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Functional Characterization of Deformation Fields

ETIENNE CORMAN, University of Toronto, Canada
MAKS OVSJANIKOV, LIX, École Polytechnique, CNRS, France
In this paper we present a novel representation for deformation fields of

3D shapes, by considering the induced changes in the underlying metric.

In particular, our approach allows to represent a deformation field in a

coordinate-free way as a linear operator acting on real-valued functions

defined on the shape. Such a representation both provides a way to relate

deformation fields to other classical functional operators and enables anal-

ysis and processing of deformation fields using standard linear-algebraic

tools. This opens the door to a wide variety of applications such as explicitly

adding extrinsic information into the computation of functional maps, intrin-

sic shape symmetrization, joint deformation design through precise control

of metric distortion, and coordinate-free deformation transfer without re-

quiring pointwise correspondences. Our method is applicable to both surface

and volumetric shape representations and we guarantee the equivalence

between the operator-based and standard deformation field representation

under mild genericity conditions in the discrete setting. We demonstrate the

utility of our approach by comparing it with existing techniques and show

how our representation provides a powerful toolbox for a wide variety of

challenging problems.
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1 INTRODUCTION
Designing and analyzing shape deformations is a central problem

in computer graphics and geometry processing, with applications

in scenarios such as shape manipulation [47, 59], animation and

deformation transfer [49], shape interpolation [24, 56], and even

anisotropic meshing [39] among myriad others. Traditionally, shape

deformation has beenmotivated by interactive applications in which

the main goal is to design a deformation that satisfies some user-

prescribed handle constraints while preserving the main structural

properties of the shape. In other applications, such as shape inter-

polation and deformation transfer, that lack handle constraints, the

goal is to design a global deformation field that would satisfy some

structural properties as well as possible.

In both types of applications, most approaches are based on spec-

ifying a deformation energy and providing a method to optimize it.
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Direct Intrinsic Symmetrization Quad transfer

Fig. 1. Our deformation field representation is useful to generate sym-
metrically consistent quad-meshes from a triangle mesh. The standard
quad-meshing technique (left) results in a mesh misaligned with the sym-
metric features. Instead we propose an intrinsic symmetrization approach
(middle, see also the accompanying video), which leads to a more symmetric
shape, from which we compute the quad mesh and pull it back to the initial
shape (right), creating an anisotropic quad-mesh better aligned with the
symmetry.

On the other hand, several works have demonstrated that by choos-

ing an appropriate representation for shape deformations, many

tasks can become significantly easier, and in particular can help

to enforce certain properties of the deformation field, which are

otherwise very difficult to access and optimize for. In addition to the

classical per-vertex displacement vectors, such representations have

included gradient-based deformations [59, 60], Laplacian-based ap-

proaches [29, 48] and Möbius transformations in the context of

conformal deformations [15, 54] among others.

At the same time, a number of recent works have shown that

many basic operations in geometry processing can be viewed as lin-

ear operators acting on real-valued functions defined on the shapes.

This includes the functional representation of mappings or corre-

spondences acting through composition [36, 42], representations

of vector fields as derivations [2, 41] and formulation of shape dis-

tortion via shape difference operators [44]. One advantage of these

representations is that linear operators can be naturally composed,
which makes it easy to define, for example, the push-forward of a

vector field with respect to a mapping, if both are represented as

linear operators, or to solve for Killing vector fields, by composition

between a derivation and the Laplacian operator. Moreover, by us-

ing a consistent functional representation these techniques often

alleviate the need for point-wise correspondences, which can be

difficult to obtain, as shown very recently for example in a work on

joint cross-field design [3].

While tangent vector fields are classically understood as operators

(derivations) in differential geometry, extrinsic vector fields do not

enjoy a similar property. Our main goal is to provide a coordinate-

free representation of extrinsic vector fields (that we also call de-

formation fields) as functional operators, which will prove useful

for analysis and design of shape deformations. As we demonstrate

below our representation greatly simplifies certain tasks such as
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intrinsic symmetrization, the computation of mappings by compo-

sition with other operators, and joint deformation design without

requiring point-wisemappings. Moreover, it provides an explicit link

between deformation fields and the changes in intrinsic metric quan-

tities, which can be useful in a variety of analysis and deformation

processing tasks. For example, our intrinsic shape symmetrization

built on our representation of deformation fields, allows to deform

a given shape to make it more intrinsically symmetric. This can

be useful, for example, to compute more symmetric quad meshes,

starting from a triangle mesh, by first deforming it, remeshing the

deformed shape and pulling back the quad mesh onto the original

shape, as shown in Fig. 1 and Figures 11, 12, and 13.

2 RELATED WORK
Shape deformation is one of the oldest and best-researched topics

in computer graphics and geometry processing. We therefore only

mention works most directly related to ours and refer the interested

reader to surveys including [11, 34] and [10] (Chapter 9).

A multitude of methods exists for surface deformation starting

with the seminal work of [50], its early follow-ups including [13,

57] and the multi-scale variants, such as [22, 26, 63] among many

others. Similarly to our approach, many of these techniques are

based on optimizing the so-called elastic thin shell energy that

measures stretching and bending, and which is often linearized for

efficiency. In the majority of cases, deformations are represented

explicitly as extrinsic vector fields defined on a surface, making

deformation transfer difficult in the absence of precise pointwise

correspondences.

A number of methods have proposed alternative representations

for deformation fields, which greatly simplify certain tasks in de-

sign and analysis. This includes gradient-based techniques [59, 60]

which consider the deformation field by aligning its gradient with

a set of local per-triangle transformations. By working in gradient

space, constraints can be posed independently on the triangles and

then optimized globally by solving the Poisson equation. Similarly,

Laplacian-based techniques [29, 35, 48] are based on defining shape

deformations by manipulating per-vertex differential coordinates

(Laplacians) in order to match some target Laplacian coordinates.

Such differential coordinates enable direct editing of local shape

properties, which can be especially beneficial for preserving and ma-

nipulating the high-frequency details of the surface. However, these

coordinates are typically not rotationally invariant and additional

steps are necessary to introduce invariance [29, 40, 48].

More recently, a number of methods have introduced representa-

tions for mesh deformations specifically geared towards particular

shape manipulations, such as computing conformal transformations

by designing special maps into the space of quaternions [15] or by

using face-based compatible Möbius transformations [54]. These

techniques are rotationally invariant and coordinate-free, while be-

ing restricted to special types of manipulations. Another technique,

closely related to ours, designs shape deformations by constructing

a continuous divergence-free vector field [55], and applying path

line integration to obtain a deformed shape. We also consider the

effect of the deformation on the metric, but both analyze the distor-

tion of arbitrary extrinsic vector fields and show how they can be

represented in coordinate-free way as linear functional operators.

Our use of spectral techniques and functional maps for represent-

ing deformation fields is also related to previous works in spectral

shape processing, including the early approaches of Lévy and col-

leagues and their extensions [16, 28, 53] and more recent techniques

such those based on coupled quasi-harmonic bases and functional

maps [27, 58]. In these and related methods deformation fields are

represented as triplets of functions, which encode displacement in

each spatial coordinate. Although this representation is simple and

naturally fits with the functional map framework, it suffers from

several drawbacks. First, it is not rotationally invariant and induces

artefacts if the shapes are not pre-aligned or are in different poses

(see e.g., Figure 1). Perhaps more fundamentally, such a represen-

tation is not “shape-aware” since it does not reflect the change in

the (e.g., metric) structure of the shapes induced by the deforma-

tion, which reduces its utility in deformation analysis and design.

We demonstrate through extensive experiments, that by using our

coordinate-free representation we can avoid these limitations and

open the door to entirely novel design and analysis applications,

such as intrinsic symmetrization (Section 8.2), which cannot be

achieved using previous methods.

Our approach of considering the deformation via its induced

metric distortion is also related to the work of [20] and [45] who

manipulate shapes by explicitly editing their curvature properties.

Moreover, our use of the strain tensor in characterizing metric dis-

tortion is closely related to the applications in various physically

based deformation scenarios including [33, 51] among many others

(see also the surveys on physically based elastic deformable mod-

els [34, 43]). Our approach is also related to the works that aim

to design as-isometric-as-possible shape deformations [32, 46, 61].

Similarly to the latter work, our framework is general and allows an

arbitrary prescribed distortion, although our method works directly

on surface representations and moreover enables applications such

as joint deformation design.

Finally, our framework for joint design is related to the deforma-

tion transfer and interpolation techniques such as [5, 49] and [24]

to name a few. Our approach is different in that we place special em-

phasis on relating deformations between shapes with only soft (or

functional) correspondences, which are often much easier to obtain

than detailed point matches. Moroever, rather than transporting

Jacobian matrices associated with the deformation, which requires

both a pre-alignment and an approximate triangle-to-triangle map

(as done in [49]) we study and transport the change in the intrinsic

metric structure directly. As we show below, this results in better

joint deformation design especially given approximate functional

maps, and shapes in arbitrary poses.

Thus, in contrast to the majority of existing techniques our goal is

to devise a coordinate-free representation of extrinsic deformations

as linear functional operators, by making an explicit connection be-

tween the extrinsic deformations and the change in intrinsic metric

quantities. As such, our representation fits within the recent line

of work that represents many operations in geometry processing

as functional operators, including mappings or correspondences

[36, 42], representations of vector fields as derivations [2, 41] and
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the formulation of shape distortion via shape difference operators

[44]. Therefore, although we build on classical constructions such as

the infinitesimal strain tensor, we show how they can be exploited

to create a functional representation of shape deformation, which

can be used in conjunction with other operators. As we demon-

strate below, our representation is particularly useful for analysing

and manipulating the effect of the deformation on the shape struc-

ture and for relating deformations across shapes, with only soft

correspondences between them. In particular, it enables applica-

tions such as intrinsic symmetrization, joint deformation design

and allows to introduce extrinsic information in the computation

of functional maps. Remarkably, we prove that together with the

classical Laplace-Beltrami operator, our approach leads to a complete
(up to rigid motion) coordinate-free functional shape representation,
which opens the door to new shape processing applications.

3 OVERVIEW
The rest of the paper is organized as follows: first, we define the

functional deformation field representation using the classical no-

tions of the Levi-Civita connection and the strain tensor, and list the

main properties of this representation (Section 4). We then provide

a link between this definition and the previously proposed shape

difference operators, by considering their infinitesimal extensions,

introducing a new unified operator, and proving the equivalence

between the two definitions (Section 5). In Sections 6 and 7 we

provide a discretization of all of these notions, and show that they

preserve the main properties of the continous counterparts. Finally,

we illustrate the utility of our representation by describing several

novel application scenarios, which range from functional map in-

ference, to intrinsic symmetrization and deformation field design

that all exploit the properties of our representation and its relation

to other previously proposed linear operators (Section 8). Note that

Sections 5 and 7 can be skipped by readers that are not interested

in the connection to shape difference operators.

To summarize, our main contributions include:

• Introducing functional deformation fields as a way to represent
extrinsic vector fields in a coordinate-free way as operators

acting on functions, represented as matrices in the discrete

setting.

• Providing a link between functional deformation fields and

the previously proposed shape difference operators, which

leads to both a new unified shape difference and alternative

functional deformation fields, which can be made sensitive

to specific (e.g., non-conformal) classes of distortions.

• Showing how functional deformation can be used to add

extrinsic information (second fundamental form) into the

computation and analysis of functional maps. We also prove

that together with the Laplace-Beltrami operator, they pro-

vide a complete coordinate-free shape characterization up to

rigid motions.

• Describing how this representation enables a number of novel

applications including intrinsic shape symmetrization, use-

ful for symmetric quad remeshing, deformation design and

functional deformation transfer without pointwise correspon-

dences.

4 EXTRINSIC VECTOR FIELDS AS OPERATORS
In this section we provide a coordinate-free representation of ex-

trinsic vector fields by considering their action on the underlying

shape metric. Throughout this section we assume that we are deal-

ing with a smooth surface M without boundary embedded in R3.

The appropriate discretization of all the concepts introduced in this

section will be given in Section 6.

The Levi-Civita Covariant Derivative. We first need to introduce

some fundamental notions from differential geometry. In particular,

we will use the classical Levi-Civita connection to define derivatives

on a surface. More precisely, given a tangent vector u at some point

p ∈ M , and an extrinsic vector field V onM , consider an arbitrary

curve γ (t ) on M such that γ (0) = p and γ ′(0) = u. Then, we let

¯∇uV =
∂V (γ (t ))

∂t
����t=0

. Here
¯∇uV is the standard covariant derivative

of the ambient space. Note that at a fixed point p ∈ M ,
¯∇uV is

a vector in R3
. We can project the covariant derivative onto the

tangent plane at p to obtain a vector in the tangent plane, which

is denoted simply by ∇uV where ∇ is the Levi-Civita connection

onM extended naturally to extrinsic vector fields, ([17] p. 126). We

also remark that for any vector x in the tangent space, ⟨∇uV ,x⟩ =
⟨ ¯∇uV ,x⟩, which we will use in our discretization.

The fundamental object that we consider below is the infinites-

imal strain tensor, which can be understood as a bilinear form,

acting on pairs of vectors x ,y in the tangent plane of a point p ∈ M .

Namely, given an extrinsic vector field V , the infinitesimal strain

tensor LV g(x ,y) is defined as:

LV g(x ,y) = ⟨x ,∇yV ⟩ + ⟨∇xV ,y⟩ (1)

The infinitesimal strain tensor LV g is also called the Lie deriva-

tive of the metric. It has the advantage of being linear in the vector

field V , which makes it easy to handle for deformation and vector

field design and therefore has been used in a wide variety of works

in computer graphics [34].

Physically, it represents the infinitesimal stretch that the object

undergoes at each point. Thus, the eigenvector associated to the

largest eigenvalue of LV g (which can be thought of simply as a

symmetric 2x2 matrix) at a point p, corresponds to the tangent

vector x that represents the local direction of maximal stretch.

With these definitions in hand we propose to consider a linear

functional operator EV , which we will use to capture and manip-

ulate a deformation field V . Both the input and the output of our

operator are smooth real-valued functions defined on the surface.

This operator is defined implicitly, in the same spirit as the shape

difference operators introduced by Rustamov et al. [44] as follows:

for every pair of real-valued functions f ,д we require:∫
M
⟨∇д,∇EV ( f )⟩dµ =

∫
M
LV g(∇д,∇f )dµ . (2)

The following proposition guarantees that EV is well-defined.

Proposition 4.1. For any extrinsic vector field V there is a unique
linear functional operator EV that satisfies Eq. (2) above. Moreover,
this operator is linear in both the vector field V and function f .

In the rest of the paper we call the linear functional operator EV ,
a functional deformation field representation of V . Our main goal is
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to design, manipulate and analyze extrinsic vector fields V through

their associated linear functional operators EV . This approach has

already proved useful in the context of manipulating maps or cor-

respondences [36], tangent vector fields [2] and shape distortions

[44]. In particular, these works have helped to establish a general

formalism of shape manipulation through the associated linear func-

tional operators, which can “communicate” by composition. This

allows, for example, to transfer tangent vector fields across shapes

without assuming pointwise correspondences [2] or to design very

efficient shape matching algorithms using the functional map rep-

resentation [37]. Therefore, inspired by these works, we propose

to extend this framework to also include extrinsic (or deformation)

fields. As we show below, our representation naturally fits within

the general functional operator formalism and enables a number of

novel applications.

4.1 Key Properties of Functional Deformation Fields
Second-fundamental form representation. One interesting special

case to consider is the interpretation of EV when the deformation

field is the normal field V = n. By using Eq. (1) it is possible to see

([17] p.128) that the covariant derivative of the normal yields the

second fundamental form denoted by hp : TpM ×TpM → R, more

precisely Lng = −2h. Therefore the operator En captures the action

of curvature on functions, since:∫
M
⟨∇f ,∇En (д)⟩dµ = −2

∫
M
h(∇f ,∇д)dµ .

From a theoretical point of view the knowledge of the Laplace-

Beltrami operator gives access to the first fundamental form and

En yields information about the second. Thus these two operators

jointly provide a coordinate-free representation of the embedding.

The operator En can be used to obtain a multi-scale represen-

tation of curvature information on the triangle mesh, as shown

in Figure 2. In particular, the eigenfunctions corresponding to the

largest eigenvalues of En , are those that align the best with the

maximal principal curvature direction, and can be obtained even if

En is represented in a reduced functional basis, making the compu-

tation less sensitive to noise in the triangulation. Moreover, as we

demonstrate in Section 8.1, the operator En can be used to inject

extrinsic information into the computation of functional maps.

We remark that the connection between the metric distortion

along the normal fields and surface properties has been used heavily

in Discrete Differential Geometry, in particular to establish a curva-

ture theory for discrete surfaces, e.g. in [6] among others. These and

related works exploit the relation between curvature and changes

in area, given by the classical Steiner formulas to discretize curva-

tures on general polygonal meshes. Unlike such approaches, we

concentrate on representing an arbitrary deformation field through

its induced metric distortion, and consider the full Lie derivative of

the metric (rather than, for example, only considering area changes),

in the case of triangle meshes. Nevertheless, we leave the extension

of our construction to arbitrary polygonal meshes and expanding

the connection with recent results in this area, including [23] as

interesting future work.

Composition with mappings. In many applications we are inter-

ested in the relation between deformations on multiple surfaces

1st eigenfunction 2nd eigenfunction

Fig. 2. Two eigenfunctions associated with the largest eigenvalues of the
functional deformation En for the normal field n. The gradients of these
functions represent the direction of maximal curvature (bottom row).

related by a mapping. In particular given a deformation field UM
of shapeM and a diffeomorphism φ : M → N with the associated

functional map (pullback) Cφ of functions from N to M , one can

define a deformation field VN of shape N that produces the same

metric distortion. Instead of looking directly at the deformation

of the metric, which might require a mapping between individual

triangles [49], we account for the action of the metric on functions:

EUMCφ ( f ) = CφE
VN ( f ) ∀f ∈ C∞ (N )

In other words, VN can be obtained by considering an extrinsic

vector field, whose operator representation has the same effect on

functions when composed with the functional mapCφ as EUM . This

property allows us to relate deformation fields without requiring

point-to-point correspondences between shapes, by simply consid-

ering the commutativity of the operators Cφ and E . We illustrate

this in Figure 5 and use it in Section 8.5 for deformation transfer and

deformation symmetrization on meshes with different connectivi-

ties with only a functional map known between them. Furthermore,

this approach is applicable to design deformations jointly on two

shapes, such that they are consistent with the functional map Cφ
and even as a regularizer in map computation.

Vector field representation. In general the operator EV does not

uniquely define an extrinsic vector field. From Def. 2 it can be shown

that the kernel ofV 7→ EV coincides with the vector fields satisfying

LV g = 0. In case of a volumetric manifold (i.e. M ⊂ R3
) the ker-

nel of our operator is restricted to infinitesimal rigid motions (see

Theorem 1.7-3 in [14]) and thus provides a complete representation

of extrinsic vector fields. In the case of a surface embedded in R3

the kernel of EV includes infinitesimal isometries such as Killing

vector fields but also local normal fields in planar areas. No rigid-

ity result seems to be known for smooth surfaces. However, as we

demonstrate below, in the discrete case of shapes represented as

triangle meshes, it can be shown that for almost all surfaces the
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kernel of V 7→ EV consists only of rigid deformations (Prop. 6.2).

Note that we place no restriction on the magnitude of the deformation
fields. Thus, although our construction is based on the infinitesimal

strain tensor, the extrinsic vector fields themselves are not limited

to infinitesimal (or local) deformations. Finally, as we show below,

our constructions can be extended to tetrahedral meshes, resulting

in a complete operator-based representation for deformation fields

of volumes, not sensitive to the exceptional cases, present in the case

of surfaces. Moreover, in the case of volumetric meshes, the tangent

space at every tet is naturally identified with the entire ambient

3D space. This means that unlike the case of surfaces, no special

treatment is necessary for the boundary.

5 RELATION TO SHAPE DIFFERENCES
The functional deformation field representation introduced above is

closely related to the previously proposed shape difference operators.

In this section we describe this relation in detail, and highlight the

following two key insights: 1) How our analysis leads to a novel

unified shape difference operator, and 2) How alternative functional

deformation field representations can be constructed, to be sensitive

to only a particular class of metric distortions. Our analysis also

sheds light on the discretization of functional deformation fields.

Nevertheless, the discussion in this section is not required for the

understanding of either the implementation or the results of our

approach, apart from the intrinsic symmetrization application (Sec.

8.2), in which we use this relation. As such, this section can be

skipped by readers not interested in these relations.

5.1 Shape Difference Operators
Introduced by [44], the shape difference operators describe a shape

deformation by considering the change of inner products between

functions. Namely, given a pair of shapesM,N and a diffeomorphism

φ : N → M , with the associated linear functional map (pullback)

defined byCφ ( f ) = f ◦φ, the authors introduce the area-based and
conformal shape difference operators DA and DC respectively, as

linear operators acting on (and producing) real-valued functions on

M implicitly via the following equations:

⟨f ,DA (д)⟩L2 (M ) := ⟨Cφ ( f ),Cφ (д)⟩L2 (N ) ∀f ,д (3)

⟨f ,DC (д)⟩H 1

0
(M ) := ⟨Cφ ( f ),Cφ (д)⟩H 1

0
(N ) ∀f ,д (4)

where the inner products are defined as ⟨f ,д⟩L2 (M ) :=
∫
M f дdµ

and ⟨f ,д⟩H 1

0
(M ) :=

∫
M ⟨∇f ,∇д⟩dµ .

The existence and the linearity of the operators DA and DC is

guaranteed by the Riesz representation theorem. As shown in [44],

for smooth surfaces, the map φ is area-preserving (resp. conformal)

if and only if DA (resp. DC ) is the identity map between functions.

From this it follows that φ is an isometry if and only if DA and DC
are both identity.

Note that in the discrete setting the shape difference operators

are obtained simply by considering transposes and inverses of the

functional map and Laplacian matrices, as highlighted in [44]. This

makes properties such as existence and linearity trivial to see. Below

we adopt the continuous (surface) formulation proposed in the

original article as it helps to highlight both the generality of these

Max. var. DC = 0.002,DI = 0.51 Max. var. DC = 0.20, DI = 0.20

Max. var. DA = 0.20 Max. var. DA = 6.10
−4

Conformal deformation Area preserving deformation

Fig. 3. Left: Approximately conformal deformation of a bunny to a sphere.
The PCA applied to shape differences confirms the presence of large area
(bottom) and isometric distortion in contrast to small conformal distortion
(top). Right: Area-preserving deformation of a plane, which results in nearly
constant area-based shape differences, unlike the conformal and isomet-
ric differences, which agree. We also report the maximal singular value
of the PCA covariance matrices of the scaled operators in each case, for
quantitative comparison of these results.

concepts and also the relation to our representation of extrinsic

vector fields.

Infinitesimal Shape Difference Operators. Our main goal in this

section is to consider a one-parameter family of shapesMt , given by

displacing the points of a base shape along some fixed deformation

field. Specifically, given a surfaceM embedded in R3
we consider a

familyMt , parameterized by a scalar t and given bypt = p0+tV (p0),
where p0 is a fixed point in R3

, and V (p) is a vector in R3
that

represents the displacement of the point.

Now consider the family of maps φt : M → Mt , given trivially

via φt (p) = pt , and the associated functional maps Cφ−1

t
mapping

functions fromM0 toMt . This gives rise to a one-parameter family

of shape difference operators DV
t (which can be taken either to

be the area or conformal-based operators). We then introduce the
infinitesimal shape difference operator as follows:

Definition 5.1. The infinitesimal area-based shape difference oper-
ator associated with an extrinsic vector field V on a surface M is

defined as:

EVA :=
∂DV

At
∂t

������t=0

, (5)

We define the infinitesimal conformal shape difference operator
EVC similarly by replacing DV

A by DV
C on the right side of Eq. (5).

Remark that since both EVA and EVC are defined as derivatives of

a one-parameter family of linear operators acting on real-valued

functions on a surface, both the range and the domain of these
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operators are also real-valued functions on M . Moreover, as DV
A

and DV
C reflect (or, equivalently, are sensitive to) changes in the

area and conformal metric structure, this implies that EVA and EVC
will only reflect extrinsic vector fields up to infinitesimally area-

preserving or conformal deformations. This naturally raises the

question of whether there exists another “unified” shape difference

operator DI , which would be sensitive to general (non-isometric)

metric changes. If so, would such DI lead to an infinitesimal shape

difference EI that would agree with the definition of EV given in

Eq. (2)? Below, we provide precisely such a definition which both

extends the applicability of shape difference operators and helps to

establish a deeper link with our functional deformation fields.

Unified shape difference. The main reason for which DC is only

sensitive to conformal changes is that both the inner product and

the integration are taken on the target shape. To define a unified

shape difference taking into account all intrinsic changes one should

compare the pullback metric to the metric on M while keeping

the integrating measure fixed. We thus propose a unified shape

difference operator DI that fully characterizes isometric distortion.

Definition 5.2. Assuming that φ : N → M is a diffeomorphism,

the unified shape difference DI : C∞ (M ) → C∞ (M ) is defined
implicitly by:

⟨f ,DI (д)⟩H 1

0
(M ) :=

∫
M
Cφ−1

(
⟨∇Cφ ( f ),∇Cφ (д)⟩

)
dµM .

The existence of DI is once again guaranteed by the Riesz repre-

sentation theorem. Moreover, as we claimed above, the following

proposition (proved in the supplemental material) shows that the

unified shape difference fully characterizes isometric deformation.

Proposition 5.3. DI ( f ) = f for all f ∈ C∞ (M ) if and only if φ
is an isometry.

To illustrate the properties of the three shape differences we use a

simple low-dimensional description of a shape collection in Figure 3.

Here we choose a fixed base shape and compute the shape difference

matrices with respect to the remaining shapes in a collection. Then,

we represent each shape by its shape difference matrix and plot

them as points in PCA space. We show the unified and conformal

shape differences in the same plots to stress that they are derived

from the same principles and are equal for any area-preserving

deformations, and thus are expressed in the same units. Figure 3

represents the conformal deformation of a bunny into a sphere as

viewed by the three shape differences. As expected DC is almost

identity while the area and isometric shape differences both cap-

ture the distortion. In the second experiment, shown in Figure 3,

we explore another collection obtained by the shearing of a plane

patch. As this deformation is area preserving, the area-based shape

difference provides no information, unlike the other two operators

which are guaranteed to be equal in this case. Finally, we also report

the largest singular values of the PCA covariance matrices in each

case, after vectorizing and pre-scaling the operators to unit L2 norm

to make the results comparable. These maximal variance values

provide a quantitative validation of the same observations.

With the definition of the unified shape difference DI in hand,

we introduce its infinitesimal counterpart EI by following the same

construction as done in (5) above. The following proposition (proved

in the supplemental material) characterizes these new operators.

Proposition 5.4. Let V be a smooth deformation field onM , the
derivatives of DA, DC and DI at time zero satisfy for all smooth
functions f ,д:

⟨f ,EVA (д)⟩L2 (M ) =

∫
M

div(V ) f дdµ,

⟨f ,EVC (д)⟩H 1

0
(M ) =

∫
M

div(V )⟨∇f ,∇д⟩ − LV g(∇f ,∇д)dµ,

⟨f ,EVI (д)⟩H 1

0
(M ) = −

∫
M
LV g(∇f ,∇д)dµ .

As can be seen, the infinitesimal shape differences inherit the

properties of the original operators. Namely, EVA vanishes if and only

if div(V ) is equal to zero, i.e., whenever V infinitesimally preserves

the volume form. On the conformal side, finding an extrinsic vector

field V such that EVC = 0 is equivalent to solving the conformal
Killing equation: LV g = div(V )g characteristic of a conformal vec-

tor field. Both properties combined lead to an isometric deformation

induced by the vector field V captured by EI .
Moreover Prop. 5.4 reveals a clear link between shape differences:

⟨f ,EVI (д)⟩H 1

0

= ⟨f ,EVC (д)⟩H 1

0

− ⟨1,EVA (⟨∇f ,∇д⟩)⟩L2 . (6)

Thus, intuitively, the operator EI , representing isometric distortion,

can be decomposed into an area and a conformal part. We note that

linear dependence between shape operators shown in Eq. (6) can

be understood as the decomposition of the matrix LV g into a trace

free part, linked to the conformal Killing equation, and a divergence

part, related to the change in area.

Finally, this proposition shows that the functional deformation

field representation introduced in Section 4 is exactly the same as the

infinitesimal shape difference operator EVI arising from the unified

shape difference. Remarkably, this relation also holds exactly in the

discrete setting as we show in Section 7.

Summary. To summarize, in this section we first showed that an

alternative way for constructing a linear functional operator repre-

sentation of extrinsic vector fields consists in considering a family

of deformations of the shape, constructing the associated shape dif-

ference operators, and taking their derivative at zero, which leads to

infinitesimal shape differences. This also suggests alternative func-

tional deformation field operators, sensitive only to specific kinds of

deformations (e.g., non area-preserving or non-conformal). Finally,

we showed that by modifying the definition of shape differences,

a new, unified difference operator can be constructed and that its

derivative at time zero leads precisely to the functional deformation

field formulation introduced in the previous section.

6 DISCRETE SETTING
In this section we provide the discretization of functional deforma-

tion fields. For this, we first propose a particular discretization of the

Levi-Civita connection and the Lie derivative of the metric on the

triangle mesh, which leads to a simple formula for the operator EV .
In the following section, Sec. 7, which can be skipped similarly to

Sec. 5, we demonstrate that the deep connection between functional
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deformation fields and infinitesimal shape difference operators also

holds in the discrete setting.

Throughout this section, we assume that we are given a mani-

fold triangle mesh. We denote by (X, E,F ) respectively the set of

vertices, edges and faces. We will consider the deformation field

V , which we also call an extrinsic vector field, to be given as a

three-dimensional vector per vertex.

Discrete connection. To build the discrete operator EV we need a

consistent discretization of the Levi-Civita connection. While sev-

eral discrete connections have been proposed (e.g. [4, 31]), because

of the special nature of our problem, we choose to build our own.

This is because, applications such as parallel transport require that

the vectors u, v and ∇uv are expressed in the same space (at vertex

or face or edge) so often an averaging step has to be introduced

to transfer, for example, a face-based representation of a vector to

an edge based representation. In our setting such a requirement is

not needed and it is easier to distinguish tangent vector fields that

will be expressed by one vector per face and extrinsic vector fields

expressed at vertices. Thus, our goal is to obtain a connection of the

ambient space
¯∇uV whereu is a tangent vector andV is an extrinsic

vector field :

¯∇ : R3 |F | × R3 |V | → R3 |F |

(u,V ) 7→ ¯∇uV

We build the connection
¯∇ using finite differences as follows.

Since extrinsic vector fields are defined at vertices the differences

are taken along the edges.

Definition 6.1. In a given triangle T ∈ F the ambient covariant

derivative along the edge ei j is defined by(
¯∇ ei j
∥ei j ∥

V

)
T
=
Vi −Vj

∥ei j ∥
.

Thus the ambient connection in the directions E = (ei j , ejk ) can
be stored in a matrix

( ¯∇EV )T =
(
Vi −Vj Vj −Vk

)
. (7)

Then, given any tangent vector x = Eα , the covariant derivative in
its direction can be computed as

¯∇xV = ( ¯∇EV )α .

Our construction is closely related to previous discretizations of

the Levi-Cevita connection (see, e.g., Section 3.4 in [4]) with the

main difference that we do not project the result onto the tangent

plane at a point and also avoid the averaging of values from faces

onto the mesh edges. Given the expression above, the discrete Lie

derivative of the metric at triangle T follows immediately, using Eq.

(1). Namely for any pair of tangent vectors x = Eα ,y = Eβ in the

triangle T , we have:

LV g(x ,y)T = ⟨x , ( ¯∇EV )β⟩ + ⟨( ¯∇EV )α ,y⟩. (8)

IfWM denotes the cotangent-weight Laplacian, which classically

represents the inner products of H1

0
(and is also called stiffness

matrix), we obtain the discrete functional deformation field operator

from its definition (2):

f ⊤WMEV д = −
∑
T ∈F

LV g(∇f ,∇д)T µ (T ).

Then we obtain EV (u) = W −1

M H , where H is a Laplacian matrix

whose weights depend on the extrinsic vector field:

(H )i j =
1

2

∑
j∼i

(c (Tαi j ) + c (Tβi j )),

c (T ) = (⟨ejk ,Vj −Vi ⟩ + ⟨ei j ,Vj −Vk ⟩)
1

4µ (T )

− Tr

(
(E⊤E)−1E⊤ (∇EV )

) ⟨ejk , eki ⟩
µ (T )

.

The computations can be found in the supplemental material.

6.1 Properties
Interestingly, many of the properties of the continuous operators

are satisfied exactly by their discrete counterparts.

Linearity. The discretization EV ( f ) naturally preserves the lin-

earity with respect to both V and f which is very convenient for

practical purposes.

In practice, it is often convenient to use a functional basis, so

that any function can be represented as a linear combination of

some basis functions ϕi . Given such a basis, the operator EV can be

seen as the (possibly infinite) matrix: EV i j = ⟨ϕi ,E
V (ϕ j )⟩L2 (M ) . The

choice of basis depends on the application. Since we are interested in

smooth deformations of a surface, we take a subset of the smoothest

functions given by the first k eigenfunctions of the Laplace-Beltrami

operator. In that case, EV will be represented simply as a k×k matrix.

As shown in Figure 18 the size of the basis k affects the deformation

field that we can represent and recover. Increasing k allows a more

faithful representation of high frequency deformation fields.

The linearity with respect to V allows the same operation for

vector fields. Therefore, if the deformation field is given in some

basis V =
∑
i αiXi then the operator reads EV =

∑
i αiE

Xi
. This

means that when designing a deformation field V we can consider

an objective as a function of the coefficients α .

Vector Fields representation. In the continuous setting the kernel

of V 7→ EV is the set of infinitesimal isometries. However, to the

best of our knowledge, there is no characterization of how often

this set is reduced to rigid motion. In the particular setting of our

discretization some standard results can be applied, however.

Proposition 6.2. For almost all triangle meshesM without bound-
ary, the operator EV uniquely defines the extrinsic vector fieldV up to
rigid motion.

Thanks to this proposition, we can guarantee that EV is almost

always a complete coordinate-free representation of extrinsic vector

fields V . Triangle meshes containing perfectly flat neighborhoods

fall in the category of shapes on which the map V 7→ EV is not

injective. Namely, since by definition of the strain tensor (Eq. 2),

whenever ∇xV and is normal to the surface for all x , (as is the case
when e.g. V is a normal field on a flat part and zero elsewhere), the

tensor LV will lead to the zero operator. Although we have found

that for organic and natural shapes, such vector fields are rare or

non-existent, they can nevertheless be important for coarse meshes

or man-made objects with flat areas.
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Fig. 4. Comparison of the condition number of the linear map V 7→ EV

when computed on triangle and tetrahedral meshes with respectively 162

and 163 vertices. The condition number is computed as the ratio of the
largest and the 7th lowest singular value to avoid infinitesimal rotations and
translations naturally mapped to zero. We consider the collection of meshes
formed by a sphere morphing into a cube. For a triangle mesh the condition
number goes to infinity as the shape becomes increasingly flatter. When
considering a tetrahedral mesh the condition number remains bounded.

6.2 Construction for Tetrahedral Meshes
To remedy this problem, we extend our discretization to tetrahe-

dral meshes thus avoiding ill-defined vector fields as the kernel

of V 7→ EV is of dimension 6 (translations and infinitesimal rota-

tions). For this we follow the construction provided in Section 6, by

adapting it to tet meshes. Namely, we extend the ambient covariant

derivative matrix E in Eq. (7) to three dimensions, by considering

the covariant derivative along three directions of a tet mesh, and

thus storing a 3x3 matrix
¯∇EV per simplex. We then use Eq. (8) with-

out any modifications to obtain a discretization of the functional

deformation fields on tet meshes. The final resulting formula for

the matrix EVI is provided in the supplementary material.

We compare the stability of our representation between tetra-

hedral and triangle meshes in Figure 4, by plotting the condition

number of the linear system for recovering the vector fieldV from its

operator representation EVI in the case of surface (triangle) and tet

mesh reprentations of a cube. We note that although the condition

number becomes unbounded for the triangle mesh representation as

the shape approaches a flat cube, it nevertheless remains remarkably

stable: even at 0.9 where the sphere is almost a cube the condition

number is about 100. In contrast the condition number for tet meshes

remains bounded even for a perfectly flat shape.

An important consequence of Proposition 6.2 is that deforma-

tion fields are fully encoded by the operator EV up to infinitesimal
rigid motions. Therefore any deformation can be recovered regard-

less of its scale and nature. For instance Figure 18 shows that non-

infinitesimal global rotations are correctly encoded and recovered

from our operator representations.

Fig. 5. Example of deformation fields that commute with the diffeomor-
phism represented by texture transfer. Note that both the direction and the
magnitude of the vector field have to adapt to the underlying geometry to
produce the same metric distortion.

7 DISCRETE INFINITESIMAL SHAPE DIFFERENCES
Similarly to the link established in Section 5 between our initial

definition for functional deformation fields and infinitesimal shape

differences, we can consider an alternative discretization to the one

above by considering a family of deformed meshes and taking the

derivative of shape difference operators. In this section we show

that this approach leads to exactly the same result, which means

that remarkably Proposition 5.4 is satisfied exactly in the discrete

setting. To demonstrate this result we first provide a discretization

of the unified shape difference operator and then highlight the link

between the infinitesimal shape difference operators and functional

deformation fields. Similarly to Section 5, this section is primarily

of conceptual interest and can be skipped by readers who wish to

proceed to the practical results.

To compute the shape differences we start from the discretization

of the inner product ⟨., .⟩H 1

0

using standard first order finite elements.

We will denote by L the classical cotangent Laplacian matrix,W
the inner product of H1

0
and A the lumped mass matrix such that

L = A−1W . As before µ is a measure and µ (T ) denotes the area of
triangle T .

7.1 Discrete unified shape difference
The discretization of the unified shape difference is straightforward

when N andM are triangle meshes and share the same connectivity.

In Definition 5.2 given above, the gradients and the point-wise

scalar products are taken on N while the measure dµM comes from

M . Therefore the right hand side can be discretized by a modified

cotangent weight formula:

WMDI =W
M
N , where

(WM
N )i, j =

1

2

*
,

µM (Tα )

µN (Tα )
cotαNij +

µM (Tβ )

µN (Tβ )
cot βNij

+
-
. (9)

Here Tα ,Tβ are the two triangles adjacent to edge i, j, which is op-

posite to angles α and β , while µM and µN are the triangle areas

on shapes M and N respectively. Note thatWM
N differs from the

standard cotangent weight matrixWN only by the ratio of weights
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per triangle. Moreover,notice that if the transformation is area pre-

serving for all triangles then DI reduces to the conformal shape

difference defined in [44] (Option 1 in Section 5).

From the expression above it follows that DI =W
−1

M WM
N .

Expression in a basis. Similarly to the construction given in [44]

we can also express the unified shape difference when the basis

ΦM on the source shape M is given by the eigenfunctions of the

Laplace-Beltrami operator. In that case, using a diagonal matrix ΛM
of eigenvalues, DI becomes:

DI = Λ−1

M ΦTMWM
N ΦM .

This expression has the advantage of avoiding the inverse of a large

sparse matrix, and can be used to analyze deformation of a shape

with fixed connectivity in multi-scale basis, which can make the

computations resilient to local perturbations (see Option 3 in Section

5 of [44] ).

Approximation with a functional map. Note that both expressions

above assume that the source and target meshes share the same

connectivity. When the meshes have different connectivity this dis-

cretization requires a map between triangles making it challenging

to use in practice. To overcome this problem we approximate this

discrete formulation by transferring the weights on triangles to

lumped weights on vertices. The approximation then reduces to the

usual discrete quantities:

( ˜WM
N )i j ≈

∑
t∼i µ

M (Tt )∑
t∼i µN (Tt )

1

2

∑
j∼i

(cotαNij + cot βNij ).

We recognize here the cotangent Laplacian LN with lumped

area weights, namely AMLN . In the case of meshes with different

connectivity, this remark suggests the following approximation of

the isometric shape difference, valid only in a discrete sense, for an

arbitrary linear functional map C betweenM and N :

f ⊤AMLMDIд ≈ f ⊤AMC−1LNCд.

In the reduced basis of the Laplacian eigenvectors, the approxi-

mation of the shape difference becomes DI ≈ Λ−1

MC−1ΛNC , which
preserves the principal property of the operator: DI is identity if

and only if the deformation is an isometry since the Laplacian on N
has to be equal to the Laplacian onM . We used this discretization in

Figure 3 and observed that the two expressions given above typically

produce similar results.

7.2 Shape difference derivative
Suppose that each vertex pi of the mesh is displaced by the vector

Vi by pti = pi + tVi . This produces a family of triangle meshes

(Xt , E,F ) with identical connectivity. It is now possible to take the

derivative with respect to t of Eq. (9) at time 0. This way we obtain a

discretization of the infinitesimal shape differences. Remarkably the

resulting discretization is strictly identical to the discrete functional

operator EV proposed in Section 6 based on the discrete Levi-Civita

connection.

Proposition 7.1. The discretization of E based on the discrete Levi-
Civita connection is equivalent to the one obtained by differentiating
the unified shape difference operator.

Shape difference decomposition. Since the discretization using a

discrete connection and through the time derivative agree, the de-

composition described by Eq. (6) is also satisfied exactly. Namely,

the matrix EV C representing the discrete infinitesimal conformal

shape difference splits into the discrete functional deformation field

EV and an appropriately defined discrete divergence:

f ⊤WEVCд = f ⊤WEV д +
∑
T ∈F

div(V )T ⟨∇f ,∇д⟩T µ (T ).

Thus, the decomposition of EV , representing isometric distortion,

into area and conformal parts given in Eq. (6) in the continuous case

holds exactly in the discrete case as well.

8 EXPERIMENTS
In this section we apply our constructions to various tasks in shape

correspondence, deformation design and analysis. As our frame-

work relies on manipulating moderately-sized matrices, all of the

applications are very efficient, even when combining multiple ob-

jectives.

In some applications (Sec. 8.2 - 8.5), it is necessary to recover

the deformation field from its function operator representation. For

this, we construct a reduced basis (dictionary) of deformation fields

and recover the coefficients of the unknown deformation by solving

a convex problem similar to basis pursuit. Namely, given a target

functional deformation field operator EV represented as a matrix,

expressed in some fixed functional basis, we solve for V via:

min

α
∥
∑
i
αiE

Xi − EV ∥2F + τ ∥α ∥1, (10)

where α is a vector of coefficients and EXi
are the functional rep-

resentation of the ith deformation field in an overcomplete basis

(dictionary). Of course, the choice of basis is application dependent.

The simplest and most general choice would be to consider a ba-

sis which consists of independent displacements at each vertex of

the given mesh. For a mesh with nV vertices, this results in 3nV
unknowns when solving for a deformation field, which is feasible

when nV is small (and is used in the experiment in Figure 18), but

can be expensive for larger meshes. When needed (Sec. 8.2 - 8.5) we

use the following deformation bases:

• The simplest option is to take the eigenfunctions of the Laplace-

Beltrami operator as the basis for each component of the

deformation field. While simple, this basis might not preserve

rotation invariance.

• Alternatively we construct a basis via modal analysis of a de-

formation energy. In particular we consider an energy of the

formV 7→
∫
M ∥

¯∇V ∥2dµ. This corresponds to the energy on a

particular discretization of the Bochner Laplacian of extrinsic

vector fields. To obtain the basis we take the eigenvectors

of the Hessian of the energy, which correspond to smooth

deformation fields.

• Lastly, we use the handle-based deformation model described

in [1]. Unlike the other families, the deformation fields arising

from this model are compactly supported and therefore better

suited to reproduce local deformations.
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Similar pose Different Pose

Fig. 6. Evaluation of the computed maps on 100 pairs of shapes from the
FAUST dataset [7]. Left: different character taking a similar pose, right:
different characters in arbitrary poses.

Fig. 7. An example of the point-to-point map evaluated in Figure 6. The
RGB channel represents the xyz-coordinates, which are transferred us-
ing the recovered point-to-point map. The correspondences obtained with
SHOT (left) are precise near sharp features (e.g., on the fingers) whereas
our constraint (right) is informative on the entire shape.

In our experiments in Sec. 8.2 - 8.5, we parameterize the space of

deformations by computing 180 deformation fields in each of the

three categories mentioned above to build an over-complete dictio-

nary. This implies that the number of unknowns is relatively small:

α ∈ R540
and is independent of the resolution of the underlying

mesh. We choose the parameter τ , controlling the sparsity of the

representation, to be 10
−4

times the largest singular value of the

linear map V 7→ EV . We use the L1 norm regularizer in Eq. (10)

as a sparsity-promoting prior following the widely-used LASSO

regularization. In our case, this allows to better recover localized

deformation fields, instead of the L2 penalty, which can lead to dense

solutions, possibly resulting in global deformations.

8.1 Functional map inference
In our first application, we show how our functional deformation

field representation can be used as a regularization in shape match-

ing problems. In particular, we show how this representation can be

used to add information related to the second fundamental form to

the computation of functional maps [36]. The vast majority of the

existing methods for shape correspondence with functional maps

use the assumption of approximate intrinsic isometries (see [37] for

an overview) and are either purely intrinsic or inject extrinsic or

embedding-dependent information by adding extrinsic descriptors.

On the other hand, our functional deformation field representation

provides a natural coordinate-free way to add embedding-dependent

information into the map estimation pipeline. In particular, our ap-

proach below is based on the following key observation:

Proposition 8.1. Given a pair of surfacesM,N embedded in 3D,
and a diffeomorphism T : N → M , let C be the corresponding func-
tional map L2 (M ) → L2 (N ). Then M and N are related by a rigid
motion in space if and only if:

∥C∆M − ∆NC∥ + ∥CE
n
M − E

n
NC∥ = 0,

where ∆ are the LB operators, while En are functional deformation
fields arising from the normal fields.

This proposition is simply a consequence of the fundamental

theorem of surface theory and the relation between functional de-

formation fields and the second fundamental form described in

Section 4.1. Note that enforcing the condition of this proposition in

practice reduces simply to penalizing the lack of commutativity of

the functional mapC with predefined operators, which can be done

efficiently in practice. Therefore, we can see that functional deforma-

tion fields provide an effective way to capture embedding-dependent

information in a coordinate-free way that fully characterizes the
shape geometry up to rigid motions.

Inspired by this observation, we propose to solve the following

problem: given two shapes and a sparse set of correspondences

recover a dense map. The shapes come from the FAUST dataset [7]

andwe are given five corresponding landmarks at the hands, feet and

head. The baseline method following the logic of the original paper

is to represent the landmark points as delta functions δM and δN and

look for the most isometric functional map C : L2 (M ) → L2 (N ), by
enforcing commutativity with the Laplace-Beltrami operator. Thus,

the straightforward approach would be to solve the optimization

problem:

min

C
∥C∆M − ∆NC ∥

2

F s.t. CδM = δN .

The basic way to add extrinsic information to this problem is to

constrain the map to preserve extrinsic descriptors denoted FM , FN
respectively onM,N :

min

C
∥C∆M − ∆NC∥

2

F + ∥CFM − FN ∥
2

F s.t. CδM = δN .

We evaluate two commonly-used descriptors: 1) the normal vector

field encoded as three independent functions and 2) the purely

extrinsic descriptor SHOT [52] successfully used for solving partial

matching problems [30].

We compare these descriptor-based approaches to our coordinate-

free constraint that promotes the preservation of the second funda-

mental form. According to Prop. 8.1 if a diffeomorphism commutes

with the Laplace-Beltrami operator and En then the shapes admit

the same embedding. Our new optimization problem thus reads:

min

C
∥C∆M − ∆NC ∥

2

F + ∥CE
n
M − E

n
NC∥

2

F s.t. CδM = δN .

Once the functional map are obtained they are converted to a

point-to-point map using the basic approach described in [36]. In

all experiments, we use k = 100 Laplace-Beltrami eigenfunctions

to encode the functional map and the operators En . The results are
shown for two non-isometric shape matching problems: different
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Fig. 8. An initially intrinsically symmetric bar (far left) is artificially made
asymmetric (middle left). Our algorithm (middle right) is able to recover
the symmetry while maintaining the intrinsic structure of the shape. In
comparison an extrinsic symmetrization scheme (far right) would erase the
intrinsic structure.

characters taking the same pose and taking different pose. Figure

6 shows the percentage of correspondences within a given geo-

desic distance. Interestingly, SHOT provides valuable information

on sharp features allowing accurate matching near salient points

but tends to fail on featureless regions. In comparison our constraint

provides information everywhere on the shape making the results

less subject to obvious mismatching but it is less informative on the

placement of salient features. This intuition is confirmed by Figure

7 which provides a visualization of the point-to-point correspon-

dences by transferring the coordinates functions encoded as RGB

channels. Finally, the combination of those two constraints over-

comes the limitations of both methods taken independently. Figures

23, 24 and 25 (in the appendix) further illustrate the effect of our

approach on challenging non-isometric shape pairs both in similar

and arbitrary poses. Since our approach is based on the preservation

of the second fundamental form, we observe that this assumption is

well-respected in settings such as articulated motion of humans or

animals. Thus, our normal commutativity term leads to a particu-

larly strong improvement for shapes in similar poses, but also, to

a smaller extent, in other, more diverse, settings. Nevertheless, in

some cases, our constraint can have a negative effect. For example,

on the FAUST dataset, we obtained 1 pair (out of 100 tested) on

which the average error with normal commutativity is worse than

without it. For the non-isometric man-woman and dog-lion test

sets in arbitrary poses, there were 5 cases out of 60, and 3 out of

60 pairs respectively, where normal commutativity led to higher

average error. In our experience, these cases are rare and only occur

in strongly non-isometric pairs of shapes in very different poses.

8.2 Intrinsic Symmetrization
In this section we show how our representation of deformation

fields can be used to deform shapes to make them more intrinsically

symmetric, while keeping their general pose. This step is essential

for symmetry-aware quad-meshing presented in Sec. 8.3 For exam-

ple, Figure 8 shows a shape with important features which would

Initial Iter. 1 Iter. 2 Iter. 3

3.7533 3.1831 2.8511 2.6788

Initial Iter. 1 Iter. 2 Iter. 3

4.9964 3.8179 3.2998 3.1256

Initial Iter. 1 Iter. 2 Iter. 3

3.6777 2.9653 2.7238 2.6041

Fig. 9. Three iterations of our intrinsic symmetrization method, Algorithm
1, given an approximate symmetry map. At each step we measure the
distance to the symmetry by the Frobenius norm between the intrinsic shape
difference induced by the symmetry map and identity, namely ∥DI − I ∥F .
Although not directly taken into account, this energy decreases at each
iteration. Note that our algorithm works with any type of symmetries: see
bottom row for a non-reflectional symmetry.

be lost by an extrinsic symmetrization scheme. However an intrinsic
symmetrization algorithm would preserve those features while re-

covering the symmetry. This way, our goal is similar to the one of

[62] although our approach, unlike theirs, avoids the computation

of a skeleton and is purely intrinsic. In addition, as input we only

require a functional representation of the symmetry, and do not rely

on a precise, e.g., bijective, pointwise map. More specifically, given

a shapeM and a functional representation of a self-map π : M → M
we would like to compute the shape M ′ such that the self-map ψ
on M ′ is an isometry. If we denote by φ : M ′ → M the map from

M to M ′ then the symmetry map on the deformed shape is given

by ψ = φ−1 ◦ π ◦ φ. Using Prop. 5.3 the isometric constraint is

satisfied if and only if the unified shape difference D
ψ
I , computed

with the mapψ , equals identity. If CT is the functional map repre-

sentation of a map T , then after simplification this is equivalent to

DπI C
−1

π D
φ
I Cπ = D

φ
I (see supplementary material).

Note, however that every intrinsically symmetric shape would

be a solution of this equation. Therefore we regularize the problem

by imposing that φ should be as-isometric-as possible. The equality

conditions are enforced in the least squares sense leading to the
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Algorithm 1: Intrinsic Symmetrization
Input :Triangle mesh with vertices p and self-map π
Output :New vertices pt

1 repeat
2 Find V t+1

solution of (12) ;

3 Compute new embedding: pt+1 = pt +V t+1
;

4 Recompute DπI ,Cπ ;

5 until ∥pt+1 − pt ∥ < ϵ ;
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Fig. 10. Comparison between of our intrinsic symmetrization method and
the local method Eq. (13). Distance of edge length to their symmetric coun-
terparts versus the distance of edge length to the original mesh in percentage
of change w.r.t to the initial mesh. Our method is 13% more symmetric than
the original mesh when the local methods lead to noisy output or heavily
distorted outputs.

optimization problem:

min

φ
∥DπI C

−1

π D
φ
I Cπ − D

φ
I ∥

2

F + τ ∥D
φ
I − I ∥

2

F . (11)

The optimization (11) is restricted to the set of diffeomorphisms so

a direct approach is challenging to use in practice. A more tractable

method is to use functional deformation fields as a first order ap-

proximation of shape differences and thus find the deformation field

that solves (11) to first order. After linearization, Eq. (11) becomes:

min

V
∥DπI C

−1

π EVCπ − E
V − I + DπI ∥

2

F + τ ∥E
V ∥2F . (12)

This linearization suggests an iterative algorithm (described in Al-

gorithm 1) which alternates between solving the linearized problem

(12) and computing the new vertex positions. In practice, we con-

struct an over-complete dictionary of deformation fields, composed

of the three bases described at the beginning of Sec. 8 and compute

the optimal deformation field by solving for the coefficients α .

Figure 9 shows two examples where our method successfully

recovers intrinsic symmetry from meshes with outstretched parts.

To obtain these results we require only a low quality functional map

Cπ . In [62] the authors propose a method based on skeleton driven

deformation to achieve intrinsic symmetry but limited to reflectional

symmetries. Our method does not require such assumptions and

works for any given self-mapping (e.g. bottom row in Figure 9).

Note also that our deformation field representation is essential in

this scenario, since for example, representing deformation fields

through displacement functions would not provide information on

the necessary (or induced) metric distortion.

An alternative approach to intrinsic symmetrization is to consider

the local change in edge length of every edge in the mesh. Thus,

given a point-to-point map π (e.g., obtained from a functional map),

we consider an optimization problem in the vertex positions p:

min

p

∑
(i, j )∈E

(
|pi − pj | − |pπ (i ) − pπ (j ) |

)
2

+ τ ∥p − p0∥2, (13)

where the parameter τ controls the strength of the regularization.

Figure 10 compares our method to this approach for various values

of τ according to two criteria: the isometry of the deformation and

the symmetry the results. For the former (y axis), we simply measure

the L1 norm between the initial and final edge lengths, normalized

by the sum of the initial edge lengths. To evaluate the symmetry,

we compute the normalized difference between lengths of edges

given by the ground truth symmetry. A positive value implies an

improvement of the symmetry while a negative value means a

deterioration (relative to the initial configuration) of the symmetry.

Our global, functional method results in better quality, while the

local approach provides noisy meshes. In practice the naive method

works well only withmesh exhibiting symmetric connectivity where

a very high quality symmetry map is available. In comparison our

method does not require converting a functional map to a point-to-

point map and naturally handles fuzzy self-maps. Thus our method

is able to handle gracefully poor quality maps and relies only weakly

on the mesh structure itself. We stress that our method is entirely

intrinsic, which can be seen, e.g., since the optimization objective in

Eq. (12) can be fully written in terms of the mesh edge lengths. In

practice the only extrinsic prior given to our method is the choice

of a basis for deformation fields. For completeness Figure 26 also

compares against the naive approach when the deformations are

restricted to this basis. The results, although better than the original

naive method, are qualitatively and qualitatively poorer than ours.

Please also see the accompanying video for more results.

8.3 Symmetry-aware quad-remeshing
An important application of the intrinsic symmetrization is the

generation of symmetrically coherent quad-meshes as presented in

the teaser (Fig. 1). The commonly-used three-step quad-meshing

algorithm [8, 18, 25] attempts to conform the quad-mesh to the

underlying geometry by aligning the quads with the curvature

directions. However, this strategy fails to represent global features

such as intrinsic symmetries. Some algorithms [3, 38] are able to

generate quad-meshes consistent with a given symmetry map. They

are, however, limited to isotropic quadrangulations, which can result

in non-symmetrically invariant connectivity.
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0.0075 0.0115 0.0042

Segmentation Direct Consistent Ours

Fig. 11. Symmetric quad remeshing. Left: segmentation using the input
symmetry and direct remeshing without symmetry information. Middle:
results of the consistent remeshing approach of [3]. Right: quad remeshing
after our intrinsic symmetrization. Note that the resulting mesh is more
regular (e.g., tip of the ear and hand), and the size of the elements is re-
duced on the shorter leg, making the mesh more symmetric. The evaluation
measures the normalized difference in the number of quads on each side.

Our approach adopts a strategy similar to [39], to produce a

symmetry-aware quad mesh. The input mesh is first deformed to

be intrinsically symmetric using the algorithm described in the

previous section. This symmetric mesh is then used for the com-

putation of consistent quad-mesh using [3]. Finally, the quads are

pulled-back onto the initial mesh. Figures 11, 12, and 13 compare

a direct quad-meshing algorithm, the method recently introduced

in [3] and our technique. We also evaluate the results numerically

by computing the difference in the number of quads on symmetric

parts of the shapes, normalized by the total number of quads (thus,

lower is better). Note that our method, due to the anisotropy result-

ing from the symmetrized mesh, produces quadrangulations that

better reflect the intrinsic symmetry on the shape. Figure 14 (top)

illustrates this by plotting the percentage of singularities within

a geodesic distance of their closest symmetric counterparts, after

mapping them using the given symmetry map. Our method spreads

singularities more symmetrically across the mesh while maintaining

their total number compared to the direct quadrangulation scheme.

Moreover the quality of the quads, as measured by the angle dis-

tribution shown at the bottom of Figure 14 is comparable with the

other two methods.

8.4 Deformation design
In our next application we use our deformation field representation

to achieve various global deformation objectives. Similarly to intrin-

sic symmetrization, we optimize for the deformation field by solving

for the coefficients α in our over-complete dictionary described at

the beginning of Sec.8.

Since our operator is linear with respect to the deformation field

one can easily combine multiple constraints to the deformation vec-

tor field. In Figure 15 we show how multiple different constraints

can be combined using our representation. First, we can easily re-

quire that at a point p the deformation field matches a given vector

v , by setting V (p) = v , in addition to other global constraints. Sec-

ond, we can find the most isometric (preserving the intrinsic metric)

deformation by minimizing V 7→ ∥EV ∥2F . At the same time, given a

self-map represented as a functional map S , we design a symmetric

vector field by imposing a constraint of the form EVCS = CSE
V
.

Segmentation

Direct: 0.0321

Consistent: 0.0283

Ours: 0.0198

Fig. 12. Symmetric quad remeshing. Left: segmentation using the input
symmetry. Right: comparison between direct remeshing, results of [3], and
after our intrinsic symmetrization. Note that the size of the elements is
increased on the longer leg to making the mesh more symmetric.

0.0275 0.01469 0.00633

Segmentation Direct Consistent Ours

Fig. 13. Symmetric quad remeshing. Left: segmentation using the input
symmetry. Right: comparison between direct remeshing, results of [3], and
after our intrinsic symmetrization. Note that the quad mesh becomes more
regular and the size of the elements is decreased on the shorter arm, reducing
the difference in the number of quads.

Similarly, we can impose an anti-symmetry constraint by requiring

EVCS + CSE
V = 0. In comparison, Figure 16 shows an extrinsic

deformation design method consisting in projecting each vector

field component into the space of symmetric (respectively anti-

symmetric) functions. The resulting shapes look quite distorted

compared to our solution. Moreover the distance of the confor-

mal shape difference (resp. area-based shape difference) to identity,

measuring how far the map S is from an isometry, is of 0.51 (resp.

0.46) for our design and 0.63 (resp. 0.56) for the extrinsic design.

Thus, the extrinsic deformation design tends to distort the intrinsic

structure of the shape. Finally, we test a regularization technique

for the deformation field by imposing the commutativity with the

Laplace-Beltrami operator, which tends to spread to the entire shape.

Note that despite the diversity of these constraints, they can all be

enforced easily using our operator-based representation. In con-

trast, the straightforward method shown in Figure 16, consisting

in projecting the vector field onto the space of symmetric or anti-

symmetric functions, fails in this tasks as it is fully extrinsic.

Figures 17 presents an example of joint deformation design. Namely,

we impose a set of directional constraintsU (pj ) = uj andV (qj ) = vj
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Fig. 14. Top: percentage of singularities within a given geodesic distance
of their closet symmetric counterpart, after mapping them using the given
symmetry map. Results for the mesh shown in Fig 11. Our method has the
most symmetric distribution of singularities while maintaining the angle
distributions tightly packed around 90

◦.

on two different shapesM and N and we solve for two deformation

fields, one on each shape, that are “informed” by the deformation

of the other shape. On a single shape, our objective is designed to

promote smoothness of the resulting deformation field and sparsity

in the coefficients of the deformation field basis:

EM (α ) :=
∑
i, j

αi ⟨Ui ,∆MUj ⟩α j + τ ∥α ∥1.

Therefore, on a single shape, the optimization becomes:

min

α
EM (α ), s.t.

∑
i
αiUi (pj ) = uj ,

where the constraints enforce the given pointwise directions.

To design the deformation fields jointly, we propose to find a field

U on shape M and V on shape N such that for a given functional

map C we have EUC ≈ CEV while respecting the local constraints

on the respective shape. The resulting optimization problem reads:

min

α,β
∥
∑
i
αiE

UiC −C
∑
j
βjE

Vj ∥2F + EM (α ) + EN (β )

s.t.

∑
i
αiUi (pj ) = uj ,

∑
i
βiVi (qj ) = vj .

As a result, the constraints as well as the structure of one shape

is transferred onto the other. Moreover the area that could lead to

contradictory deformation remains still.

8.5 Functional Deformation transfer
Given a deformation fieldU on shapeM represented as an operator

and a functional mapC from N to shapeM , we can use our method

to transfer the deformation to an arbitrary mesh. The transferred

deformation V =
∑
i αiVi on shape N by solving:

min

α
∥EUC −C

∑
i
αiE

Vi ∥2 + τ ∥α ∥1. (14)

Here, EVi are the basis deformation fields in our over-complete dic-

tionary, described at the beginning of Sec. 8 and αi are the unknown
coefficients. As in the previous experiments α ∈ R540

regardless of

the mesh size and the linear operators EVi and C are represented

using k = 200 eigenfunctions of the Laplace-Beltrami operator.

The only exception is the result shown in Fig. 18 where we use

the full deformation field basis consisting of 3nV unknowns, for a

progressively larger values of k .
We solve this optimization problem with CVX [21], using the

default approach based on the interior point method.

Using this setup we solve different instances of the deformation

transfer problem, namely:

• Style transfer: we transfer style across poses. Here, given

two different shapes in a rest pose and a deformed version of

one of them, we transfer the deformation to the other shape

(Figure 19). This also shows that our vector field collection is

not limited to a specific type of deformation.

• Symmetry transfer: we transfer a deformation from a shape

onto itself using a symmetry map (Figure 20). Note that this

task cannot be achieved with standard Jacobian-based meth-

ods such as [49].

We stress that although enabled by our representation, this is by

no means the central application and therefore the results presented

below simply serve as an illustration of the functionality that can

be achieved using our functional deformation fields.

Style transfer. We use our approach to transfer style across the

poses of different shapes in the Faust dataset [7], shown in Figure

19. Here first consider the deformation field U given by the point

displacements across two different shapes in approximately the

same reference pose. We then use our framework to transferU to

another shape in a different pose and with different mesh structure.

In Figure 19 our method consistently preserves the global structure,

although some high frequency details of the deformation are lost

due to the projection onto a vector field basis.

Symmetry transfer. One interesting feature of the functional rep-
resentation of deformation fields is that it is “shape aware.” For

example in Figure 20 we transfer the shrinking of the right leg to

the left leg by looking for the operator which commutes with the

operator representation of the symmetry map. Since both legs are

in different positions this transfer is not easy to achieve by a simple

point-to-point transfer of the vector field or even by transferring

it using local coordinates. As shown in Figure 20 bottom row, our

transferred deformation field adapts to the geometry.

8.6 Relation to existing techniques
An important property of our deformation transfer algorithm is that

it relies fully on the deformation of the metric. This makes it funda-

mentally different from the spectral pose transfer described in [28].

Those methods use the strong stability of the first eigenfunctions of

the Laplace-Beltrami under deformation. Thus, a deformation field
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Constraints As-isometric-as possible Symmetry Anti-symmetry Laplacian Reg.

Fig. 15. We design deformations respecting the directional constraints shown on the far left and minimizing various criteria (from left to right): the infinitesimal
shape difference leading to the most isometric vector field, the commutativity with a self-map, the anti-commutativity with the same self-map and the
commutativity with the Laplace-Beltrami operator.

Vector field Symmetry Anti-symmetry

Fig. 16. We design deformations by projecting the vector field shown on
the far left onto the space of symmetric and anti-symmetric functions. This
direct approach does not deliver the expected results found in Figure 15.

Separate design Joint design

Fig. 17. Left: The deformations are designed separately by minimizing the
smoothness term ⟨V , ∆V ⟩. Right: joint deformation design by adding the
commutativity with the mapping to the optimization. Note that the con-
straints on one shape tend to be transferred to the other.

V can be efficiently transferred by projecting its components into a

reduced eigen-basis Φ of the initial shape and reconstructed using

the basis Ψ of the shape to be deformed. The new embedding X ′ is
computed from the old embedding X simply by X ′ := X + ΨΦ⊤V .

Recent improvements of this technique [27, 58] include pre-alignment

of the spectral basis but the shortcoming are essentially the same.

Figure 21 shows that this deformation transfer is by definition ex-

trinsic, orientation dependent and furthermore completely agnostic

to the intrinsic structure of the shape. Our method in contrast is

rotation-invariant and directly linked to the induced changes in the

geometry.

We also compare our method with the algorithm for deformation

transfer described in [49]. This method is based on reallocating

Jacobian matrices defined on triangles of the source mesh to those

of the target mesh. This method, however, is not without limitations.

First, this transfer does not take into account changes in orientation

from the source to the target thus ruling out any possibility of

symmetric transfer and requiring a pre-alignment of the source and

target meshes. This can be challenging to achieve in practice in

case of non-rigid deformations (e.g. Figure 20). Secondly, it assumes

as input a triangle-to-triangle map which can be cumbersome to

obtain.

These limitations do not apply to our representation as our ap-

proach is based on transferring metric information, and is therefore

immune to changes of orientation. Moreover, instead of a triangle-

to-triangle map, an approximate functional map is enough. Further-

more, note that although in general reconstructing geometry from

metric tensors is more difficult than a reconstruction from Jacobians

as local rotations are no longer available (see e.g. [9]) our method

relies on solving a moderately-sized convex optimization problem.

Figure 22 shows that working within the functional map frame-

work makes our algorithm more robust to noise usually encounter

when using this representation. The computation of functional maps,

as described in [36], is done by solving a least squares system in-

corporating intrinsic descriptors (HKS, WKS) therefore there often

exists multiple solutions in presence of an intrinsic symmetry π . We

model a noisy functional map Cτ by a linear blending between the

direct map (mapping the left to the left and the right to the right)

and the anti-symmetric map (mapping the left to the right and the

right to the left) represented as operators:

Cτ = τCφ◦π + (1 − τ )Cφ .
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Fig. 18. Reconstructions of a deformation field (left) resulting from the correspondence encoded via the texture map, from its representation as operators (top),
or representing it as a triplet of functions (bottom) with increasing number of basis functions. The Hausdorff distance between the deformed mesh and the
target is shown on top. Our method also works when the reconstruction is applied to a rotated mesh (right), unlike the coordinate-based approach, used in,
e.g. [27, 28]. This latter example is part of our accompanying video.
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Fig. 19. The deformation field defined by the blue shapes (first column) is
transferred to the same shape in different poses (top white shapes). While
the style is consistent across the poses (red shapes) some details of the
deformation are lost due to the basis representation. The style transfer
are compared to the corresponding shape in the collection (bottom white
shapes). See also the accompanying video.

Our method outputs a non-linear interpolation between the de-

formation and its symmetric version while the method by Sumner

et al. exhibits various artifacts.

9 CONCLUSION, LIMITATIONS, FUTURE WORK
In this paper we presented a method for representing extrinsic

vector fields as linear operators acting on functions on the shapes,

Initial shape Deformation Symmetric Def.

Fig. 20. An initial deformation (first two columns), corresponding to the
shrinking of the right leg of a human model, is transferred to the left leg
by imposing the commutativity between the infinitesimal shape difference
and the symmetry map. Both legs are in different position so the transfer
has to adapt to the geometry. See also the accompanying video.

by considering the metric distortion induced by the deformation. We

base our representation on the infinitesimal strain tensor and show

how it leads to a linear functional operator that can naturally be

combined with other such operators including functional maps and

the Laplace-Beltrami. We showed how this representation can be

used to analyze and design deformations and to introduce extrinsic

information into the computation of functional maps.
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Source Deform. Target [KBBGR13] Ours

Target

[KBBGR13]

Ours

Fig. 21. An initial deformation (first two columns), corresponding to the
expansion of a bar is transferred to another longer bar. Using the method
described in [27] ([KBBGR13]) the additional height is exactly the same as
in the original deformation. Using our method the deformation is indexed on
the metric thus the height of the model doubles. Furthermore, our method
is rotation invariant (second row).

Source Deformed Target Ours Sumner et al.

Source Deformed Target

0 0.25 0.5 0.75 1

Ours

0 0.25 0.5 0.75 1

[49]

Fig. 22. Deformation transfer using a noisy functional map consisting of a
linear blending between the direct functional map (τ = 0) and the symmetric
functional map (τ = 1). Our method is robust to this noise and outputs
a non-linear interpolation of the deformation and its symmetric version.
The method of in [49] fails when provided with a triangle-to-triangle map
resulting of the conversion of the noisy functional map.

Our approach has several limitations, depending on the appli-

cation. In the context of estimating functional maps, our normal

commutativity term is only meaningful when the deformation is ex-

pected to approximately preserve the second fundamental form. In

our experiments, this term leads to particularly strong improvement

for, possibly non-isometric, shapes in similar poses. Nevertheless, as

mentioned in Sec. 8.1 in rare cases, it can also have a negative effect

when this assumption is violated. In other applications, such as de-

formation transfer or design, one limitation comes from our choice

of deformation field basis, which might not be adapted to all types of

deformations. A more advanced choice, such as [56] can likely lead

to better results in complex scenarios. Finally, our deformation field

recovery is based purely on infinitesimal metric distortion, which

although, as we prove is generically sufficient, can potentially lead

to ill-conditioned systems for specific configurations. Combining

our approach with coordinate-based regularization can help avoid

such cases.

In the future, we are planning to use the newly introduced func-

tional representation for shape animation. In this context, it would

be interesting to establish a connection between the metric on the

space of functional deformation fields and different inner products

as suggested in [19]. It would also very interesting to use our rep-

resentation within the framework of shape spaces, e.g. [24], for

exploration and design.
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FUNCTIONAL MAP INFERENCE
Figures 23, 24 and 25 illustrate the performance of our functional

map computation on challenging non-isometric shape pairs.

C
a
t
-
L
i
o
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Geodesic Error
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 o

f C
or

re
sp

on
de

nc
es

Ground Truth Fmap
Normal Commutativity
SHOT
SHOT + normal com.
Normals
Laplacian Commutativity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Geodesic Error
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 o

f C
or

re
sp

on
de

nc
es

Ground Truth Fmap
Normal Commutativity
SHOT
SHOT + normal com.
Normals
Laplacian Commutativity

Similar pose Different Pose

Fig. 23. Evaluation of functional maps computed on 60 pairs of non-
isometric cat and lion shapes from [49].
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Fig. 24. Evaluation of maps computed on 60 pairs of non-isometric man
and woman shapes from the TOSCA dataset [12].

Fig. 25. An example of the point-to-point map evaluated in Figure 24. The
RGB channel (left column) represents the xyz-coordinates, which are trans-
ferred using the recovered point-to-point map.

INTRINSIC SYMMETRIZATION
Figure 26 provides an additional comparison of our intrinsic sym-

metrization method to a naive symmetrization method with and

without restricting the deformation to lie in the space spanned by a

basis of deformation fields, using the same protocol as in Figure 10.
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Fig. 26. Comparison between of our intrinsic symmetrization method and
the local method Eq. (13) with (+ markers) and without (× markers) using
our reduced basis of deformations. Our method produces a deformation
that is more isometric, while making resulting in a more symmetric shape
than both the original mesh and the naive methods.
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