)). In these different studies,
grounding is taken to be a primitive notion that is captured either via a predicate
(e.g. see Korbmacher (2017)), or via an operator (e.g. see Correia (2014);
Schnieder (2011)). The main concern is to provide grounding axioms or rules
for the classical connectives of conjunction, disjunction and negation: little
attention has been dedicated so far beyond classical logic, i.e. to non-classical
logics, and beyond these connectives, i.e. to implication.

An alternative approach is developed by Poggiolesi (2016b, 2018, 2020a).
First of all, Poggiolesi focuses on the notion of formal grounding and does not
take it to be primitive; indeed, she proposes a definition of the notion of com-
plete and immediate formal grounding in terms of the notions of derivability and
g-complexity. One advantage of this approach lies in its flexibility: since for-
mal grounding is relative to the notion of derivability and g-complexity, formal
grounding is also relative to the logic in which derivability and g-complexity
are defined. Hence, by considering classical derivability, and a notion of g-
complexity suited for the classical connectives, Poggiolesi (2016b) proposes a
definition of the notion of complete and immediate formal grounding adequate
for a classical context.

More recently, Poggiolesi (2020a) has developed a ground-theoretic study of
the connective of implication that is supposed to reflect some natural intuitions

1Although Correia (2014) uses the term logical grounding, here we follow Poggiolesi (2016b)
and call it ‘formal.’

2A multiset is a set where the number of occurrences of the same formula counts.
3As explained in detail in Poggiolesi (2016b,a), the distinctions complete-partial and full-

partial, although similar, are not the same. A study of the relations between these distinctions
can be found in Poggiolesi (2020b).
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about the grounds of conditionals in natural language. The starting point of
this study is the consideration of some ordinary language conditionals such as:

4. if the glass is thrown, then it falls,

5. if the ball is pushed, it will roll,

6. if it rains, it is not the case that the road will not be wet.

What are the reasons for the truth of these sentences which all have the form “if
A, then B”? For the first conditional the answer seems to be the law of gravity:
it is because there is the law of gravity that if the glass is thrown, then it falls.
For the second conditional, the ground seems to be “the ball is a sphere:” it is
because the ball is a sphere that if it is pushed, then it rolls. And for the third
and last condition the answer seems to be “if it rains, the road will be wet:” it
is because if it rains, then the road is wet, that if it rains, it is not the case that
the road will not be wet.

These examples call for important remarks.

- First of all, they only apply to indicative conditionals where there is a
connection between antecedent and consequent. This connection is very
important since it is precisely what is grounded.

- Secondly, they all show the same intuitive pattern - let us call it pattern* :
the ground of a conditional of the form “if A, then B” is a sentence C
such that from A and C, B follows.4 The variety of these examples – 4
and 5 are not formal, while 6 is – suggest that pattern* is a key feature of
the grounding analysis of conditionals across grounding types. That said,
Poggiolesi (2020a) only focuses on formal grounding as does this paper.

In Poggiolesi (2020a), the author aims at making some first steps towards
the formalization of these remarks. To that end, she focuses on the relevant logic
R where implications formalize indicative conditionals displaying a connection
between antecedents and consequents: a relevant implication is indeed charac-
terized by the fact that the antecedent is always relevant for the consequent.
Formally, this feature is conveyed by means of the variable sharing principle.
The variable sharing principle says that no formula of the form A→ B can be
proven in the relevant logic R if A and B do not have at least one propositional
variable in common. Hence, in R a conditional of the form “if 2+2 =4, then the
moon is yellow” is false, while a conditional of the form “if the ball is pushed,
then it will roll” is true. The reason for this truth does not lie in the truth-values
of its components but in the link between antecedent and consequent. And this
seems to match the connection between antecedent and consequent noted in the
grounding examples above.

Poggiolesi then puts forward a definition of the notion of complete and im-
mediate formal grounding which is appropriate for the relevant framework: she

4Where following from is to be used in Anderson and Belnap (1975)’s sense: B follows
from A,C if there is a deduction of B from A,C which actually uses A,C (and A,C alone).
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obtains it by adapting the key notions of derivability and g-complexity to the
relevant notions. This definition not only generates some intuitively accept-
able grounding principles for the usual connectives of negation, conjunction and
disjunction, but also and most importantly for relevant implication. So, for
example, according to this approach, the complete and immediate ground of
the formula A → ¬¬B is the multiset {A → B}, whilst the complete and im-
mediate ground of the formula A → B ∧ C is the multiset {A → B,A → C}.
As Poggiolesi informally shows, all grounding principles for relevant implication
that emerge from her approach satisfy pattern*.

The aim of the present work is to construct a logic of grounding contain-
ing grounding rules for relevant implication that formalize pattern* and with
which one can derive Poggiolesi’s grounding principles for relevant implication.
In order to reach our goal, the strategy will be to draw inspiration from the
logic developed in Poggiolesi (2018): indeed this logic contains a grounding rule
for negation that formalizes a pattern similar to pattern*.5 Moreover, the logic
that we develop in this paper has the following features. (i) Our logic will focus
on the notion of complete and immediate formal grounding, leaving the study of
other types of formal grounding - complete and immediate, partial and immedi-
ate and partial and mediate - for future research. (ii) It will have the form of a
calculus of natural deduction and (iii) it will formalize the relation of grounding
both as a meta-linguistic relation as well as an operator. (iv) Our logic will
contain grounding rules for the connectives of conjunction and disjunction that
are the same as those that can be found in Poggiolesi (2018); the rule for nega-
tion formulated in Poggiolesi (2018) will be extended so to generate complete
and immediate grounds for the negation of relevant implications; finally new
grounding rules for relevant implication will be introduced.

Note that exactly as the logic presented in Poggiolesi (2018) is proved to
be the formal counterpart of the definition of complete and immediate formal
grounding introduced in Poggiolesi (2016b), in the same way the logic developed
in this paper will be shown to be the formal counterpart of the definition of
the notion of complete and immediate formal grounding in the background of
a relevant framework introduced in Poggiolesi (2020a). Finally, we will show
that our logic of grounding for relevant implication enjoys a sort of deduction
theorem at the grounding level: we will prove an equivalence between grounding
formalized as a metalinguistic relation and grounding formalized as a connective.

The paper is organized as follows. In Section 2 we will recall the definition of
complete and immediate formal grounding in the relevant framework, which our
logic of grounding aims to capture; in Section 3 we will introduce the calculus
RGD, while in Section 4 we will prove soundness and completeness between the
calculusRGD and the definition of grounding introduced in Section 2. In Section
5 we will prove that the calculus RGD conservatively extends the relevant logic
R, that it is consistent and that it enjoys the deduction theorem at the grounding
level. Finally, in Section 6 we will draw some conclusions.

5This rule for negation says that A is a (complete and immediate) ground of ¬B if from
A and B a contradiction follows (in a certain way).
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2 The definition of complete and immediate ground-
ing in a relevant framework

We use this section to introduce the definition of complete and immediate formal
grounding adequate for the relevant framework which has been proposed by
Poggiolesi (2020a) and is the basis of the logic that we aim at developing. Let
us start by introducing some necessary notions concerning the relevant system R
(see also Anderson and Belnap (1975); Mares (2014); Dunn and Restall (2002)).

Definition 2.1. The relevant language Lr is composed of a denumerable stock
of propositional atoms (p, q, r, . . . ), the logical operators ¬, ∧, ∨ and →,
the parentheses (, ) and the square brackets [, ]. Propositional formulas are
standardly constructed and denoted by capital letters A,B,C, .... The set of
propositional formulas so defined is denoted by PF.

Once the relevant language Lr, together with a set of propositional formulas
PF, is given, we can introduce the Hilbert system R, whose axioms and rules
are shown in Figure 2. We will write M `R A to denote that “there is a proof in
R that M entails A” in the sense of Anderson and Belnap (1975, p.277).6 An
important property of the relevant system R linked to this notion of entailment
is the Entailment theorem, namely :

Theorem 2.2. For any formula A and multiset M ∈ Lr, we have that: M `R A
if, and only if, `R

∧
M → A

Proof. From left to right using Anderson and Belnap’s theorem and the reason-
ing in its proof, in particular the relation with the natural deduction calculus
for R, see (Anderson and Belnap, 1975, §23.6, §27.2). From right to left, an
immediate application of the rules of the Hilbert calculus.

As explained by Dunn and Restall (2002), the system R has both an al-
gebraic semantics and a frame-semantics. The former has been introduced by
Dunn (1970), whilst the latter has been developed by Urquhart (1972); Fine
(1974) and Routley and Meyer (1973). Routley and Meyer’s approach is prob-
ably the most well-known (see Mares (2014)) and it is based on the idea of
interpreting the implication connective by means of a ternary relation Rijz
such that i |= A → B if, and only if, ∀j, z ∈ W (if Rijz and j |= A, then
z |= B). In this approach, while the connectives of conjunction and disjunction
are treated classically, the negation connective is treated by an unary operation
+ on worlds,7 such that for each world i, there is a world i+, i |= ¬A if, and
only if, i+ 2 A.8 By denoting with R+ the class of relevant frames of Routley

6This notion corresponds to a derivation from M to A with control indexes (namely M
and A have the same set of indexes) in the natural deduction calculus for R, see Dunn and
Restall (2002).

7We do not use the symbol ∗ that is more common in the literature because we employ it
later for the notion of robust condition.

8Differently from worlds of Kripke semantics, worlds of the relevant approach can be either
inconsistent or incomplete. This is due to fact that formulas as p ∧ ¬p → q or p → q ∨ ¬q
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Figure 1: Hilbert-style axiomatisation of relevant logic R
A1.1 A→ A A1.2 (A→ ((A→ B))→ (A→ B)

A1.3 A→ ((A→ B)→ B) A1.4 (A → B) → ((B → C) → (A →
C))

A2.1 A ∧B → A A2.2 A ∧B → B

A2.3 ((A→ B) ∧ (A→ C))→ (A→ B ∧ C)

A3.1 A→ A ∨B A3.2 B → A ∨B

A3.3 (A ∨B → C)↔ (A→ C) ∧ (B → C)

A4.1 ¬¬A→ A A4.2 (A→ ¬B)→ (B → ¬A)

A5 ((A ∧B) ∨ C)→ ((A ∧B) ∨ (A ∧ C))

MP A→ B,A `R B

IC A,B `R A ∧B

and Meyer (1973), the soundness and completeness theorem is provable for the
logic R.

Theorem 2.3. For any formula A ∈ Lr, we have that: A is provable in the
relevant system R if, and only if, A is valid in the class of frames R+.

Proof. See (Dunn and Restall, 2002, p.70-77).

In what follows, in order to contain the complexity of the issue, we will
restrict our attention to the complete and immediate formal grounds of those
implicative formulas which contain conjunction, disjunction and negation, but
are not in their turn composed of other implications. We leave the grounding
analysis of these formulas for future research.

Definition 2.4. Given the set PF of all formulas of the language Lr we isolate
the subset PF→ that only contains those formulas that do not contain nested
implications, i.e. if there is an implication, it does not itself contain another.

The definition of the notion of grounding proposed by Poggiolesi aims at
capturing grounding relations amongst the formulas PF→ of the logic R and re-
lies on two different ideas. The first consists in organizing all formulas belonging
to the set PF→ in a grounding hierarchy by means of the notion of g-complexity.

are not wanted to be proved to be valid. And for that matter, we need worlds to be able to
satisfy both p and ¬p, and to not satisfy neither q nor ¬q.
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Of particular interest are those formulas that belong to different levels of the
hierarchy and are linked by the relation of being completely and immediately
less g-complex. Once all formulas are organized into the hierarchy, the task is
to identify those formulas, enjoying the relation of being completely and imme-
diately less g-complex, that also enjoy an authentic dependence between them.
This authentic dependence, which is the countersign of a grounding relation,
is formally captured by what Poggiolesi calls positive and negative derivability.
Given a multiset of formulas M and a formula A, M and A enjoy an authentic
dependence between them when they satisfy positive and negative derivability,
namely when not only A is derivable from (the conjunction of each element
of) M , but also ¬A is derivable from (the conjunction of) the negation of each
element of M .

In what follows, we will introduce all the technical ingredients needed to
formulate the definition of complete and immediate formal grounding in the
framework of R elaborated by Poggiolesi. A conceptual explanation of these
technical elements can be found in Poggiolesi (2020a).

Definition 2.5. Let D be a formula of PF→. The converse of D, written D∗,
is defined in the following way

D∗ =

{
¬n−1E, if D = ¬nE and n is odd
¬n+1E, if D = ¬nE and n is even

where the principal connective of E is not a negation, n > 0 and 0 is taken to
be an even number.9

Here are some examples that help to clarify Definition 2.5. If D = ¬¬¬¬p,
then its converse, D∗, is ¬¬¬¬¬p. If D = ¬(A ∧ B), then its converse, D∗, is
(A ∧ B); finally, if D = (A → B), then its converse, D∗, is ¬(A → B). From
now on we will use capital letters to refer to formulas of the language Lr and
their converse.

Definition 2.6. Consider a formula A ∈ PF→. We will say that A is a-c
equiv (for associatively and commutatively equivalent) to B, if, and only if, A
can be obtained from B by applications of associativity and commutativity of
conjunction and disjunction.

Here are some examples of formulas which stand in the relation a-c equiv.
If A is of the form E ∧ F , then the formula F ∧ E is a-c equiv to it. To
take another example, if A is of the form ¬((B ∨ C) ∧ (D ∨ F )) the formulas
¬((C ∨ B) ∧ (D ∨ F )), ¬((B ∨ C) ∧ (F ∨ D)), ¬((C ∨ B) ∧ (F ∨ D)) are a-c
equiv to it. If A is of the form G → ((B ∨ C) ∨ (D ∨ F )), then the formulas
G→ ((B ∨D)∨ (C ∨ F )), G→ ((D ∨B)∨ (F ∨C)), G→ ((B ∨ F )∨ (D ∨C))
are all a-c equiv to it.

Definition 2.7. For any A,B ∈ PF→, A ∼= B if, and only if:

9Note that ¬0E is just E. Also we keep the term converse for continuity with Poggiolesi’s
work. However, one should not confuse ∗ with an idempotent operator.
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A is a-c equiv to B or A is a-c equiv to B∗

Definition 2.8. Given a multiset of formulas M and a formula C ∈ PF→, we
say that M is completely and immediately less g-complex than C (in a relevant
framework), if, and only if:10

- C ∼= ¬¬B and M = {B} or M = {B∗}, or

- C ∼= B ◦ D and M = {B,D}, or M = {B∗, D}, or M = {B,D∗}, or
M = {B∗, D∗}, or

- C ∼= ¬¬B → D or C ∼= B → ¬¬D, and M = {B → D} or M =
{¬(B → D)}, or

- C ∼= B ◦D → E and M = {B → E,D → E}, or M = {¬(B → E), D →
E}, or M = {B → E,¬(D → E)}, or M = {¬(B → E),¬(D → E)}, or

- C ∼= ¬(B ◦ D) → E and M = {B∗ → E,D∗ → E}, or M = {¬(B∗ →
E), D∗ → E}, or M = {B∗ → E,¬(D∗ → E)}, or M = {¬(B∗ →
E),¬(D∗ → E)}, or

- C ∼= B → D ◦ E and M = {B → D,B → E}, or M = {¬(B → D), B →
E}, or M = {B → D,¬(B → E)}, or M = {¬(B → D),¬(B → E)}, or

- C ∼= B → ¬(D ◦ E) and M = {B → D∗, B → E∗}, or M = {¬(B →
D∗), B → E∗}, or M = {B → D∗,¬(B → E∗)}, or M = {¬(B →
D∗),¬(B → E∗)}.

In Poggiolesi (2020a) the standard notion of logical complexity (that counts the
number of connectives occurring in a formula) is substituted by the notion of g-
complexity which represents the grounding counterpart (and more fine-grained)
way of counting the complexity of a relevant formula. Although the notion of
g-complexity provides deep insights into Poggiolesi’s account, we do not present
it in this paper since it is rather long and laborious. The important feature to
underline is that the relation of being completely and immediately less g-complex
introduced in the above definition is shaped by the notion of g-complexity. In
particular, a multiset M is completely and immediately less g-complex than a
formula C when it contains all those ‘subformulas’ of C11 which are such that
the sum of their g-complexity is immediately lower than that of C. Here are
some examples:

- the multisets {(p ∧ q) ∧ r}, {¬((q ∧ p) ∧ r)} are both completely and
immediately less g-complex than the formulas ¬¬(r∧(q∧p)) and ¬¬¬(r∧
(q ∧ p));

10In what follows we use the symbol ◦ to either denote conjunction or disjunction.
11For the notion of subformula adapted to the grounding framework see Poggiolesi (2016b,

2020a).
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Figure 2: Grounds for relevant implications

Conclusion Complete and Immediate Formal Grounds
¬¬A→ B A→ B
A→ ¬¬B A→ B
A→ B ∧ C {A→ B,A→ C}
A→ ¬(B ∨ C) {A→ B∗, A→ C∗}
A ∨B → C {A→ C,B → C}
¬(A ∧B)→ C {A∗ → C,B∗ → C}

where the relation of complete and immediate formal grounding is closed under ac-equivalence

- the multisets {(p∨ q), r}, {¬(p∨ q), r}, {(p∨ q),¬r}, {¬(p∨ q),¬r} are all
completely and immediately less g-complex than the formulas (p ∨ q) ∧ r
and (q ∨ p) ∧ r, as well as than the formulas ¬((p ∨ q) ∧ r), ¬((q ∨ p) ∧ r).

- the multisets {s → p, s → r}, {¬(s → p), s → r}, {s → p,¬(s → r)},
{¬(s → p),¬(s → r)} are all completely and immediately less g-complex
than the formulas s→ p◦r, ¬(s→ p◦r), as well as the formulas s→ r◦p,
¬(s→ r ◦ p), where ◦ = {∧,∨}.

Definition 2.9. For any formula A ∈ PF→, and for any consistent multiset
of formulas C ∪ M such that C and M ∈ PF→, we say that, under the ro-
bust condition C (that may be empty), M completely and immediately formally
grounds A in a relevant framework, in symbols [C] M |∼ R A, if and only if:

-
∧
M `R A,

- C,
∧
¬(M) `R ¬A,

- {C,M} is completely and immediately less g-complex than A according
to Definition 2.8.

where the notation
∧

(M) stands for the conjunction of each element of M ,
whilst

∧
¬(M) stands for the conjunction of the negation of each element of M .

As proved in Poggiolesi (2020a), this definition of complete and immedi-
ate formal grounding conservatively extends that elaborated for the classical
framework: the principles concerning negation, conjunction and disjunction of
the classical framework remain the same in the relevant framework, whilst new
grounding principles governing relevant implication and negation of relevant im-
plication emerge naturally (see Figure 2 and 3, respectively12). Definition 2.9
involves a robust condition, namely the formula C in square brackets. The no-
tion of robust condition can be described briefly on the example of a disjunction
like A∨B, in a situation where the formula A is true. In this case, A is certainly
a ground for A ∨ B; but in order for A to be the complete ground for A ∨ B,

12Note that in the tables of Figures 2 and 3 certain expected implications, such as A∧B → C,
¬(A→ B ∨C), A→ ¬(B ∧C), do not appear since, as explained in Poggiolesi (2020a), these
implications do not have formal grounds according to Definition 2.9.
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Figure 3: Grounds for negation of relevant implication

Conclusion Complete and Immediate
Formal Grounds

¬(¬¬A→ B) ¬(A→ B)

¬(A→ ¬¬B) ¬(A→ B)

¬(A→ B ∧ C) {¬(A→ B),¬(A→ C)}
{¬(A→ B)}[A→ C]
{¬(A→ C)}[A→ B]

¬(¬(A ∧B)→ C) {¬(A∗ → C),¬(B∗ → C)}
{¬(A∗ → C)}[B∗ → C]
{¬(B∗ → C)}[A∗ → C]

¬(A ∨B → C) {¬(A→ C),¬(B → C)}
{¬(A→ C)}[B → C]
{¬(B → C)}[A→ C]

¬(A→ ¬(B ∨ C)) {¬(A→ B∗),¬(A→ C∗)}
{¬(A→ B∗)}[A→ C∗]
{¬(A→ C∗)}[A→ B∗]

where the relation of complete and immediate formal grounding is closed under ac-equivalence

it is necessary to specify that B is false (i.e. that B is not also a ground for
A ∨ B); in other terms, it is the falsity of B that ensures that, or is a (robust)
condition for A to be the complete ground for A ∨ B. Thus, A is the complete
and immediate formal ground for A ∨ B under the robust condition that B is
false. The reader is referred to Poggiolesi (2016b, 2020a,b) for a more detailed
clarification of the notion of robust condition.

3 The calculus RGD
Definition 3.1. The language Lg extends the relevant language Lr (see Defini-
tion 2.1) by means of the completely and immediately because connective .. As
before, A,B, ... denote formulas, whilst M,N, ... denote multisets of formulas.

Definition 3.2. Let B be the set of completely and immediately because formu-
las defined in the following way:

B := {A . B | A,B ∈ PF→} ∪ {A,C . B | A,B,C ∈ PF→}∪

{[C] A . B | A,B,C ∈ PF→}

Note that the connective . is not supposed to match the natural-language
use of the term because; it is rather supposed to capture those uses of ‘because’
that correspond to the concept of complete and immediate formal grounding.
Moreover, while in the natural language use of the term ‘because’ the explanans
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Figure 4: Rules of the RD part
For A, B, C in GF, and α, β ranging over classes of numerals

...

d1

Aα

...

d2

Bα
A ∧Bα

∧I

...

d

A ∧Bα
Aα

∧E1

...

d

A ∧Bα
Bα

∧E2

...

d

Aα
A ∨Bα

∨I1

...

d1

A ∨Bα

��
�{Ak}

...

d2

Cβ∪k

�
��{Bh}

...

d3

Cβ∪h

Cα∪β
∨E

...

d

Bα
A ∨Bα

∨I2
A ∧ (B ∨ C)α

(A ∧B) ∨ Cα
dis

��
�{Ak}

.

..

d

Bα
A→ Bα−{k}

→I
A→ Bα Aβ

Bα∪β
→E

The rules to manipulate indexes of formulas can be found in (Anderson and Belnap, 1975, Ch. X)

come after the ‘because’ and the explanandum before, in the connective . these
positions are inverted. We will denote with GF the closure of PF ∪ B under the
connectives of negation, conjunction, disjunction of Lg.

Based on the language Lg, we will construct the calculus RGD, which will
be our logic of grounding in the relevant framework R. The calculus RGD can
be thought of as divided in three parts:

(i) the first part, the RD part, which is the basis of the calculus, is just the
natural deduction calculus for relevant logic formulated in the language
Lg. It is composed of introduction and elimination rules with indexes that
characterize the relevant relation of derivability, denoted by `RD.

(ii) the second part of the calculus, the G part formulated for the set of formu-
las PF→, is where the grounding concept is formalized as a meta-linguistic
relation. This meta-linguistic relation is denoted by the symbol |∼13 and
is called (complete and immediate) formal explanation. One can think of

13Note that we use the same symbol for the relation of complete and immediate formal
explanation and the relation of complete and immediate formal grounding, introduced in
Definition 2.9. Though this might at first appear confusing, both notions are syntactic and
will be proved to be equivalent, so we prefer to leave the notation as it is. This is analogous
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it as the grounding analogue of the meta-linguistic relation of derivabil-
ity. Hence, as derivability is definable via (inferential) rules, in the same
way the relation of formal explanation will be defined via grounding rules
which will be introduced shortly.

(iii) the third part of the calculus, the D part, is based on the language Lg
and it is where the connective . is proof-theoretically defined by means
of one introduction rule and three elimination rules. The introduction
rule naturally provides a link between parts (i) and (ii) of the calculus.
Thanks to the D part of the calculus, the relation |w, that holds for the
whole logic RGD and which combines the relevant notion of derivability
with the notion of complete and immediate formal explanation, can finally
be defined.

For the sake of clarity, we will introduce each part separately. Let us start
by (i). The RD part of the calculus is composed by the rules of Figure 4, which
are the rules of the natural deduction calculus for the relevant logic R (see Dunn
and Restall (2002)). As it is standard, in these rules the curly brackets stand for
the discharge of several formulas at the same time. The set of derivations RD
that can be constructed by means of the rules of RD is the standard one, see
Dunn and Restall (2002). We write Mα `RD Aα to denote the fact that there
exists a natural deduction derivation from the multiset M to A in RD, where
the multiset M and the formula A have the same set of indexes. The Hilbert
system R and the natural deduction calculus RD prove the same formulas, as
the following theorem shows.

Theorem 3.3. For any formula A and multiset M ∈ GF and mutliset of labels
α, we have that: M `R A if, and only if, Mα `RD Aα, where Mα stands for
the multiset of formulas Bnk , such that each B belongs to M and each k belongs
to α.

Proof. See (Dunn and Restall, 2002, p. 20).

In order to introduce part (ii) of the calculus, we need some preliminary
notions and definitions.

Definition 3.4. Given A ∈ PF→, let AC(A) be the set of all elements B such
that A is a-c equiv to B (Definition 2.6). From now on we will use A, B, C,
... to denote generic elements belonging to the set AC(A), AC(B), AC(C), ...
respectively.

Definition 3.5. Let A be a generic element belonging to the set AC(A). Then
A∗ denotes generic elements of AC(A∗).

Let us illustrate our notation with some examples. Consider an object A of
the form s ∨ t→ ¬((p ∧ q) ∨ r), then

to what happens in Hilbert systems and Gentzen systems: they share the same symbol for
derivability.
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A denotes any of the following objects: s∨t→ ¬((p∧q)∨r), t∨s→ ¬((q∧p)∨r),
t ∨ s→ ¬(r ∨ (p ∧ q)), ¬(r ∨ (q ∧ p))

A∗ denotes any of the following objects: ¬(s ∨ t → (p ∧ q) ∨ r), ¬(s ∨ t →
(q ∧ p) ∨ r), ¬(s ∨ t→ r ∨ (p ∧ q), r ∨ (q ∧ p))

From now on, capital letters of bold character will be used to refer to both
A, B, C, ... but also A∗, B∗, C∗, . . . M,N, ... will be multisets of capital letters
of bold character.

Let us now move to the grounding rules for the G part of the calculus RGD.
As for the grounding rules for conjunction and disjunction, these are the same as
those of the calculus NGD of Poggiolesi (2018) (see Figure 6). As Definition 2.9
correctly captures, the complete and immediate formal grounds of conjunction
and disjunction do not change passing from classical logic to relevant logic R.
Hence the grounding rule of conjunction says that the complete and immediate
formal grounds of a conjunction are its conjuncts. The grounding rules for
disjunction are three: the former says that the complete and immediate formal
grounds of a disjunction are its disjuncts; the other two say that the complete
and immediate formal grounds of a disjunction is one disjunct under the robust
condition that the converse of the other disjunct is true. A simple way of
expressing these rules is the following:14

A B

A ∧B

A B

A ∨B
[B∗] A

A ∨B
[A∗] B

A ∨B

However the relation of grounding that we aim at capturing is closed under
ac-equivalence. In order to take care of this important feature and yet not lose
the uniqueness of our rules, we use the bold letters introduced before. So we
slightly change grounding rules for conjunction and disjunction in the following
way:

A B

A ∧B
∧G

A B

A ∨B
∨G1

[B∗] A

A ∨B
∨G2

[A∗] B

A ∨B
∨G3

The grounding rule for conjunction written in the bold notation not only allows
us to say that, i.e. p ∧ q and r formally explain (p ∧ q) ∧ r, but that they also
explain (q ∧ p) ∧ r, q ∧ (p ∧ r), r ∧ (p ∧ q) and so on.

Let us now move to the grounding rules for negation and relevant implication.
In order to introduce these grounding rules, we need inference rules since in

14Note that to aid readability, we adopt a new notation with respect to Poggiolesi (2018).
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both of them the grounds are established by means of what can be inferred
from them: in the case of the grounding rule for negation a contradiction, in
the case of the grounding rule for implication, the consequent of the implication
itself. We therefore introduce a new notation < (R;R′), R′′ > that we call
combination of rules, and which denotes the fact that two rules R and R′ are
used in a parallel way and then followed by the rule R′′. Let us provide some
examples of combinations of rules so to make clear this new notation. Consider
the combination of rules < (∧E1;∧E2),∧I >; it corresponds to the following
inferential steps:

A ∧B
B

∧E1
C ∧D
D

∧E2

B ∧D ∧I

The combination of rules < (→ E;→ E),∨I > corresponds to the following
inferential steps:

A ∨B
�A A→ C

C
→E ��B B → C

C
→E

C
∨I

Note that there might also be combinations of rules where in brackets we
only have one rule, i.e. combinations of rules of the following form < (R), R′ >
that in a simpler way we will write < R,R′ >. < R,R′ > stands for the fact that
the rules R and R′ are used one after the other. So for example the combination
of rules < ∧I,∨I > corresponds to the following inferential steps:

A1 B1

A ∧B1
∧I

(A ∧B) ∨ C1
∨I

whilst the following combination of rules < ∧E,→ E > corresponds to the
following inferential steps:

(A ∧ (B → C))1

(B → C)1
∧E

B1

C1
→E

In order to simplify our task, in combination of rules we will use the rules of
Figure 5 that are all straightforwardly relevantly derivable, as well as the rules
of relevant deduction, both without indexes. Note that the absence of indexes
is motivated by the ambition of simplifying derivations and it should not be a
source of worry: in the next Section we will show that any combination of rules
that we will take into account gives rise to a relevant derivation.

Definition 3.6. We will say that the multiset M is completely and immediately
contradictory when M and ⊥ are linked by one of these combinations of rules:
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Figure 5: Derivable rules in the calculus RD
For A, B, C in GF

A A∗

⊥ ⊥?I

A
¬¬A ¬¬I

¬¬A
A

¬¬E

¬(B ∧ C)

B∗

...
D

C∗

...
D

D
¬∧

B∗ C∗

¬(B ∧ C)
¬∨

¬¬A→ B
A→ B

¬¬→ A→ ¬¬B
A→ B

→¬¬

A→ B1 ∧B2

A→ Bi
→∧i

A1 ∨A2 → B

Ai → B
∨i→

Ai → ¬(B1 ∨B2)

A→ B∗i
→¬∨i

¬(A1 ∧A2)→ B

A∗i → B
¬∧i→

where i = {1, 2}

- ⊥I,15

- < X,⊥∗I >,

- < Y,⊥I >

- < (⊥∗I;⊥∗I),∨E >

where X = {∧Ei} and Y = {¬¬ →,→ ¬¬,→ ∧i,∨i →,→ ¬∨i,¬∧i →}. We
will use the following notation to indicate that the multiset M is completely
and immediately contradictory:

M
...
...
⊥

Consider two completely and immediately contradictory multisets M and N ;
if the derivation from M to ⊥ contains one of these rules {∧Ei, → ∧i, ∨i →,

15By ⊥I we denote those instances of the rule ∧I where the conclusion is a contradiction.
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→ ¬∨i, ¬∧i →}, whilst the corresponding derivation from N to ⊥ contains one
of the following {∧Ej , → ∧j , ∨j →, → ¬∨j , ¬∧j →}, where i = 1, 2 and j
= 1, 2 such that i 6= j, then M and N will be said to be two complementary
completely and immediately contradictory multisets. The following notation
denotes this fact:

M
...
...→
⊥

N

←
...
...
⊥

Let us provide some examples of completely and immediately contradictory
multisets. The multiset {¬¬A → B,¬A → B} is completely and immediately
contradictory since we have:

¬¬A→ B
A→ B

¬¬→
¬(A→ B)

⊥ ⊥I

Also the multiset {A∨B,A∗, B∗} is completely and immediately contradictory
since we have:

A ∨B
�A,A

∗

⊥ ⊥∗I
��B,B

∗

⊥ ⊥∗I

⊥ ∨E

Let us now provide some examples of complementary completely and imme-
diately contradictory multisets. Consider the multiset M := {A∧B,A∗} as well
as the multiset N := {A∧B,B∗}. Each of them is completely and immediately
contradictory since we have, respectively:

A ∧B
A

∧E1
A∗

⊥ ⊥∗I

A ∧B
B

∧E2
B∗

⊥ ⊥∗I

Moreover they are complementary since in one derivation the rule ∧E1 is used,
whilst in the other derivation the rule ∧E2 is used.

Consider the multiset M := {A → B1 ∧ B2,¬(A → B1)} as well as the
multiset N := {A → B1 ∧ B2,¬(A → B2)}. Each of them is completely and
immediately contradictory since we have, respectively:

A→ B1 ∧B2

A→ B1

→∧1 ¬(A→ B1)

⊥ ⊥I

A→ B2 ∧B2

A→ B2

→∧1 ¬(A→ B2)

⊥ ⊥I

Moreover they are complementary since in one derivation the rule→ ∧1 is used,
whilst in the other derivation the rule → ∧2 is used.
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Figure 6: Rules of the G part
For A, B, C in PF→,

A B

A ∧B
∧G

A B

A ∨B
∨G1

[B∗] A

A ∨B
∨G2

[A∗] B

A ∨B
∨G3

�
�
�
�{�A,M}

...
...
⊥

[D] M

¬A
¬G1

�
�
�
�{�A,M}

...
...→
⊥
M

�
�
�
�{�A,N}

←
...
...
⊥
N

¬A
¬G2

�
��

�
��

{�A,M}, {�A,N}
...
...
D

M N

A→ D
→G

All rules carry the proviso that their premisses are consistent.

Definition 3.7. We will say that a formula A is completely and immediately
derivable from the multisets M,N , one of which might be empty, when M,N
and A are linked by one of these combinations of rules:

- <→ E,¬¬I >,

- < ¬¬E,→ E >,

- < (→ E;→ E), X >

where X = {∧I,¬ ∧ E,¬∨,∨E}. The notation:

M,N
...
...
A

serves to indicate that A is completely and immediately derivable from M,N .

Let us provide few examples of formulas that are completely and immedi-
ately derivable from multisets of formulas. Consider the formula ¬¬B that is
completely and immediately derivable from the multiset {A,A → B}. Indeed
we have:
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A A→ B
B

→E

¬¬B ¬¬I

Consider the formula B ∧ C that is completely and immediately derivable
from the multisets {A,A→ B} and {A,A→ C}. Indeed we have:

A A→ B
B

→E
A A→ C

C
→E

B ∧ C ∧I

We now have all elements to introduce part (ii) of the calculus, namely the
G part. The G part is composed of the rules of Figure 6. The rule describing
the complete and immediate formal explanans of a conjunction is ∧G, whilst
the three rules providing the complete and immediate formal explanans of a
disjunction are ∨G1, ∨G2, ∨G3, respectively. The rules concerning negation
are ¬G1 and ¬G2: in the former one, if in the inferential part there is an
occurrence of one of these rules {∧Ei, → ∧i, ∨i →, → ¬∨i, ¬∧i →}, then a
robust condition constituted by the formula that could have been inferred by
one of the corresponding rules {∧Ej , → ∧j , ∨j →, → ¬∨j , ¬∧j →} (where i
= 1, 2 and j = 1, 2 such that i 6= j), should be added in the premisses of the
formal explanation. Moreover, the formula A to discharge is the one that allows
an increase of g-complexity. Let us give two formal explanations involving this
rule:

��
�
��

��
¬p

���p ∧ q
p ∧E1

⊥ ⊥∗I

[q] ¬p
¬(p ∧ q)

¬G1

���
���

���
���

¬(p→ q)
((((

(p→ q ∧ r
p→ q →E1

⊥ ⊥I

¬(p→ q)[p→ r]

¬(p→ q ∧ r)
¬G1

The explanatory rule for (relevant) implication is→ G. This rules formalizes
the reasoning that we have introduced at the beginning of this paper: it indeed
tells us that grounds of a formula of the form A → D are the multisets M and
N (where one of the two might be empty), such that from A and M and N , the
formula D can be derived in a complete and immediate way.

Definition 3.8. The set of complete and immediate formal explanations of the
calculus RGD is the smallest set FE of single occurrences of the rules of Figure
6. We will write [C] M |∼ A for: under the robust condition C there exists a
complete and immediate formal explanation of A from M. We will also use the
notation

[C] M

o
A

to indicate that A is linked to [C] M by means of one of the rules of Figure 6.
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Let us provide some examples of complete and immediate formal expla-
nations. The following is a complete and immediate formal explanation of a
conjunctive formula:

p ∧ (q ∧ r) s ∨ t
(t ∨ s) ∧ (r ∧ (p ∧ q))

∧G

The following two are complete and immediate formal explanations of disjunc-
tive formulas:

[¬(p ∨ t)] q ∨ r
(p ∨ q) ∨ (r ∨ t)

∨G2

[t ∨ s] q ∨ r
¬(t ∨ s) ∨ (r ∨ q)

∨G3

We now introduce two formal explanations of formulas in a negative form:

((((
(((

((((
(((

((((
(((

((((
(((

((((
(((

((((
(((

((((
((((

(((
(((

(¬((p ∨ r) ∨ q)) ∨ ((s ∨ t) ∧ c)
((((

(((¬((p ∨ r) ∨ q) (p ∨ r) ∨ q
⊥ ⊥∗I

��
���(s ∨ t) ∧ c ¬((s ∨ t) ∧ c)

⊥ ⊥∗I

⊥ ∨E

(p ∨ r) ∨ q ¬((s ∨ t) ∧ c)
¬((¬((p ∨ r) ∨ q)) ∨ ((s ∨ t) ∧ c))

¬G1

((((
(((

((((
(((

((((
(((

(((

¬((p ∧ r) ∧ s→ (q ∨ t))
(p ∧ r) ∧ s→ ¬¬(q ∨ t)

(p ∧ r) ∧ s→ (q ∨ t)
→¬¬

⊥ ⊥I

¬(r ∧ (p ∧ s)→ (q ∨ t))
¬(p ∧ (r ∧ s)→ ¬¬(t ∨ q))

¬G1

We finally show two formal explanations that involve (relevant) implication:

(((
((((

(((
((((

(((
((((

(((
((((

(((
((((

((

((((
((((p ∧ s) ∨ (t ∨ r)

(p ∧ s)→ (z ∧ r) ∧ q ���p ∧ s
(z ∧ r) ∧ q

→E
(t ∨ r)→ (z ∧ r) ∧ q ���t ∨ r

(z ∧ r) ∧ q
→E

(z ∧ r) ∧ q
∨E

(p ∧ s)→ (z ∧ q) ∧ r, (t ∨ r)→ (r ∧ z) ∧ q
((p ∧ s) ∨ (t ∨ r))→ ((q ∧ z) ∧ r)

→G

((((
(((

((((
(((

((((
(((¬¬p→ (q ∨ t) ���¬¬p

(q ∨ t)
→E ¬¬p→ r ���¬¬p

r →E

(q ∨ t) ∧ r
∧I

¬¬p→ (q ∨ t), ¬¬p→ r

¬¬p→ ((q ∨ t) ∧ r)
→G
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Since in this paper we are only interested in a logic for the notion of complete and
immediate formal ground, our grounding rules cannot form grounding chains.
We leave the task of generalizing our approach to grounding chains for future
research. By now, let us emphasize some important structural properties of the
relation of complete and immediate formal explanation.

Lemma 3.9. The relation |∼ is not reflexive, nor monotonic, nor transitive,
nor symmetric.

Proof. The fact that the relation |∼ is not reflexive and not symmetric are
evident. The relation |∼ is non-monotonic because there is no (admissible)
weakening rule at the grounding level. Finally the relation |∼ is not transitive
because no grounding chain can be constructed by Definition 3.8.

We thus have introduced the first two parts of the calculus RGD: the RD
part with the related notion of relevant derivability and the G part with the
related crucial notion of formal explanation. We now introduce the third and
last part of the calculus RGD which is characterized by the connective . and
represents the bridge between the first two parts.

The D part of the calculus RGD is composed by the rules that introduce
and eliminate the connective . (see Figure 7) which represents the linguistic
counterpart of the relation of complete and immediate formal explanation and
which should be read as completely and immediately because. Let us spend some
words clarifying these rules. As concerns the rule .I, let us note the similarity
with the rule that standardly introduces the implication connective, namely

��
�{Ak}

...

d

Bα
A→ Bα−{k}

→I

As the rule → I states that, if there exists a derivation from Ak to Bα, then
A → Bα−{k} can be inferred, in the same way, the rule .I states that, if there
exists a complete and immediate formal explanation from M to A, then M .A
can be inferred (and no index needs to be attached toM.A since it is a theorem).
In other terms, this similarity reflects the analogy between the relation between
relevant derivability and relevant implication on the one hand, and the relation
between formal explanation and ‘because’ on the other hand.

Let us now turn to the three elimination rules that concern the connective
.. Taken together, these rules give a precise interpretation of the connective ..
They say that if, under the robust condition C, A completely and immediately
because of M , then: (i) the conjunction of each element of M implies A, (ii) the
conjunction of the negation of each element of M together with C implies the
negation of A; (iii) C∪M is a consistent multiset and is completely and immedi-
ately less g-complex than A. Conditions (i)-(iii) reflect at the linguistic level the
three conditions that characterize the notion of formal explanation introduced
in Definition 2.9. In particular, (i) corresponds to positive derivability, (ii) to
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Figure 7: Rules of the D part
For A, C, M in PF,

�
�
��[C] M

o
A

[C] M . A
.I

[C] M . Aα∧
M → Aα

.E1

[C] M . Aα

C ∧
∧

(¬M)→ ¬Aα
.E1

[C] M . Aα

⊥α
.E3

The rule .E3 can be applied only in case the multiset C ∪M is inconsistent

or is not completely and immediately less g-complex than A, according to

Definition 2.8.

negative derivability, and (iii) is basically the same condition as complexity (and
consistency).

The calculus RGD is thus composed of the rules of Figure 4, the rules of
Figure 6 and the rules of Figure 7. The notion of derivability that holds for the
whole calculus RGD can be denoted in the following way M |w A for: there
exists a derivation belonging to RGD from the multiset of formulas M to the
formula A. The definition of the relation |w is easy but tedious, so we omit it
here and we refer the interested reader to Poggiolesi (2018). We denote the set
of derivations relative to the relation |w with RGD.

4 Soundness and Completeness

In the last two sections we have introduced the calculus RGD together with
its derivability relation |w and its set of derivations RGD. The calculus RGD
is composed of three parts: first we have the RD part of the calculus together
with the relevant derivability relation `R and the set of relevant derivations RD;
secondly, we have the G part of the calculus together with the formal explanation
relation |∼ and the set of formal explanations FE; finally, we have the D part
of the calculus that serves to define the operator ., connects the first two parts
RD and G and allows for a combination of formal explanation and derivability
in the rule .I.

In this section we will focus on the G part of the calculus and we will prove
that this part is sound and complete with respect to the notion of complete
and immediate formal grounding that has been introduced in Definition 2.9. In
other words, in this section we will show that the grounding part of our logic
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G is the adequate formal counterpart of the conception of grounding that has
been put forward in Poggiolesi (2020a). This result straightforwardly implies
that the rule → G of the G part of RGD validate all and only those grounding
principles for relevant implication that occur in Figure 2. The rules ¬G1 and
¬G2 of the G part of RGD validates all and only those grounding principles for
double negation, negation of conjunction, negation of disjunction and negation
of relevant implication (see Figure 3) that emerge from Definition 2.9.

Lemma 4.1. For any composition of rules linking {A,M} and ⊥ in such a way
that {A,M} is completely and immediately contradictory (see Definition 3.6),
it holds that, not only A,

∧
M `R ⊥, but also D,¬A,

∧
¬(M) `R ⊥, where D

is the formula that could have been inferred by one of these rules {∧Ej, → ∧j,
∨j →, → ¬∨j, ¬∧j →}, if the corresponding one amongst the following rules
{∧Ei, → ∧i, ∨i →, → ¬∨i, ¬∧i →} (where i = 1, 2 and j = 1, 2 such that
i 6= j) has actually been used to derive the contradiction. Moreover the multiset
{D,M} is completely and immediately less g-complex than ¬A according to the
notion of g-complexity introduced in Definition 2.8.

Proof. We prove this lemma by distinguishing the several forms that the deriva-
tion from {A,M} to ⊥ might have (see Definition 3.6) and thus the several types
of multiset that {A,M} might be. For the cases where the compositions of rules
are the following ⊥I,< (⊥∗I;⊥∗I),∨E >,< ∧Ei,⊥∗I >, the proof is analogous
to the one developed in Poggiolesi (2018). We thus analyze the remaining cases.

(1) d : = < ¬¬ →,⊥I > or d : = <→ ¬¬,⊥I >, and it has one of these two
forms,

¬(A→ B)
¬¬A→ B
A→ B

¬¬→

⊥ ⊥I
¬(A→ B)

A→ ¬¬B
A→ B

→¬¬

⊥ ⊥I

Hence our multiset is either {¬(A→ B),¬¬A→ B} or {¬(A→ B), A→ ¬¬B}.
In both cases, a contradiction can be relevantly derived in the system R (also
via Theorem 3.3). But it is evident that the following derivations hold as well:
¬¬(A→ B),¬(¬¬A→ B) `R ⊥ and ¬¬(A→ B),¬(A→ ¬¬B) `R ⊥. Finally
{¬(A→ B)} is completely and immediately less g-complex than ¬(¬¬A→ B)
but also than ¬(A→ ¬¬B) according to Definition 2.8.

(2) d : = <→ ∧i,⊥I > or d : = <→ ¬∨i,⊥I > and it has one of these two
forms,

¬(A→ Bi)

A→ B1 ∧B2

A→ Bi
→∧i

⊥ ⊥I
¬(A→ B∗i )

A→ ¬(B1 ∨B2)

A→ B∗i
→¬∨i

⊥ ⊥I
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Figure 8: The calculus RGD

RGD, |w, RGD =


RD, `, RD

G, |∼, FE

D

Hence our multiset is either {¬(A → Bi), A → B1 ∧ B2} or {¬(A → B∗i ), A →
¬(B1 ∨ B2)}. We analyze the first multiset and derivation; the analysis of the
other can be developed along analogous lines. First of all it is straightforward
to see that ¬(A → Bi), A → B1 ∧ B2 `R ⊥ (also via Theorem 3.3). But it is
also evident that the following derivation can be constructed as well: ¬¬(A →
Bi), A → Bj ,¬(A → B1 ∧ B2) `R ⊥, where j is the number not denoted by i
amongst {1, 2}. Finally {¬(A → Bi), A → Bj} is completely and immediately
less g-complex than ¬(A→ Bi ∧B2) according to Definition 2.8.

(3) d : = < ∨i →,⊥I > or d : = < ¬∧i,→,⊥I > and it has one of these two
forms,

¬(Ai → B)

A1 ∨A2 → B

Ai → B
∨i→

⊥ ⊥I
¬(A∗i → B)

¬(A1 ∧A2)→ B

A∗i → B
¬∧i→

⊥ ⊥I

Hence our multiset is either {¬(Ai → B), A1∨A2 → B} or {¬(A∗i → B),¬(A1∧
A2)→ B}. We analyze the first multiset and derivation; the analysis of the other
can be developed along analogous lines. First of all it is straightforward to see
that ¬(Ai → B), A1 ∨ A2 → B `R ⊥ (this also holds via Theorem 3.3). But
it is evident that the following derivations hold as well: ¬¬(Ai → B), Aj →
B,¬(A1 ∨ A2 → B) `R ⊥. Finally {¬(Ai → B), Aj → B} is completely and
immediately less g-complex than ¬(A1 ∨A2 → B) according to Definition 2.8.

Lemma 4.2. For any composition of rules such that the formula D is com-
pletely and immediately derivable from {A,M}, {A,N} (where one of these
multisets might be empty), it holds that, not only A,

∧
M ∧

∧
N `R D, but

also
∧
¬(M) ∧

∧
¬(N), A → D `R ⊥. Moreover the multiset {M,N} is com-

pletely and immediately less g-complex than A → D according to the notion of
g-complexity introduced in Definition 2.8.

Proof. We prove this lemma by distinguishing the several forms that the deriva-
tion from {A,M}, {A,N} to D might have (see Definition 3.7) and thus the
several types these multisets might be.
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(1) d : = <→ E,¬¬I > or d : = < ¬¬E,→ E > and it has one of these two
forms,

A→ B A
B

→E

¬¬B ¬¬I
A→ B

¬¬A
A

¬¬E

B
→E

Hence in these cases we only have one multiset M , which is either {A→ B,A}
or {A→ B,¬¬A}. In the first case ¬¬B can be relevantly derived, in the second
case B can be relevantly derived. Moreover in the first case it is straightfor-
ward to show that ¬(A → B), A → ¬¬B `R ⊥, while in the second case it is
straightforward to show that ¬(A → B),¬¬A → B `R ⊥. Finally {A → B}
is completely and immediately less g-complex than A → ¬¬B but also than
¬¬A→ B according to Definition 2.8.

(2) d : = < (→ E;→ E),∧I > or d : = < (→ E;→ E),¬∨ > and it has one
of these two forms,

A,A→ B

B
→E

A,A→ C

C
→E

B ∧ C ∧I

A,A→ B∗

B∗
→E

A,A→ C∗

C∗
→E

¬(B ∨ C)
¬∨

In the derivation on the left the multisets are {A,A→ B} and {A,A→ C}; in
the derivation on the right the multisets are {A,A → B∗} and {A,A → C∗}.
We analyze the derivation and the multisets on the left; an analogous analysis
can be drawn for the derivation and the multisets on the right. On the one
hand, it is straightforward to see that from A and A→ B ∧A→ C, B ∧C can
be relevantly derived (also via Theorem 3.3). On the other hand, it is evident
that from ¬(A → B) ∧ ¬(A → C) and A → (B ∧ C) a contradiction can be
relevantly derived. Finally the multiset {A → B,A → C} is completely and
immediately less g-complex than A→ B ∧ C according to Definition 2.8.

(3) d : = < (→ E;→ E),∨I > or d : = < (→ E;→ E),¬∧ > and it has one
of these two forms,

A ∨B
�A,A→ C

C
→E

��B,B → C

C
→E

C
∨I

¬(A ∧B)

��A∗, A∗ → C

C
→E

��B∗, B∗ → C

C
→E

C
¬∧

In the derivation on the left the multiset is {A ∨ B,A → C,B → C}; in the
derivation on the right the multiset is {¬(A ∧ B), A∗ → C,B∗ → C}. We
analyze the derivation and the multiset on the left; an analogous analysis can
be drawn for the derivation and the multiset on the right. It is straightforward
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to show that from A∨B,A→ C∧B → C, C can be relevantly derived (also via
Theorem 3.3). But it also holds that from ¬(A→ C)∧¬(B → C), A∨B → C a
contradiction can be relevantly derived. Finally the multiset {A→ C,B → C}
is completely and immediately less g-complex than A ∨ B → C according to
Definition 2.8.

Lemma 4.3. (Soundness) For any C, M and A ∈ PF→, if there is a complete
and immediate formal explanation of A from M under the robust condition C
according to Definition 3.8, then there is an immediate and complete formal
grounding relation between M and A under the robust condition C according to
Definition 2.9.

Proof. We analyze each rule belonging to Figure 6 showing that, for any C, M
and A, if C, M and A are linked by one of these rules, then C, M and A satisfy
the three conditions in Definition 2.9.

Let M = {D,E} and suppose that

D E

D ∧E
∧G

So, by the form of the rule, A ∈ AC(D ∧ E). Let A = (D ∧ E)′ ∈ AC(D ∧ E).
We must prove that

(a) D ∧ E `R (D ∧ E)′

(b) ¬D ∧ ¬E `R ¬(D ∧ E)′

(c) {D,E} is completely and immediately less g-complex than (D ∧ E)′ ac-
cording to Definition 2.8.

By the way we have defined the objects belonging to the set AC(D∧E) we have
that: D ∧E ` (D ∧E)′ which is condition (a), but also ¬(D ∧E) ` ¬(D ∧E)′.
From this by logic, we get condition (b). Since (D ∧ E)′ ∼= D ∧ E, {D,E} is
completely and immediately less g-complex than (D ∧ E)′ and condition (c) is
satisfied.

Let M = {D,E} and suppose that

D E

D ∨E
∨G1

So, by the form of the rule, A ∈ AC(D ∨ E). Let A = (D ∨ E)′ ∈ AC(D ∨ E).
We must prove that

(d) D ∧ E `R (D ∨ E)′

(e) ¬D ∧ ¬E `R ¬(D ∨ E)′

(f) {D,E} is completely and immediately less g-complex than (D ∨ E)′ ac-
cording to Definition 2.8.
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We establish (d)-(f) in the same way we have established the previous (a)-(c).
Let M = {D}, C = E∗ and suppose that (the analysis of the rule ∨G3 is

analogous):

[E∗] D

D ∨E
∨G2

Let A = (D ∨ E)′ ∈ AC(D ∨ E). We must prove that

(g) D `R (D ∨ E)′

(h) ¬D,E∗ `R ¬(D ∨ E)′

(i) {D,E∗} is completely and immediately less g-complex than (D ∨ E)′ ac-
cording to Definition 2.8.

By the way we have defined the objects belonging to the set AC(D ∨ E), we
have that D ∨ E ` (D ∨ E)′, but also ¬(D ∨ E) ` ¬(D ∨ E)′. From the former
and the fact that D `R D ∨ E, by transitivity, we get condition (g); by the
latter and the fact that ¬D,E∗ `R ¬(D ∨ E), by transitivity, we get condition
(h). Since (D ∨E)′ ∼= D ∨E, then {D,E∗} is completely and immediately less
g-complex than (D ∨ E)′ and condition (i) is satisfied.

Let M = {D,E}, A = ¬G and suppose that (a similar analysis can be
developed for ¬G1):

�
�
�
��{�G,D}

...
...→
⊥ �

�
�
��{�G,E}

←
...
...
⊥

D,E

¬G
¬G2

Let A = ¬G′ ∈ AC(¬G). We must prove that, if {G,D} and {G,E} are two
complementary completely and immediately contradictory multisets, then:

(j) D ∧ E `R ¬G′

(k) ¬D ∧ ¬E `R ¬¬G′

(l) {D,E} is completely and immediately less g-complex than ¬G′ according
to Definition 2.8.

Suppose that {G,D} and {G,E} are two complementary completely and
immediately contradictory multisets. Then, by Lemma 4.1 , it follows that: (i)
G,D `R ⊥, (ii) G,E `R ⊥, (iii) ¬G,¬D,¬E `R ⊥, (iv) ¬G is completely and
immediately more g-complex than {D,E}. From (i) or (ii), by transitivity and
either the axiom A∧B → A or the axiom A∧B → B, it follows G,D∧E `R ⊥.
From this and the fact that G′ `R G, by transitivity, we have G′, D ∧ E `R ⊥.
By Theorem 2.2, we get D ∧ E `R ¬G′. From (iii) by transitivity and both
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the axioms A ∧ B → A and A ∧ B → B, as well as the axiom (A → (A →
B) → (A → B)), it follows ¬G,¬D ∧ ¬E `R ⊥. From this and the fact that
G′ `R G, by transitivity we have ¬G′,¬D ∧ ¬E `R ⊥. By Theorem 2.2 we get
¬D ∧ ¬E `R ¬¬G′.

Let M = {D,E} and suppose that:

��
�
��

��{�F ,D}, {�F ,E}
...
...
G

D,E

F̃→ G

Let A = (F → G)′ ∈ AC(F → G). We must prove that, if from {F,D} and
{F,E}, G can be completely and immediately derived, then:

(j) D ∧ E `R (F → G)′

(k) ¬D ∧ ¬E `R ¬(F → G)′

(l) {D,E} is completely and immediately less g-complex than (F → G)′

according to Definition 2.8.

Suppose that from {F,D} and {F,E}, G can be completely and immediately
derived. Then, by Lemma 4.2, it follows that: (i) F,D ∧ E `R G, (ii) ¬D ∧
¬E,F → G `R ⊥, (iii) F → G is completely and immediately more g-complex
than {D,E}. From (i) and Theorem 2.2, it follows that D∧E `R F → G. From
this, the fact that F → G `R (F → G)′ and transitivity we have D ∧ E `R
(F → G)′. By applying Theorem 2.2 to (ii), it follows ¬D ∧ ¬E `R ¬(F → G).
From this and the fact that ¬(F → G) `R (¬(F → G))′, by transitivity we get
the desired result.

Lemma 4.4. (Completeness) For any C, M and A ∈ PF→, if there is an
immediate and complete formal grounding relation between A and M under
the robust condition C according to Definition 2.9, then there is a complete
and immediate formal explanation of A from M under the robust condition C
according to Definition 3.8.

Proof. The general strategy to prove this Lemma is as follows. First, we care-
fully list those multisets N and formulas D such that N is completely and
immediately less g-complex than D according to Definition 2.8. Then, amongst
these N and D, we identify the pairs that stand in positive, as well as in nega-
tive, derivability relation. Those N and D such that, not only N is completely
and immediately less g-complex than D, but also N and D stand in positive
and negative derivability relation, constitute cases of complete and immediate
formal grounding; we thus check whether these cases can also be counted as
cases of formal explanation, i.e. whether those N and D can constitute the
premisses and the conclusion, respectively, of one of our grounding rules.
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The proof is developed by induction on the g-complexity of A (for the defini-
tion of the notion of g-complexity see Poggiolesi (2020a)). If the g-complexity of
A is 0, and thus A is either a literal (an atom or its negation) or an implication
made of literals or the negation of an implication made of literals, then there is
nothing that is completely and immediately less g-complex than A and hence
nothing that stands in a complete and immediate formal grounding relation
with A. If the g-complexity of A is > 0, then we distinguish several cases (I) A
∼= ¬¬B; (II) A ∼= (B ◦D); (IIIa) A ∼= B → ¬¬C, (IIIb) A ∼= ¬¬B → C; (IVa)
A ∼= B ◦ C → D, (IIIb) A ∼= ¬(B ◦ C) → D; (Va) A ∼= B → C ◦D, (Vb) A ∼=
B → ¬(C ◦ D). Note that cases (I) and (II) can be treated exactly as in the
proof of the Completeness Lemma of Poggiolesi (2018); therefore we refer the
reader to this paper. We will take into account cases (III)-(V).

In each of cases (III)-(V), the analysis of sub-case a is analogous to the
analysis of sub-case b, thus we will only deal with the former leaving the reader
to deal with the latter.

(IIIa) If A ∼= B → ¬¬C, then we have the following two sub-cases: (IIIa1)
A = E for some E ∈ AC(B → ¬¬C) (IIIa2) A = (¬E) for some E ∈ AC(B →
¬¬C). The following two multi-sets {B → C} and {¬(B → C)} are completely
and immediately less g-complex than A, in each form – (IIIa1) or (IIIa2) – that
A might have. Adding to g-complexity positive and negative derivability, we
have that :

- {B → C} stands in a relation of positive and negative derivability with A
= E for some E ∈ AC(B → ¬¬C)

- {¬(B → C)} stands in a relation of positive and negative derivability with
A = ¬E for some E ∈ AC(B → ¬¬C),

Therefore, by Definition 2.9, {B → C} is the complete and immediate formal
ground of A, when A is of the form (IIIa1), while {¬(B → C)} is the complete
and immediate formal ground of A, when A is of the form (IIIa2). On inspection,
the rule → G1, with composition of rule <→ E,¬¬I > ensures a complete and
immediate formal explanation between {B → ¬¬C} and A when A is of the form
(IIIa1). On inspection, the rule ¬G1, with composition of rules <→ ¬¬,⊥ >
ensures a complete and immediate formal explanation between {¬(B → C)}
and A when A is of the form (IIIa2). Thus, each case of formal grounding is
also a case of formal explanation.

(IVa) If A ∼= B ◦C → D, then we have the following two sub-cases: (IVa1) A
= E for some E ∈ AC(B ◦C → D) (IVa2) A = (¬E) for some E ∈ AC(B ◦C →
D). The following multi-sets {B → C,B → D}, or {¬(B → C), B → D},
or {B → C,¬(B → D)}, or {¬(B → C),¬(B → D)} are all completely and
immediately less g-complex than A, with A being equal to E or to ¬E.

Let us now make some further distinctions concerning the formula A:
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A = E for some E ∈ AC(B ∧ C → D) IVa1∧

A = E for some E ∈ AC(B ∨ C → D) IVa1∨

A = ¬E for some E ∈ AC(B ∧ C → D) IVa2∧

A = ¬E for some E ∈ AC(B ∨ C → D) IVa2∨

We now identify those multisets that are completely and immediately less
g-complex than A but also enjoy positive and negative derivability with A. We
have:

� The multiset {B → D,C → D} stand in a relation of positive and negative
derivability with IVa1∨. The multisets {¬(B → D),¬(C → D)}, [B → D]
{¬(C → D)}, [C → D] {¬(B → D)} stand in a relation of positive and negative
derivability with IVa2∨.

	 No multiset among those enumerated above stand in a relation of positive
and negative derivability with IVa1∧ and IVa2∧.

From �, by Definition 2.9, it follows that {B → D,C → D} is the complete
and immediate formal ground of A = E for some E ∈ AC(B ∨ C → D). On
inspection, the rule → G, with composition of rules < (→ E;→ E),∨E >,
ensure a complete and immediate formal explanation relation between {B →
D,C → D} and A, when A = E for some E ∈ AC(B ∨ C → D). Thus, this
case of formal grounding is also a case of formal explanation.

From �, by Definition 2.9, it follows that {¬(B → D),¬(C → D)} is the
complete and immediate formal ground of A = E for some E ∈ AC¬(B ∨C →
D). Also {¬(C → D)} under the robust condition [B → D] is a complete and
immediate formal ground of A = E for some E ∈ AC¬(B ∨ C → D), but also
{¬(B → D)} under the robust condition [C → D] is the complete and formal
ground of A = E for some E ∈ AC¬(B ∨ C → D). On inspection, the rules
¬G1 and ¬G2, with composition of rules < ∨i →,⊥ >, ensures a complete
and immediate formal explanation relation between {¬(B → D),¬(C → D)},
[B → D]{¬(C → D)}, but also [C → D]{¬(B → D)}, and A, when A = ¬E
for some E ∈ AC(B ∨ C → D). Thus, each of these cases of formal grounding
is also a case of formal explanation.

From 	 nothing formally grounds A = E for some E ∈ AC(B∧C → D), nor
A = ¬E for some E ∈ AC(B∧C → D), since no mutliset that is less g-complex
than A in either of these two forms enjoys positive and negative derivability
with A.

(Va) If A ∼= B → C◦D, then we have the following two sub-cases: (Va1) A =
E for some E ∈ AC(B → C ◦D) (Va2) A = (¬E) for some E ∈ AC(B → C ◦D).
The following multi-sets {B → C,B → D}, or {¬(B → C), B → D}, or
{B → C,¬(B → D)}, or {¬(B → C),¬(B → D)} are all completely and

30



immediately less g-complex than A, with A being equal to E or to ¬E.
Let us now make some further distinctions concerning the formula A:

A = E for some E ∈ AC(B → C ∧D) Va1∧

A = E for some E ∈ AC(B → C ∨D) Va1∨

A = ¬E for some E ∈ AC(B → C ∧D) Va2∧

A = ¬E for some E ∈ AC(B → C ∨D) Va2∨

We now identify those multisets that are completely and immediately less
g-complex than A but also enjoy positive and negative derivability with A. We
have:

� The multiset {B → C,B → D} stand in a relation of positive and negative
derivability with Va1∧. The multisets {¬(B → C),¬(B → D)}, [B → C]
{¬(B → D)}, [B → D] {¬(B → C)} stand in a relation of positive and negative
derivability with Va2∧.

	 No multiset among those enumerated above stand in a relation of positive
and negative derivability with Va1∨ and Va2∨.

From �, by Definition 2.9, it follows that {B → C,B → D} is the complete
and immediate formal ground of A = E for some E ∈ AC(B → C ∧ D). On
inspection, the rule → G, with composition of rules < (→ E;→ E),∧I >,
ensures a complete and immediate formal explanation relation between {B →
D,C → D} and A, when A = E for some E ∈ AC(B → C ∧ D). Thus, this
case of formal grounding is also a case of formal explanation.

From �, by Definition 2.9, it follows that {¬(B → C),¬(B → D)} is the
complete and immediate formal ground of A = E for some E ∈ AC¬(B →
C ∧D). Also {¬(B → D)} under the robust condition [B → C] is a complete
and immediate formal ground of A = E for some E ∈ AC¬(B → C ∧D), but
also {¬(B → C)} under the robust condition [B → D] is the complete and
formal ground of A = E for some E ∈ AC¬(B → C ∧D). On inspection, the
rules ¬G1 and ¬G2, with composition of rules <→ ∧i,⊥ >, ensures a complete
and immediate formal explanation relation between {¬(B → C),¬(B → D)},
[B → C]{¬(B → D)}, but also [B → D]{¬(B → C)}, and A, when A = ¬E
for some E ∈ AC(B ∨ C → D). Thus, each of these cases of formal grounding
is also a case of formal explanation.

From 	 nothing formally grounds A = E for some E ∈ AC(B → C∨D), nor
A = ¬E for some E ∈ AC(B → C ∨D), since no multiset that is less g-complex
than A in either of these two forms enjoys positive and negative derivability
with A.
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Theorem 4.5. (Soundness and Completeness) The relation of complete
and immediate formal explanation of Definition 3.8 is sound and complete with
respect to the notion of complete and immediate formal grounding of Definition
2.9.

Proof. It follows from Lemmas 4.3 and 4.4.

5 Conservativity and grounding deduction the-
orem

We use this section to show two final results. The first result concerns the
relation between the relevant deduction calculus RD and our calculus RGD: we
will show that the latter calculus conservatively extends the former. The second
result concerns the two symbols |∼ and . . As the standard deduction theorem
shows a deep link between derivability and implication, in the same way we will
show a deep link between formal explanation |∼ and the connective because .,
via a grounding deduction theorem.

Theorem 5.1. For any formula A ∈ Lr, we have that:

`RD A if, and only if, |wRGD A

Proof. From left to right it is straightforward, since all the rules of the relevant
deduction calculus are also rules of the RGD calculus. Let us then analyze
the direction from right to left. We distinguish cases according to the last rule
used to derive A, taking into account the fact that all assumptions need to be
discharged and that A cannot contain the symbol . (because A ∈ Lr). Then
either A has been obtained by the rule → I, or by one of the rules .E1, .E2,
where the premise of these rules is not an assumption. Note that the rule .E3

cannot have been used to derive A for the following reason. Since the premise
of this rule, which is a formula of the form C,M .B, cannot be an assumption,
then C,M . B has been obtained by a formal explanation followed by the rule
.I. But if this is the case then, by Lemma 4.3, we know that the multiset C∪M
is not inconsistent and that it is not more g-complex than A. Thus in this case
the rule .E3 cannot be applied.

Suppose that the last rule used to derive A is→ I. Then by induction on the
length of the derivation, the case is trivial. Suppose then that the last rule used
to obtain A is the rule .E1, then, A is of the form

∧
M → B and it has been

derived by C,M . B. Since C,M . B cannot be an assumption, then C,M . B
has been obtained by a formal explanation via the rule .I. Then by Lemma
4.3, we know that we have

∧
M `R B. So, by soundness between the relevant

Hilbert system R and the relevant deduction system RD, see Theorem 3.3, we
also have

∧
Mα `RD Bα. From this and the rule → I, we get `RD

∧
M → B.

If the last rule used to obtain A is the rule .E2, then A is of the form
C ∧

∧
¬(M)→ ¬B and it has been derived by C,M .B. Since C,M .B cannot

be an assumption, then it has been obtained by a formal explanation via the
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rule .I. Then, by Lemma 4.3, we know that we have C,
∧
¬(M) `R ¬B. So, by

soundness between the relevant Hilbert system R and the relevant deduction
calculus RD, see Theorem 3.3, we also have C ∧

∧
¬(M)α `RD ¬Bα. From this

and the rule → I, we get `RD C ∧
∧
¬(M)→ ¬B.

Corollary 5.2. The calculus RGD is consistent, namely it is not the case that
|wRGD ⊥.

Proof. It follows straightforwardly from the previous theorem.

Theorem 5.3. For any multiset M and formula A ∈ PF→, we have that:

M |∼R A if, and only if, |wRGD M .A

Proof. From left to right, we simply use the rule .I to get the desired result.
Let us then analyze the side from right to left. If |wRGD M . A, then by the
rule .E1, we get `RD

∧
M → A. From this, by Theorem 3.3 and Theorem 2.2,

we have (i)
∧
M `R A.

If |wRGD M . A, then by the rule .E2, we get `RD C ∧
∧
¬(M) → ¬A.

From this, by Theorem 3.3 and Theorem 2.2, we have (ii) C,
∧
¬(M) `R ¬A.

By Corollary 5.2, RGD is a consistent calculus. Since the rule .E3 can
be read as saying that if not |wRGD ⊥, then not |wRGD C,M . A, where
{C,M} is inconsistent or more g-complex than A, from this and the fact that
|wRGD C,M . A, we have that (iii) {C,M} is a consistent multiset and is less
g-complex than A.

From (i)-(iii) and Lemma 4.4, we have that M |∼R A.

6 Conclusion

In this paper, by relying on previous results concerning the grounding principles
for (relevant) implication, we have presented a calculus containing two ground-
ing rules for implication that allow us to prove such principles. The calculus
we have presented is built upon the relevant natural deduction calculus RD, it
conservatively extends that calculus and it enjoys the deduction theorem at the
grounding level. Hence, this work not only represents a solid logic counterpart
of the results obtained in Poggiolesi (2020a), but also it makes the first steps
towards showing the interest of developing a grounding framework for logics
different from classical logic. We believe that this undeveloped area of research
might turn out to be thriving.
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