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We	 worked	 on	 a	 new	 scheme	 of	 Quasi-Phase-Matching	
(QPM)	 based	 on	 the	 negative	 first-order	 of	 the	 spatial	
modulation	of	the	sign	of	the	second-order	nonlinearity.	
Applying	this	scheme	in	the	case	of	Angular-Quasi-Phase-
Matching	 (AQPM)	 in	 a	 biaxial	 crystal	 reveals	 new	
directions	 of	 propagation	 for	 efficient	 parametric	
frequency	 conversion	 as	 well	 as	 “giant”	 spectral	
acceptances.	The	experimental	validation	is	performed	in	
a	 periodically-poled	 Rubidium-doped	 KTiOPO4	 biaxial	
crystal.	 This	 new	 approach	 naturally	 extends	 to	 other	
periodically-poled	uniaxial	crystals	such	as	periodically-
poled	LiNbO3.		
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Phase-matching	is	the	privileged	way	to	optimize	the	performance	
of	 nonlinear	 optical	 frequency	 conversion.	 Usually,	 it	 can	 be	
obtained	by	using	the	birefringence	of	anisotropic	crystals,	which	
corresponds	 to	 birefringence	 phase-matching	 (BPM)	 [1,2].	
However,	 BPM	 conditions	 are	 strongly	 limited	 by	 the	 refractive	
indices	of	the	material	and	they	usually	forbid	the	exploitation	of	the	
highest	coefficient	of	the	second-order	electric	susceptibility	tensor.	
To	 overcome	 this	 limitation,	 quasi-phase	 matching	 (QPM)	 is	 a	
powerful	alternative.	It	is	based	on	a	periodical	modulation	of	the	
sign	of	the	second-order	optical	nonlinear	coefficient	of	anisotropic	
or	isotropic	non-centrosymmetric	crystals	[3,4].	We	propose	here	
the	development	and	the	experimental	validation	of	a	new	scheme	
of	 QPM	 that	 allows	 us	 to	 enlarge	 the	 spectral	 range	 of	 phase-

matched	generation	and	to	get	access	to	giant	spectral	acceptances.	
For	that	purpose,	we	studied	Second-Harmonic	Generation	(SHG)	
in	 the	 ferroelectric	 periodically-poled	 Rubidium-doped	 KTiOPO4	
crystal	(PPRKTP)	[5].	

The	 key	 parameter	 of	 QPM	 is	 the	 periodicity	 Λ	 of	 the	 spatial	
modulation	of	the	second-order	nonlinearity	along	the	direction	of	
propagation	of	three	interacting	waves	such	as	their	wavelengths	
fulfil:	1/λ! − 1/λ" − 1/λ# = 0.	Actually,	the	goal	is	to	compensate	
the	spatial	phase-mismatch	Δk****⃗ = k!****⃗ − k"****⃗ − k#****⃗ ,	with		,k$****⃗ , =

#%
&!
n$	

where	n$	is	the	refractive	index	at	the	wavelength	λ$	(p	=	1,	2,	3).	
Then	the	QPM	relation	writes	[3]:	

Δk****⃗ = mk'****⃗ 	 	 	 	 									 	 		(1)	

where	k'****⃗ ,	with ,k'****⃗ , =
#%
'
	,	is	the	grating	vector	oriented	along	

the	propagation	direction,	and	m	is	the	order	of	the	Fourier	
series.	Usually,	m	is	chosen	as	a	positive	integer	(m	≥	1),	as	
it	is	the	case	for	instance	while	targeting	the	largest	nonlinear	
coefficient	χ!!

(#).	It	is	shown	in	Fig.	1	(left)	in	the	optimal	case,	
i.e.	 for	 the	 lowest	 QPM	 positive	 order	 m	 =	 1.	 This	 is	 the	
classical	scheme	of	QPM	that	we	called	QPM-A.	However,	it	is	
also	possible	to	consider	propagation	directions	where	m	≤	
-1.	 This	 configuration	 has	 been	 previously	 theoretically	
considered,	 but	 without	 any	 phenomenological	
interpretation	 or	 experimental	 verification	 [6].	 We	 called	
here	 this	 new	 scheme	 QPM-B.	 As	 for	 the	 case	 of	 positive	
orders,	 the	 lowest	QPM-B	order	 (namely	m	=	 -1)	shown	 in	
Fig.	1	(right)	leads	to	the	best	efficiency	compared	to	higher	



QPM-B	orders	(namely	m	<	-1),	which	requires	the	shortest	
needed	QPM	periodicity.	
New	efficient	directions	for	parametric	frequency	conversion	
are	 expected	 while	 using	 QPM-B	 since	 the	 corresponding	
phase-matching	relation	is	different	from	that	of	QPM-A.	
	

 

Fig.	1.	Schemes	of	collinear	first-order	Quasi-Phase-Matching	(QPM).	k'""""⃗ ,	
where	$k'""""⃗ $ =

#%
'
	is	the	grating	vector	along	the	propagation	direction	

and	Λ	is	 the	 periodicity	 of	 the	 spatial	modulation	 of	 the	 sign	 of	 the	
second-order	non-linearity	along	the	propagation	direction;		k"""""⃗ , k#""""⃗ 	and	
k!""""⃗ are	the	wave	vectors	of	 the	 interacting	waves:	positive	 first-order	
QPM-A	(left),	negative	first-order	QPM-B	(right).	

		

Note	 that	 from	 the	 configuration	 of	 polarization,	 there	 is	 no	
difference	between	QPM-A	(m	=	1)	and	QPM-B	(m	=	-1)	because	in	
both	cases,	 there	are	23	=	8	possible	configurations	of	 refractive	
index.	Actually,	since	PPRKTP	is	a	birefringent	crystal,	there	are	2	
possible	refractive	indices,	i.e.	n$*	and	n$+		with	n$*	>	n$+	,	for	each	of	
the	 three	 interacting	 waves	 (p = 1,2,3)	 in	 the	 direction	 of	
propagation	 that	 is	 considered.	 These	 combinations	 are	 the	
following:	 :	 type	 I	 {n!+, n"*, n#*},	 type	 II	 {n!+, n"+, n#*},	 type	 III	
{n!+, n"*, n#+},	 type	 IV	 {n!+, n"+, n#+},	 type	 V	 {n!*, n"*, n#*},	 type	 VI	
{n!*, n"+, n#*},	 type	VII	{n!*, n"*, n#+}	and	type	VIII	{n!*, n"+, n#+}	 [6].	
Note	that	Type	V	corresponds	to	the	standard	QPM	configuration	
while	considering	PPRKTP	and	 isotypes,	 the	one	that	allows	the	
highest	nonlinear	coefficient	d33	to	be	excited.		

There	is	also	no	difference	between	the	two	cases	(m	=	1,	m	=	-1)	in	
the	initial	phases	φ1,	φ2	and	φ3	of	the	three	interacting	waves	when	
Eq.	(1)	is	fulfilled,	i.e.	for	a	perfect	QPM.	Actually,	in	this	case	the	
phases	are	locked	in	such	a	way	that	the	relation	φ3	–	φ1	–	φ2	=	±	
π/2,	as	in	the	case	of	BPM	[1].	

From	the	corpuscular	point	of	view,	the	QPM	condition	Δk****⃗ ,-. =
Δk****⃗ − mk'****⃗ = 	 k!****⃗ − k"****⃗ − k#****⃗ − mk'****⃗ = 0*⃗ ,	 can	 be	 seen	 as	 a	 m+3	
particle-interaction,	with	three	photons	from	the	three	interacting	
waves	and	m	quasi-particles	with	individual	momentum	k'****⃗ 	but	no	
energy,	which	depicts	the	momentum	transfer	possibly	supported	
by	the	nonlinear	lattice.	In	this	sense,	QPM	cases	with	positive	m	
orders	depict	 interactions	where	 the	nonlinear	grating	 transfers	
momentum,	i.e.	m	times	the	quantized	value	k'****⃗ ,	to	the	generated	
photon	at	k!****⃗ .		For	the	lowest	positive	order	(m	=	1)	three	particles	
with	 k"****⃗ , k#****⃗ 	 and	 k'****⃗ 	 are	 consumed	 to	 produce	 a	 new	 particle	
associated	to	k!****⃗ = k"****⃗ + k#****⃗ + k'****⃗ .	This	 is	somehow	similar	what	
occurs	 while	 considering	 the	 four-particle	 interaction	 that	
corresponds	to	Third	Harmonic	Generation	(THG)	governed	by	the	
third-order	optical	nonlinearity.	For	the	lowest	negative	order	(m	=	
-1)	two	particles	with	k"****⃗ 	and	k#****⃗ 	are	consumed	to	produce	a	new	
pair	of	particles,	one	being	the	new	photon	associated	to	k!****⃗ 	and	the	

other	 one	 being	 a	 momentum	 quantum	 k'****⃗ 	 transferred	 to	 the	
grating,	while	verifying	k!****⃗ + k'****⃗ = k"****⃗ + k#****⃗ 	[7].	This	is	similar	to	
another	 four-particle	 interaction	 corresponding	 to	 four-wave	
mixing	 (FWM).	 Another	 instructive	 analogy	 deals	 with	 light	
diffraction	by	a	periodic	acoustic	wave	under	the	Bragg	condition	in	
a	 thick	 acoustic	 grating	 configuration.	 In	 such	 a	 quasi-elastic	
diffraction	condition,	 it	 is	well	established	that	both	positive	and	
negative	 first-order	 Bragg	 interactions	 exist	 and	 are	 associated	
either	 to	 the	 annihilation	 or	 creation	 of	 an	 acoustic	 phonon,	
respectively	[8].	

From	the	thermodynamics	point	of	view,	efficient	QPM	can	occur	
whatever	the	sign	of	the	evolution	of	the	phase	mismatch	between	
the	 nonlinear	 polarization	 and	 the	 generated	 optical	 field.	 As	 a	
consequence,	 although	we	 generally	 deal	 with	 optical	materials	
with	 normal	 spectral	 dispersion	 (namely	 ∂n ∂λ⁄ < 0),	 the	
generalized	QPM	approach	with	positive	or	negative	orders	would	
also	 apply	 to	 materials	 with	 an	 anomalous	 spectral	 dispersion	
(namely	 ∂n ∂λ⁄ > 0).	 Because	 QPM	 most	 generally	 deals	 with	
materials	with	normal	dispersion,	situations	where	Δk****⃗ = m	k'****⃗ ≠
0*⃗ 	with	m > 0	mostly	 occur,	while	 	Δk****⃗ = 0*⃗ 	 is	 reached	 for	BPM	
situations.	In	this	sense,	the	existence	of	BPM	solutions	is	expected	
to	 be	 a	 necessary	 condition	 to	 access	 QPM-B	 solutions.	 	 As	 a	
consequence,	the	QPM-B	condition	can	be	fulfilled	only	for	types	
that	can	exhibit	BPM,	so	that	only	Types	I,	II	and	III	are	likely	to	be	
addressed	by	QPM-B	schemes	in	materials	with	normal	dispersion	
of	their	refractive	indices.		

We	used	an	experiment	of	Angular-Quasi-Phase-Matching	(AQPM)	
for	the	validation	of	QPM-B.		AQPM	is	a	generalization	of	QPM	since	
the	interacting	waves	are	allowed	to	propagate	at	any	angle	with	
respect	to	the	grating	vector	k'****⃗ 	,	giving	then	access	to	new	spectral	
ranges	and	giant	spectral	acceptances	[9-11].	Then,	it	can	be	applied	
to	QPM-A	as	well	as	QPM-B,	leading	to	the	so-called	AQPM-A	and	
AQPM-B	 used	 in	 the	 following.	 In	 these	 cases,	 the	 grating	
periodicity		Λ	has	to	be	replaced	by	an	effective	periodicity	defined	
along	the	collinear	propagation	direction	as	follows:	

Λ/00(θ, ϕ) = Λ |sin(θ) cos	(ϕ)|⁄ 	 	 	 										(2)	

Equation	(2)	gives	 the	grating	period	as	seen	 in	 the	direction	of	
propagation	 that	 is	 considered,	 with	 the	 angles	 of	 spherical	
coordinates	 θ	 and	 ϕ	 in	 the	 dielectric	 frame	 (X,Y,Z)	 [5].	
Λ/00(θ, ϕ)	ranges	 from	 a	 minimal	 value	 corresponding	 to	 a	
propagation	in	the	x-axis	that	is	orthogonal	to	the	domains	plane,	i.e.	
Leff(θ	=	90°,	ϕ	=	0°)	=	Λ,	to	a	maximal	value	when	the	propagation	
occurs	in	the	YZ	plane	that	is	parallel	to	the	domains	plane,	i.e.	Leff	(θ,	
ϕ	=90°)	®	¥.		The	last	situation	corresponds	to	BPM,	so	that	the	
QPM	 solutions	 converge	 for	 continuity	 reasons	 to	 the	 BPM	
solutions,	while	approaching	the	YZ	plane.	It	is	important	to	notice	
that	 the	 wave	 vectors	 of	 the	 three	 interacting	 waves	 remain	
collinear	during	an	AQPM-B,	as	it	is	the	case	for	AQPM-A	[9].	

The	measurements	were	carried	out	in	the	PPRKTP	biaxial	crystal	
with	a	grating	period	of	Λ	=	38.52	µm,	as	it	has	been	done	in	our	
previous	 study	 to	determine	 the	 conditions	of	AQPM-A	 for	 SHG	
(1/λ1 + 1/λ1→	1/λ#1).	The	corresponding	curves	are	plotted	in	
Fig.	2	[10].	We	considered	the	same	fundamental	wavelength,	i.e.	λω	
=	2.15	µm	for	the	present	study	of	AQPM-B.		At	this	wavelength,	
using	Eqs.	(1)	and	(2)	and	the	Sellmeier	equations	of	reference	[12],	
AQPM-B	is	expected	to	be	possible	for	both	type	I	and	type	II	(the	

𝑘" 	−	𝑘% 		= 	 𝑘' 	+	𝑘) 𝑘" 	+	𝑘% 		= 	𝑘' 	+ 	𝑘)
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latter	being	equivalent	to	type	III	in	the	case	of	SHG),	as	shown	in	
Fig.	2.	We	experimentally	focused	on	type	II	because	the	conversion	
efficiency	of	Type	I	AQPM-B	is	more	than	one	order	of	magnitude	
smaller	than	that	of	type	II,	as	it	is	also	the	case	for	BPM.		Moreover,	
the	tuning	curve	of	Type	II	AQPM-B	does	not	cross	any	other	SHG	
BPM	or	AQPM	curve	as	shown	in	Fig.	2,	leading	to	an	unambiguous	
identification	of	these	newly	proposed	solutions.	

	
Fig.	 2.	 Second-Harmonic	 Generation	 for	 a	 fundamental	
wavelength	of	λω	=	2.15	µm	in	a	PPRKTP	crystal	with	a	grating	
period	Λ	=	38.52	µm	and	shaped	as	a	sphere:	calculated	Types	I	
and	II	BPM	angles	(black	dashed	lines),	calculated	Types	I,	II,	IV	
and	V	AQPM-A	angles	(blue	dashed	lines),	Types	I	and	II	AQPM-
B	angles	(red	continuous	lines	for	the	calculations	and	red	stars	
for	the	present	measurements).	Black	and	blue	squares	are	the	
experimental	results	obtained	in	a	previous	work	[11].	θ	and	ϕ	
are	 the	 angles	 of	 spherical	 coordinates	 in	 the	dielectric	 frame	
(X,Y,Z):	ϕ	=	0°	corresponds	to	 the	XZ	plane,	ϕ	=	90°	 to	 the	YZ	
plane,	and		θ	=	90°	to	the	XY	plane.	

	

The	PPRKTP	crystal	with	a	grating	period	of	Λ	=	38.52	µm	was	cut	
as	 a	 sphere	 in	 order	 to	 be	 able	 to	 access	 any	 direction	 of	
propagation,	with	the	goal	of	being	able	to	determine	all	AQPM-B	
directions.		The	sphere,	with	a	diameter	of	4.76	mm,	was	oriented	
by	the	Laue	method,	mounted	on	a	goniometric	head,	and	placed	at	
the	center	of	a	motorized	Kappa	circle	allowing	the	sphere	to	rotate	
on	itself,	as	shown	in	Fig.	3	[10].	A	homemade	interfacing	program	
enables	 the	correspondence	between	the	angles	of	 the	spherical	
coordinates	(q,	ϕ)	and	the	Kappa	circle	angles	(k,	Fk,	Wk)	depicted	
in	Fig.	3.	In	order	to	get	the	whole	type	II	AQPM-B	curve,	the	sphere	
was	 successively	 oriented	 along	 the	 x-axis	 and	 the	 z-axis	 for	
orientations	 verifying	 42°	≤	 	q	 	≤	 65°	 and	 65°	≤	 q	 	≤	 90°,	
respectively.		A	pump	beam	with	a	fundamental	wavelength	of	2.15	
µm	 was	 emitted	 by	 a	 nanosecond	 BBO	 Optical	 Parametric	
Oscillator.	 It	was	 carefully	 focused	 at	 the	 center	 of	 the	 PPRKTP	
sphere,	which	 enabled	 a	 collimated	 propagation	 of	 the	 incident	
beam	along	the	diameter	of	the	crystal	sphere	[9].	The	polarization	
of	the	incident	beam	was	controlled	with	a	half-wave	plate.	The	SHG	
phase-matching	angles	corresponded	to	the	orientations	leading	to	
a	maximal	value	of	the	associated	conversion	efficiency	that	was	
detected	using	an	amplified	Si	Hamamatsu	C2719	photodiode.	A	
NIRquest	512	Ocean	Optics	spectrometer,	with	an	accuracy	of	±3	

nm,	was	 used	 to	 control	 and	 confirm	 the	 same	phase-matching	
wavelength	for	each	of	the	12	experimental	points	shown	in	Fig.	2.	

	
Fig.	 3.	 Schematic	 diagram	 of	 the	 experiment	 of	 Second-Harmonic	
Generation	(𝜔 +ω	→	2ω)	used	for	the	determination	of	the	angular	
distribution	of	QPM-B.	 (X,Y,Z)	 is	 the	dielectric	 frame	of	 the	PPRKTP	
sphere	with	a	grating	period	Λ.	The	sphere	is	placed	at	the	centre	of	a	
Kappa	circle	whose	rotation	angles	are	(k,	Fk,	Wk).	

	

The	 agreement	 between	 the	 measured	 and	 calculated	 phase-
matching	curves	is	excellent,	hence	providing	a	clear	demonstration	
of	type	II	AQPM-B	in	PPRKTP,	and	thus	the	proof-of-concept	for	
negative	order	QPM.	Based	on	the	existence	of	these	new	AQPM	
schemes,	 we	 investigated	 numerically	 the	 associated	 benefit	 in	
terms	of	 spectral	 tunability	 and	 associated	 spectral	 acceptances.	
Calculations	of	SHG	solutions	were	performed	in	the	XY	plane,	as	
this	plane	is	associated	with	high	effective	nonlinear	coefficients	for	
distinct	AQPM	types,	such	as	types	II	and	V.	

As	shown	in	Fig.	4(a),	Type	II	BPM	led	to	solutions	for	λω	spanning	
from	0.994	µm	to	1.079	µm,	and	from	3.180	µm	to	3.308	µm.	Type	
II	AQPM-A	showed	different	solutions	in	distinct	spectral	ranges,	
with	λω	spanning	from	0.952	µm	to	0.994	µm,	and	from	3.308	µm	to	
4.377	µm.		Type	II	AQPM-B	completed	the	spectral	range	of	the	SHG	
interaction	 in	 the	XY	plane,	with	λω	 spanning	 from	0.994	µm	 to	
3.308	µm.	Type	V	AQPM-A	covers	the	spectral	range	from	2.057	µm	
to	3.099	µm.	Non-critical	spectral	conditions	are	evidenced	at	λω	=	
1.567	µm	for	type	II	AQPM-B	and	at	λω	=	2.503	µm	for	Type	V	AQPM-
A,	when	f	=	25.53°	and	23.22°,	respectively.	The	associated	spectral	
acceptances	were	determined	from	the	full	width	at	0.405	of	the	
sinc2	interference	function.	It	comes:	L.δλ	=	76	nm.cm	at	λω	=	1.567	
µm	for	Type	II	AQPM-B,	and	161	nm.cm	at	λω	=	2.503	µm	for	Type	
V	AQPM-A,	as	shown	in	Fig.	4(b).	Thus,	it	appears	that	the	proposed	
AQPM-B	scheme	opens	new	potentialities,	especially	as	it	provides	
giant	acceptances	in	the	telecom	spectral	range	for	PPRKTP.	

To	ensure	 that	 the	calculated	situations	considered	 in	Fig.	4	are	
practically	relevant,	it	 is	pertinent	to	consider	the	figure	of	merit	
(FOM),	which	is	classically	defined	as:	

FOM	(θ, ϕ) 	= 	 2"##
$ (3,5)

6$%(3,5)∙6&,%(3,5)∙6$,%(3,5)
																																													(3)	

The	quantity	d/00(θ, ϕ)	 is	the	effective	coefficient,	and	n8,1(θ, ϕ)	
with	i	=	1	or	2,	and	n#1(θ, ϕ)	are	respectively	the	refractive	indices	
of	the	fundamental	and	second-harmonic	waves	in	the	direction	of	
propagation	that	is	considered.	

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90
0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

AQPM-A V

PPRKTP
L = 38.52 µm

 

 

A
Q

PM
 a

ng
le

 q
 (

°)

AQPM angle f (°) 

AQPM-A IV

AQPM-B II

 

AQPM-A II

AQPM-A I

AQPM-B I

 BPM I BPM II



	
Fig.	4.	(a)	Spherical	AQPM	angle	ϕ	versus	fundamental	wavelength	λω	
for	SHG	solutions	in	the	XY	dielectric	plane	of	the	PPRKTP	crystal	with	
the	poling	period	Λ = 38.52	µm:	type	II	BPM	(dashed	pink	line);	type	
II	AQPM-A	and	type	II	AQPM-B	(yellow	and	blue	lines,	respectively);	and	
type	V	AQPM-A	(red	line).	(b)	Spectral	dependence	of	the	sinc2(∆kL/2)	
interference	function	for		a	crystal	length	L	=	1	cm	under	the	undepleted	
pump	approximation	(UPA)	and	at	the	non-critical	wavelengths	for	type	
II	AQPM-B	SHG	(λω	=	1.567	µm,	fixed	solution	angle	at	f	=	25.53°,	blue	
line),	and	for	type	V	AQPM-A	(λω	=	2.503	µm,	fixed	solution	angle	at	f	=	
23.22°,	red	line).		

	

In	Table	1	are	given	 the	FOM	 for	 the	 two	non-critical	 situations	
depicted	 in	 Fig.	 4	 where	 the	 wavelength	 acceptances	 are	 the	
broadest,	i.e.			Type	V	AQPM-A	at	(f	=	23.22°,	λω	=	2.502	µm)	and	
Type	II	AQPM-B	at	(f	=	25.53°,	λω	=	1.567	µm).	The	values	of	the	
refractive	 indices	 and	nonlinear	 coefficients	d15	 and	d24	 that	 are	
used	come	from	reference	[12].	The	walk-off	angle	that	is	negligible	
in	the	XY	plane	of	PPRKTP	has	been	omitted.	

Table	1.		Figure	of	merit,	FOM	(θ=	90°,	𝛟),	values	in	the	XY	plane	
for	 type	 II	AQPM-B	and	 type	V	AQPM-A	at	non-critical	 spectral	
conditions.	

	
Note	that	the	effective	nonlinear	coefficient	is	defined	by	the	same	
expression	 for	 both	 the	 positive	 and	 negative	 first-order	 QPM	
conditions	 given	 a	 type	 and	 the	 associated	 polarization	
configuration.	As	a	consequence,	the	effective	nonlinear	coefficient	
contains	a	Fourier	factor	of	2/π	since	we	consider	the	first-order	
modulation	of	the	sign	of	the	nonlinearity,	as	in	the	case	of	AQPM-A.	
However,	 the	effective	 coefficient	 shows	different	values,	 as	 it	 is	
estimated	 along	 distinct	 propagation	 directions,	 respectively	

corresponding	 to	 the	AQPM-A	and	AQPM-B	solutions	of	Eq.	 (1).		
Even	if	the	FOM	of	Type	V	AQPM-A	in	the	XY	plane	is	14	times	higher	
than	that	of	Type	II	AQPM-B,	the	FOM	value	for	Type	II	AQPM-B	is	
not	negligible	and	it	shows	real	practical	potential	as	this	interaction	
occurs	in	the	telecom	C-band	close	to	1.55	µm.		

In	conclusion,	we	performed	a	comprehensive	interpretation	and	
experimental	validation	of	 a	generalized	description	of	 the	QPM	
interaction	by	incorporating	negative	QPM	orders,	in	addition	to	the	
well-known	positive	ones.	 	We	have	 labelled	QPM	with	negative	
orders	 as	 the	QPM-B	 cases,	 contrarily	 to	 the	QPM-A	 cases	with	
positive	QPM	orders.	We	have	demonstrated	the	existence	of	such	
QPM-B	situations	 in	 the	case	of	 type	 II	SHG	with	a	 fundamental	
beam	at	2.15	µm	in	a	PPRKTP	crystal	exhibiting	a	period	Λ	=	38.52	
µm	 perpendicularly	 to	 the	 ferroelectric	 domains.	 We	 have	
highlighted	that	AQPM-B	gives	access	to	extended	spectral	ranges	
and	non-critical	spectral	tolerances.	A	giant	spectral	tolerance	of	76	
nm.cm	at	λω	=	1.567	µm	was	determined	for	type	II	AQPM-B	in	the	
XY	plane,	which	interestingly	lies	in	the	telecom	spectral	range.	The	
associated	figure	of	merit	was	estimated	to	be	0.36.	The	generalized	
QPM	 description	 enlarges	 the	 palette	 of	 QPM	 interactions	 and	
widens	 the	 interaction	 of	 nonlinear	 interactions	 in	 periodically-
poled	media.	Knowing	the	diversity	of	BPM	cones	of	solutions	and	
the	 even	 larger	 one	 for	 the	 AQPM-A	 case	 [2,13],	 the	 newly	
demonstrated	 negative	 QPM	 solutions	 keep	 on	 enlarging	 the	
possibilities	 of	 favourable	 configurations	 for	 cascaded	 nonlinear	
parametric	 frequency	 conversion	 interactions,	while	 considering	
simultaneous	 phase-matching	 and/or	 positive/negative	 quasi-
phase	matching	conditions.	Finally,	this	approach	naturally	extends	
to	other	periodically	poled	uniaxial	crystals	such	as	the	periodically-
poled	LiNbO3	(PPLN).	

Funding.	 	 Centre	 National	 de	 la	 Recherche	 Scientifique	 (CNRS)	
International	 Project	 of	 Scientific	 Cooperation	 France	 –	 Sweden		
(PICS	no.	7739).	
	
Disclosures.	The	authors	declare	no	conflicts	of	interest.	

References 
1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 

127, 1918 (1962). 
2. J. P. Fève, B. Boulanger, and G. Marnier, Opt. Commun. 99, 284 (1993). 
3. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum 

Electron. 28, 2631 (1992). 
4. A. Arie, N. Voloch, Laser & Photon. Rev. 4 (3), 355 (2010).  
5. A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, Opt. 

Mater. Express 1, 201 (2011). 
6. V. Pasiskevicius, S. J. Holmgren, S. Wang, and F. Laurell, Opt. Lett. 27(18), 

1628 (2002). 
7. J.P. Fève, B. Boulanger and J. Douady, Phys. Rev. A 66, 063817 (2002). 
8. B. E. A Saleh and M. C. Teich, Wiley series in pure and applied Optics, 

Fundamentals of Photonics (second Edition, 2007). 
9. Y. Petit, B. Boulanger, P. Segonds, and T. Taira, Phys. Rev. A 76, 063817 

(2007). 
10. P. Brand, B. Boulanger, P. Segonds, Y. Petit, C. Félix, B. Ménaert, T. Taira, 

and H. Ishizuki, Opt. Lett. 34, 2578 (2009). 
11. D. Lu, A. Peña, P. Segonds, J. Debray, S. Joly, A. Zukauskas, F. Laurell, V. 

Pasiskevicius, H. Yu, H. Zhang, J. Wang, C. Canalias, B. Boulanger, Opt. Lett. 
43, 4276 (2018).  

12.  K. Kato and E. Takaoka, Appl. Opt. 41, 5040 (2002). 
13. Y. Petit, P. Brand, P. Segonds, B. Boulanger, Optical Materials 32, 1501–
1507 (2010). 

90

80

70

60

50

40

30

20

10

0

AQ
PM

 an
gle

 φ
 (°

)

3.63.43.23.02.82.62.42.22.01.81.61.41.21.0
Wavelength (µm)

 BPM  II=III
 AQPM-B II=III
 AQPM-A II=III
 AQPM-A V

(a)

(b)
2.

50
3 

μm

1.
56

7 
μm

PPRKTP – Plane XY
Λ = 38.52 μm

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

Sin
c2 (∆

kL
/2

)

3.63.43.23.02.82.62.42.22.01.81.61.41.21.0
Wavelength (µm)

 AQPM-B II=III
 AQPM-A V

PPRKTP
Plane XY

Λ = 38.52 μm
L = 1 cm

161 nm76 nm
f =23.22°f =25.53°



Full references 
 
1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, 
“Interactions between light waves in a nonlinear dielectrc”, Phys. Rev. 127, 
1918-1939 (1962). DOI: 10.1103/PhysRev.127.1918  

2. J. P. Fève, B. Boulanger, and G. Marnier, “Calculation and 
classification of the direction loci for collinear type-I, type-II and tipe-III 
phase-matching of 3-wave nonlinear-optical parametric interactions in 
uniaxial and biaxial acentric crystals” Opt. Commun. 99, 284-302 (1993). 
DOI: 10.1016/0030-4018(93)90092-J  

3. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-
matched 2nd harmonic-generation-tuning and tolerances”, IEEE J. 
Quantum Electron. 28, 2631-2654 (1992). DOI: 10.1109/3.161322  

4. A. Arie, N. Voloch, “Periodic, quasi-periodic, and random quadratic 
nonlinear photonic crystals”, Laser & Photonics Reviews 4 (3), 355-373 
(2010).  

5. A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, 
“5 mm thick periodically poled Rb-doped KTP for high energy optical 
parametric frequency conversion”, Opt. Mater. Express 1, 201-206 
(2011). DOI: 10.1364/OME.1.000201 

6. V. Pasiskevicius, S. J. Holmgren, S. Wang, and F. Laurell, 
“Simultaneous second-harmonic generation with two orthogonal 
polarization states in periodically poled KTP”, Optics Letters 27(18), 
1628-1630 (2002).  

7. J.P. Fève, B. Boulanger and J. Douady, “Specific properties of cubic 
optical parametric interactions compared to quadratic interactions”, 
Phys. Rev. A 66, 063817 (2002). DOI: 10.1103/PhysRevA.66.063817  

 
8. B. E. A Saleh and M. C. Teich, Wiley series in pure and applied Optics, 

Fundamentals of Photonics (second Edition, 2007). 
 

9. Y. Petit, B. Boulanger, P. Segonds, and T. Taira, “Angular quasi-phase-
matching”, Phys. Rev. A 76, 063817 (2007). DOI: 
10.1103/PhysRevA.76.063817  

10. P. Brand, B. Boulanger, P. Segonds, Y. Petit, C. Félix, B. Ménaert, T. 
Taira, and H. Ishizuki, “Angular quasi-phase-matching experiments and 
determination of accurate Sellmeier equations for 5%MgO:PPLN” Opt. 
Lett. 34, 2578-2580 (2009). DOI: 10.1364/OL.34.002578  

11. D. Lu, A. Peña, P. Segonds, J. Debray, S. Joly, A. Zukauskas, F. Laurell, 
V. Pasiskevicius, H. Yu, H. Zhang, J. Wang, C. Canalias, B. Boulanger, 
“Validation of the angular quasi-phase-matching theory for the biaxial 
optical class using PPRKTP”, Opt. Lett. 43(17), 4276-4279 (2018).  DOI: 
10.1364/OL.43.004276  

12.  K. Kato and E. Takaoka, “Sellmeier and thermos-optic dispersion 
formular for KTP”, Appl. Opt. 41, 5040-5044 (2002). DOI: 
10.1364/AO.41.005040  

13. Y. Petit, P. Brand, P. Segonds, B. Boulanger, “Classification of angular 
quasi-phase-matching loci in periodically poled uniaxial crystals”, 

Optical Materials 32(11), 1501–1507 (2010). DOI: 
10.1016/j.optmat.2010.06.011  

 


