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Abstract
Dictionaries are very useful objects for data analysis, as they enable a compact representation of large sets of objects through
the combination of atoms. Dictionary-based techniques have also particularly benefited from the recent advances in machine
learning, which has allowed for data-driven algorithms to take advantage of the redundancy in the input dataset and discover
relations between objects without human supervision or hard-coded rules. Despite the success of dictionary-based techniques
on a wide range of tasks in geometric modeling and geometry processing, the literature is missing a principled state-of-the-art
of the current knowledge in this field. To fill this gap, we provide in this survey an overview of data-driven dictionary-based
methods in geometric modeling. We structure our discussion by application domain: surface reconstruction, compression, and
synthesis. Contrary to previous surveys, we place special emphasis on dictionary-based methods suitable for 3D data synthesis,
with applications in geometric modeling and design. Our ultimate goal is to enlight the fact that these techniques can be used
to combine the data-driven paradigm with design intent to synthesize new plausible objects with minimal human intervention.
This is the main motivation to restrict the scope of the present survey to techniques handling point clouds and meshes, making
use of dictionaries whose definition depends on the input data, and enabling shape reconstruction or synthesis through the
combination of atoms.

CCS Concepts
•Computing methodologies → Shape modeling; Mesh models; Mesh geometry models; Point-based models; Shape analysis;

1. Introduction

The recent availability of large datasets of 3D objects has
inspired a new generation of algorithms that leverage the
knowledge derived from the whole dataset in order to address
fundamental problems, in fields such as correspondence [HWG14],
segmentation [XXLX14, XSX∗14], recognition [AME∗14],
surface reconstruction [XZZ∗14, SFCH12], synthesis [KCKK12],
modeling [YK14], or exploration [OLGM11]. These methods
are able to learn the underlying computational models allowing
representing and processing individual shapes or families of
shapes, without relying on hard-coded or user-provided rules.
However, the size and complexity of the input datasets affect both
the memory and computational costs of algorithms, making the
dataset representation and storage a particularly sensitive aspect.

In geometry processing and geometric modeling, data-driven
methods have long been restricted to example-based methods,
which, given an exemplar and a target object in a dataset,
transfer information from the former to the latter. While achieving
interesting results, these methods typically do not take advantage
of the entire object collection. With the advent of large repositories

of 3D shapes, novel methods have been proposed with the primary
aim of extracting shapes or sub-shapes from the input and combine
or blend them in order to form new models, giving the opportunity
to help artists in designing new objects [CK10, FKS∗04], to enrich
an existing set [KCKK12] or to support geometry processing
tasks such as shape reconstruction of scanned objects [PMG∗05].
In particular, co-analysis of shape families allows for high-level
shape understanding by finding correlations between multiple
objects, which facilitates generating similar shapes using the
learned generative grammar, as demonstrated by Talton et al.
[TYK∗12]. We refer the interested reader to the survey of Xu et
al. [XKHK15] for further information on data-driven methods in
geometry processing.

A key issue for many data-driven techniques is that the size of the
data can be computationally prohibitive. For example, ShapeNet
[CFG∗15] contains more than 60,000 models and requires more
than 100 gigabytes of storage. In some scenarios, it is important
to use a concise representation of the dataset, and dictionaries
make that possible by exploiting the fact that large datasets are
made of numerous similar shapes that can be reduced to a limited
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number of "atoms". The exact definition of an "atom" highly
depends on the type of the dictionary considered. For example,
it is possible to segment shapes and use the resulting segments
as the atoms of a dictionary. In linear algebra and analysis,
combining atoms (or words) of a dictionary is in general not
obtained through simple concatenation or placement, but instead by
using a (possibly linear) weighting; simple and famous examples
are the Fourier series, or the canonical basis (~x,~y,~z) of R3 for
3D shapes. In signal processing, atoms in dictionaries were often
restricted to orthogonal bases at first, for ease of use and signal
decomposition, but this orthogonality proved too limiting for
expressiveness and overcomplete dictionaries – meaning that some
atoms can be expressed as combinations of other atoms – became
increasingly popular. We refer to Rubinstein et al. [RBE10] for a
survey retracing the history of dictionaries in signal processing.
Dictionaries can also be very useful to reduce computations, as one
can focus on processing a few atoms instead of operating on the
entire input dataset.

While dictionaries are inherently sparse, they are not the only
sparse representation one can use in shape processing (other
possibilities include implicit surfaces or low-rank matrices, for
example). Covering all sparse representations is out of the scope
of this article, and we refer to Xu et al. [XWZ∗15] for a survey on
sparsity in geometric modeling.

Motivation. Many existing methods build and use dictionaries
for shape modeling and analysis. Although there are surveys on
data-driven techniques [XKHK15], there has been little treatment
in shape analysis specifically dedicated to dictionary-based
methods. One of the strengths of dictionary-based approaches is
that they allow both fitting input data to the atoms in the dictionary
(e.g., for shape reconstruction) and synthesizing novel shape
instances for shape modeling by recombining atoms. Moreover,
dictionary-based methods are versatile in the sense that the atoms
and the data do not have to be of the same type (triangle meshes
vs. point clouds vs. parametric planar patches). As an example, this
property is used in the surface reconstruction method of Xiong et
al. [XZZ∗14], where the atoms are 3D points while the dictionary
is coding an entire mesh. These techniques are also often used
as sub-parts of other methods, to analyze shape collections for
instance. We therefore claim that it is useful and important to
consider dictionaries as objects of study in their own right. To this
end we present an overview of recent techniques for building and
using dictionary-based representations in computer graphics and in
particular, geometry processing and modeling.

Scope. We restrict the scope of this survey to techniques handling
point clouds and meshes, making use of dictionaries whose
definition depends on the input data (data driven dictionaries),
and explicitly enabling shape reconstruction or synthesis from
the dictionary through the combination of atoms in a new point
cloud or new mesh – for the latter either by composing parts,
interpolating linearly or stitching atoms together. An important
aspect of dictionary-based analysis and modeling is to be able to
encode second-order constraints, which characterize how the atoms
fit together, in addition to what the atoms actually are. We discuss
ways of building and analyzing such second-order relations, via

statistical models such as Bayesian networks or inferred grammars
for example. Our goal is to describe the versatility and efficiency
of dictionary-based techniques in shape modeling and analysis, but
also their latent and unexploited potential, and to point out some
promising future directions of research.

Structure. First, we will define the scope more precisely and
will describe the various concepts used throughout this article
in Section 2; this section also includes a comparative table
of the presented methods. We will then present the relevant
articles grouped by their application domain, starting with surface
reconstruction (Section 3), followed by compression (Section 4),
and then shape synthesis and modeling (Section 5). We conclude
with a discussion of the presented methods in Section 6.

2. Preliminaries

2.1. Data-drivenness

Data-driven methods are motivated by the fact that the study of a
whole set often brings more understanding than the study of the
objects taken independently. The aim is to learn a representation
from the dataset enabling complex and precise processing on
large sets of shapes. Before the advent of data-driven techniques,
such a goal was achieved with knowledge-driven methods, in
which patterns are extracted using complex hard-coded rules that
cope poorly with the large structural variability of big datasets.
Knowledge-driven methods (such as the surface approximation
of Xu et al. [XWY∗16], using a dictionary of user-defined
polynomials) are out of the scope of this survey. We refer to Xu
et al. [XKHK15] for a survey on data-driven methods in modeling
geometry in general.

2.2. Dictionaries

Definition. The term "dictionary" is very broad and sometimes not
precisely defined. We refer to a dictionary as a set of elements,
called atoms, equipped with a combination operator between
elements in order to create new elements. The set of elements
is usually overcomplete, meaning that there are more atoms than
necessary in order to generate a given combination. Formally, we
define a dictionary as:

dictionary = {{atoms...},combination}
combination : coefficients→ object

The choice of atoms, coefficients and combination operator
depends on the application. For example, in geometric modeling
atoms can be meshes in perfect correspondence, with a linear
interpolation as combination operator, or entire shapes, with the
union as combination operator in order to compose entire scenes,
whereas, in some applications of language processing, atoms can
be words and the combination be a concatenation operator. Hence
we try to characterize what types of atoms and combinations are
considered at each stage of this survey. Let us note that this abstract
notion of dictionary is similar to the definition of structure in
the survey of Mitra et al. [MWZ∗13] on structure-aware shape
processing. Our focus is complementary: their structure reflects
the relations between distinct parts of shapes while we consider
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techniques that build and use dictionaries derived from shape
collections, and that do not necessarily use (distinct) parts.

From dictionaries to shapes. In most of the approaches covered
in this survey, atoms will be shapes or shape parts. However,
for a given type of atoms, the combination method can vary
greatly. A conceptually simple combination method is a linear
interpolation of atoms, as it is often done in 3D morphing, where
the vertex positions of different poses are interpolated following
the (potentially animated) coefficients given by the user, which
describe the amount of influence of each pose in the output. Note
that such a combination require perfect correspondence between
meshes. Some methods use more advanced interpolations involving
the minimization of a stretch energy which takes into account
some constraints that a simple linear interpolation method would
ignore, like muscle deformations at the elbow when going from
a straight arm to a folded arm [GCLX16]. Another combination
operator example is concatenation: here, the atoms of the dictionary
are thought as different components of a shape that are put
together when constructing a new element. The coefficients are
not just real number in this case, but more complex structure
encoding which parts are present, as done by Kalogerakis et al.
[KCKK12] for example. It is also possible to blend different
meshes using dictionaries, and in this case the coefficients will be
spatial functions that control which region of which mesh to stitch
into the final one.

In this survey, the effectiveness of dictionary-based modeling
relies on the ability to reconstruct shapes from a dictionary
and a set of coefficients, which can have various forms, from
simple real numbers to user sketches. This excludes methods such
as bag-of-words methods (or bag-of-features) from data-driven
dictionary-based approaches, notably used in object retrieval from
databases (as in Shape Google [BBGO11], or the shape retrieval
technique of Lavoué [Lav11]). To the best of our knowledge,
generative applications using bag-of-words, such as PhotoSketcher
[ERH∗11], are only present in the image processing field.
Similarly, while one could build a dictionary from the result of
segmentation or symmetry detection techniques, such as the partial
symmetry detection of Mitra et al. [MGP06], most of these methods
do not focus on shape modeling and hence are not included in this
survey. We refer the reader to the survey on symmetry of Mitra et
al. [MPWC13] for more information.

2.3. Dictionary learning

Obtaining a dictionary can be done in several ways: it can
be provided explicitly, in which case it is not data-driven (and
hence methods using such dictionaries will not be discussed
here); it can be the input dataset itself, or it can be learned
from the dataset. Atoms as well as the combination operator
and coefficients can sometimes be learned. Dictionary-learning is
a part of machine-learning and a large body of algorithms and
techniques have been developed for this matter. Before describing
the classification of the survey, we will introduce some of these
algorithms, focusing on the most fundamental ones shared by many
techniques presented in this survey.

PCA. The simplest and most commonly-used algorithm is
Principal Component Analysis: given a set of vectors as input
(all of the same dimension), it outputs an orthogonal basis:
the basis vectors (also called components) are the directions of
(progressively) least-variance of the data. This algorithm computes
both the atoms – the basis vectors – and the coefficients, and is
broadly used for dimensionality reduction. Atoms are combined
using a linear combination, i.e. by multiplying the basis matrix with
a vector of coefficients.

A limitation of PCA is that the coefficients that it produces
can involve many basis vectors. In practice one is often interested
in learning a sparse representation, that allows to express the
data using as few as possible coefficients. In general, finding
a dictionary with a sparse representation is a NP-hard problem
[Vav09, Til15], so algorithms aim at finding a good approximation
in an acceptable time. Below we review some commonly used
approaches.

K-SVD. Introduced by Aharon, Elad and Bruckstein [AEB06],
K-SVD is a generalization of the k-means algorithm. It represents
a dictionary of K atoms {ddd j} in Rn by a n×K matrix D. With
yyy ∈ Rn a signal, its decomposition is represented as a coefficient
vector ccc ∈ RK , such that yyy = Dccc (or as close as possible). This is
achieved by optimizing:

min
D,C
‖Y −DC‖2

F subject to ∀i ,‖ccci‖0 ≤ T0

where Y is the matrix of signals {yyyi}, C the matrix of coefficients
(so we have yyyi =Dccci), F is the Frobenius norm, T0 is a constant and
‖.‖0 is the number of non-zero coefficients. The constraint enforces
sparsity of the decomposition onto the output dictionary. This
optimization is performed in two main steps: first, D is fixed and
the best (approximate) coefficients C are found, using an algorithm
like Orthogonal Matching Pursuit (described below); second, C is
fixed, and D is updated, one atom at a time in a greedy fashion, the
other atoms being fixed. This is done by minimizing for every k:

‖Y −DC‖2
F =

∥∥∥∥∥
(

Y −∑
j 6=k

ddd jccc
′
j

)
−dddkccc′k

∥∥∥∥∥
2

F

= ‖Ek−dddkccc′k‖
2
F

where ccc′j is the j-th row of C. This step is commonly solved using
Singular Value Decomposition – hence the name of the algorithm
– and the solution to this new minimization is the updated column
vector. All of this is done iteratively until sufficient convergence,
i.e., ‖Y −DC‖ ≤ ε. Note however, that the global optimum is not
guaranteed to be found.

Orthogonal Matching Pursuit (OMP) is an extension of
Matching Pursuit, which was introduced by Pati et al. [PRK93].
From an input dictionary and coefficients, it aims at producing
better coefficients to favor sparsity, keeping the dictionary constant.
The optimization is cast as decreasing iteratively the residual
by greedily considering new atoms onto which the signal is
decomposed. Given a dictionary D ∈ Rn×m a vector fff ∈ Rn, and a
greediness factor λ ∈ [0,1], the initialization is as follows:

D0 = ∅ already processed atoms
RRR0 = fff residual of fff still to be approximated
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At iteration k (starting at 0), the following steps are performed:

1. find l so that dddl ∈ D\Dk and |〈RRRk,dddl〉| ≥ λsupddd∈D\Dk
|〈RRRk,ddd〉|

2. if this product is lower than a given threshold, stop,
3. permute columns k+1 and l of the dictionary D,
4. compute the set of coefficients {bk

j}k
j=1 such that

dddk+1 =
k

∑
j=1

bk
jddd j + γγγk with 〈ddd j,γγγk〉= 0, ∀ j ∈ [1..k]

5. with αk = 〈RRRk,dddk+1〉‖γγγk‖
−2, compute {ck+1

j }
k+1
j=1:

∀ j ∈ [1..k], ck+1
j = ck

j−αk bk
j ; ck+1

k+1 = αk

6. update the model:

fff k+1 =
k+1

∑
j=1

ck+1
j ddd j

RRRk+1 = fff − fff k+1

Dk+1 =Dk
⋃
{dddk+1}

The last coefficients found are the result of the algorithm,
decomposing fff on D, with the guarantee that no more than m
iterations will be needed.

Alternating direction method of multipliers (ADMM) is an
optimization algorithm that is widely used in machine learning
and was proposed by Glowinski and Marrocco [GM75] and Gabay
and Mercier [GM76]. It regained interest more recently after the
related publication of Boyd et al. [BPC∗11], and is also used to
learn dictionaries. Given 2 functions f ,g : Rn → R, we iteratively
solve the following problem:

minimize f (xxx)+g(yyy)

subject to Axxx+Byyy = ccc

The augmented Lagrangian is defined as

Lρ(xxx,yyy,zzz) = f (xxx)+g(yyy)+ zzz>(Axxx+Byyy− ccc)+
ρ

2
‖Axxx+Byyy− ccc‖2

2

and each iteration is composed of three steps:

Minimize xxx: xxxk+1 = argmin
xxx

Lρ(xxx,yyyk,zzzk)

Minimize yyy: yyyk+1 = argmin
yyy

Lρ(xxxk+1,yyy,zzzk)

Dual update: zzzk+1 = zzzk +ρ(Axxxk+1 +Byyyk+1− ccc)

This method is an extension of the Method of Multipliers, which
considers an additional term ρ

2‖Axxx+Byyy−ccc‖2
2 in order to regularize

the dual update. ADMM is guaranteed to converge for fixed ρ,
assuming that f and g are closed proper convex functions, though
it is not guaranteed to find the global optimum. This algorithm is
widely used in machine learning [BPC∗11], and it has been used
successfully to learn dictionaries in some methods presented in
this survey. In this context, the coefficients and the dictionary are
often optimized alternatively, sparse coding being used to learn the
coefficients and ADMM being used to learn the dictionary.

While these algorithms are commonly used in the literature
presented in this survey, they are not specific to 3d modeling, and
are widely used in other such as signal and image processing,

with image denoising as a common example. Authors such
as Mairal [Mai10] and Elad [Ela10] have thoroughly detailed
dictionary-learning and sparse coding, from the point of view of
image processing. We will focus on 3d modeling in the next section.

2.4. Classification

We group techniques by the application domains in which
dictionaries have been exploited the most: surface reconstruction,
compression, synthesis and modeling. However, even within the
same application domain, related methods can feature a great
variability in the way dictionaries are used. We summarize all the
methods presented in this survey in Table 1. The columns represent
which elements compose a dictionary, what is learned and how it
is learned, what type of shape is obtained by combining atoms, and
the method application domain.

Atom type. Most of the methods use shapes or shape parts
as atoms. In this column of the table, shape means that the
representation of the shape is irrelevant, because it will only be
placed in a scene – usually in part-based synthesis techniques
[CKGK11, TYK∗12]. A certain number of techniques need meshes
as atoms as they blend or stitch them, and the algorithm they use
is specialized for this representation. Less common, mesh vertices
are used for surface reconstruction, and allow considering the
reconstructed mesh as the dictionary itself.

(a)

(b) α + β =

(c) Ta ∪ Tb =

(d) Sa
⊕

Sb =

Figure 1: Various combination operators. (a) example atoms used
in the following: a cube and a sphere with the same connectivity. (b)
interpolating atoms by interpolating vertex attributes, here position
and color (coefficients are not always scalars). (c) compositing
(placing) shapes together, using transformation matrices. (d)
stitching objects together, resulting in a watertight output mesh. Sa
and Sb depict the regions of interest for each atom.

Combination operator. The second important ingredient in the
definition of a dictionary is the combination operator, which here
can be either interpolation, composition, or stitching. An overview
of the differences between these classes of combination operators
is shown in Figure 1. Interpolation refers to linear interpolation,
with scalar coefficients that can be defined per atom [BV99] or
can be spatially-varying [NVW∗13]. This class of combination
operators may impose constraints on the representation of the
atoms (e.g., atoms may be meshes constrained to contain the same
number of vertices and connectivity). Composition of a set of atoms
refers to placing atoms, potentially with rotation and scaling, into
the final object, which can be an artistic creation [CKGK11] or
even a fully reconstructed scene [LDGN15]. It usually only needs
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Method Section
Dictionary Learning

Output Application
Atom Type Combination A C O Algorithm

[XZZ∗14] 3.1 Mesh vertices Interpolation Sparse coding + ADMM Mesh Surface reconstruction
[PMG∗05] 3.2 Mesh Stitching Region growing segmentation Mesh Surface reconstruction
[SFCH12] 3.2 Shape Composition Match silhouette contours in 2D and 3D Scene Surface reconstruction
[SKAG15] 3.2 Shape Composition Random Decision Forest [Bre01] Point cloud Surface reconstruction
[SMNS∗13] 3.3 Shape Composition Voting scheme Scene Surface reconstruction
[LDGN15] 3.3 Shape Composition Match corner descriptors Scene Surface reconstruction
[vdHRD∗15] 3.3 Shape Composition Minimize silhouettes differences Scene Surface reconstruction
[NXS12] 3.3 Shape Composition Random Decision Forest [Bre01] Scene Surface reconstruction
[KMYG12] 3.3 Shape Composition RANSAC Primitive Fitting [FB81] Scene Surface reconstruction
[SXZ∗12] 3.3 Shape Composition Graph cuts [BVZ01] Scene Surface reconstruction
[AM00] 4.1 Mesh Interpolation PCA Mesh Compression
[KG04] 4.1 Mesh Interpolation PCA Mesh Compression
[LCS13] 4.1 Mesh Interpolation PCA Mesh Compression
[DCV14] 4.2 Image patch Interpolation K-SVD Point cloud Compression
[YLÖ∗16] 4.2 Image patch Interpolation K-SVD Point cloud Compression
[GDGP16] 4.3 Image patch Interpolation K-SVD / Custom Mesh Compression / Synthesis
[BV99] 5.1.1 Mesh Interpolation PCA Mesh Synthesis / Morphing
[SQRH∗16] 5.1.1 Mesh Interpolation PCA Mesh Synthesis / Morphing
[NVW∗13] 5.1.2 Mesh Interpolation Sparse coding + ADMM Mesh Synthesis / Morphing
[HYZ∗14] 5.1.2 Mesh Interpolation Sparse coding + ADMM Mesh Synthesis / Morphing
[WLZH16] 5.1.2 Mesh Interpolation Sparse coding + ADMM Mesh Synthesis / Morphing
[SZGP05] 5.1.3 Mesh Interpolation Minimize deformation gradients Mesh Synthesis / Morphing
[FB11] 5.1.3 Mesh Interpolation Minimize discrete shell energy Mesh Synthesis / Morphing
[Wam16] 5.1.3 Mesh Interpolation Minimize local deformations Mesh Synthesis / Morphing
[GCLX16] 5.1.4 Mesh Interpolation Dijkstra + smooth interpolation path Mesh Synthesis / Morphing
[KJS07] 5.2.1 Mesh Stitching Segmentation Mesh Synthesis / Modeling
[XXM∗13] 5.2.1 Mesh Stitching Match suggestive contours Mesh Synthesis / Modeling
[AKZM14] 5.2.1 Shape Composition [KLM∗13] + Multi Dimensional Scaling Scene Synthesis / Modeling
[CKGK11] 5.2.2 Shape Composition JointBoost [TMF07] on Bayesian network Scene Synthesis / Amplification
[KCKK12] 5.2.2 Mesh Stitching Greedy search + Cheeseman-Stutz score [CS96] Mesh Synthesis / Amplification
[TYK∗12] 5.2.3 Shape Composition Markov Chain Monte Carlo Scene Synthesis / Amplification
[XZCOC12] 5.2.4 Shape Composition Genetic algorithm Scene Synthesis / Exploration

Table 1: Summary of presented methods. Legend: A= atoms, C = coefficients, O = combination operator / learned, not learned.
"Not learned" means raw input for atoms, and independent from data for combinations and coefficients. A scene is a set of disjoint shapes,
or more precisely {(Si,Ti) |Si = shape i, Ti = transformation i}.

4× 4 transformation matrices, with the possibility of placing the
same atom at several locations; in general, this operator can work
with any shape representation. Note that it is possible to have
meshes assembled by composition, although in that case, they will
simply be composed of several disconnected components. Finally,
stitching meshes together refers to taking atoms (or their parts) and
gluing the triangles in order to form a watertight mesh, to output a
unique mesh [PMG∗05] or to support organic shapes [KJS07] for
instance. For example, composition and stitching are typically used
by part-assembly methods.

Learning. This section of the table describes the elements of the
dictionary that are learned: atoms, coefficients, and combination
method, when applicable. The learning step is often done by
minimizing an energy on the input dataset. Sometimes atoms and
coefficients are not sufficient for the combination operator to output
a shape, and some information may be added – such as the result
of another energy minimization depending on the input data for
example; in this case we say that the combination operator is
learned. Finally this section of the table is completed with a short
summary of the learning algorithms that are used, the most frequent
ones being explained in the preliminaries (Section 2).

All the methods mentioned in this survey appear in Table 1 in
the order in which they are introduced in the text, and are discussed

in the Sections 3, 4, and 5 corresponding to the specific application
that they address in geometry processing and modeling.

3. Surface reconstruction

The first application domain that we consider is surface
reconstruction from unorganized point clouds. Surface
reconstruction algorithms aim at generating piecewise smooth
2-manifolds – often in the form of triangle meshes – from point
clouds potentially corrupted by noise, outliers and missing parts.
In this context, dictionaries are often sets of high-quality shapes or
point-clouds, whose knowledge helps removing noise, detecting
outliers and filling holes in the input.

Figure 2: Overview of the dictionary of Xiong et al. [XZZ∗14].
Left: points in blue are from the point-cloud, points in red are the
reconstructed vertices. Right: problem mathematical formulation.
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Figure 3: Comparative results for surface reconstruction. From
left to right: input point cloud, reconstruction using APSS, using
RIMLS, and using the method of Xiong et al. [XZZ∗14].

3.1. Mesh as a dictionary

Xiong et al. [XZZ∗14] propose a dictionary-based method to
reconstruct a surface given as input a noisy point cloud, with the
input points P ∈ R3×n being considered as individual signals.
These points are expressed as linear combinations of the vertex
positions V ∈ R3×m of the output mesh, which acts as the learned
dictionary (see Figure 2). Specifically,

P =VC+Z

where Z is an offset matrix whose deviation to 0 is penalized. This
decomposition is obtained as the optimizer of

min
V,C

∑
i
‖pppi−V ccci‖q

2 +EReg(V,C)

s.t. ‖ccci‖0 ≤ 3,‖ccci‖2 = 1,ccci ≥ 0

EReg(V,C) being a regularization energy favoring equilateral
triangles and enforcing input normals if given in the input point
cloud. Additionally, the output mesh is constrained to be manifold.

The learning algorithm updates C and D iteratively, using
ADMM for the update for the atoms, and optimizing mesh
connectivity (while preserving manifoldness) during the process.

Analysis. The method of Xiong et al. [XZZ∗14] is quite atypical
in the sense that the dictionary is the result of the method, instead
of just being an intermediate tool, so that the entire problem is
transformed into a dictionary learning one, allowing to leverage
advances in this domain. By using a l2,q norm (q≤ 1), the method
can gain robustness to outliers and can outperform standard moving
least squares (MLS) techniques such as algebraic point set surfaces
(APSS) [GG07] or robust implicit moving least squares (RIMLS)
[ÖGG09] in challenging settings (Figure 3), while being similar
performance-wise, even if the non-convex optimization model
does not guarantee global optimality. This method was extended
beyond point clouds in the image meshing algorithm of Xie et al.
[XfT16], in which images are considered as 5D point clouds with
components (x,y,red,green,blue).

3.2. Shape completion

A different approach was proposed by Pauly et al. [PMG∗05],
which uses a database of manifold surfaces as a dictionary, and

shows how to complete scanned point clouds in order to fill holes,
but also remove noise and detect outliers. The algorithm takes
as input a point cloud and a "knowledge database", which is a
dictionary of manifold meshes. The input shape is first queried
in the database in a supervised manner, the user providing input
in the form of tags and the query making use of point-based
descriptors defined on the input point cloud, which are enriched
with a confidence score to account for input defects robustly.
All models that are found are non-rigidly registered to the point
cloud and deformed. They are then segmented following the
distortion and geometric errors of the deformation; these segments
are stitched together to construct the output mesh fitting the input
cloud. As more and more objects are scanned and processed, the
final reconstructed surfaces further enrich the dictionary. Therefore,
previous scans help in the processing of the following ones.
Figure 4 illustrates the reconstruction of a scan that is missing large
parts.

Ground-truth Scan Reconstruction

Figure 4: Reconstruction using the method of Pauly et al.
[PMG∗05]. This technique can cope with large missing parts in
scans, such as the other side of the creamer (upper part of the scan).

Contrary to the method of Pauly et al. [PMG∗05], which uses
segments extracted from the shapes in its dictionary, methods
introduced by Shen et al. [SFCH12] and Sung et al. [SKAG15]
directly take a database of segmented and labeled shapes as input.
However, they differ in their registration process and in the type of
content they output, a scene for the first and a consolidated point
cloud for the second.

RGBD-based. The approach presented by Shen et al. [SFCH12]
takes as input RGBD data, processes both the point cloud and the
RGB captured image, and outputs an assembly of parts present
in its dictionary (see Figure 6 for the overview). The first step
consists in registering shapes in the dictionary to the input cloud.
Individual parts are then compared to the input and selected parts
are assembled to create the output shape. This two-level matching is
less computationally expensive than the direct fitting of segmented
parts to the input point cloud since it allows narrowing the search
window of individual parts to those that are located around the
target local geometry, and it provides robustness as it enforces
global coherence in the output, in the sense that parts are placed
where they are expected to be present considering the input dataset.
For example, the seat of a chair will only be searched and placed
near the center of the scan.

The matching of individual parts is made by comparing the shape
and the part both in 3D (geometry) and in 2D (comparing the 2D
distance fields obtained from the silhouettes of the input image
and the part, provided its current alignment). After the matching
step, aligned parts are given a matching score, and ordered per
category. A subset of top ranked parts is then selected per category,
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Figure 5: Overview of the method of Sung et al. [SKAG15]. From
an input scan and training data (left), the scan structure is inferred
(middle left); possible reconstruction from symmetry and parts
(middle right) are used to complete the final point cloud (right).

Figure 6: Structure recovery of Shen et al. [SFCH12]. Given an
input point-cloud and its associated RGB image from the scanner
(left), and a dictionary of parts and objects (middle, parts in light
red), a similar object is reconstructed (right). While structurally the
same, the original object and the reconstruction exhibit differences
(e.g., the position where the seat begins, the shape of the back, etc).

based on criteria such as geometric fidelity, proximity, and part
overlap. At this step, symmetry is accounted for by duplicating
related parts, if the symmetry associated with the input object is
successfully matched against the input point cloud. Finally, parts
are joined by minimizing contact point distances, in order to form
a well-connected and visually-pleasing output model.

Point-based. In contrast to the method of Shen et al. [SFCH12],
the approach of Sung et al. [SKAG15] does not use RGB images,
does not assume that shapes can be rigidly aligned with the point
cloud, and outputs a consolidated point set only. The authors
estimate the structure of the shape from the dictionary, which is
composed of a set of parts and a set of symmetries, by minimizing
an energy that takes into account low-level components such
as point segmentation (favoring smooth and accurate segments)
and part assignation to points (favoring points close to the
surface of their part), and high-level components such as pairwise
relationships and symmetries. Finally, in the completion step,
new points are added: first, points are duplicated following the
symmetries of the parts they belong to, and second, points are
generated from the voxelized parts in the database (see Figure 5
for a visual overview of this workflow).

Analysis. These methods produce various types of output: the
modeling by example of Pauly et al. [PMG∗05] outputs a watertight
mesh, the structure recovery of Shen et al. [SFCH12] outputs an

assembled mesh (i.e., a combination of parts) and the approach
of Sung et al. [SKAG15] outputs a point cloud. They all provide
good results in presence of moderately-incomplete data and /
or noise, and the last two techniques [SFCH12, SKAG15] make
extensive use of symmetries either detected in the point cloud
or present in the dictionary to help recovering shapes with a
satisfactory global structure even when large parts are missing in
the input point cloud, although the method of Sung et al. [SKAG15]
reaches better reconstruction quality in that case. However, the first
method [PMG∗05] requires user input and is therefore prone to
human-error in the choice of tags describing the scanned object,
while the second one [SFCH12] does not reconstruct the scanned
object but outputs an object with similar structure, since it is
restricted to the assembly of parts that are present in its dictionary.
The atom placement model also does not make possible shape
variations not explained by spatial layout, such as facades with
irregular structures. Since the third method [SKAG15] only outputs
a point cloud, an additional surface reconstruction algorithm
[GG07, ÖGG09, KH13, XZZ∗14] has to be used to recover a
surface manifold from it. Finally, a drawback of all these methods
is their heavy reliance on the completeness of the dictionary, for
target shapes to be expressible with the atoms.

3.3. Scene reconstruction

In the same spirit, it is possible to reconstruct entire 3D scenes
by placing shapes extracted from a dictionary. In this context, a
given shape can appear several times at several locations of the
scene. While the combination is simple (union), the extraction
of the coefficients (which are transforms) can be rather complex.
SLAM++ [SMNS∗13] and the method of Li et al. [LDGN15] are
particularly efficient, and allow the user to reconstruct an entire
room in real-time using a simple hand-held sensor. All captured
frames are processed (not just the last one), meaning that the
accuracy of the reconstruction augments progressively.

The SLAM++ method [SMNS∗13] tracks the object’s position
and camera pose simultaneously. Objects are recognized and their
placement determined at the same time, using the method of Drost
et al. [DUNI10], which consists in finding similar point-pairs in
the depth image and in the dictionary. First, the point-pairs are
generated for each object in the database by randomly sampling
points and computing all possible pairings, and these pairs are then
put in a dedicated search structure (one per shape). After filtering
the input image, point-pairs are generated the same way and these
pairs are queried in the structure via a voting scheme, which
gives the position of matched shapes. Note that this method is
GPU-friendly and therefore allows for a fast scene reconstruction.

The problem with SLAM++ is that these point-pair descriptors
are highly discriminative and require almost exact matches, which
implies that in practice it works well only for extremely rich
dictionaries, and that scanned models should be cleaned before use.

To address this issue, Li et al. [LDGN15] instead match
key-point descriptors, computed similarly on each shape of the
dataset and on the input image, the latter being converted to
a signed distance function (SDF) [NZIS13, NDF14]. They are
obtained by detecting corners and enriching them with descriptors
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of their geometric neighborhood (such as the local distance field),
so the dictionary atoms of this approach are shapes with their set of
key-point descriptors. Large databases are managed by clustering
the objects on their descriptors. The object matching the scan (i.e.
the one with the closest descriptors) is then added to the scene.
Since all necessary comparisons are easily parallelized on the GPU
(as with SLAM++ [SMNS∗13]), this technique provides real-time
results. Furthermore, the main advantage of this method compared
to the previous one is that it is highly robust to missing data, notably
because the SDF representation aggregated over several frames is
accurate, yields robust normals and is resistant to noise.

Van den Hengel et al. [vdHRD∗15] reconstruct the structure
of real-world Lego assemblages from a set of silhouette images
and a dictionary of Lego parts (see Figure 7). By expressing
silhouettes as vectors, with one vector for all the input silhouettes
and one vector per part (which is the concatenation of this part
rendered with the projections of all input images), they solve the
structure recovery problem with an energy minimization, the first
term favoring combinations of silhouettes close to the input images,
and the second favoring sparse coefficients vectors. For plausible
results, they take in account overlapping silhouettes, and they aim
for physical plausibility by avoiding atom intersections and floating
parts. By using silhouettes, this method is robust to noise. However,
it is computationally expensive due to the complexity of the system
to solve, and can reconstruct shapes with holes when viewed from
angles not corresponding to an input image.

Indoor scene reconstruction. Among previous data-driven
dictionary-based scene reconstruction methods, some are
specialized to indoor scenes, as shown by Nan et al. [NXS12],
Shao et al. [SXZ∗12], and Kim et al. [KMYG12]. For all of these
techniques, the atoms of the dictionary are shapes given as input,
and they are composed together as the user scans the room.

The main idea of the method of Nan et al. [NXS12] is to alternate
between segmentation and classification in a feedback loop. Before
scanning a scene, shapes (atoms) are preprocessed : they are used
to learn a Randomized Decision Forest, which is a robust classifier
in presence of incomplete data. In the runtime phase, the input
point cloud is oversegmented, and the adjacency of these segments
is computed. Each step in the loop works on a candidate patch
(aggregation of segments), first trying to extend it with the neighbor
segment with the highest classification likelihood. To improve the
segments, templates associated with the class of the patch is fitted to
the patch point-cloud, in order to detect outliers and exclude them.

The approach of Kim et al. [KMYG12] requires first scanning

Figure 7: Extracting Lego structures [vdHRD∗15]. From left to
right: an input image is transformed into a silhouette image, used
to retrieve the object 3D structure. Finally, a possible application
is the automatic generation of assembly instructions.

all potential objects individually, before they can be automatically
segmented and approximated by simple primitives using RANSAC.
During runtime, the user scans an indoor room, and the scan is
separated into connected components that are matched against the
database of objects. First, dominant planes corresponding to walls,
floor, etc, are extracted using RANSAC; then objects are matched
iteratively, and once a transformation is found for an object, its
corresponding points are removed from the point-cloud. The loop
continues until no objects can be matched, and the matching in
itself is performed by minimizing the distance between features
measured on segments and models to match. A drawback of the
technique of Kim et al. [KMYG12] is that it requires a significant
amount of training data as well as careful parameter tuning,
compared to previous methods [LDGN15, NXS12, KMYG12].

Shao et al. [SXZ∗12] address the segmentation problem with
a supervised system: given RGBD images of indoor scenes, each
image is segmented on a set of predefined semantic labels (10 are
used in the original article: sofa, table, monitor, wall, chair, floor,
bed, cabinet, ceiling and background). These segmentations are
achieved through a minimization of a Conditional Random Field
energy with two terms, the first one measuring the likelihood of a
specific label for a specific pixel, and the second one measuring the
labeling consistency between two pixels. The actual minimization
is done using graph-cuts [BVZ01], and these segmentations can be
refined by the user if needed. The segmented point clouds are then
matched with objects in the database for the final composition.

Analysis. The use of a dictionary for the reconstruction of
scenes allows faster execution times, as the algorithm just has to
classify parts of the scene and find the appropriate placement.
Moreover, compared to the space of possible point clouds or voxels,
dictionaries allow removing ambiguous and impossible shapes
from the search. These methods work best with man-made objects
due to the highly repetitive structure, and can reconstruct high
quality scenes since the quality of the composition only depends
on the quality of the atoms. This enables algorithms such as
SLAM++ [SMNS∗13] to run in real-time. The two first approaches
[SMNS∗13, LDGN15] are more general than the other presented in
this subsection, as they do not include domain-specific knowledge
such as basic room organization [NXS12, KMYG12, SXZ∗12]
or grid structures [vdHRD∗15] – note that the latter can be
applied to general shapes but the quality of the reconstruction
is not on par with the reconstruction of shapes with a grid
structure. Nonetheless, akin to the shape completion methods
shown in the previous section, the drawback of these methods
resides in having to fill the dictionary at first, requiring manual
modeling or scanning beforehand, which becomes cumbersome
for large number of shapes; this is attenuated for the primitive
fitting method of van den Hengel [vdHRD∗15], as it only
need a few atoms. Additionally, with these scene reconstruction
methods [SMNS∗13, LDGN15, NXS12, KMYG12, SXZ∗12], not
reconstructing an object can be due to either the lack of similar
shapes in the dictionary, or the lack of scans, and the distinction
between these two cases is difficult.
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4. Compression

A natural application of dictionaries is data compression, where
the input data can be represented as the sum of a signal expressed
in a dictionary and an approximation residual (see Section 2.3);
the smaller the residual, the better the approximation, and since
the size of the dictionary is limited (for the compression), a better
approximation means a better dictionary.

4.1. Compressing animated meshes

Most mesh compression algorithms do not use dictionaries of
shapes, but prefer relying instead on some carefully crafted coding
format and apply scalar or vector quantization, as is shown in
the survey of Maglo et al. [MLDH15]. There are several different
approaches when it comes to mesh compression, and depending
on the technique, the focus is put more on compressing the
connectivity or on the geometry. It is worth mentioning that for
static meshes, the valence coder of Alliez and Desbrun [AD01] was
proven optimal with regards to connectivity-driven compression.

Indeed, this is mainly in the domain of mesh sequences
compression that dictionaries are used, starting with the method of
Alexa and Muller [AM00] which uses a PCA to learn a dictionary
of frames. Usually, animation is done by linearly interpolating
between a set of poses. While this is intuitive for an artist, it is not
efficient in terms of memory storage (note that this interpolation
is a use of a dictionary in itself). To find better poses, i.e., atoms
enabling sparser coefficients, Alexa et al. [AM00] perform a PCA
on the f vectors in R3v representing all the frames, v being the
number of vertices. The authors show that only a few principal
directions are required to obtain satisfactory reconstructions while
allowing them to compress animations up to 97%.

This PCA-based technique was first extended by Karni and
Gotsman [KG04], in which linear prediction coding was used
on the coefficients to improve compression. The aim of Linear
Prediction Coding is to express element i in a series as a linear
combination of its k preceding elements. Sattler et al. [SSK05]
propose instead to perform Clustered Principal Analysis on the
trajectories over a few frames, thus taking advantage of the fact
that large regions of the mesh undergo similar motion in standard
animations. Luo et al. [LCS13] choose to do a temporal clustering,
i.e., cluster similar poses, which is beneficial for long animations
(i.e., when the number of frames is greater than the number of
vertices). Finally, Váša and Skala presented a series of articles
[VS07, VS09, VS10, VS11], in which they combine PCA on the
trajectory space, with accurate coefficients and basis prediction
and a set of optimization strategies on the traversal order. In their
last article on this problem [VS11], they present compression rates
ranging from 0.5 to 5 bits per frame per vertex – to compare with
the 96 bits required to store one vertex in one uncompressed frame.

4.2. Compressing point clouds

Digne et al. have shown in [DCV14] how to compress 3D
point-clouds using a dictionary; this method is also used by Yoon et
al. [YLÖ∗16]. Starting from a point cloud which is assumed to be
dense enough to unambiguously represent a surface, and a radius R

Figure 8: From Digne et
al. [DCV14], local frame
of a seed, described by a
heightmap over a radial grid.

Figure 9: Dictionary learned
with the method of Digne
et al. [DCV14], atoms
are shown by order of
importance.

given by the user, the first step is to select a set of seeds which will
be used to cover the input point cloud with patches. R is assumed
to be greater than the noise magnitude and big enough so that each
R-neighborhood centered at the seeds contains several points to
allow for patch fitting and together cover the whole point set. This
sampling is done in a greedy manner by marking a point as a seed
if it is not already covered by the R-neighborhood of an existing
seed. Isolated points are marked as outliers during this process.

For each seed, a local frame is aligned onto the patch normal (see
Figure 8), which is either derived from the point cloud normals
or from a local PCA. With this frame in hand, each point in the
neighborhood is expressed in cylindrical coordinates (r,θ,z) and
quantized into a k × k circular patch image, which acts as its
descriptor. Finally, K-SVD is run on the set of patch images, and
the output is a dictionary whose atoms are patches and coefficients
scalars (Figure 9).

To reconstruct the point cloud from the learned dictionary and
coefficients, patches are first repositioned using the stored frames
and a point is created for each radial pixel in the patch image.
To handle oversampling at the patch boundaries, points falling at
the intersection between several seeds’ neighborhoods are merged
as the average of the corresponding points in each neighbor seed
patch.

This method is able to handle large point clouds with higher
quality than competing methods [KV05, SMK08, HMHB08]
(which are not dictionary-based in the sense of this survey). For
a fixed compression rate between 0 and 2 bits per point, the
Peak Signal to Noise Ratio (PSNR) of the approach of Digne
et al. [DCV14] is greater than these methods by roughly 9dB,
8dB and 2dB respectively. A minor drawback is that the point
set boundaries are generally not preserved after decompression,
as those are not encoded in the atoms and points are added in the
whole neighborhood of the seeds regardless.

4.3. Terrain compression

In a similar spirit, Guérin et al. [GDGP16] propose to compress
terrains using the self similarity of such data, as terrains are
often stored as heightmaps and thus trivially assimilable to
(random-accessible) point clouds. The input terrain is defined by
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Figure 10: Sparse terrain amplification as an application of Sparse Terrains [GDGP16]. This example use the elevation map of Australia,
first with a resolution of 1 km (left), 125 m (middle) and 4 m (right), generated by successive amplifications. Texturing and vegetation were
applied as a postprocess to outline the variations of the landscape created by the amplifications.

an elevation function h : Ω→ R, where Ω ⊂ R2. This elevation
map is decomposed as a set of patches, which are called primitives:

h(ppp)=
n−1

∑
i=0

αi(ppp)hi(ppp)

/
n−1

∑
i=0

αi(ppp) ; αi(ppp)=

(
1− ‖ppp− xxxi‖2

R2

)3

+

where αi is a spatial weight function localizing the influence
of primitive hi. The whole domain must be covered by
these primitives, potentially with overlaps. These primitives are
decomposed into dictionary height map atoms {d j}N−1

j=0 as

hi(ppp) = zi +
N−1

∑
j=0

c j
i d j(ppp− xxxi)

where zi is a primitive-representative elevation, xxxi is its center and
the {c j

i } are the coefficients allowing expressing a primitive hi in
terms of atoms {d j}. The atoms can be analytic (i.e., defined at
every continuous location, for example represented as variations
of Perlin noise) or sampled (e.g., represented as elevation grids).
In either case, these atoms are geometrically embedded in RK ,
and since there are N atoms and n coefficients, the dictionary
can be represented by a matrix D ∈ RK×N stacking all atoms,
and coefficients as C ∈ RN×n. For the application of terrain
compression, the dictionary atoms {d j} as well as the coefficients
{c j

i } are learned using K-SVD, and base altitudes are zi = h(xxxi).

Terrain modeling and amplification. While the Sparse Terrains
method [GDGP16] achieves high compression ratios, its generic
and hierarchical representation allows for additional interesting
applications. In particular, terrain modeling can be achieved
through the change of the atoms while preserving the coefficients,
and resolution amplification, which boils down to replacing
low-resolution atoms with higher-resolution counterparts.

In these applications, it is important to obtain a naturally-looking
set of atoms, and the learning of the dictionary is slightly changed
to account for this constraint. Specifically, their learning algorithm
is a variant of K-SVD, in which they force dictionary atoms {d j} to
match input primitives {hi} that are either extracted from a realistic
terrain database or extracted from a high-resolution model directly
as patches, while accounting for the sparsity s of the solution. Their
optimization can be written as:

min
D,C
‖H−DC‖2

F s.t.

{
∀i ∈ [1..n], ‖ccci‖0 ≤ s
∀ j ∈ [1..N], ∃ l ∈ [1..n], ddd j = hhhi

In the case of terrain amplification, the system is given a
high-resolution exemplar, which is decomposed on a set of
derived atoms {d j}, and a low-resolution terrain (e.g., resulting
from a rough sketch). The atoms {d j} are down-sampled and
low-resolution counterparts {d̄ j} are created. The low-resolution
terrain is decomposed into {d̄ j}, and an amplification can be
trivially obtained (see Figure 10). Note that this process can be
performed in a multiresolution fashion to increase robustness.

Analysis. Dictionaries have been used extensively and
successfully for compression, and in particular for lossless
compression (for example, by the LZMA algorithm used in
the popular archiver 7-zip [Pav16]). However, in the field of
surface and point cloud compression, existing dictionary-based
algorithms are for the most part lossy. Interestingly, general surface
compression is not done using dictionaries, unless the connectivity
is not important and the set of vertices can be interpreted as a point
cloud, enabling self-similarity [DCV14]. Heightmap terrain are
such an example, as the connectivity is following a fixed pattern,
which does not need to be stored in the compressed data. Similarly,
when compressing a mesh animation [AM00, KG04, LCS13],
the connectivity is given in the base mesh, the other poses being
treated as point clouds. Compressing the animation trajectories
[SSK05, VS11] does not involve the connectivity, as it is only
present once for all the meshes. Finally, Guérin et al. [GDGP16]
show that dictionaries can be used for both compression and
synthesis, here by changing the atoms to increase or decrease
the level of detail on the terrain, with limitation that synthesized
terrain will follow the logic learned in the dictionary, and not
geological laws. All these techniques show that most shapes
or shape animations have a lot of self-similarities that can be
compressed using dictionaries.

5. Synthesis and Modeling

We have seen how dictionaries can be useful for synthesis. One can
use them as a high-level control in order to create shape variations
by changing atoms or editing their weights. In particular, the use
of such a workflow allows reducing drastically the time needed
to design interesting shapes and explore the resulting shape space.
We will emphasize this aspect when describing related techniques
in this section, divided into two categories: mesh morphing using
linear interpolation of vertex positions, and part assembly allowing
the creation of new shapes from existing parts.
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Figure 11: Results of Body Talk [SQRH∗16], which learns a model
linking 3D shapes and linguistic descriptions using crowd-rated
3D models. Each shape shown here is the most likely one, given the
descriptive word below them.

5.1. Mesh morphing

Unlike reconstruction or compression, where the goal is to encode
a single object or scene, shape morphing consists in finding an
interpolation between multiple shapes. In its its simplest form it
consists in linearly interpolating vertex positions, if the meshes
share their connectivity (e.g., a mesh animation). This, however,
can lead to unrealistic shapes with significant distortion, which has
also motivated the use of dictionaries in this setting. The simplest
approaches often use PCA-based dictionaries to interpolate the
coefficients, but have also used widely varying artistic controls,
ranging from word attributes (as in Body Talk [SQRH∗16]) to
handles for inverse-kinematics (the method of Wampler [Wam16]
for example) or even full example shapes as guides [GCLX16].

5.1.1. Words-to-shape models

A good use of dictionaries with a simple morphing as combination
operator is described by Blanz and Vetter [BV99], in which a
dictionary for human faces is developed. The input is a set of
scanned faces, in the form of meshes put in correspondence
with each other, and whose vertices are equipped with two
attributes: their position S and their color T (encoded in a texture).
Constructing a new face boils down to interpolating these attributes
with coefficients (ai)

m
i=1 for the positions and (bi)

m
i=1 for the colors.

In this work, both sets of coefficients must sum up to 1 and are
therefore barycentric weights. The shape dictionary is computed
using a PCA on the delta shapes ∆Si = Si−S, S denoting the shape
average; a similar technique is used to obtain the texture dictionary.
In Body Talk [SQRH∗16], input shapes (entire human bodies, all in
the same pose) are expressed over a derived dictionary, and is very
similar to the previous method in spirit, with the notable difference
that no texture dictionary is output. Note that the latter chose to
separate female and male bodies, and also keep the first 8 vectors
of the PCA only, thus emphasizing the low-dimensional nature of
the human shape dataset that they process.

These dictionaries, learned via PCA on the input dataset, are not
easy to manipulate for a human, and a set of user-friendly attributes
are developed to allow for high-level control in each of these two
works. Both methods ask users to rate a model according to NA
predefined attributes such as "masculine", "feminine", "smiling",
"skinny", "muscular", etc. For each attribute j, the input of the
user is a factor µ ji for shape Si describing the rating of shape i
over the attribute j. For both methods, these user-provided ratings
are the key to map natural language tags to the dictionary atoms

Figure 12: The method of Blanz and Vetter [BV99] allows editing
a painting – here the Mona Lisa (top left) – by extracting the face
(top center and right) and then modifying the illumination (bottom
left and center) or the orientation (among others).

(see Figure 11). However, both methods differ in their model
reconstruction methodology.

The approach of Blanz and Vetter [BV99] suggests matching a
change ∆µµµ j of attribute j (corresponding to, e.g., a desired increase
of "smiling", etc...) to a change ∆S j of an input shape computed
as ∆S j = ∑

m
i=1 µ ji∆Si. An input shape S with texture T is therefore

updated as

S← S+
NA

∑
j=1

∆µµµ j

m

∑
i=1

µ ji∆Si ; T ← T +
NA

∑
j=1

∆µµµ j

m

∑
i=1

µ ji∆Ti

The user is therefore given the ability to edit an input shape
using, e.g., a simple set of sliders { j}, which are mapped to
changes of attributes {∆µµµ j} j. Although this interface is quite
straightforward, it has proven useful and powerful for high-level
editing. Additionally, Blanz and Vetter [BV99] show how to edit
an input photograph of a face (it can even be a painting, as
demonstrated on the Mona Lisa painting in the original article)
using their framework. They start by matching a 3D morphed
face to the input image, and render the model atop the image
(see Figure 12). This matching is made possible by the use of a
dictionary and of a simple lighting model (Phong). The problem
then becomes a search for the optimal coefficients minimizing
the distance between the source image and a rendered image,
which is achieved using a gradient-descent. By later editing the
morphed face, applications such as relighting, shape enriching and
expression or pose editing are offered to the user.

In contrast, in the work of Streuber et al. [SQRH∗16], the
coefficients µµµ j are averaged from the crowd’s ratings. This results
in a vector of ratings of the form dddi = (µ1i, µ2i, ..., µWi)

> for shape
i, with W attributes (in their experiments W = 30). By assembling
those vectors dddi in a matrix D (each row defined as (1, ddd>i )), the
input data Y is decomposed into the dictionary atoms as

Y = DC+ ε (1)

where each row of Y is the matrix of all bodies (one per row)
expressed in its low 8-dimensional PCA space. Assuming therefore
an affine linear relationship between ratings and body geometry
in the PCA space, the regression coefficients C are found in
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the least-squares sense. This gives effectively the words-to-shape
model, and given a new rating µµµ (which is a row vector), the
corresponding shape geometry (in the PCA space) can be obtained
by yyy(µµµ) = µµµC. Figure 11 shows a set of shapes associated with a
few descriptive words. Note that a shape-to-words model can be
derived by simply inverting the model described by Equation 1.

Analysis. While these methods are very similar, the technique of
Blanz and Vetter [BV99] does not model correlations between
attributes, a problem tackled in Body Talk [SQRH∗16], allowing
accurate reconstruction of shapes from words alone. Still, Body
Talk does not account for the non-linear relationship between
user ratings and shape coefficients for some attributes such as
"skinny". While both methods are simple, considering they provide
a powerful modeling system suitable for experts as well as novice
users, the use of the first N components of the PCA limits the
space of possible shapes, excluding uncommon variations. Note
that Streuber et al. [SQRH∗16] provide an interactive web tool that
allows to visualize a human shape by playing with the attributes.

5.1.2. Localized decomposition for shape deformation

In contrast to the methods presented in the previous section
[BV99, SQRH∗16] for which the PCA results in components
whose support is global, methods such as SPLOCS [NVW∗13] and
the work of Huang et al. [HYZ∗14] optimize for the components’
sparsity by penalizing the size of their support, which results
in better artistic control. All of these methods use meshes with
exact one-to-one correspondences, and most examples are frames
of a mesh animation. SPLOCS [NVW∗13] starts by encoding all
meshes as differences with a base mesh (e.g., first mesh or average
of meshes), and for M meshes with N vertices, the whole input
data can be stored as a X ∈ RM×3N matrix. The aim is to find the
dictionary D ∈ RK×3N and the coefficients C ∈ RM×K such that:

X =CD

Directly performing a PCA to obtain D and C would yield global
components, which has unwanted practical consequences. For
instance, on the facial animation in Figure 13, moving the bottom
of the lips would also deform the eyebrows. SPLOCS [NVW∗13]
models the sparsity of the decomposition as

Esparsity(D) =
K

∑
k=1

N

∑
i=1

λki‖dddi
k‖2

where dddi
k is the vertex i displacement in component k, and weights

λki of the displacement dddi
k depend on the geodesic distance to the

component center (the center being the location with the largest
displacement). Fitting the input data as closely as possible while
enforcing sparsity amounts to minimizing the following energy:

E = ‖X−CD‖2 +Esparsity(D)

which is a non-convex problem addressed with ADMM.

Analysis. While the components extracted using SPLOCS
[NVW∗13] enable better artistic control than, e.g., a simple PCA,
as illustrated in Figure 13, it is not suitable for input mesh
sequences featuring large rotations for example, and hence has
been improved [HYZ∗14, WLZH16]. Huang et al. [HYZ∗14] use

(a)

(b)

Figure 13: Comparison of decompositions on the same set of
captured faces, between PCA (a) and SPLOCS [NVW∗13] (b). The
intensity of the blue shows the magnitude of vertex displacements.

deformation gradients to represent a shape with respect to a rest
shape, in order to handle large rotations. Still, this encoding is too
limited for sequences featuring large global rotations (e.g., a horse
running in circle) as the deformation gradients are not intrinsic
geometry quantities and also are not local regarding rotation
deformation. These issues are addressed by Wang et al. [WLZH16],
who also localize decomposition, but use edge lengths and dihedral
angles to represent a given shape (this representation encodes
the first and the second fundamental forms of a discrete shape,
and has been used successfully in a body of work dealing with
shape interpolation [WDAH10]). Reconstruction from such a
representation is possible with a linear solve, as shown in this
method [WLZH16]. All these methods have a runtime on the order
of minutes, with the last being the fastest.

5.1.3. Example-based mesh inverse kinematics

While the methods described in the previous section obtain results
that outperform non-data-driven approaches, they rely on a simple
combination operator that is not learned from the input examples.
Using the dataset to alter the way atoms are combined, although
more complex than a simple linear interpolation, enables rich and
example-inspired morphing [SZGP05, GCLX16, Wam16]. These
methods take as input a dataset of meshes with shared connectivity.
The latter equips an object with a set of handles, which are points
associated with a subset of the vertices, in order to deform the shape
via inverse kinematics (IK).

Sumner et al. [SZGP05] were the first to introduce an
example-based mesh IK method using blending of feature vectors
at its core. Specifically, given m poses of a shape with n vertices,
a feature vector dddi (1 ≤ i ≤ m) is associated with pose VVV i ∈
R3n. The example manifold M is then described as some form
of combination of these feature vectors defined by coefficients
ccc = {ci ∈ R} denoting the amount of influence of pose i in the
output, this example manifold being simply given by the vector
space spanned by D = {dddi} in the simple, linear case.

The key idea of Sumner et al. [SZGP05] is to find, given a
set of constrained handles, the shape geometry that is closest to
the example manifold M, which amounts to optimizing for the
coefficients ccc while the dictionary atoms {dddi} are kept untouched.

In the seminal article of Sumner et al. [SZGP05], the feature
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vectors are the deformation gradients of the triangles, which can
be computed using the gradient matrix G as dddi = GVVV i. By splitting
the vertex positions into two separate vectors VVV H and VVV F , denoting
the handle positions and the free vertices respectively, the vertex
positions resulting from the handle positions are therefore obtained
as the result of the following minimization problem:

(VVV∗F ,ccc
∗) = argmin

(VVV F ,ccc)
‖GVVV F +GVVV H −bbbllleeennnddd(ccc,D)‖

which in the case of a linear blending defining M (i.e.,
bbbllleeennnddd(ccc,D) = {ci dddi }) requires a single linear solve.

As simple linear blending of deformation gradients is too limited
for a natural deformation behavior, non-linear blending is required
in practice, and Sumner et al. [SZGP05] adjusts bbbllleeennnddd(ccc,D) by
expressing the deformation gradient of triangle j as

bbbllleeennnddd(ccc,D) j = exp(∑
i

ci log(Ri j))∑
i

ciSi j ; Ri j Si j = Ti j

with Ti j being the polar decomposition of the deformation
gradient of triangle j in pose i. This decomposition is commonly
used for gradient-based shape morphing [XZWB05] and allows
obtaining much better results than simple linear blending. However,
interpolating the gradients (even in a sophisticated way) results in
artifacts mentioned in Section 5.1.2, as shortest path interpolation
or blending of local rotations is not adapted in 3D where shape
interpolation typically requires complex interpolation paths of the
rotations, which cannot be deduced from a local analysis only.

This problem is addressed by Fröhlich and Botsch [FB11],
who use edge lengths and dihedral angles as features, resulting
in full rotation invariance. As previously written, these quantities
are natural features to interpolate for shape morphing [WDAH10].
They are also natural variables for computing and minimizing
discrete shell energies [GHDS03], which are efficient geometric
energies penalizing stretching and bending in a richer way than
rigid energies can achieve. Note that the Riemannian geometry of
the space of shells has been studied by Heeren et al. [HRS∗14],
allowing them to extend concepts such as geodesics and parallel
transport to the space of deformations governed by these energies.

More recently, the approach of Wampler [Wam16] shows
another problem, independent of the actual feature representation
of the example manifold, and which relates instead to the
under-constrained nature of this space. More precisely, if several
linear combinations c provide the same positions for the handles –
such as illustrated in Figure 14 where the handles of the green pose
can be obtained as a linear combination of the handle positions of
the blue and red poses – the result from the latter optimization is
under-constrained, and some poses may eventually be ignored as a
result (see Figure 14d, for an illustration of such behavior).

To enforce pose awareness, one of the contributions of Wampler
[Wam16] is to add an energy interpolation term, interpolating
energies from individual pose:

EI(ccc, pppi,qqq) = ∑
i

ciEd(qqq, pppi)

where pppi denotes the ith pose, qqq denotes the output interpolated
geometry, and Ed(qqq, pppi) denotes an elastic energy describing
the amount of "stretch" for deforming pppi into qqq. This kind

of energy interpolation method is highly popular for shape
interpolation [CPSS10, VTSSH15], when the weights ccc are
provided by the user and the technique outputs barycentric
weighting of the poses {pppi}. As optimizing for EI alone favors the
nearest pose in the shape space, so local configurations matching
locally the input poses are preferred. This can be observed in
Figure 14b, where the green pose is no longer ignored in the output.

Analysis. To summarize, the key motivation behind the use of
dictionaries for shape manipulation is that some deformation
behaviors (localization of articulations, muscle bulge, rigidity of
limbs vs elasticity of jaws and fat) cannot be easily captured
by geometric elastic energies only, whatever their degree of
complexity, but are captured trivially when learning on poses
that are representative of the degrees of freedom desired by the
user. In our opinion, the recent technique of Wampler [Wam16]
constitutes a breakthrough for mesh IK and is successfully
demonstrated on challenging inputs such as highly stretched and
exaggerated cartoon animations, but we suspect that there is room
for improvement, especially in the mathematical formulation of
the final energy, as non-smooth transitions near input poses in
the output can be observed in Figure 14b. Further investigation
is required to tell if these effects are negligible or not in practice.
Among interesting future work directions mentioned by the author,
we note with a particular interest the learning of animations instead
of simple poses or the possible inclusion of kinetics in order to
include some notion of time in the output animation.

5.1.4. Example-guided shape interpolation paths

The simpler method of Gao et al. [GCLX16] uses the knowledge
of a shape dataset in order to find good interpolation paths between
a source and a target shape. Note that the source and target shapes
are considered to be inside the dataset (the dataset can eventually
be completed with those two shapes, as no heavy preprocessing is
required by the technique). Objects in the dataset are represented
with respect to a base model using patch-based Linear Rotation
Invariant (LRI) coordinates. The LRI representation of meshes was
introduced by Lipman et al. [LSLCO05], and is composed of a first
order differential representation of the directed edges, which are

(a)

(b)

(c)

(d)

Figure 14: Comparative results of Wampler [Wam16]. (a) The pose
dataset, where the red cube should puff outwards when stretched
(green) and then thin inward if further stretched (blue). The 3
handles of this dataset are the black dots. The rightmost handle
is dragged to stretch then unstretch in the following subfigures,
with blending weights over time shown at the left. (b) Method
of Wampler [Wam16]. (c) Energy interpolation of Chao et al.
[CPSS10]. (d) Linear shape space.
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expressed with respect to local frames attached to the vertices, and
of a second order differential representation expressing change of
local frames across an outgoing directed edge in the vertex’ local
frame. Such a representation is invariant to local rotations of the
geometry, necessitates two linear solves to recover the geometric
embedding from a set of LRI coordinates, and have been used
successfully for mesh interpolation.

With the input source and target meshes in hand, an initial
interpolation path is found using Dijkstra’s algorithm over the
k-nearest neighbors graph in the shape space (each shape in the
input data set being a point with LRI coordinates as geometric
embedding). This initial path is not smooth however, and it is
further refined to obtain a pleasing morphing model. Given Pk the
interpolated path after k iterations, xxxk

i its ith sample, and {nnnk
i, j}m

j=1

the m nearest models of xxxk
i in the shape space (m = 6 in their

examples), the cost to deviate from a smooth interpolating path is
defined by Gao et al. [GCLX16] as

Ek =∑
i

∑
j

wk
i, j‖xxxk

i −nnnk
i, j‖2 + γ∑

i
‖xxxk

i+1− xxxk
i ‖2

+ λ‖LkPk‖2 + δ‖Pk−Pk−1‖2

where wk
i, j = exp(−‖xxxk−1

i − nnnk
i, j‖/σ), γ, λ, and δ are weights

controlling which terms to prioritize, and Lk is a tridiagonal
Laplacian matrix, whose entries are

Lk(i, i) = 1

Lk(i, i−1) =− ‖xxxk−1
i −xxxk−1

i−1 ‖
‖xxxk−1

i −xxxk−1
i−1 ‖+‖xxx

k−1
i+1 −xxxk−1

i ‖

Lk(i, i+1) =− ‖xxxk−1
i+1 −xxxk−1

i ‖
‖xxxk−1

i −xxxk−1
i−1 ‖+‖xxx

k−1
i+1 −xxxk−1

i ‖
.

The first term of Ek makes the path adhere more to shapes
of the dataset and can be seen as a smooth projection operator
over the shape space manifold, in the spirit of MLS schemes
[ABCO∗01]. The second term favors shorter paths, the third term
favors smoother paths and the fourth term prevents large updates
between successive iterations for numerical stability. This energy
functional is quadratic and can be minimized efficiently by solving
a linear system. Lastly, after each iteration, the path is resampled
with an even spacing between samples.

To recover the shape on the path at an arbitrary position t, one
can interpolate the LRI representations of the closest samples, and
reconstruct the corresponding shape. Results of this method are
shown in Figure 15.

Figure 15: Data-driven morphing as defined by Gao et al.
[GCLX16]. Top: input shapes, with the source, intermediate and
target model from left to right. Bottom: the morphing result.

Analysis. Overall, the two methods of Wampler [Wam16] and
Gao et al. [GCLX16] are able to learn the morphing pattern
from a dataset, and interpolate between atoms of the dictionary
using a high-level interface which hides the underlying complexity
from the user in favor of an intuitive artistic control. It is worth
mentioning that the technique of Gao et al. [GCLX16] does
not create new shapes by just interpolating the atoms, but is
also able to extrapolate new shapes from the dictionary. This
indirect use of a dictionary is extremely interesting and novel,
and could inspire further research in areas where dictionaries
have not been used successfully so far because of a lack of
flexibility. Performance-wise, both methods are suitable for fast
editing; although the pre-computation phase of Wampler [Wam16]
is significantly slower than the one of Gao et al. [GCLX16], its
runtime phase is faster and allows real-time morphing, compared
to interactive rates for the other.

5.2. Part assembly

All the methods previously described in this section take as input
meshes with one-to-one vertex correspondence and use blending
(or morphing) as combination operator. Another possibility is to
consider meshes made of distinct parts, and use composition to
combine these atoms together.

This trend was motivated by frameworks presented in the early
2000s such as Modeling by Example [FKS∗04], which made the
observation that modeling from scratch requires expert knowledge
whereas reusing existing models could inspire and help beginners
in the design of complex shapes. In this framework, a user could
search for existing models, select part of them, and combine these
parts to create a new model.

Recent approaches [KJS07, XXM∗13, KCKK12, TYK∗12]
consider a predefined (co-)segmentation of shapes in the input
dataset – thus effectively using dictionaries of shape parts derived
from the input at their core, in order to amplify the input dataset by
synthesizing meshes or accelerating the design process for users.

5.2.1. Design accelerator

These part-dictionaries enable easy workflow for non-expert users
and allow them to quickly create interesting models, with methods
such as Shuffler [KJS07] or Sketch-to-Design [XXM∗13].

Figure 16: The Shuffler [KJS07] system. The edited model is in the
center, and is the result of the stitching of several parts, obtained
by selecting them in the source models shown at the side. The
segmentation for the user selection of parts is colored.

For both methods, the workflow is to iteratively select a part of
the shape to edit, choose between the candidates from a search by
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Figure 17: Overview of the workflow induced by Sketch-to-Design [XXM∗13]. The user begins with an arbitrary shape (in gray) and can
sketch (in red) the parts he wants to put in the final model. Parts found in the database are in blue, and symmetries are taken into account
(e.g. the arms of the chair). It is possible to change the view for a better sketching experience.

similarity in the database, merge the chosen part with the currently
edited model, and repeat until the user achieves the desired goal.

The Shuffler system [KJS07] addresses the problem of modeling
shapes through swapping of interchangeable components. It
is worth noting that the authors of this article introduced
a co-segmentation preprocessing step that was later reused
in numerous part-based composition articles. In fact, this
segmentation phase is often external now, and the input dataset is
directly segmented and labeled.

At modeling time, the interface suggests to the user a currently
edited model as well as other models that serve as source of
components to be taken from (see Figure 16). Similar to SnapPaste
[SBSCO06], the edited model and the candidate part are stitched
together: boundaries are extended to overlap, then are snapped
using soft ICP before generating the connectivity.

This modeling interface is relatively powerful, but starts being
impractical when the dataset grows and it becomes unfeasible
for the user to search through the entire database. By reversing
the way parts are chosen (artists sketch what they want instead
of being presented all possibilities), the Sketch-to-design method
[XXM∗13] solves this problem. In this approach, queries are
sketches drawn on top of the currently-edited model and
automatically matched to parts in the dictionary to be assembled
into the final object (see Figure 17).

Based on the sketch-based retrieval method by Eitz et al.
[ERB∗12], the matching between user sketches and dictionary
parts is built upon contour descriptors, which requires the dataset
to be first preprocessed. This preprocessing phase consists in
rendering the suggestive contours of each part for 169 different
camera positions. In this phase, spatial relations between parts
and symmetries are also learned (per part and per model), hence
enriching the dictionary with relations between atoms. In the
runtime phase, the user can change an object by sketching parts
(for example sketching a new back for a chair), and the algorithm
will return a ranked list of matched parts. The score of a part
depends not only on its similarity with the user sketch, but also
on its consistency with the rest of the model being edited.

As searching and computing scores on the whole set each time
the user draws a sketch would be very expensive performance-wise,
the score evaluation is limited to a subset of the dictionary

To achieve that, Xie et al. [XXM∗13] use an auxiliary dictionary,
whose atoms (forming a "visual vocabulary") are line features of
contours. Given a sketch query, its representation on this auxiliary

dictionary is computed and used to confine the search. Finally,
match results are placed with respect to how parts of the same
category are placed in the object, then snapped and deformed for
their contact points (recorded during the preprocessing) to match,
using the method of Müller et al. [MHTG05].

As shown in the two previous methods, improving the
productivity of the user often requires efficiently searching huge
datasets, a problem more visible now because of the availability
of large object databases. Given a dataset, early methods only
searched for the closest matching object (or ranked list of closest
objects) based on the user query, without combining objects. For
example, the method of Ovsjanikov et al. [OLGM11], in which
the user modifies a template shape (a set of boxes) which is then
transformed into shape descriptors used for the actual search, or the
fuzzy exploration of Kim et al. [KLM∗12], in which a user query
is a part of an object. In short, these methods explore a dataset that
is given as input.

On the contrary, the ShapeSynth system [AKZM14] allows the
user to explore a dataset represented by a dictionary of parts,
combined using part assembly. This means that the full dataset is
the set of all possible combinations of the atoms in the dictionary.
Here parts are stored as labeled segments from a set of compatibly
labeled and segmented shapes. After a preprocessing phase on the
input dataset, the user is presented with a 2D point cloud, where
each point corresponds to an object of the dataset. By clicking in
the blank space between the points, the system will generate a new
object by combining parts from different shapes of the dataset.

In the preprocessing phase, a box template consisting in boxes
encompassing the possible parts of the objects, is extracted
[KLM∗13]. Then, a descriptor vector of dimension 6t – where
t is the number of boxes in the general template – is attached
to each object; these descriptors represent the position and size
of each box in the template. These descriptors are then projected
in R2 by using Multi-Dimensional Scaling (MDS). Note that for
performance reasons this is not done for all objects; instead a set
of landmark models is selected to be projected using MDS, while
the other models are defined by their barycentric coordinates with
regards to the landmark models. Finally, points are clustered using
mean shift clustering, and for each mode, the corresponding object
can be re-projected; this process is repeated in a supervised manner,
with the user clicking on the mode to reprocess. The resulting
hierarchy is used to organize the data and help the synthesis.

In the runtime phase of ShapeSynth [AKZM14], when the user
clicks between 2D points in the exploration view, the system
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displays the corresponding template (descriptor in R6t , shown as
a set of boxes), which can be locked when the user is satisfied with
it for the boxes to be filled by parts that are to be least deformed
when fit to their corresponding box. Thus the shown object might
not be present in the initial dataset, but instead be the result of a
combination of parts derived from the dataset. An overview of the
user interface is shown in Figure 18.

Analysis. As seen in Sections 3.2 and 3.3, the absence of atoms in
the dictionary directly translates into reduced quality of the results
(including lack of artistic control). However, as illustrated for
the last three methods [KJS07, XXM∗13, AKZM14], difficulties
may also arise when the dictionary contains lots of redundant
atoms. While this might not be detrimental for purely automatic
methods (apart from performance reasons), it may hinder the
design process for users by providing them with too many similar
choices. This motivates the development of techniques allowing
for the intuitive exploration of large dictionaries, in order to
present only the relevant variabilities to the user. Shuffler [KJS07]
and Sketch-to-design [XXM∗13] are more closely related than
ShapeSynth [AKZM14], in the sense that the main difference
lies in the retrieval criterion (geometric similarity vs sketches),
whereas ShapeSynth also adds a more high-level view of the space
of possible shapes. This exploration problem is less present in
methods that automatically create models following the overall
style of an input dataset, as will be shown in the next section.

5.2.2. Graph-based statistical set representation

A different class of methods uses graph-based representations
that facilitate encoding the shape structure and the possible
inter-dependence between different elements. In this context,
prominent methods include the approaches of Chaudhuri et al.
[CKGK11] and Kalogerakis et al. [KCKK12] that both take as
input compatibly-segmented shapes into labeled parts (e.g., for
human shapes: arm, leg, torso, ...), and operate in 2 major phases:
a preprocessing phase during which a probabilistic model of the
input data is derived and a runtime phase during which synthesis
and modeling of new shapes is performed. In the context of this
survey, the dictionary is the set of all parts, and the combination
method is a composition under the constraint that the result fits

Figure 18: Interface of the ShapeSynth system [AKZM14]. The
icon view shows the representatives for each style, obtained
via the hierarchical clustering; the exploration view presents
the embedding of the shapes, and the model view displays the
synthesized model.

the derived probabilistic model. The nature of these probabilistic
models differs a lot between the two frameworks, which we explain
in detail in the next paragraphs.

Figure 19: From a dataset of segmented and labeled shapes
(top left), the method of Chaudhuri et al. [CKGK11] starts by
clustering segments inside label categories by geometric style
(top right). Then a probabilistic model is learned (representative
subset in bottom), encoding the dependencies between labels,
geometric styles, part adjacencies, symmetries, and cardinality of
each category.

Learning Bayesian networks. Chaudhuri et al. [CKGK11] start
by clustering the segments within each label category, based
on descriptors such as the Shape Diameter Function [GSCO07],
curvature, or Shape Context [BM00], and the different clusters give
rise to the different so-called geometric styles of the components
available in the label category.

The probabilistic model used by Kalogerakis et al. [CKGK11]
is a Bayesian network [Pea88, KF09], which is a graph whose
nodes are the observed variables (existence of label l in a
shape, cardinality of label l in the shape, existence of adjacency
of labels l and l′, style Ss,l describing whether a component
of label l exists with geometric style s, and symmetry Rl,l′

describing whether a component of label l has a symmetric
counterpart of label l′) and whose directed edges represent
the conditional dependency between them. Unconnected nodes
represent conditionally independent variables. Each node also
stores the probability of its variable taking a specific value given
the values of its parents, and a shape can be viewed as an outcome
of a joint probability distribution of all these variables. An overview
of the method is shown in Figure 19.
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The model is then learned by maximizing the Bayesian
Information Criterion [Sch78] score on the observed variables:

logP(O | G)≈ logP(O | G,θ)− 1
2

kG log(n)

where O is the set of observed variables (described before, such
as the existence of a label, its cardinality, etc...), G the model to
evaluate, θ the parameters of the model, kG the number of free
parameters for model G and n the number of shapes in the dataset.
The model structure is found by exploring possible structures by
adding and/or deleting edges (note that nodes are determined by
the observed variables introduced previously).

At runtime, the user creates a shape progressively by selecting
components and joining them together. Each time the user adds
or removes a component, the model is used to sort components
by likelihood, i.e. probability of it to be found in the the input
dataset knowing the current partial shape, permitting the system to
make suggestions for the user and enabling fast modeling. It is also
possible to use this model to automatically generate new shapes, as
done by Kalogerakis et al. [KCKK12] for results comparison.

This model is flat by nature, with no implicit nor explicit
hierarchy, and this hinders its ability to generate plausible shapes
automatically, as it only keeps track of direct dependencies between
variables and not indirect ones, thus not tracking latent causes of
structural variability. This observation is the main motivation for
the technique introduced by Kalogerakis et al. [KCKK12], which
we now detail.

The model of Kalogerakis et al. [KCKK12] is represented as
a tree-like graph, whose nodes are random variables, and where
latent unobserved variables (shape style, component style) are
parent nodes of observed variables (number of components of
a given category, continuous geometric descriptor and discrete
geometric descriptor), as shown in Figure 20. It is possible
to have lateral edges between observed variables, representing
conditional dependencies. The core of this method is to learn
latent sources of structural differences and relate these to the
probabilistic relationships between components. This gives the
model a higher-level understanding of the models, to better adapt
compatible segments based on the shape and component styles.

Figure 20: The probabilistic model (right) of Kalogerakis et al.
[KCKK12] learned on a small dataset of tables (left). R is the shape
style, and for a category l, Nl is the number of components, Sl is the
style of the components, CCCl is the continuous geometric descriptor
and DDDl the discrete geometric descriptor. Here there are only 2
categories: l ∈ {top, leg}. Note that observed variables are in blue
while inferred latent variables are in white.

This model is learned by first computing the observable variables
for each component, resulting in a feature-vector OOO (see Figure 20).
The output probabilistic model G is the one with the highest
probability given OOO, which, as given by the Bayes rule, equals

P(G|OOO) =
P(OOO|G)P(G)

P(OOO)
(2)

Since P(OOO) does not change for different probabilistic models
and P(G) is assumed uniform over all possible structures, finding
G = argmax(P(G|OOO)) boils down to maximizing the marginal
likelihood P(OOO|G). This is done by first determining the hierarchy
(trying to add potential shape and component styles until the
probability stops increasing), then finding lateral edges (adding or
removing edges until the probability stops increasing).

By exploring the set of possible shapes of the probabilistic
model, a collection of shapes can also be derived automatically to
enrich the input dataset. For example, Kalogerakis et al. [KCKK12]
used this strategy to synthesize 1267 new planes inspired by a
training dataset composed of 100 airplanes only. Note that it is not
specific to man-made objects, as demonstrated by the synthesis of
animal shapes. It is possible to constrain the generation process,
such as constraining possible shape or component styles, limiting
the available component categories and/or explicitly specifying
the set of acceptable components, in order to give the user a
fine-grained control over the results of the generation.

Analysis. For both approaches [CKGK11, KCKK12] the
dictionary atoms are parts and the combination method is a
simple composition, however their use of second-order relations
on the atoms is instrumental as it provides a simple, high-level
representation of shapes that allows them to analyze the underlying
structure of large sets of shapes, which is key to deriving
a statistical model representing these datasets. The fact that
the models are graphs helps to efficiently represent the joint
probability distribution modeling the input dataset and also allow
to extrapolate plausible new shapes. Results from both methods
were compared in a user-study, confirming that the technique
of Kalogerakis et al. [KCKK12] yields more plausible shapes.
Both methods can be used in supervised mode, which make them
closer to Shuffler [KJS07] than ShapeSynth [AKZM14] in terms
of user experience, as they lack a high-level overview of the
possible shapes space. However, compared to the grammar-based
representation that we will review next, these methods remains
limited regarding folding power i.e., "loops" (self-repeating motifs)
are hard to reproduce.

5.2.3. Part grammars

Akin to graph-based representations, part grammars allow the user
to create large variations of shapes. One of the earliest frameworks
of this kind is the L-systems [PL90] (introduced in 1968 by
Lindenmayer), which aimed originally at describing plants in an
algorithmic manner. More recently, the data-driven method of
Talton et al. [TYK∗12] allows retrieving from the input dictionary
of parts a grammar able to generate objects exhibiting a structure
similar to the input training set of shapes (decomposed as labeled
trees relating parts to each other). Figure 21 gives a visual overview
of the whole method.
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Figure 21: Overview of the method of Talton et al. [TYK∗12]. Starting with a dictionary of labeled parts and a set of exemplars created using
these parts, the algorithm first find a grammar that can only produce the exemplars, before generalizing it using a Markov Chain Monte
Carlo optimization. The resulting grammar is able to produce objects similar to the input exemplars.

The grammars they consider are rigorously defined by a tuple
G =< V,T,ω,R,θ >, where V is the set of non-terminal symbols,
T is the set of terminal symbols, ω ∈ (V ∪ T )+ is the axiom,
R ⊂ (V → (V ∪ T )+) is the set of production rules, and θ :
R → [0,1] is the probability of the rules. The generation is
done by iteratively replacing the current symbols by compatible
productions, starting from the axiom. This algorithm stops when
there are no non-terminals in current symbols (which imply that
no production rule is compatible). In the approach of Talton et
al. [TYK∗12], production rules include geometric placement of
introduced elements with respect to the replaced element. An
example of such a grammar is visible in Figure 22.

Figure 22: An example of a grammar for shape generation.
Starting with R0 as initial word, successive replacements are made
following the grammar rules (right), until no more non-terminals
remain, resulting in the final shape (left)

The first step of the pipeline proposed by Talton et al. [TYK∗12]
consists in generating a least-general conforming grammar, by
processing all example trees iteratively: leaf nodes are represented
by terminal symbols, and intermediate nodes are represented by
non-terminal symbols; a production rule is added for these nodes,
transforming the node symbol into its children symbols.

In a second step, this grammar is simplified using Bayesian
inference in a way that is similar to what is done by Kalogerakis
et al. [KCKK12], which results in a more general grammar (see
Equation 2). Here O denotes the set of example designs. However,
P(G) is not assumed to be uniform, and simpler grammars are given
a higher probability than complex ones (a grammar complexity
being estimated by the length of its description). This maximization
is done using the Markov Chain Monte Carlo algorithm.

Once the grammar is computed, it is used to generate large
datasets, which exhibit similarities with the training set (see
Figure 23). Note that this approach is not limited to 3D objects,
and the authors also applied their algorithm to web page generation
by learning the Document Object Model (DOM, the tree defining
the document structure) of 30 web pages.

Analysis. What motivated the use of a concise dictionary of
parts by Talton et al. [TYK∗12] is that working on a few atoms
allows keeping the complexity of the search over the possible
assemblies reasonable, and results in a set of shapes exhibiting
large variations while preserving the overall coherence of the
set. As with previous methods [CKGK11, KCKK12], this requires
having a model describing second-order constraints on the atoms
(such as a Bayesian network or a grammar). This is interesting for
performance reasons (by eliminating irrelevant possibilities) and
also for perceptual reasons (coherent shapes with regards to the
style of the examples). However, interactive control methods over
these generation tools could be improved, so that desired shapes
could be favored when sampling the possible realizations of the
model. For instance, providing explicit means for the user to model
second order constraints interactively could greatly improve the
style control during modeling.

Figure 23: Results obtained using the grammar learning of Talton
et al. [TYK∗12]. The inputs are the atoms of the dictionary (top
left), and example compositions of these atoms (top right). After
learning a grammar on these examples, it is possible to generate
objects similar to examples (bottom).

5.2.4. Set evolution

An interesting step further into the assistance in designing
shapes and collections of shapes is the "Fit and Diverse" system
[XZCOC12]. This technique introduces a genetic algorithm that
allows evolving entire datasets, guided by user preferences. It relies
on a crossover operator, allowing combining shapes that were
pre-segmented into compatible parts stored in a part-dictionary.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



T. Lescoat, M. Ovsjanikov, P. Memari, J.M. Thiery, T. Boubekeur / A Survey on Data-driven Dictionary-based Methodsfor 3D Modeling

Figure 24: Based on an initial set of object (left), the "Fit and
Diverse" system [XZCOC12] uses a genetic algorithm to generate
new objects similar to the input but also incorporating significant
variations, with the aim of inspiring users.

Contrary to the techniques previously described in this section,
Xu et al. [XZCOC12] voluntarily compromise on the fitness of
the evolved dataset, in order to preserve set diversity and offer
shapes that are often surprising and inspiring to the user while
preserving their overall geometric structure, thus encouraging user
creativity. A rapid comparison of the results of this technique
presented in Figure 24 with the results of Talton et al. [TYK∗12]
presented in Figure 23 illustrates this difference through more
artistic applications.

Synthesis analysis Overall, the task of synthesizing new shapes
with the help of dictionaries can be done in widely different
ways, which could be distinguished between continuous and
discrete methods. Continuous ones work with meshes with
identical vertex set (including connectivity), which usually are
the atoms of the dictionary. The combinations range from
simple linear interpolation (with powerful artistic controls)
[BV99, SQRH∗16] to localized blending (controls can be
coefficients [NVW∗13, HYZ∗14, WLZH16] or even inverse
kinematics [SZGP05, FB11, Wam16]). It is even possible to
have coherent extrapolation with regards to the input set of
shapes, following an interpolation path specified by a few shapes
[GCLX16]. Discrete methods instead work with dictionaries of
parts, which are composed together (sometimes even stitched as
in the Shuffler system [KJS07]). The key point then is to learn the
second-order constraints between atoms; models used to represent
these constraints differ widely, from custom descriptors (as in
Sketch-to-Design [XXM∗13]) to Bayesian networks [CKGK11]
or even grammars [TYK∗12]. This enable these techniques to
synthesize shapes coherent with the style of the input examples,
while allowing the generation algorithm to prune irrelevant
realizations early for better performance.

6. Discussion

In this section, we give a summary of the presented approaches,
focusing on the pervasiveness and applicability of dictionary-based
approaches in different domains of geometric modeling. We
also discuss the main concerns that could affect the use
of dictionary-based methods, such as scalability to data size,
generalization and the challenges induced by more sophisticated
dictionary learning techniques. Finally, we describe the relation
of dictionary-based approaches covered in this survey to methods

based on deep learning and discuss the main open problems and
possible future directions.

Application domain. In the context of shape recognition and
retrieval, although some techniques use the classical bag-of-words
representation, e.g., Shape Google [BBGO11], they typically
do not allow recovering the geometry from the dictionary
representation. When representing a set of shapes, the main purpose
of a dictionary is to express its elements using a small base set that
is usually over-complete, with the ability to go from coefficients
to shapes, the latter property being crucial to representing the
set of shapes in itself. Still, even without the reconstruction
property, dictionaries can be used for classification, for example
by doing PCA on a set of descriptors derived from the input
objects. Dictionaries are not a silver bullet adapted to every possible
use, and are sometimes less efficient than concurrent approaches
making better use of the specificities of the problem; for example,
while segmentation can be thought of as finding a dictionary of
segments to cover a mesh, it is typically not performed this way
in practice and recent more successful techniques mainly approach
the problem using neural networks that are trained on the whole
input dataset [XXLX14, GZC15].

In shape reconstruction, several methods consider different
dictionaries, even when they have the same input: from a point
cloud, the approach of Xiong et al. [XZZ∗14] expresses the points
with a dictionary, while other methods match shapes from an input
collection with the point cloud in order, e.g., to complete scans
[PMG∗05] or to retrieve the object’s structure [SFCH12].

In shape compression, dictionaries are often used for compactly
representing point clouds, as shown by Digne et al. [DCV14] for
instance. This is inspired by what is done in the image processing
field, where approaches such as non-local means [BCM05] exploit
the idea of using similar pixels for denoising, regardless of their
position in the image. In general, mesh compression methods
are not dictionary-based [MLDH15], except for mesh sequences
compression [AM00, VS11].

In shape synthesis and geometric modeling, there are two major
types of approaches: the first one, continuous in its nature, uses
entire meshes as atoms and performs interpolation between them,
which can either be linear as in Body Talk [SQRH∗16] or more
advanced as demonstrated by Gao et al. [GCLX16]. The second
class of approaches, which are discrete in their nature, uses a
dictionary of parts, obtained by segmenting and labeling the
input dataset, and then combines them, using statistical models
[KCKK12] or grammars [TYK∗12] for example. Both kinds of
approaches are often split into a preprocessing (or learning) phase
and a runtime phase in which the learned model is used to
synthesize new shapes. For the moment, methods in the first
class require input meshes to be in perfect correspondence, i.e.,
to have the same number and ordering of vertices and the
same connectivity. This requirement can be quite cumbersome
as it is not verified by most datasets, with the exception of
poses in an animation of the same initial mesh [SSK05, LCS13],
and meshes registered to a template such as body capture
[BV99, SQRH∗16]. We name these methods continuous since
interpolated shapes do not have subparts that can appear or
disappear in a discrete fashion. Conversely, algorithms within
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the second category lack the continuous interpolation properties,
and instead do not have specific requirements, apart from having
segmented and potentially consistently labeled shapes. They are
often also more expressive, since for example using a grammar
[TYK∗12] allows for complex shapes that would not be easy to
construct using simple interpolation.

Scalability. This is one of the main advantages presented by
dictionary-based methods. For most presented methods, the
runtime phase can approach real-time performance. For example,
morphing bodies following a set of descriptors as shown in
Body Talk [SQRH∗16] can be rendered in 3D in a web browser
without framerate drops. One reason for this is the drastic
reduction of the size of the problem, i.e. doing the computationally
demanding work only on a set of atoms instead of the whole
dataset, i.e. on a significantly smaller set; this ability is perfectly
demonstrated in the application of terrain amplification of Guérin
et al. [GDGP16]. For specific man-made objects, it is possible
to have small dictionaries for large datasets due to the similarity
between objects, which improves the performance compared to
doing the processing independently on each object. Using a
dictionary also means drastically reducing the space of possible
objects by removing ambiguous or impossible shapes. Not only
this enable faster algorithms due to the limited set, but it also
enable methods to do a second-order analysis on the atoms
[vdHRD∗15, KCKK12, TYK∗12] for a better understanding of
the whole set, which can be used to further reduce computations
[SFCH12] or generate plausible shapes [KCKK12].

Generalization difficulty. One limitation of dictionary-based
methods is that they work best when staying inside the given
learned model, and generalizing learned structures and relations
to a broader set of shapes is typically not reliable. For a given
dictionary, it could be difficult to construct a specific object which
is not similar to the ones in the initial set. However, having a
set of atoms can still be useful: for example, Sketch-to-Design
[XXM∗13] uses multiple dictionaries, one of object parts and one
of object descriptors allowing faster search in the first dictionary. In
other words, dictionaries are good for summarizing a dataset, while
making it more sparse, but their extrapolation power is limited.

More advanced dictionary learning. PCA and K-SVD are
not the only dictionary learning algorithms. The dictionary
representation itself can be different, as with translation-invariant
dictionaries [ESH07], multiscale dictionaries [MSE08] or sparse
dictionaries [RZE10] (where atoms are assumed to have a sparse
representation over a second dictionary, so D1 = D2Catoms).
Furthermore, most methods covered above use two passes, the first
in which the dictionary is learned and the second pass where it is
used. This is called offline learning, and assumes the data is entirely
available and fits in memory. There are situations where such
assumptions do not hold, for example when the data is received
as a stream, in which case one can use online dictionary learning
[MBPS10]. Dictionary learning is actively developed in signal
and image processing, for denoising, deblurring, compression,
separation, inpainting or computer vision [Ela10, Mai10], which
may inspire geometric counterparts. Similarly, in addition to
classical methods such as The Method of Optimal Direction

(MOD) [EAH99], and the K-SVD algorithm [AEB06], sparse
decomposition methods [EA06] are widely applied to image
denoising or enhancement. They rely on the assumption that each
patch of an image can be decomposed as a sum of a small number
of atoms from a dictionary.

Such a framework is also well suited to texture modeling
[Pey09] where new texture patches can be created from a learned
dictionary, simply by imposing a sparsity constraint on the use of
the dictionary atoms. In a more recent work [TGP15], a variational
approach for texture synthesis is proposed which uses a sparse,
patch-based dictionary and allows the reconstruction of geometric
textures efficiently, thanks to constraints on the spectrum of images.

Relations to deep learning. Dictionary learning and deep
learning are two flavors of machine learning, which appear
as complementary when it comes to representation learning.
Both methodologies can be used to automatically discover
and exploit characteristic features of a specific class of raw
input objects, to give rise to higher level parametric models
of the class. Doing so, they make possible to generate new
instances of the class by interpolating or even extrapolating
from the learned subspace. Deep neural network architectures
are numerous, with in particular convolutional neural networks
(CNNs) which have been successfully used for large scale visual
recognition [KSH12, SZ14]. They are typically built by stacking
1D or 2D layers of neurons, with a spatial resolution that
progressively diminishes and local convolutions to connect neurons
from one layer to the next [LBBH98]. At training phase, input
samples (e.g., images) are propagated through the network, a
loss function is computed on the output w.r.t. ground truth data
and the resulting error is propagated backward in the network,
optimizing for the network weights using variants of the gradient
descent method. Several deep learning architectures based on
CNNs have been used for 3D geometric modeling. In particular,
Autoencoders (AEs) [Ben09] have recently become popular to
reveal a latent space characterizing a set of objects. The are
composed of two sub-networks: (i) the encoder which takes the
form of a CNN mapping the input data to a layer of neurons
of reduced size, producing a sparse code at the center of the
AE and (ii) the decoder which symmetrically amplifies sparse
codes to progressively higher resolution layers. The center layer
ensuring the transition between encoding and decoding is usually
referred as the space of codes. Learning with such architectures
is performed by minimizing the deviation between input data and
encoded-then-decoded data. New data may then be synthesized
by sampling the space of codes and decoding. The properties of
the resulting data interpolation/extrapolation are still intensively
studied in many visual computing scenarios.

Thus, AEs and dictionary learning share similar purposes
[OF96, RMA∗17] but AEs have typically more parameters (sizes
of the hidden layers) which are often hard to tune, resulting in a
tedious try-and-test process on a per-problem (or per-dataset) basis.
Although they use simpler operators (e.g., convolutions, maxout,
dropout) which maps well to parallel processors such as GPUs,
the space of code may be quite unintuitive and hard to navigate
which, compared to shape atoms, is a weakness when it comes
to 3D modeling. Instead of finding a sparse representation of the
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input signal, variational autoencoders (VAE) [KW13] learn the
probability distribution of the input, which eases the generation
of new plausible data. Generative Adversarial Networks (GAN)
[GPAM∗14] are composed of two networks, a generator aiming
to create plausible data and a discriminator aiming to distinguish
between real and generated data; they are more precise than VAEs
but also more finicky to train. These two methods can also be
made complementary, by sharing the VAE decoder with the GAN
generator [LSLW16]. Furthermore, these methods make possible
to address data classification and synthesis at the same time. One
promising research direction aims at combining deep learning
and dictionary learning to exploit their complementary, using
for instance multiple layers dictionaries [TMSV16] or dictionary
learning to train hidden layers [SSM16].

Most applications of neural networks to geometric modeling are
naturally derived from image scenarios, which naturally fit GPU
computing. One key challenge in deep learning for 3D shapes is
therefore to find a way to vectorize 3D data in order to set them
as input/output to neural networks. ShapeNets [WSK∗15] chooses
to cast 3D shapes as voxel grids and uses a convolutional deep
belief network [LGRN09] to either recognize a shape, complete
a shape or indicate the most disambiguating camera placement for
recognition. Wu et al. [WZX∗16] and Jiang et al. [JM17] instead
used a GAN (or a VAE-GAN as a variant) to perform better shape
recognition and generation. With GRASS [LXC∗17], Li et al. are
able to handle structure (parts modeled as a set of boxes), with
recursive VAE-GANs; the geometry of the parts is synthesized as a
voxel grid obtained with another neural network. Unfortunately, the
curse of dimension can already be observed in 3D, with dense voxel
grids representations being too heavy and inefficient to train/infer
from when it comes to higher resolution objects. As one can
notice that most of the relevant information about a 3D shape is
encapsulated by its surface boundary, vectorizing the surface only
to feed deep learning architectures appears as a natural alternative.
In particular, Sinha et al. [SUHR17] use geometry images [GGH02]
to better scale, although their method is limited to genus-0 surfaces.
Following Sketch-to-Design [XXM∗13] (previously discussed),
Lun et al. [LGK∗17] completely reconstruct a shape from sketches,
without parts dictionary, by training AEs on a set of predefined
views. The vectorized shape model (network inputs and output)
takes the form of depth and normal (2D) maps from which one
can recover a point cloud. Some methods directly use point clouds
for 3D point cloud reconstruction from a single image [FSG16],
classification [QSMG17] and exploration and synthesis [NW17].
The two formers define their custom learning architecture while
the latter uses an AE. For an overview of the numerous recent
approaches to 3D deep learning, we refer the reader to the recent
work conducted by Wang et al. [WLG∗17].

Open problems. The first challenge related to meshes that we
identify is to be able to store meshes of different connectivities
and different number of vertices in a dictionary. At the
moment, existing methods [SQRH∗16, Wam16, SSK05] require
perfect vertex correspondence in order for the interpolation to
remain simple, which limits their usability. Such a problem is
fundamentally related to abstracting the inner representation, to
have a dictionary of shapes, which can accommodate objects

regardless of their underlying representation e.g., parametric or
implicit. One possible direction is to reformulate the notion
of shape atoms through basic geometric operators only (e.g.,
intersection test, distance estimation, etc.), hiding completely the
way surfaces are stored.

The limited extrapolation power of dictionaries, which we
mentioned earlier, makes necessary the rapid updates of the
dictionary atoms, given some user inputs, which would require
on-line learning strategies. Complementary to editing efficiently
the atoms during the optimization of the dictionary, we suspect
that spatially-varying combination operators would be needed to be
able to take into account user inputs, specifically in regions of the
constructed space where input shapes are under-represented. Such
flexibility would allow for larger extrapolation while providing
user-friendly modeling interfaces. In order to investigate regions,
which might require user inputs, efficient visualization of the
dictionary and its relation to the input dataset might be useful.

Another largely unexplored direction lies in combining
dictionary-based techniques with more advanced learning methods,
including those based on deep learning, which has recently shown a
remarkable success in shape analysis [BKR∗16]. One advantage of
dictionary-based approaches is that they result in atoms, which can
often be interpreted and explicitly re-combined into new shapes,
unlike deep learning-based methods, which are more difficult to
interpret (deep learning interpretability is a current research subject
[BZK∗17]). Some very recent work in point cloud processing
[QSMG17] has proposed constructing and learning so-called
symmetry functions that capture structural shape properties. Such
functions, which are learned using a neural network architecture
can, at an abstract level, be considered as atoms and it would be
interesting to explore this connection more fully.

Furthermore, most methods use dictionaries that are simple to
understand (atoms are whole meshes or mesh segments) but not
specifically designed for the processing algorithms. One approach
in this direction is the mesh reconstruction of Xiong et al.
[XZZ∗14], where the final mesh is the dictionary. Following the
idea of having the best representation for a specific algorithm, and
changing representations between different phases of the pipeline,
one can think of having dictionaries where the processing on
the whole shape can be obtained by modifying the atoms and
then reconstructing, therefore using dictionary to model shape
alterations instead of shapes alone. This type of approach is used
in image processing, e.g., for image denoising [EA06, BSF13], but
has received limited attention in geometric modeling.

Last, beyond pure geometric representation, dictionaries seem
particularly adapted to code and factorize shape-dependent objects,
such as light fields or visibility complexes. Such objects are
typically both highly complex and redundant, while many of their
application scenarios can handle a certain degree of approximation
as long as their synthesis is fast enough. Dictionaries may play
a major role in making such objects practical and dynamic in
graphics applications, following the emerging trend which consists
in substituting pure simulation by inference from learned models.
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