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Shearing granular materials induces nonaffine displacements. Such nonaffine displacements have been
studied extensively, and are known to correlate with plasticity and other mechanical features of amorphous
packings. A well known example is shear transformation zones as captured by the local deviation from
affine deformation, D2

min, and their relevance to failure and stress fluctuations. We analyze sheared
frictional athermal disc packings and show that there exists at least one additional mesoscopic transport
mechanism that superimposes itself on top of local diffusive motion. We evidence this second transport
mechanism in a homogeneous system via a diffusion tensor analysis and show that the trace of the diffusion
tensor equals the classic D2

min when this second mesoscopic transport is corrected for. The new transport
mechanism is consistently observed over a wide range of volume fractions and even for particles with
different friction coefficients and is consistently observed also upon shear reversal, hinting at its relevance
for memory effects.
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Sheared disordered materials have peculiar mechanical
properties, including the tendency to either dilate or
contract with strain [1–7], display peak stress behavior
[8] and remember the way they were mechanically excited
in their past [9–12]. These mechanical nontrivialities are
most pronounced when a packing of particles is almost but
not entirely rigid, as set by the particle volume fraction.
Around this volume fraction, shear has the ability to “jam”
or rigidify disordered packings [2,13]. The underpinnings
of the mechanism are still under intense debate [14–19].
One of the complicating factors is that many of the
nontrivial mechanical features are transient phenomena,
making them particularly difficult to probe, as they are
highly dependent on packing preparation, boundary
conditions, and other seemingly insignificant details of
the system [7,15]. In the past, qualitative and quantitative
features such as shear transformation zones [20–23],
dynamical heterogeneities [24–26], anisotropy [27–29],
and vortices [30] have all been observed in the transient
response of amorphous packings exposed to shear.
However, it is not clear which of these transport phenomena
are relevant for the observed mechanics, or how many of
these occur simultaneously during shear.
We show here that particle displacements during the

startup transient in a sheared amorphous packing is
dominated by two simultaneous but distinct particle trans-
port mechanisms, only one of which is sensitive to the
particle volume fraction. Besides the locally nonaffine,
diffusive particle motion as quantified by the standard

measurement of the local deviation from affine deformation
D2

min as defined in Refs. [20,21], we observe a directional,
collective particle transport mechanism that occurs on a
length scale of up to ten times the shear transformation zone
size. This directional transport, from now on defined
as D1, occurs before the emergence of dilatancy-induced
Reynolds pressure yet disappears in the random close
packing limit. Moreover, the onset of D1 emerges at larger
ϕ for lower particle friction coefficients, which hints at its
relevance for shear jamming phenomena, which display
similar trends [3,13]. Interestingly,D1 survives cyclic shear
over many different cycles, converges to limit cycle
behavior and displays strain dependence in its response
to cyclic driving, makingD1 of interest as metric to capture
the dynamics of memory formation in amorphous packings
[7,12,15,31–36].
To observe particle transport in disordered media, we use

a setup introduced before [3,18]. We apply simple shear to
bidisperse granular systems composed of photoelastic discs
(diameter ratio 1∶1.25) with different interparticle friction
coefficients, μ. Shear is performed in an apparatus that
suppresses shear bands and related shear-induced density
fluctuations entirely [3]. Particles were carried by the
separate slats that form the shear box base. These slats
move affinely in accordance with the applied shear (see
more details in Supplemental Material [37]). The optical
properties of photoelastic discs reveals particle-scale
contact forces when placed between a pair of crossed
polarizers [42–44]. Discs were cut from photoelastic sheets
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(Vishay PSM-4), resulting in a μ ≈ 0.7 [3,44]. Different μ
were achieved by either wrapping these particles with
Teflon tape, reducing μ to ≈0.15, or making another set
of photoelastic discs with fine teeth on the edge [44]. For a
picture of the particles used, see the Supplemental Material
[37]. Henceforth, we will refer to particles with μ ≈ 0.15,
μ ≈ 0.7, and fine teeth as μ ¼ μl, μ ¼ μm, and μ ¼ μh
particles, respectively. The system contained approximately
45 × 20 discs with a large to small number ratio 1∶3.3 to
prevent crystallization. Every run at given packing fraction
ϕ was repeated five times; the initial stress-free state was
prepared anew for each run. For every friction coefficient,
we explored a range of ϕ in which we could observe the
emergence of dilatancy pressure within the strain amplitude
achievable by the apparatus.
Shear was applied quasi-statically in the y direction to a

shear box [Fig. 1(a)]. Starting from a stress-free state, the
system was sheared by strain step of δγ ¼ 0.0027. Then the
system was left to relax for six seconds, followed by taking
two images, which reveal information on particle position
and photoelastic response. Such a process—stepwise

shearing, relaxing and imaging—was repeated until a
certain amount of total strain was achieved. The maximum
shear strain γ that can be achieved here is 0.54, which is the
limit of the experimental setup. From the images, we
tracked particle positions and computed particle-scale
and system-wide pressure by averaging light intensity
gradient squared [42–44]. Henceforth, we use the average
diameter of particles in the system D̄ as the unit length in all
results.
Two transport mechanisms can be qualitatively observed

under all experimental conditions. We can quantify the
transport by decomposing the displacement field into the x
and y component, which is referred to as the shear and
perpendicular directions respectively [see Fig. 1(a)]. We
compute particle displacements at any given γ compared to
γ ¼ 0. Figures 1(a) and 1(b) show typical results of particle
nonaffine x and y displacements at ϕ ¼ 0.78 and
γ ¼ 0.054, coarse grained by a Gaussian function with a
half width of 2D̄ [45,46]. In the x direction, the expected
affine displacement field is zero, but we see a substantial
amount of particle displacement away from the center of
the box. For the y direction, the expected global affine
motion profile is linear; this have already been verified [3].
Subtracting the globally affine linear motion reveals that on
top of the linear deformation profile, a small perturbation is
visible in Fig 1(b); however, the perturbation is spatially
more heterogeneous and much smaller than the transport in
the x direction, as evidenced by the mean transport
hΔxiyðxÞ, hΔyiyðxÞ across the system that are averaged
over y direction, as shown in Figs. 1(c) and 1(d). Hence,
from now on, we only look at the binned x-dependent
displacement data, i.e., hΔxiyðxÞ and hΔyiyðxÞ.
We can see that the displacements induced by the shear

are not eased by local free volume availability. hΔxiy is
clearly a function of x, and one might relate this depend-
ence with the local deviations Δϕ from the mean density ϕ.
However, we see no correlation between Δx and Δϕ when
we plot them together as shown in Fig. 1(e). Local
nonaffine displacements should be induced by local pres-
sure fluctuations [47], yet as shown by Fig. 1(f) we find that
the total nonaffine motion induced by shear is not sensitive
to the average global pressure in the system. In Fig. 1(f), we
quantify the overall nonaffine displacement with the
standard D2

min metric and see that it rises independently
of the evolving Reynolds pressure in the system. HereD2

min
is calculated by averaging over all the particles the
following quantity, as done previously [20,21]:

D2
min;iðγÞ ¼

1

Ni
min
Ji

X
j∈Ni

½rijðγÞ − Jirijðγ ¼ 0Þ�2; ð1Þ

where j is the index of all Ni particles that are within 2D̄
distance to particle i center, rijðγÞ is the vector from particle
i to particle j at a given strain γ, and Ji is the fitted strain
field that minimizes the above quantity.

α

FIG. 1. Example of the system response to simple shear at
packing fraction 0.78. (a),(b) Coarse grained nonaffine x and y
displacements after a shear strain γ ¼ 0.054. The Cartesian
coordinates are given in (a). The black arrows indicate the
applied shear direction. (c),(d) Nonaffine x and y displacements
averaged along the y axis, as a function of x. Data are from the
same states as (a) and (b), respectively. The dashed lines are a
guide to the eye. x ¼ 0 is at the center of the shear box.
(e) Particles’ nonaffine x displacements as a function of their
local packing fraction change for each particle. The colored mask
shows the normalized probability distribution of the points with
the probability indicated by the color bar. (f) Local deviation from
the affine deformation D2

min (left, blue circles) and system
pressure (right, black triangles) as a function of shear strain γ.
All lengths are in the unit of average particle diameter D̄.
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In Figs. 2(b) and 1(f), we observe that D2
min ¼ hD2

min;iii
dynamics in the packings is entirely consistent with earlier
work on a completely different system [21], even though
we use here a constant volume setting and observe an
additional mesoscopic transport mechanism (see more
details in the Supplemental Material [37]). We conclude
that D2

min is a local background process that is largely
insensitive to the details of the deformations imposed.
Identifying two different mechanisms.—We extract the

additional mesoscopic transport mechanisms that occur
simultaneously with D2

min by measuring hΔxðx; γÞiy; see
Fig. 2(a). We observe that the directional displacement
emerges immediately at small γ but later becomes more
spatially heterogeneous over smaller length scales (see
details in the Supplemental Material [37]). To further show
that the directional transport D1 is independent of locally
nonaffine “random” motion, we compute the diffusion
tensor of the particle displacement

T ¼
��

Δx2 Δx · Δy
Δy · Δx Δy2

��
; ð2Þ

where h� � �i is the average over all particles. We compute
this tensor in two ways: once before and once after
subtracting the local mesoscale displacement fluctuations
hΔxiy; hΔyiy from the displacement of the particles. From
these two tensors we compute the trace and call them MSD
andMSDcorr, respectively. We note that subtracting onlyD1

and not hΔyiy gives similar results and the symmetric off-
diagonal term is nonzero, which indicates that the major
diffusion directions are not along x or y axes (see the
Supplemental Material [37]). The result in Fig. 2(b)
indicates that after subtracting the mesoscale displace-
ments, the trace of the diffusion tensor coincides with
the D2

min metric: without mesoscale displacements, non-
affine motion cannot be distinguished from diffusive
behavior, consistent with earlier results [21].

One expects the strain needed to induce particle transport
to decrease with ϕ; this is indeed the case. Figure 3(a)
shows the amplitude of D1 as measured by A ¼
dhΔxiy=dxjðx ¼ 0Þ as a function of strain, measuring
the spatial gradient of the orthogonal displacement field
in the center of the shear box. A peaks at Amax, and this peak
is reached at progressively smaller strain amplitudes
(denoted as γA) as ϕ increases, as can be seen in Fig. 3(b).
However, the amplitude of D1 is largest at small ϕ. As
shown in Fig. 3(c), Amax drops with increasing ϕ and seems
to disappear around the random close packing limit of
∼0.83, where also the strain needed to reach peak D1

vanishes. Our data indicates that the D1 only disappears at
packing fractions at which it is no longer possible to create
stress free initial configurations [48]. This suggests that D1

no longer exists when the system approaches the density at
which no or little shear is required to induce a finite
pressure, signifying that all particles are sterically hindered.
Note thatD1 changes character already at packing fractions
(∼0.74) far below the random close packing limit, which
coincides with the lowest ϕ needed for shear induced
jamming to occur [3,13]. We can see this by probing the
density dependent difference betweenMSDcorr andD2

min, as
shown in Fig. 3(d). For low ϕ we observe that these two
local displacement metrics essentially coincide over the
entire range of strains, whereas for larger ϕ we see a
monotonic growth of their difference. This stems from the

FIG. 2. (a) Nonaffine x displacements Δx, averaged in the same
way as Fig. 1(c), as a function of the bin position for different
shear strains γ. Different γs are indicated by the colorbar and the
curves are shifted for better visibility. (b) Mean squared displace-
ment (MSD) before (triangles) and after (circles) correcting
the diffusion tensor T with hΔxiy and hΔyiy from the nonaffine
displacements, and D2

min (squares), vs γ. Data from the same
run in Fig. 1. All lengths are in the unit of average particle
diameter D̄. FIG. 3. (a) Linear slope A extrapolated from hΔxiy vs x for x in

the range ð−10; 10Þ, normalized by its maximum value in a run
Amax, vs shear strain γ, at different ϕ as indicated by different
symbols and colors. (b) Corresponding γ at Amax (left, circles),
and γonset for average vorticity hV2i to reach the plateau (right,
triangles), and (c) Amax (left, circles), and plateau value of hV2i
(right, triangles), vs ϕ, vs ϕ, averaged over five runs for each ϕ.
Arrows indicate axes associated with the data. (d) The ratio
between MSDcorr and D2

min vs γ, at various packing fractions ϕ as
indicated the same way in (a). The dashed line corresponds to the
ratio being 1. All lengths are in the unit of average particle
diameter D̄.
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fact that the D1 field gets more and more directionally
heterogeneous at large γ as the volume fraction increases
towards random close packing. Note that MSDcorr=D2

min is
almost ϕ independent for γ smaller than 0.01; we attribute
that to the plateau of MSDcorr and D2

min, which is most
likely caused by tracking precision (see the Supplemental
Material [37]), as shown in Fig. 2(b).
To further test the uniqueness of the D1 transport, we

compute the vorticity V of the nonaffine grain flow (see
[37]). We see that the value of V2 averaged over the system,
hV2i, first grows steadily with γ and then reaches a plateau
(see [37]). The strain at which hV2i reaches the plateau, γV ,
shown in Fig. 3(b) in comparison with γA, indicates that
vortices develop and exist at a much longer time or strain
scale than D1 transport. This observation manifests the
importance of D1 transport: vorticity cannot capture D1.
The plateau value of hV2i, hV2iplateau, first increases and
then decreases as ϕ increases [see Fig. 3(c)]. The change in
trend occurs around ∼0.79, which appears to be the point
where γA and γV start to behave differently. Note that
observing a trend change at this point seems to be
consistent with results reported in works on glass transition
in granular systems [49,50] and the isotropic jamming point
in frictional systems under compression [19,38].
To highlight the subtle role ofD1 for amorphous packing

dynamics, we probe how this transport mechanism depends
on the initial boundary conditions (IBC) and responds to
cyclic shear. As shown in Fig. 4(a), initiating shear from
a rectangular box instead of a parallelogram inverts
the direction of D1. We show additional data in the
Supplemental Material [37] that other transport mecha-
nisms than D1 are not affected by IBC. This sensitivity to
IBC makes D1 a prime candidate for elucidating the
emergence of memory in granular packings [7,34–36].
While an in-depth study of D1 in memory formation is left
for future work, we can see in Fig. 4(a) that the D1

amplitude shows a distinct change in behavior beyond a
critical strain amplitude, and note that memory formation in

sheared amorphous packings is also strongly strain depen-
dent. Another hallmark of structural memory formation is
also observed in D1 transport in Fig. 4(b). Transport over
repeated cycles below the critical strain amplitude induces a
relaxation towards limit cycle behavior. In previous work
on cyclic shear dynamics in the same system, relaxation
dynamics towards cyclic dynamics was also observed in the
pressure of the packing. However, the pressure dynamics
evolved towards a strain-symmetric response [3]. The
absence of such relaxation dynamics in the microstructural
dynamics as captured by D1, and the sign change in its
directionality depending on the initial conditions of the
shear is striking. We see here a surprising disconnect
between microstructural and pressure dynamics in amor-
phous packings and these observations amplify the impor-
tance of probing microstructural dynamics in amorphous
packings, for example by looking at D1.
Discussion.—Our findings provide a new path to under-

standing the mechanisms of transport for sheared
amorphous materials, especially at the transient stage where
also shear jamming occurs [2,18]. Besides D2

min, which we
show to be greatly insensitive to packing conditions, there
are clearly other transport mechanisms emerging that affect
the dynamics of sheared amorphous particle packings. The
disappearance of D1 transport at larger ϕ yet below the
random close packing limit indicates that there might be a
third transport mechanism that cannot be well characterized
within our experimental resolution. This clearly suggests
new perspectives for numerical work: it would be interest-
ing to see if the D1 dynamics as observed in our model
system can also be observed in numerical simulations; as
they appear in the transient behavior, obtaining statistics
should be computationally cheap comparing to those in the
steady state. In fact, D1 metrics can be used to efficiently
verify the performance of numerical simulations, as they
appear immediately after shear is initiated. Another ques-
tion is how to captureD1 and other such transport processes
in models. Note that theoretical considerations [27–29] had
already suggested that anisotropic displacement fields are a
necessary ingredient to understand the dynamics of sheared
amorphous system; our experimental data supports such
perspectives.
Conclusions.—We have studied particle transport in an

amorphous particle packing and revealed that multiple
distinct transport mechanisms occur at the same time.
The experimental system in which we made these obser-
vations was composed of photoelastic discs exposed to
quasistatic shear with various packing fractions ϕ and
interparticle friction coefficients μ. We paid particular
attention to the transient stage and found that there exist
two distinct nonaffine transport mechanisms in response to
shear: ballistic random-walk-like diffusion that can be well
characterized by D2

min, and a second collective directional
displacement phenomenon, which we denote as D1 trans-
port. The D2

min dynamics appears insensitive to either ϕ or

5

10

FIG. 4. (a) Examples of D1 amplitude A vs shear strain γ for
two different initial shear cell shapes at ϕ ¼ 0.78, averaged over
five runs: parallelogram (blue solid line) and rectangle (red
dashed line). Shaded areas correspond to standard deviations.
(b) A vs γ for a packing undergoing cyclic shear. Colors indicate
different cycle number. Circles mark the end of corresponding
cycles.
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μ, whileD1 transport is sensitive to both. We find that when
D1 is subtracted from the displacement field, the trace of
the diffusion tensor coincides withD2

min, further solidifying
the distinct nature of these two mechanisms. In the range of
packing fractions just below random close packing, the D1

correction to the overall displacement field does not isolate
the diffusive motion very well anymore, suggesting that
either the D1 transport changes in character, or additional
displacement mechanisms become relevant.
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