
HAL Id: hal-02953309
https://hal.science/hal-02953309v1

Submitted on 17 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Information System Services Generation of Business
Services Specification and Based on a System-of-Services

Logical Architecture Pattern
Jacques Simonin, Pierre-Yves Pillain, Didier Gueriot, Johanne Vincent

To cite this version:
Jacques Simonin, Pierre-Yves Pillain, Didier Gueriot, Johanne Vincent. Information System Services
Generation of Business Services Specification and Based on a System-of-Services Logical Architec-
ture Pattern. International Journal of Cooperative Information Systems, 2020, 29 (03), pp.2050002.
�10.1142/S0218843020500021�. �hal-02953309�

https://hal.science/hal-02953309v1
https://hal.archives-ouvertes.fr

International Journal of Cooperative Information Systems
 World Scientific Publishing Company

1

INFORMATION SYSTEM SERVICES GENERATION FROM BUSINESS
SERVICES SPECIFICATION AND BASED ON A SYSTEM-OF-SERVICES

LOGICAL ARCHITECTURE PATTERN

JACQUES SIMONIN

IMT Atlantique, Lab-STICC, UMR CNRS 6285, Avenue du Technopôle,
Brest, 29238, France

jacques.simonin@imt-atlantique.fr

PIERRE-YVES PILLAIN

Université de Bretagne Occidentale, Lab-STICC, UMR CNRS 6285, 6 Avenue Victor Le Gorgeu,
Brest, 29238, France

pierre-yves.pillain@univ-brest.fr

DIDIER GUÉRIOT

IMT Atlantique, Lab-STICC, UMR CNRS 6285, Avenue du Technopôle,
Brest, 29238, France

didier.gueriot@imt-atlantique.fr

JOHANNE VINCENT

IMT Atlantique, Lab-STICC, UMR CNRS 6285, Avenue du Technopôle,
Brest, 29238, France

johanne.vincent@imt-atlantique.fr

Received Day Month Day
Revised Day Month Day

The generation and design of the service architecture of an information system is complex. It
depends more on the vision of the service than on the vision of the service inside an information
system. An information system is indeed a system of services that can contain thousands of services.
The lack of consideration of constraints imposed by the information system makes it difficult to
reuse these services. Another strong constraint is that an information system service must support a
business service. The proposed approach allows information system services to be generated in
accordance with the business services specification and their logical architecture to be automatically
designed by respecting a logical architecture pattern of the system-of-services. An information
system services generation algorithm allows being consistent with the logical architecture pattern
during this generation. The definition of coherence and coupling properties makes it possible to
evaluate the relevancy of the system-of-services. A use case shows the value of these properties in
making the logical architecture of the service system more relevant to business services.

Keywords: Business service; System-of-services; Information system service; Model transformation.

1. Introduction

The complexity of an enterprise's Information System (IS) is both quantitative since
several hundred or even several thousand applications coexist there, but also qualitative

2 J. Simonin et al.

with the need for flexibility linked to the evolution of the company's strategy, and for
agility that offers applications that meet users' needs. Almost twenty years ago, the
service paradigm associated with an application that offered an approach to reduce the
complexity of an IS appeared.1

This paradigm is extended with service-oriented architecture (SOA), which provides
a cohesive link between the enterprise's business and the IS.2 Services that provide an
external view of IS applications, or IS services, are orchestrated to deliver business
services, i.e. services that specify the company's business processes. This orchestration is
made possible by a bus of services allowing access to the services offered by the various
IS applications.

The governance of these different IS applications is in most significant companies
managed within an Enterprise Architecture (EA) framework.3 The alignment between
business services and supporting IS services is relevant in an EA approach, as they
improve the IS governance.4 The definition of the services to be used in an IS must be
consistent with the company's strategy, which is reformulated, in part, with the business
services offered to customers. For example, if a commercial enterprise's strategy targets
the customer according to its market (enterprise or individual, for example), then an
ordering service provided by the IS should target a specific market (a service specific to a
company and a service specific to an individual, in the previous example).

Interactions, whether at the business level (collaboration between the sales
department and the delivery department), or at the application level (use of data produced
by an ordering application by a delivery application), are based on this service concept.
The dynamic aspect associated with these services thus appears in all EA frameworks.
The use of a business service is dynamically represented during the course of a
company's business process. Because of the alignment between the business and the IS,5
a dynamic representation of the IS services supporting a business service is also relevant.
For example, the ArchiMate language, which is one of the basic languages associated
with EA, highlights service concepts and the relationships between them.6 ArchiMate
first uses the concept of organizational service to represent the external view of business
behavior, for example, the service of a vendor taking an order for a telecommunications
product. Then, the realization of this organizational service by IS application is carried
out using the application service concept, which is the external view of an application. In
our example, it is a service providing the ordering of a telecommunications product for a
business customer assigned to the interface of an enterprise market control application
(API: Application Programming Interface). This application service requires for its
deployment an infrastructure service defining the useful technologies. For example, the
application service can be deployed on JEE (Java Enterprise Edition) infrastructure
services.

The EA's TOGAF (The Open Group Architecture Framework) framework,7 with the
method it proposes to design the EA allows a good integration of the business during the
IS architecture.8 This ADM (Architecture Development Method) is the major choice
criterion of a large majority of companies for a single or hybrid EA’s framework.9 That is

 IS Services Generation from Business Services Spec. and Based on a SoS Logical Architecture Pattern 3

the reason why the meta-modeling used to automate the IS service development are
mostly chosen from TOGAF. Meta-modeling is the representation of the concepts useful,
here, for IS service development, and their associations (for example, the concept of "IS
service" associated with the concept of "platform service", because the former is
deployed on the latter). Among the concepts composing these meta-models, two of them
are at the heart of our contribution which targets the generation of IS services from the
specification of business services: (1) the business service defined in the TOGAF
business architecture meta-model and (2) the IS service in the TOGAF application
architecture meta-model.

Data concepts make it possible to raise the issue of data quality and integrity during
its life cycle, for example for the telecommunications field10 chosen for illustration in this
introduction. This alignment problem between a data entity (business architecture) and a
physical data (application architecture) is one aspect of the misalignment between
business and IS.11 This misalignment between business and IS leads to a break between
the simultaneous consideration of strategy in the business and in the IS.12 The
implemented view of this IS, called IT (Information Technology), when out of order,
even temporarily, is penalized by the development costs incurred by the evolutions
necessary to bring it into compliance with the business. The logical enterprise
architecture is interesting in this context of rupture because it is the result of a broad
vision of the company that reconciles the company's decision-makers and those who
ensure IT governance.

However, the logical architecture of an IS is complex because of the abstract nature
of these components, grouping functions, and of the relationships between these
components. We have seen the effects of this complexity on 2nd year Master students (at
University and engineering school) during courses focusing on the architecture of a
software application, based on services, in the context of EA. EA was proposed to them
as a constraint for their development, either by a logical architecture pattern of the IS in
which the software was included, or by a J2E development environment. What was
clearly missing to them was the justification of the proposed IS logical architecture
pattern, and the possibility of automating, from all the requirements, the design of the
logical architecture, then the physical architecture and finally the coding of IS services.
This is the reason why we propose, in the first part of the contribution, a pattern
establishing these relations from a typing of the logical components of the IS. From this
logical architecture, the second part of the contribution of the paper is an algorithm
resulting in the generation of information system services supporting a business service.
This generation is proposed here in a context of system of information system services
characterizing SOA approach. In order to automatize this generation, a logical
architecture of the system of information system services is needed first. Our contribution
targets the transformation resulting in a logical architecture of an IS service, as a result of
the algorithm, which comes before the usual transformation resulting in a physical
architecture of an IS service. Each attribute of a given entity produced by a business
service can thus be contextually associated with a logical application component. The

4 J. Simonin et al.

generation algorithm is based on this contextual association allowing the design of
information system services supporting a business service. The automation of this design
is proposed within the framework of an MDA (Model Driven Architecture) approach.
The automated generation of an information system service means the implementation of
model transformations from the business service analysis to the code via the logical
architecture and the resulting applicative architecture. This approach should enable to
simplify the generation of services,13 which is the basis of the orchestration of these
services in order to implement a business process. Moreover, the definition of the
coherence and coupling properties of information system services in relation to the
business services, or of logical application component model in relation to information
system services, which we propose, allows us to evaluate the relevance of a system-of-
services. The implications, of improving the evaluated measure of these properties, on the
business services, on the generated information system services or on the logical
application components, are particularly focused in the use case.

The paper is organized as follows. Background and related work regarding system-of-
services, SOA, and service design are described in Section 2. The concept of packaging
system, such a system-of-services, is defined and improved in the Section 3 by a proposal
of pattern enabling to design the architecture of a system-of-services. The usefulness of
this pattern to generate services of an IS from a business service is underlined by a
generation algorithm in Section 4. A use case is presented in Section 5, applied to a
management IS. In Section 6, assessments resulting from this example are described, as
well as risks for using such approach. Conclusions and perspectives are summarized in
Section 7.

2. Background and Related Work

First, this section examines previous works on the alignment of IS viewpoints with
business viewpoint, as defined by EA, including SOA approach, and on abstract level
architecture for integration of a service into a system-of-services. Then, the section
presents related work about the generation of IS services from business services.

2.1. Enterprise Architecture and system-of-services

A system-of-services is often described in companies by a catalogue of services offered
to IS users in order to carry out their activities with the help of IS applications. This
catalogue allows IS application developers to reuse existing services that provide them
with the data their application needs. The orchestration of such IS services, in order to
support a business service, highlights the relationships and interactions between the IS
services and justifies the term of system.

Alignment between the business and IT is a problem in the industry where
collaboration between business experts and IT designers is complex because of specific
contexts.14 This complexity is induced by different points of view about the company.15
SOA with its properties of flexibility and agility allows the business to design IT services
with IT partners.16 These services are thus more explicit because they are designed and

 IS Services Generation from Business Services Spec. and Based on a SoS Logical Architecture Pattern 5

orchestrated directly from the business point of view.17 The concept of service can thus
be applied to this business point of view in order to define the business service as
expected by the business while the IT service will result from this business service taking
into account IT-specific constraints.18 Service oriented architecture can then be extended
to IS design with the concept of IS service, which highlights the functional aspect of the
service compared to the IT service.19 This abstract level of a system-of-services is the
logical one, which maps with the system viewpoint of Zachman’s framework.20 This
functional aspect is integrated in the logical architecture for EA’s frameworks as
TOGAF, more precisely in the application architecture part of this framework.7

As pointed out in the introduction, there are two concepts of TOGAF which are
chosen to frame the contribution of this paper:

• For business architecture, the concept of a business service associated with one or
more business processes (for example, the three business services of reading the
catalogue of telecommunications products, creating a business customer and
taking orders for a telecommunications product that support an order process).

• For application architecture, the concept of IS service associated with the
automation of a business service (for example, an IS service for consulting a
catalogue of telecommunications products offered by the application managing
the computerized labels and prices of products).

These concepts compose a part of the TOGAF meta-model of the Services Extension.
They are completed in Fig. 1 by the logical application component concept, which
specifies the application component concept defined initially in this extension. The
logical application component is another concept of the TOGAF meta-model useful here
for the IS service logical architecture.

Fig. 1. TOGAF Services Extension meta-model.

For data architecture as defined by TOGAF, the concept of service does not exist, but
it is strongly linked to business architecture or application architecture. The concept of
data entity is indeed associated (provided or used) with the concept of business service,
as well as that of physical data associated with the IS service that provides or uses this
physical data (the physical data defining a product with its wording and price is for
example provided by a service for consulting a catalogue of telecommunications
products).

The synergy between the system-of-services architecture as defined by SOA and EA
is nevertheless limited to the recommendation of specific technologies.21 Our

6 J. Simonin et al.

contribution proposes to extend this synergy to the logical architecture of a system-of-
services and its counterpart in EA, for example the application architecture in TOGAF.

The service concept is considered by the SOC (Service-Oriented Computing)
approach as central in the development of IS applications.22 From this approach, the
usefulness of model-driven development becomes interesting in order to ensure the
integrability and interoperability of IS services. The use of MDA approach for SOA is
first and foremost classical in order to integrate SOA technical solutions, resulting from
non-functional requirements, during service development.23 The design of services
addresses isolated IS services from one business service instead of an exhaustive design
of IS services from an orchestration of business services. However, orchestration can be
handled in some frameworks, such as ArchiMeDes.24 Thanks to rules involving a PDM
(Platform Dependent Model) specific to SOA, this framework transforms an
orchestration of a logical service model viewed as a PIM (PIM: Platform Independent
Model), into a PSM (PSM: Platform Specific Model). The orchestration of business
services is supported here by an orchestration of IS services. The completeness results
from the algorithm of generation constrained by a context that is the system-of-services.
Taking into account a context in the MDA approach25 is interesting because it would
allow the automaticity of the generation proposed in our contribution.

2.2. Generation of IS services from business services

The architecture defining how IS services must be developed in order to support business
services introduce the concept of system-of-services. The objective of this architecture is
the integration of an IS service into the system-of-services of the company.26 In this
system-of-services, the integration of an IS service can be done by discovery (in order to
reuse it)27 or development (in order to support a business service) respecting the property
of low coupling between IS services.28 The architecture of the IS services can be
integrated in EA in accordance with an ontology targeting integration.29 This integration
is also being studied from a systemic point of view (a system is composed of units that
can be linked by static relationships allowing them to interact dynamically) with the
concept of system-of-systems. An example is the integration, of computer applications,
which transforms these systems into subsystems composing an IS The IS thus is a
system-of-systems. We find the architecture layers associated with subsystems that make
up a system-of-systems. What is interesting is that the lowest layer of the systemic
approach, that of the units composing the lower-level subsystem, is not addressed, in
particular the coupling property which is on the other hand highlighted for subsystems.30

The system-of-systems is also better treated than the system-of-services in terms of
its architecture. This is the case, for example, for the integration of a system into a system
of systems.31 An interesting point is that the modeling of an IS should be considered first
at the abstract level of a system-of-systems.32 Unfortunately, this abstract level is not
emphasized much in the studies of systems-of-services. The evaluation of system-of-
systems architecture is rather achieved by experts of each level and based on a mapping
between activity and system.33 However, it does not benefit of development traceability

 IS Services Generation from Business Services Spec. and Based on a SoS Logical Architecture Pattern 7

between these levels. Traceability is indeed a quality attribute of a system-of-systems 34
and is essential for the life-cycle (development process, maintenance process, and
operating process) of a complex system35 such as a system-of-systems, or a system-of-
services. Traceability is generally based on a documentation reproducing the activities of
the processes characterizing the processes of the system life cycle. As mentioned above,
traceability in SOA focuses on the business and the physical,36 and therefore does not
take into account an abstract intermediate level of the system-of-services.

The model-driven approach for this architecture should assist the evaluation and the
traceability of a system-of-systems. More generally, the model-driven approach is
essential both for specifying business processes and for developing the IS services that
support them.37 This approach is beneficial in the context of system integration in a
system-of-systems with patterns,38 but this solution suffers from the absence of a global
system-of-systems architecture solution.39,40 Indeed, each model transformation uses one
task as input and results into one IS service.

Still in the model-driven approach, transformations of business processes modeled
with BPMN (Business Process Model and Notation) into a logical service architecture
modeled with SoaML (Service oriented architecture Modeling Language) are
implemented with any model transformation language. These transformations consist
mainly either of transformations of message, which stipulate data entities exchanges, into
service interfaces,41 or of transformations of task into services.42 Compared with these
two examples of the generation of IS services from business processes, what is missing is
the failure to take into account the system-of-services that encapsulates the services of an
IS. Indeed, without this constraint for any IS service logical architecture to conform to an
enterprise-specific system-of-services logical architecture, it is difficult to promote the
reuse of IS services by other IS services. This is the foundation of our contribution to
generate IS services from business services in a consistent way across an enterprise's IS.
This logical architecture of a system-of-services of a company must therefore be designed
in advance of any generation of IS services in this company.

In a similar way to system integration in a system of systems, the integration of a
service into a system of services requires the creation of abstract views of the developed
services IS.43 Nevertheless, an abstract global view of the service system is not deeply
treated. The global integration difficulty is the granularity of the design of the
components at the abstract level. A multi-level approach for the IS service is the most
common solution. Each level maps with a granularity of a service, which is associated to
a view of this service (process, business, composite…).44 However, the modularity is
often based on environment criterions and can be assisted by an estimation of the
technical potential of each module in software design.45 Microservices designed in order
to develop adaptive system-of-services, as cloud system,46 are considered as independent
component containers. The sharing of components is then difficult to apply during the
development of the IS services. Modularity is also a fundamental property in the design
of heterogeneous systems fusion architecture, which offers solutions to the system of-
systems architecture.47 Functions are grouped together based on the detection of the

8 J. Simonin et al.

sharing of the same information in order to best reuse a function. Nevertheless, there is
no a priori generation of these functions merging at the abstract level.48 The creation of IS
services is covered in 49, where an IS service is virtualized from the ability of an agent
responsible of the execution of a system’s use case. This service engineering does not
take into account a priori global design of a system-of-services favorable to the IS
services reuse, but the uses of this system.

One observation is that the appropriate transition between business and IS is not
conducive to an automated development of IS services. Instead of ontology and
hierarchical modeling solutions (i.e. refinement solutions), we prefer to design a system-
of-services logic model, as global solution for this system, in which IS services must be
integrated, or reused. Indeed, on the one hand, an ontology will specify a business model
of data entities based on the expertise of the addressed business. The transformation of
such a model into a logical architecture model also requires the consideration of the
business services as used in the company. These business services are impacted by the
organization of the company. However, this organization specific to a company and an
ontology specific to a business domain in which the company is working can be
contradictory. On the other hand, in the case of refinement, the problem is the granularity
of the logical operation when it is transformed into a physical operation, i.e. ready for
implementation. The objective of automating the generation of the logical architecture of
IS services is difficult to achieve because of this uncertainty. Another observation is the
usefulness of the lowest level of systemic approach to automatically develop these IS
services (from IS services generation to IS services coding). The goal is to simplify the
interaction of business experts with IS services architecture through the functions
describing the system-of-services. For this purpose, measurable properties are proposed
below to define a suitable system-of-services.

Related work makes it possible to highlight the specificity of the contribution, where
the IS is considered as a constraining context for the generation of IS services from
business services. This context must be shared by all generated IS services and must
therefore be designed beforehand. The first expectation addressed in section 3 is a
solution for modelling IS seen as system-of-services.

3. New Pattern for System-of-Services Design Based on Packaging System
Properties

We first define in this section a packaging system whose properties applied to a system-
of-services would automatically enable the generation of IS services and their logical
architecture in relation to the specification of a business service. This generation is
detailed in an algorithm in Section 4 where the design of IS services is guided by the
design of the logical architecture of the IS presented below. Then, a pattern is suggested
in order to design the logical architecture of a system-of-services50 satisfying the
properties of a packaging system.

 IS Services Generation from Business Services Spec. and Based on a SoS Logical Architecture Pattern 9

3.1. Packaging system definition

Properties defining a packaging system and illustrations of the expected properties of a
packaging system for three well-known systems, especially a system-of-services, are
described in this section.

3.1.1. Packaging system properties

Packaging is defined here as in UML (Unified Modeling Language) by a grouping of
coherent elements.51 A system is also defined by a grouping of coherent subsystems. The
coherence of a subsystem (differentiated from its cohesion)52 is conditioned by the
requirements specification that the system’s subsystems have to solve. A generic
definition of coherence is proposed below in order to extend the coherence property to
the subsystem’s units conditioned by the specification of each subsystem. A requirement
that conditions the subsystem design, and a subsystem that conditions the units design,
define an expectation in the both following generic definitions. The following definitions
of coherence and coupling property are applied to elements of a set SO of solutions that
should solve some elements of EX, set of expectations.
Definition of coherence. One element so1 of SO is coherent with the set of expectations
EX if ∃ex1∈ EX, such as so1 solves ex1 and only ex1.

In Fig. 2, only so1, so3 and so5 from SO are coherent with EX.

Fig. 2. Example of a solution set SO solving a set EX of expectations. A solution sok solves (at leastly partly)
one or more expectation exn. The relation “solves” between EX and SO is denoted R.

An evaluation of the coherence of SO could thus be the ratio of the amount of SO
elements coherent with EX, to the SO total amount of elements.53 Let us therefore
consider a MCH measure of the coherence of a set SO conditioned by a set of
expectations EX:

MCH(SO, EX) = card({so ∈ SO; so is coherent with EX}) / card(SO) (1)

where card(A) returns the cardinality of the set A.
The behavior of the MCH measurement is based on the following two axioms:54 (1)

The lower the coherence, the lower its measurement decreases, and therefore, the closer
its evaluation is to 0. (2) The higher the coherence, the higher its measurement increases,
and therefore, the closer its evaluation is to 1.

In Fig. 2, the measurement of the coherence of the set SO is MCH(SO,EX) = 3 / 5.
If each subsystem is designed from units, the units interacting with each other during

an instantiation of a subsystem, and thus having a static relationship between them,55

10 J. Simonin et al.

define a coupling property. The following extended definition of coupling property
enables to specify also the coupling between the system’s subsystems conditioned by the
system requirements specification.
Definition of coupling. Two elements soi and soj from a set SO of solutions solving of a

set EX of expectations are coupled if they are linked by a static oriented relationship
deduced from a dynamic interaction required by an instance of an expectation of EX.

Thus, soi and soj are coupled if either
(a) ∃ex ∈ EX / soi solves ex and soj solves ex,
(b) or ∃so ∈ SO / so and soi are coupled and so and soj are coupled.

Then, the coupled relation defines an equivalence relation on SO, allowing to build
P(SO), the set of its equivalence classes.

In Fig. 2, for instance so1 and so2, so2 and so4, so4 and so5 are coupled through
condition (a) involving so1, so2, so4, and so5 are coupled through condition (b). Only so3
is not coupled with any other solution. Then, P(SO) is here a two-elements set P(SO) =
{{so 1, so2, so4, so5},{so3}}.

The evaluation of a coupling is more common.56 One MCU measure of the coupling
of a set of elements SO solving a set of expectations EX could be:

 MCU(SO, EX) = 1 / card(P(SO)) (2)
where P(SO) is the partition of set SO built according to the coupled equivalence relation
existing on SO through the set EX and the “solve” relation between SO and EX.

The behavior of the MCU measurement is also based on two axioms:54 (1) The lower
the coupling, the lower its measurement decreases, and therefore, the closer its evaluation
is to 0. (2) The higher the coupling, the higher its measurement increases, and therefore,
the closer its evaluation is to 1. Thus, the measure of coupling of the set SO in Fig. 2 is
MCU(SO,EX) = 1 / 2.

We define a packaging system from coherence and coupling properties to be verified
by the subsystems on one hand and by the units on the other hand. This definition is
based on the properties necessary for modularization, which are low coupling between
modules and high consistency within each module.57 A module for a system is a
subsystem of this one.
Definition of packaging system. Knowing a set of requirements specifying the system, a
packaging system is a package of subsystems, exhibiting low coupling and high
coherence between them. Each subsystem is composed of units with high coupling and
low coherence between them, knowing the specification of each subsystem.

The awaited packaging system properties are illustrated below with system-of-
services compliant with the SOA approach.

Packaging systems are represented in this paper through UML258 class diagrams,
where the dependency stereotypes “solves” from SO elements on EX elements matches
with the R solving relationship expressed in the definitions of coherence and coupling.

 IS Services Generation from Business Services Spec. and Based on a SoS Logical Architecture Pattern 11

3.1.2. Packaging system-of-services

As shown in Fig. 3, a system-of-services, where a service is an IS service, is a potential
packaging system. In relation to the systemic approach, the system is a set of IS services,
and an IS service is a subsystem. This system-of-services support the business services
triggered by the “customers” of these last ones.59 Considering the logical architecture of
an IS service, the units of a subsystem are the LACs (Logical Application Components as
defined in the TOGAF meta-model) required during the instantiation of an IS service.

In Fig. 3, two relations R exist:
• A “supports” relation, between ISS and BS, considering the case where an IS service

solves a business service, for instance ISS1 IS service supports BS1 business service.
• A “is required by” relation, between LAC and ISS, when a LAC is required by an IS

service during the logical design, for instance LAC1 and LAC2 LACs are required
by the ISS1 IS service.

Fig. 3 – Example of a system-of-services.

The subsequent sections propose coherence (MCH) and coupling (MCU) evaluations
for several configurations of system-of-services, on both levels: (a) IS services solving
business services and (b) logical application components solving IS services.

3.1.2.1. Coherence and coupling evaluations for ISS supporting BS

For the illustration of the IS services coherence (see Eq. 1) and coupling (see Eq. 2)
evaluations, two examples are proposed (see Fig. 4). In Example ISS/BS#1, three IS
services are designed with one supporting a task common to two business services. In
Example ISS/BS#2, each business service is solved by one IS service.

About Example ISS/BSS#1, according to Eq. 1, the coherence MCH is not maximal
because the ISSReadDepartment IS service supports both business services (a task of
reading a department is common to BSCreateEmployee and BSCreateDepartment); only
two over three IS services are coherent with business services set. On the contrary, in
Example ISS/BS#2, MCH is maximum because each IS service solves only one
expectation

In ISS/BS#1, BSCreateEmployee is supported by the orchestration of
ISSReadDepartment and ISSCreateEmployee and BSCreateDepartment by the

12 J. Simonin et al.

orchestration of ISSReadDepartment and ISSCreateDepartment. The partitioning gives
then only one subset due to the shared use of ISSReadDepartment in both orchestrations.
According to Eq. 2, the coupling MCU is then a maximum.

Conversely, ISS/BS#2 shows a lower coupling since there is no orchestration linking
the two IS services. The partitioning conditioned by the business services, gives then two
complementary subsets of IS services and the coupling measure decreases to 0.5.

Fig. 4 – Computing coherence and coupling for IS services supporting business services.

Conclusion: Adding an information system service that partially resolves at least two
uncoupled business services decreases the value of the coherence and increases the value
of the coupling. That means that for a packaging system, the IS service sharing should
not be considered when designing IS services. Duplication of elements, defining IS
services, is thus possible if these elements support an identical task of a business service.
However, as described in the following subsection, the IS service logical architecture will
prohibit duplicating code when implementing these IS services. Obviously, the packaging
system definition enforces this desirable behavior.

MCH({ISSCreateEmployee,

ISSCreateDepartment,

ISSReadDepartment},

{BSCreateEmployee,

BSCreateDepartment}) = 2 / 3

MCU({ISSCreateEmployee,

ISSCreateDepartment,

ISSReadDepartment},

{BSCreateEmployee,

BSCreateDepartment}) = 1 / 1

Example ISS/BS#2

>

MCH({ISSCreateEmployee,

ISSCreateDepartment},

{BSCreateEmployee,

BSCreateDepartment}) = 2 / 2

MCU({ISSCreateEmployee,

ISSCreateDepartment},

{BSCreateEmployee,

BSCreateDepartment}) = 1 / 2

Example ISS/BS#1

<

 IS Services Generation from Business Services Spec. and Based on a SoS Logical Architecture Pattern 13

3.1.2.2. Coherence and coupling evaluations for LAC required by ISS

For the illustration of the logical application components coherence (see Eq. 1) and
coupling (see Eq. 2) evaluations, two examples are proposed (see Fig. 5). LAC/ISS#1
solves two IS services with two LACs, one for one. In LAC/ISS#2 example,
LACDepartmentManagement component solves both IS services.

Fig. 5 – Computing coherence and coupling for LACs required by business services.

In LAC/ISS#1 example, the design of LACEmployeeCreation (reading of a
department and creation of an employee) and LACDepartmentManagement (reading and
creation of a department) involves a maximal coherence of the two LACs with the two IS
services as each LAC solves only one specific IS service. In that case, it is important to
note that the coherence MCH is maximized because each LAC implements the
“department reading” specified in both IS services. The result of partitioning LAC sets
obviously gives two complementary subsets involving a low MCU coupling measure.

About LAC/ISS#2, a lower coherence MCH of LACEmployeeManagement (creation
of an employee) and LACDepartmentManagement (reading and creation of a department)
is observed because LACDepartmentManagement solves both IS services. On the
contrary, the coupling value MCU is maximal because only one LACs subset exists.

Conclusion: Adding a logical application component solving at least two IS services
decreases the value of the coherence and increases the value of the coupling. That means

MCH({LACEmployeeCreation,

LACDepartmentCreation},

{ISSCreateEmployee,

ISSCreateDepartment}) = 2 / 2

MCU({

LACEmployeeManagement,

LACDepartmentManagement},

{ISSCreateEmployee,

ISSCreateDepartment}) = 1 / 2

Example LAC/ISS#2

MCU({

LACEmployeeManagement,

LACDepartmentManagement},

{ISSCreateEmployee,

ISSCreateDepartment}) = 1 / 1

Example LAC/ISS#1

MCH({

LACEmployeeManagement,

LACDepartmentManagement},

{ISSCreateEmployee,

ISSCreateDepartment}) = 1 / 2

<

>

14 J. Simonin et al.

that for a packaging system, sharing of logical application components in order to solve
IS services improves the packaging system properties.

3.1.2.3. Designing a system-of-services satisfying packaging system
properties

Considering the previous examples and their MCH / MCU evaluations for both levels, the
best design for the full system-of-services is given in Fig. 6 combining ISS/BS#2 and
LAC/ISS#2, in order to comply with Definition 1 of a packaging system.

Fig. 6 – Illustration of system-of-services satisfying packaging system properties.

Thus, for a system-of-services, alternative designs for business services, information
system services or logical application components can be deduced from:

• the increasing variation in the measure of coherence and the decreasing variation
in the measure of coupling of information system services,

• the decreasing variation in the measure of coherence and the increasing variation
in the measure of coupling of logical application components.

Such alternative designs are discussed about the use case in Section 5.1.4. An
appropriate design solution shared by the different contributors (business expert, system-
of-services logical architecture designer, IS service logical architecture designer) can then
be extracted from these alternative designs.

Logical architecture is therefore central to our objective of generating IS services
from business services. The difficulty in designing such architecture is the multiplicity of
logical application components and the complexity of the dependencies between them. In
order to reduce this complexity, we propose a pattern responding to the problem of
designing the logical architecture of an IS.

 IS Services Generation from Business Services Spec. and Based on a SoS Logical Architecture Pattern 15

3.2. System-of-Services-Logical-Architecture-Design pattern

The achievement of logical architecture design of a packaging system is enriched by
models and concepts defining process patterns.60 A process pattern is a pattern as defined
which specifies activities for development.61 These process patterns must solve a
recurrent problem with activities description.62 Activities description must contain
activity chaining and enterprise responsible for each activity. Development recurrent
problem studied in this section is the logical design of a system-of-services. The System-
of-Services-Logical-Architecture-Design pattern is first detailed in Table 1 for the
general characteristics of the pattern, in Table 2 for the process supporting the logical
architecture design of system-of-services, and in Table 3 for the implementation.

Table 1 – System-of-Services-Logical-Architecture-Design pattern – General characteristics.

Category System-of-Services-Logical-Architecture-Design
Classification Scale: logical architecture model (LAC and LACD) description.

Phase: logical architecture design.
Purpose: logical architecture model design method for system-of-
services having packaging system properties.
Scope: logical architecture.

Intent 1) Design of the LACs defining a system-of-services and satisfying to a
typing of LACs and 2) design of dependencies between LACs where
orientation depends on the types of the source component and of the
target component of each dependency.

Motivation Scenario illustrating the problem is the development of a service, which
belongs to a system-of-services having the properties of a packaging
system. The development should be based on the logical architecture of
the system-of-services in order to make easier the reuse of the services
of the packaging system.
The logical architecture of a system-of-services should minimize the
coupling between services composing the system and supporting a
business service (high coherence and low coupling).

Applicability Logical architecture model of a system-of-services has beforehand to
be aligned with business services that it supports.

Consequences This pattern assists the logical architecture designer of a system-of-
services and enables a use of the LAC model in any development of a
service of the system-of-services.

Related Patterns Analysis process patterns (before this pattern, for the business
requirements analysis).
Detailed design patterns (after this pattern, for the physical architecture
design).

16 J. Simonin et al.

Process, in Table 2, supporting the logical architecture design of system-of-services is
useful to a physical architecture designer of a service (transformation of a logical design
into a physical design). The design of these activities follows the experimentation of the
pattern in the field. The granularity of these activities is intended to implement the pattern
directly through the precision of each of them. A logical data is defined as produced by a
logical application component in the process.

Table 2 – System-of-Services-Logical-Architecture-Design pattern – Process.

Process Following process activities and their chaining are represented in a
UML activity diagram (see Fig. 7):
• Specification of LAC types from life duration criterion: the system-

of-services logical architecture designer defines first some types
associated to LACs consistently with the life duration of these
components. A typing is relevant for large scale system like
Information System because the great number of LACs defining the
system logical architecture.

• Design of logical data from business semantic: in order to design the
LACs, the logical architecture designer first designs a candidate
logical data, with their attributes. They have to be aligned with the
business services supported by the system of systems. The designer
can be assisted in this activity by the business requirements analyst
for the business understanding of the business services.

• Checking of logical data attributes life duration for each data: the
logical architecture designer checks that the attributes of the same
candidate logical data satisfy the same life duration criterion
associated to a type.

• Splitting of logical data: if the attributes of a candidate logical data
do not satisfy the same life duration criterion associated to a type,
then the logical architecture designer must split the candidate logical
data in order to design effective logical data having each some
attributes conforming to one criterion.

• Design and typing of LAC defined each as managing one logical
data: if the attributes of each effective logical data satisfy the same
life duration criterion, the logical architecture designer can design
one LAC producing one effective logical data.

• Design of non-oriented LACDs from business semantic: the logical
architecture designer designs some dependencies that are non-
oriented (i.e. not yet oriented) between the LACs. They have to be
aligned with the business services supported by the system of
systems. The designer can be assisted in this activity by the business
requirements analyst for the business understanding of the business
services.

• Orientation of LACDs from life duration rule: for each non-oriented
dependency, which associates two LACs having a different type, an
orientation of the dependency is designed such a LAC having the
type defined by the longest life cycle duration depends on the LAC

 IS Services Generation from Business Services Spec. and Based on a SoS Logical Architecture Pattern 17

having the type defined by the shortest life cycle duration. This rule
is referred subsequently to as the Component-Dependency-
BasedOn-Life-Duration-Rule.

• Orientation of LACDs from business semantic: for each non-oriented
dependency, which associates two LACs having an identical type, an
orientation of the dependency is designed such a component needing
another component in the specification of business services depends
on it. The designer can be assisted in this activity by the business
requirements analyst for the business understanding of the business
services.

• LAC cycle checking: at last, the logical architecture designer
checked that there is no cycle in the LAC model (cycle definition:
there is a LAC1 LAC, which depends on a LAC2 LAC (different
from LAC1), which depends on …, which depends on LAC1).

Participants Business requirements analyst: analyst role is to assist the logical
architect for the business understanding of the business services.
Logical architecture designer: this architect has here to design a static
logical architecture model of the system-of-services. The logical
architecture designer is responsible for all the logical architecture
activities specified in the process.
Physical architecture designer: this architect must design the physical
architecture of a service, part of the system-of-services, which
implements a set of LACs and LACDs. These components and
dependencies are collected by the physical architecture designer from
the logical architecture of the system-of-services. Moreover, the
physical architecture is deployed on technology architecture.

The process representation in Fig. 7 shows two roles. The triggering role is the
physical architecture designer role, who is responsible for the physical implementation of
the logical architecture of IS services. The contributing role is the logical architecture
designer role, which has to design a static logical architecture model of the system-of-
services.

18 J. Simonin et al.

Fig. 7 - System-of-Services-Logical-Architecture-Design process.

The implementation of the pattern deals with the logical architecture model checking
based on MDA approach. The concepts used by the transformation (LAC and logical
application component dependency (LACD)) conform to the TOGAF meta-model’s
concept (Application architecture).7 The model transformation is implemented with
operational-QVT Language.63 The implementation targets the two process activities:

 IS Services Generation from Business Services Spec. and Based on a SoS Logical Architecture Pattern 19

Orientation of LACDs from life duration rule and LAC cycle checking. Indeed these two
activities are the only ones that can be automated. The others require the intervention of
the logical architecture designer, necessarily, and, optionally, of the business
requirements analyst.

A pattern implementation targeting the data proposed 3 types: Flow, Stock and
Category.64 This pattern is adapted to LACs and experimented in several cases (teaching
and research). Following these experiments and the application of the Component-
Dependency-BasedOn-Life-Duration-Rule, the Flow type becomes the Activity type, the
Stock type is split into 2 types: Person and Document, and finally the type Category
becomes the type Reference.

Table 3 – System-of-Services-Logical-Architecture-Design pattern description – Pattern implementation.

Implementation For this implementation, the duration life is specified with the
following typing of the LACs:
• Activity that is associated with the management of dates or

references of a flow modifying a status of a document, a status of a
person or a reference, such as ordering a product or invoicing it is
associated with a very short life cycle.

• Document that targets documents such as commercial contracts
associated with a product have a longer life cycle because the states
of a document are changed by several activities, for example the
order puts the contract in the created state and a service update puts
the contract in the changed state.

• Person which is associated to people such as the customer with, for
example, a first order that puts the customer in the created state,
while a second order with the same customer places him in the read
state. In addition, the life cycle associated with the Person type is
longer than that associated with the Document type, for example a
customer may have several contracts, overlapping or not.

• Reference which manages references such as those of a product in a
catalogue, a type of commercial contract (after-sales service, etc.) or
a customer market (company or general public) is associated with a
longer life cycle than the previous types since it allows referencing
the three previous types.

The Component-Dependency-BasedOn-Life-Duration-Rule is adapted
to this typing. Based on the assumptions about the life cycles associated
with each type, the pattern used for the implementation contains six
dependencies between the different types of LAC (see Fig. 8):
• From Activity to Document, such as from a product order to a

contract associated with a product.
• From Activity to Person, such as from a product order to the

customer who placed the order.
• From Activity to Reference, such as from a product order to a service

in the product catalogue.
• From Document to Person, such as a contract associated with a

20 J. Simonin et al.

product to the customer holding the contract.
• From Document to Reference, such as a contract associated with a

product to a type of contract defined by the seller.
• From Person to Reference, such as a customer to the market to

which he belongs (general public or company for example).

Fig. 8 - System-of-Services-Logical-Architecture-Design pattern for implementation.

The principle induced by this implemented pattern is that any document
or person is created in the course of an activity and that the following
activities, which are triggered by this document or person, depend on
the activity of creation, and not on the document or person. For this
reason, there is no dependency of logical application component, which
is not typed Activity, on a logical application component, which is
typed Activity, in the pattern. The implementation of the checking of
the logical architecture of the system-of-services is in Appendix A.

Sample
Execution

The execution samples run three cases of design of dependency
between LACs.
The first case (see Fig. 9) does not satisfy the pattern about the
orientation between components having different types.

Fig. 9 - Illustration of a logical architecture model not satisfying the System-of-Services-
Logical-Architecture-Design pattern for implementation (see Fig. 8).

The execution result indicates a warning in relation with the pattern.

The second one is an illustration of a loop (see Fig. 10), which concerns
components having the same type.

 IS Services Generation from Business Services Spec. and Based on a SoS Logical Architecture Pattern 21

Fig. 10 - Illustration of a logical architecture model with a loop between
LACEmployeeManagement and LACServiceManagerManagement.

The execution result indicates also warning meaning loops.

The third one in Fig. 11 is a correct application of the pattern.

Fig. 11 – Illustration of a logical architecture model satisfying the System-of-Services-
Logical-Architecture-Design pattern for implementation (see Fig. 8).

The execution result indicates no warning:

The design pattern of the logical architecture of a service system meets only
functional expectations. The logical architecture addressing non-functional requirements
is processed in the technical architecture model, where a technical component satisfies
one or more non-functional requirements (mainly for response time). This part is not
detailed here, but is implemented in the transformation of the logical model into a
physical model of the IS services in a classical way in the MDA approach, i.e. with a
PDM representing this technical architecture (see 4.2).

3.3. Information system service definition

The definition of an IS service (the same concept as in the TOGAF meta-model) is based
here on the properties of a logical dependency tree (LDT) made of LACs.
Definition. A set of LACs LDT = {LACi such 1≤i≤n} is a logical dependency tree if it
conforms to an acyclic directed graph having one root: ∃ ! LACroot ∈LDT such ∀ LACi

22 J. Simonin et al.

∈LDT with LACi ≠ LACroot ⇒ path(LACi, LACroot) = false and path(LACroot, LACi)
= true.

The logical architecture in Fig. 11, which satisfies the System-of-Services-Logical-
Architecture-Design pattern, is a logical dependency tree where LACroot =
LACEmployeeManagement with path(LACEmployeeManagement,
LACDepartmentManagement) = true and path(LACDepartmentManagement,
LACEmployeeManagement) = false.

In order to express the coupling property of LACs composing an IS service, IS
service definition is based on a logical dependency tree.
Definition. The logical architecture of an IS service, which has to support all or part of a
business service, is defined by LACs and LACDs that form a logical dependency tree.

An illustration is the definition of the IS service supporting the BSCreateEmployee
business service. The specification of BSCreateEmployee results in two business tasks:
(i) Read a department

(ii) Create an employee
The logical dependency tree in Fig. 11 allows to define ISSCreateEmployee as an IS

service. The instantiation of LACs’ tree is underlined by a UML sequence diagram
representing an instance of the ISSCreateEmployee IS service (see Fig. 12).

Fig. 12 - IS service supporting BSCreateEmployee business service.

The logical dependency tree is completely instantiated because the two LACs are
instantiated, and because the LACD from LACEmployeeManagement on
LACDepartmentManagement is instantiated by the readDepartment request operation
instantiation. The createEmployee logical operation of LACEmployeeManagement and
the readDepartment logical operation of LACDepartmentManagement are instantiated
when ISSCreateEmployee is instantiated.

The logical dependency tree in this example fully supports the BSCreateEmployee
business service. However, the LACs supporting a business service could be associated to
more than one logical dependency tree, and thus define more than one IS services (one IS
service per one logical dependency tree). Moreover, each LAC can support more than
one business service. In order to address this complexity, we define the LAC model of
the system-of-services as a contextual model of the transformation of business services
into IS services.

Each logical dependency tree design should conform to the logical view of the
packaging system. The generation of a IS service from a business service must be thus

 IS Services Generation from Business Services Spec. and Based on a SoS Logical Architecture Pattern 23

based on the logical architecture of the packaging system, which is the IS containing it
and which conforms to the System-of-Services-Logical-Architecture-Design pattern.

4. IS Service Generation Algorithm for IS Service Development

Knowing the logical architecture of a service system with high consistency properties
induced by the supported business services, the problem to be solved is to generate IS
services, from business services, with a low coupling between them, and so that each
service is composed of LACs with a high coupling and a low coherence between them.

The definition of an IS service must then highlight the coupling property of the LACs
that describe it. One solution consists in constraining an IS service by the existence of
dependencies between its LACs. In order to define the IS services that comply with this
solution, an IS services generation algorithm, based on a set of business services, is
proposed in this section. The model-driven approach to using a logical model of the
service system resulting from the pattern (see Section 3.2) and reusing existing IS
services completes this section.

4.1. Contextual model transformations from business services to IS services

The complexity highlighted above can be considered as a problem of variability of "data"
related to an IS service development process. Indeed, for each business service, the IS
service architecture designer must 1) align this service with the service system logic
model in order to automatically generate the IS services supporting the business service,
2) align the logical architecture of the IS services supporting the business service with
one or more existing IS services of the system-of-services (external to the transformation)
in order to reuse them (conditioned by technological consistency in the subsequent design
of the physical architecture). The IS service architecture designer must therefore align 1)
a model of LACs of the service system (up to several hundred components, each
supporting one or more business services) with the tasks of a business service, and then
2) existing IS services (up to several thousand) with the logical architecture of a business
service. These numerous "data" form a double context that induces 1) an integration with
enrichment by a logical model of the service system, and 2) an integration with
substitution by existing IS services.

The model-driven integration (useful for these many "data") of this double integration
is proposed with a MDA-compliant development process. The double integration is based
on the integration of a context into a MDA model transformation.25 In this approach, the
authors integrate a contextual model (TCM: Transformation Context Model) into the PIM
before ST (Substitution Transformation) or ET (Enhancement Transformation)
applications resulting in a PSM under the technical constraints of a PDM. The PICM
(Platform Independent Contextual Model) results from the integration of the TCM into a
PIM.

This integration must be extended to the full MDA approach. The business services
model is indeed a CIM (Computation Independent Model) in the MDA approach. This
means an adaptation to make of the contextual transformation (substitution or

24 J. Simonin et al.

enhancement)25 for the transformation of a CIM into a PIM. The enhancement of CIM
with the logical architecture of the service system (TCMe: TCM for enhancement) leads
to the logical architecture model of IT services supporting business services (PIM).
Before obtaining the PIM, we propose an enriching CTe contextual transformation of the
CIM.

4.2. Enhancement contextual transformation of business services into IS services
logical model (CTe)

The CIM is a meta-model of a business service. The CIM concepts target the description
of a business task composing a business service. These concepts takes into account some
constraints making easier the generation of IS services code. CIM’s concepts definition
and illustration in relation to the example in Section 4.1, are as follows:
• “Business Service” (the same concept as in the TOGAF meta-model) describes a

business service (BSCreateEmployee).
• “Business Task” specifies the order number of a task composing the business service

(1 for the Read a department business task of the BSCreateEmployee business
service and 2 for the Create an employee task).

• “Verb” indicates the verb defining the business task (read for the Read a department
business task and create for the Create an employee task). The verb value is limited
to create, read, update, and delete in order to make easier the transformation
resulting in code (with reference to CRUD designating the four basic operations for
data persistence).

• “Data Entity” (the same concept as in the TOGAF meta-model) represents a data
associated to a business task. The association means the production of a data by a
business task (Department for the Read a department task and Employee for the
Create an employee task).

• “Attribute” refers to an attribute of the data entity, which is associated to the business
task. This attribute is directly related to the task (name attribute of the Department
data entity for the Read a department business task and name, and social security
number attributes of the Employee data entity for the Create an employee task. The
attribute is essential for a task associated with a test. In this case, only the attribute of
the data entity used for the test is associated with the task. For example, when
selecting an employee, only the social security number is associated with the reading
task.

• “Loop” indicates if the business task is iterated or not. The loop value is true or false.
• “Condition” describes the condition that is associated to a business task. A condition

targets an attribute characterizing a task, which specifies a test (for example, <>null
condition for name attribute of the Department data entity for the Read a department
business task).

TCMe is the contextual model in relation to the integration with enhancement. This
enhancement by a logical architecture model of the system-of-services needs the
following concepts of the TCMe meta-model:
• “Logical Application Component” (LACEmployeeManagement) and “Logical

Application Component Dependency” (LACEmployeeManagement on

 IS Services Generation from Business Services Spec. and Based on a SoS Logical Architecture Pattern 25

LACDepartmentManagement) as used in the System-of-Services-Logical-
Architecture-Design pattern.

The CICM (Computation Independent Contextual Model) meta-model shows a
mapping relationship between a business service and a system-of-services logical model.
This mapping is achieved with the concept “Contextualized Data Entity Attribute” that
links the attribute of a data entity (concepts “Data Entity” and “Attribute”) with a LAC
(concept “Logical Application Component”) (see Fig. 13). The attribute selection is
implicitly constrained by its membership of the entity data. This mapping between units
(represented by “→”) specifying a business service and units characterizing a system-of-
services logical model is extended to a mapping between relationships (represented by
“→”). A sequence of business tasks (see the concept “Business Task” composed of the
order number of the task) involves a relationship between the associated data entity
attributes. The rule CTe-RR defining a mapping of this relationship between the
associated data entity attributes with a LACD is as follows.

CTe-RR. Let the contextual CTe-Transformation from CIM x TCMe to CICM, DE1
– A1 and DE2 – A2, two data entity attributes associated to two business tasks in CIM,
resp. BT1 and BT2 such BT1 comes before BT2, if ∃ LAC1 and LAC2 in TCMe such:

CTe(DE1 – A1, TCMe) = DE1 – A1 → LAC1
CTe(DE2 – A2, TCMe) = DE2 – A2 → LAC2

and if ∃ a dependency {LAC2 on LAC1} in TCMe, then
CTe({DE1 – A1 before DE2 – A2}, TCMe) =

{ DE1 – A1 before DE2 – A2}→ {LAC2 on LAC1}

Fig. 13 – CICM meta-model including the mapping between CIM concepts and TCMe concepts.

The contextual CTe-Transformation (from CIM x TCMe to CICM) is illustrated
such:

CIM

TCMe

26 J. Simonin et al.

CTe(Department - name, {LACEmployeeManagement, LACDepartmentManagement})
= Department - name → LACDepartmentManagement

CTe(Employee - name, {LACEmployeeManagement, LACDepartmentManagement}) =
Employee - name → LACEmployeeManagement

CTe(Employee - social security number, {LACEmployeeManagement,
LACDepartmentManagement}) =

Employee - social security number → LACEmployeeManagement
CTe is applied to the CIM task sequence: 1. Read a department before 2. Create an

employee. This task sequence means a sequence: the Department data entity and its
attribute name before the Employee data entity and its attributes name and social security
number. From the CTe-RR rule, the relationship Department - name before Employee –
name & social security number maps with the LACD: LACEmployeeManagement on
LACDepartmentManagement:

CTe({Department - name before Employee – name & social security number},
{LACEmployeeManagement on LACDepartmentManagement}) =

{Employee – name & social security number on Department – name} →
{LACEmployeeManagement on LACDepartmentManagement}

On the one hand, this mapping must be done by the IS service architect. However,
this architecture designer needs business knowledge useful for understanding the
attributes of the data entities produced by the business tasks. The integration with
enhancement is thus an activity of experts (core business of the company and logical
architecture of the system-of-services) that target a domain model enhancement with a
mapping between the vocabulary that is familiar to the business core practitioners of the
domain and the vocabulary that is used by the domain’s IS practitioners. This activity
cannot thus be automated. This is why CICM retains the computational independence
properties of CIM.

On the other hand, the transformation of CICM resulting in the logical architecture of
the IS services (ET transformation) is automatized with the implementation of the
following algorithm of generation of IS services from a set of business services.

4.3. Algorithm of generation of information system services from business
services (ET)

We propose in this section an algorithm of generation of IS services from a set of
business services. The only rule that the business expert must satisfy here is a temporal
scheduling of the tasks composing the business service, without conditional connection
(if then else instruction, for example). Each conditional connection involves a business
service (associated to the if then part of the instruction and another business service
associated to the else part, in the example).

The generation of IS services is based on the definition of a logical dependency tree
(see 4.1). Each business task is associated to an attribute of a data entity. Consistently
with the definition of a context associated to an attribute of a data entity in CICM, each
business task can be associated with one or more LACs. In relation to a set of business

 IS Services Generation from Business Services Spec. and Based on a SoS Logical Architecture Pattern 27

tasks composing a business service, a set of LACs is thus instantiated for each business
service. In a simplified way, the splitting into IS services, implemented in ET, and
supporting this business service is based on the greatest logical dependency trees
composing this set of LACs. The reuse of the IS services resulting from the
transformation is also addressed by ET, and the order of the business tasks describing a
business service increase the complexity of this splitting.

The precondition of the Generation of Information System Services from Business
Services algorithm is the availability of CICM. The post condition if the set of IS services
that are instantiated for a set of business services specified with its enhancement context
in CICM.

The input data of the Generation of Information System Services from Business
Services algorithm are:
• BSS, a set of business services, each composed of business tasks (CIM).
• SoSLAC, a set of LACs of the system-of-services, and SoSLACD, a set of LACDs of

the system-of-services that both result from the System-of-Services-Logical-
Architecture-Design pattern application (TCMe).

The output data of the algorithm are:
• The ISSIS that is a set of instances of IS services supporting a business service. The

reuse of generated IS service(s) is carried out by the algorithm (PIM).
• The LOIS, which is a set of logical operation instances such each logical operation

composes a LAC of SoSLAC and such the set LOIS is useful to an instance of an IS
service of ISSIS (PIM).

The algorithm and the needed functions are described in Fig. 14. The algorithm is
written with pseudo-code language close to operational-QVT language.

Functions
// Returns ISSIS including an instance of a generated IS service, which can be reused,
// instantiating a LOIS set of logical operation instances.
update_information_system_instance (LOIS, ISSIS);
// Returns the attributes, associated to BT task that are 1) mapped with LACs of SoSLAC,
// 2) defined by data entity attributes’ context (CICM in Fig. 13), such these LACs and
// the LACs encapsulating the instantiated logical operation of LOIS, compose a logical
// dependency tree (see 4.1), knowing the dependencies of SoSLACD.
test_mapping (LOIS, BT);
// Returns LOIS including the instances of the logical operations defined by 1) the context
// (LACs) of the data entity attributes associated to BT (CICM in Fig. 13) and 2) the verb
// characterizing BT
update_logical_operation_instance (BT.attributes, LOIS);
EndFunctions

Algorithm
Generation of Information System Services from Business Services
BSS : Set(Business Service) := {BS defining a business service};
// SoSLAC and SoSLACD, resulting from the
// System-of-Services-Logical-Architecture-Design pattern

28 J. Simonin et al.

SoSLAC : Set(LAC) := {LAC ∈ System-of-Services};
SoSLACD : Set(LACD) := {LACD ∈ System-of-Services};
// Generation of Information System Service(s) from the Business Service(s) set
BS : Business Service := BSS->first();
// Iteration for each BS business service of BSS
while (BS<>null)
{
 // Initialization of ISSIS and OIS to empty set for each BS
 ISSIS : Set(Information System Service Instantiation) := Set{};
 LOIS : Set(Logical Operation Instantiation) := Set{};
 // Selection of the last (temporal) BT task of BS
 BT : Business Task := BS.businessTasks->last();
 // Iteration (last to first one) for each BT task of BS
 while (BT<>null)
 {
 if (test_mapping (LOIS, BT) = BT.attributes)
 then
 // Update of the logical operation instance set without yet the generation of an
 // information system service instance
 LOIS := update_logical_operation_instance (BT.attributes, LOIS)
 else
 // The attributes conforming to a logical dependency tree do not recover all the
 // attributes of BT
 if (test_mapping <> {})
 then
 {
 // Completion of LOIS with logical operation instances associated to attributes
 // conforming to the test of mapping
 LOIS := update_logical_operation_instance (LOIS, test_mapping);
 // Update of ISSIS based on updated LOIS including the reuse or the generation of
 // one IS service
 ISSIS := update_information_system_instance (LOIS, ISSIS);
 // Initialization of LOIS with the attributes of BT that do not satisfy the test of
 // mapping
 LOIS := update_logical_operation_instance (BT.Attributes − test_mapping, {});
 }
 else
 // Update of ISSIS based on updated LOIS including the reuse or the generation of
 // one IS service
 ISSIS := update_information_system_instance (LOIS, ISSIS);

 endif
 endif;
 BT := BT.previous;
 }
 endwhile;
 // Update of ISSIS based on updated LOIS including the reuse or the generation of one
 // IS service
 ISSIS := update_information_system_instance (LOIS, ISSIS);

 IS Services Generation from Business Services Spec. and Based on a SoS Logical Architecture Pattern 29

 BS := BS.next;
}
endwhile;
EndAlgorithm

Fig. 14 – Generation of Information System Services from Business Services algorithm and associated
functions.

The illustration of the algorithm running is based on the example of PICMe (see 4.2):
• BSS = {BSCreateEmployee}
• SoSLAC = { LACEmployeeManagement, LACDepartmentManagement}
• SoSLACD = { LACEmployeeManagement on LACDepartmentManagement}
• LOIS = {}
• ISSIS = {}

The first iteration targets the business task BT = 2. Create an employee with
CTe(Employee - name, {LACEmployeeManagement, LACDepartmentManagement}) =

Employee - name → LACEmployeeManageement
CTe(Employee - social security number, {LACEmployeeManagement,

LACDepartmentManagement}) =
Employee - social security number → LACEmployeeManageement

⇒ test_mapping ({}, {Employee - name, Employee - social security number} =
{ 2. Create an employee}.attributes (i.e. the attributes associated to the business task)
⇒ LOIS = {createEmployee instance} and ISSIS = {}.

The second iteration targets the business task BT = 1. Read a department with
CTe(Department - name, {LACEmployeeManagement, LACDepartmentManagement})

= Department - name → LACDepartmentManagement
⇒ test_mapping ({createEmployee instance}, {Department - name} =
{1. Read a department }.attributes
because LACEmployeeDepartment, context of Employee attributes, and
LACDepartmentManagement, context of Department attribute, form a logical
dependency tree (see 4.1).
⇒ LOIS = {createEmployee instance, readDepartment instance}
⇒ ISSIS = {ISSCreateEmployee instance} designed as illustrated by the sequence
diagram in Fig. 11.

The low coupling between IS services is directly deduced from the test_mapping
function of the algorithm which split a BS service into IS services because a lack of
dependency of the system-of-services in order to form a logical dependency tree, and
therefore a lack of coupling. However, this property induces a coupling between the
instantiated LACs designed for an IS service instantiation. Coherence as defined in
Section 3.1 is low due to the partial coverage of a business process (triggered by an
external expectation) by the LACs of an IS service.

The Generation of Information System Services from Business Services algorithm
allows to generate the IS services, which are designed with the logical architecture model
of the system-of-services. The implementation of the algorithm automates this design.

30 J. Simonin et al.

The automation of IS services development also requires the automation of the
transformations of 1) the logical architecture model into a physical architecture model,
and 2) of this physical architecture model into the code.

4.4. Substitution contextual transformation of IS services logical model into IS
services physical model (CTs)

In order to deal with the ST logical architecture model transformation into a physical
architecture model, a contextual transformation allows the reuse of IS services existing
before in the system-of-services. This reuse means a contextual transformation by
substitution. The substitution relates to an excerpt of the logical operations instantiated by
a new IS service, which map with the logical operations defining the logical architecture
of an existing IS service.

TCMs (TCM for substitution) meta-model, which is the contextual model for this
integration with substitution, contains only one concept:
• “Information System Service” as defined in Section 4.1. An IS service describes only

an existing service (external to the transformation). The instantiation of this concept
means that the service can be reused.

The PICM meta-model,25 contains a concept “Contextualized Logical Operations”
that enables a mapping between a set of logical operations and an existing IS service that
instantiates them (see Fig. 15).

Fig. 15 – PICM meta-model including the mapping between PICM (Logical Operation) and TCMs (Information
System Service).

The contextual CTs-Transformation is a function from PIM x TCMs to PICM. In
order to illustrate it, The PIM’s illustration is completed by one existing IS service called
ISSReadDepartment that supports the readDepartment logical operation (notice that more
than one IS service could support the same set of logical operations, with a specificity of
each one in relation to its execution environment such those associated to Java or C++,
for example):

CTs(readDepartment, { ISSReadDepartment}) = readDepartment →
ISSReadDepartment

 IS Services Generation from Business Services Spec. and Based on a SoS Logical Architecture Pattern 31

Justified by the supported logical operation of ISSReadDepartment, the
readDepartment logical operation of the ISSCreateEmployee business service can be
associated to ISSReadDepartment element (represented by “→”) in PICM.

By assumption, there is no existing IS service supporting a createEmployee logical
operation:

CTs(createEmployee, { ISSReadDepartment}) = {Ø}
CTs cannot therefore be applied to the PIM relationship (logical operations

dependency, for example) from createEmployee on readDepartment.
This mapping should be achieved by the architecture designer of the IS services.

However, the attribute “instantiatedLogicalOperations”, which is a set of logical
operations, of the “Information System Service” TCMs’ concept enables an
automatization of the reuse of an IS service. This automatization is the result of the
implementation of the ST transformation, which is not detailed in this section, because it
is much more common in the MDA approaches implemented today. The MDA approach
extended with the consideration of an enhancement context for the business model and a
substitution context for the logical architecture enables to log each step of the
development. The automatic modeling of the deliverables (architecture and code)
highlights the possibilities offered by the chaining of model transformations. This
transformation chaining is applied in the following section to two uses cases about 1)
management IS services and 2) real time IS services.

5. Use Case of IS Services Development from Business Services

The objective of the uses case is to check the properties of coherence and coupling
defining a system-of-services as a packaging system. This checking is based below on the
evaluation (see 3.1) of 1) the coherence by the ratio between the number of IS services
(resp. LACs) that exhaustively support one business service (resp. IS service) and the
total number of IS services (resp. LACs), and of 2) the coupling by the number equal to 1
divided by the minimum number of subset of IS services (resp. LACs) such that two IS
services (resp. LACs) belonging to two different subsets cannot solve the same business
service (resp. IS service). The use case illustrating a management IS is based on practical
works on the alignment of an IS architecture with the business processes description for
2nd year of Masters, at university and in a postgraduate engineering school.

5.1. Use case of development of management information system services

The use case is practical works for the Information System Management Master of the
Business Administration Institute (IAE) (Western Brittany University (UBO)). The
system-of-services is a management IS dedicated to commercial services. These services
support commercial relationship management (CRM) and invoicing management. The
business process to be developed is a purchasing process in a large household appliance
store.

32 J. Simonin et al.

5.1.1. Commercial IS design from System-of-Services-Logical-Architecture-
Design pattern application

The commercial IS has to support the business activities of a large household appliance
store. The logical architecture of this commercial IS (see Fig. 16) satisfies the System-of-
Services-Logical-Architecture-Design pattern (see 3.2). The LACs stereotyped “activity”
by the logical architecture designer of the commercial IS (role played by the teacher)
manage date or reference of an order (LACOrderManagement), a payment
(LACPaymentManagement), a (de)stocking (LACStockingManagement), and a delivery
(LACDeliveryManagement). These activities depend on a customer managed by a LAC
stereotyped “person” (LACCustomerManagement), and by a product managed by a LAC
stereotyped “reference”, which is relevant for a list of available products
(LACProductManagement), and by payment means also managed by a LAC stereotyped
“reference”, which is appropriate to a list of accepted payment means by the store
(LACPaymentMeansManagement). Dependencies that support the commercial business
of the store satisfy the pattern in relation to the stereotypes of the LACs.

Fig. 16 – UML 2.2 commercial system-of-services logical model (TCMe).

This logical model of the commercial system-of-services drives the generation and
design of IS services supporting business services. These services are designed by
students playing business expert role.

5.1.2. Commercial IS services generation from Generation of Information System
Services from Business Services algorithm

The business process represents the answer of the large household appliance store, split
into departments (sales, billing, supply, and delivery departments), to a customer request
about a list of products. All the activities, under the responsibility of a department, are
inside the store. This means that the customer enters the store to place an order (Create
order activity), pays (Create bill and payment activity) and exits with the purchased

 IS Services Generation from Business Services Spec. and Based on a SoS Logical Architecture Pattern 33

product (Create product delivery activity), which of course has been destocked from the
warehouse (Destock one product activity).

Business services are specified from the previous business process description. The
specification rule of a business service without conditional connection described in
Section 4.4 is applied to the first activity, Create order, where a conditional connection is
associated to the preexistence of a customer of the large household appliance store. Two
business services are thus deduced from this activity: BSCreateOrderNewCustomer,
when the customer is new, and BSCreateOrderExistingCustomer, when the customer
already exists for the store. The three other activities led to the three following business
services:
• BSCreateBillAndPayment deduced from Create bill and payment activity.
• BSDestockOneProduct deduced from Destock one product activity.
• BSCreateProductDelivery deduced from Destock one product and Create product

delivery activities.
Results of the transformations running, of the Generation of Information System

Services from Business Services algorithm (see 4.4), are reported in Fig. 17.

Fig. 17 – Illustration of a commercial system-of-services supporting business services dedicated to ordering,
billing and delivery.

From the logical architecture of the IS services supporting the business process
representing the store activities triggered by a customer’s request of products, the
transformations of models resulting in IS services code and database’s generation SQL
script can be applied. Notice that the design of the orchestration of the IS services
supporting the business services sequence composing the process is not processed by the
algorithm.

34 J. Simonin et al.

5.1.3. Business service‘s loop transformation illustration

To illustrate the commercial IS services automatized development, we propose to focus
on the complete model transformations chaining of a loop specified in a business service.
Fig. 18 represents the textual specification of BSCreateOrderExistingCustomer. A loop
targets the second task, which is the reading of an ordered product. Notice that the
business service specification must be checked beforehand by a business expert.

<Business Service><name>BSCreateOrderExistingCustomer</name>

<Business Task><order number>1</order number>

<Verb><crud>read</crud></Verb>

<Data Entity><name>Customer</name></Data Entity>

<Attribute><name>name</name><type>String</type></Attribute>

<Attribute><name>address</name><type>String</type></Attribute>

<Condition><guard><>null</guard></Condition>

</Business Task>

<Business Task><order number>2</order number>

<Verb><crud>read</crud></Verb>

<Data Entity><name>Product</name></Data Entity>

<Attribute><name>name</name><type>String</type></Attribute>

<Attribute><name>cost</name><type>String</type></Attribute>

<Loop><list>true</list></Loop>

</Business Task>

<Business Task><order number>3</order number>

<Verb><crud>create</crud></Verb>

<Data Entity><name>Order</name></Data Entity>

<Attribute><name>date</name><type>String</type></Attribute>

<Attribute><name>reference</name><type>Integer</type>

</Attribute>

</Business Task>

</Business Service>

Fig. 18 – BSCreateOrderExistingCustomer business service textual specification including a loop (enclosed).

The generation and the UML2 logical model design of the IS services needs an
alignment of the CIM entity attributes participating to BSCreateOrderExistingCustomer
with the TCMe LACs. Six contextualized entity attributes are designed in the CICM, by
the students, in relation to BSCreateOrderExistingCustomer:

CTe(Customer - name, LAC_SO) = Customer - name → LACCustomerManagement
CTe(Customer - address, LAC_SO) =

Customer - address → LACCustomerManagement
CTe(Product - name, LAC_SO) = Product - name → LACProductManagement
CTe(Product - cost, LAC_SO) = Product - cost → LACProductManagement

CTe(Order - date, LAC_SO) = Order - date → LACOrderManagement
CTe(Order - reference, LAC_SO) = Order - reference → LACOrderManagement

Fig. 19 illustrates the automatized transformation of the CICM into the PIM. The
dynamic logical architecture of ISSCreateOrderExistingCustomer:createOrder_date,
which is represented by a UML2 sequence diagram, highlights the dependencies from
LACOrderManagement on both LACCustomerManagement and
LACProductManagement designed in the commercial IS logical architecture (see Fig.
16). The UML2 combined fragment (boucle = loop in French) results from the
transformation of the loop specified in BSCreateOrderExistingCustomer (see Fig. 18).

 IS Services Generation from Business Services Spec. and Based on a SoS Logical Architecture Pattern 35

The transformation of the PIM into the PSM is contextualized by the existing IS
services of the commercial IS. Only one IS service is available in the TCMs:
ISSReadAProduct:readProduct_name, which implements the readProduct_name logical
operation and is deployed on the same technical infrastructure than the
ISSCreateOrderExistingCustomer:createOrder_date IS service.
ISSReadAProduct:readProduct_name can therefore be immediately reused if one
considers the dynamic logical model of
ISSCreateOrderExistingCustomer:createOrder_date. The reuse is explicit in the dynamic
physical model of this IS service (see Appendix B).

Fig. 19 – ISSCreateOrderExistingCustomer:createOrder_date IS service dynamic logical model transformed
into UML2 sequence diagram including a loop combined fragment of the readProduct_name logical operation
(enclosed).

One question is then whether the packaging system properties of the commercial
system of services can be improved.

5.1.4. Commercial packaging system-of-services

An assessment of the coherence and the coupling, of the commercial system–of-
services (see Fig. 17), is first made in order to propose an eventual improvement of the
packaging system properties.

About the generated IS services, ISSDestockOneProduct solving two different
business services (BSDestockOneProduct and BSCreateProductDelivery) is a cause of
decreasing coherence.

Applying Eq. (1) with
BS_EX = {BSCreateOrderNewCustomer, BSCreateOrderExistingCustomer,
 BSCreateBillAndPayment, BSDestockOneProduct,
 BSCreateProductDelivery},

36 J. Simonin et al.

and
ISS_SO = {ISSCreateOrderNewCustomer, ISSCreateOrderExistingCustomer,
 ISSCreateBillAndPayment, ISSDestockOneProduct,
 ISSCreateProductDelivery}:

MCH(ISS_SO, BS_EX) = 4 / 5 = 0.80
The orchestration of ISSDestockOneProduct and ISSCreateDelivery, which solves the

BSCreateProductDelivery business service, increases the coupling of ISS_SO
conditioned by BS_EX. There are indeed four complementary subsets, including the one
containing ISSDestockOneProduct and ISSCreateDelivery, and the ISS_SO’s subsets
containing only one IS service among the remaining three. According to Eq. (2):

MCU(ISS_SO, BS_EX) = 1 / 4 = 0.25
Regarding the LACs, LACStockingManagement solves only the

ISSDestockOneProduct IS service, LACPaymentMeans solves only
ISSCreateBillAndPayment, and LACDeliveryManagement solves only
ISSCreateProductDelivery. These three LACs satisfy the coherence property.

Using Eq. (1), with:
ISS_EX = {ISSCreateOrderNewCustomer, ISSCreateOrderExistingCustomer,
 ISSCreateBillAndPayment, ISSDestockOneProduct,
 ISSCreateProductDelivery},
and
LAC_SO = {LACOrderManagement, LACCustomerManagement,
 LACProductManagement, LACPaymentManagement,
 LACPaymentMeansManagement, LACStockingManagement,
 LACDeliveryManagement}:

MCH(LAC_SO, ISS_EX) = 3 / 7 = 0.43
There is none LAC that is coupled with none of the other LACs. According to Eq.

(2):
MCU(LAC_SO, ISS_EX) = 1 / 1 = 1.00

These four measures highlight a non-maximum coherence of ISS_SO (<1.00) and a
non-minimum coupling (> 1/5). About LAC_SO, the coherence is much higher than the
minimum expected (0.00) when the coupling is optimal (1.00).

The coherence and coupling properties of this commercial system-of-services can
only be improved from a business perspective. Concerning the large household appliance
store, the delivery is only made inside the store. In this case, the business expert could
consider only one business service, and thus one role, to accomplish the Destock one
product activity and the Create product delivery activity. Fig. 20 shows the result of the
generation of the IS services with a new BSDestockOneProductAnd
CreateProductDelivery business service. The running the Generation of Information
System Services from Business Services algorithm results in a new
ISSDestockOneProductAndCreateProductDelivery IS service because there is a
dependency from LACDeliveryManagement on LACStockingManagement (see Fig. 16).
Without this dependency, the algorithm should indeed generate two different IS services

 IS Services Generation from Business Services Spec. and Based on a SoS Logical Architecture Pattern 37

for the destocking on the one hand, and for the delivery on the other hand. The measures
of coherence and coupling properties become such:

MCH(ISS_SO, BS_EX) = 4 / 4 = 1.00
MCU(ISS_SO, BS_EX) = 1 / 4 = 0.25

MCH(LAC_SO, ISS_EX) = 3 / 7 = 0.43
MCU(LAC_SO, ISS_EX) = 1 / 1 = 1.00

Compared to the first designed commercial system-of-services, the consideration of a
delivery inside the store by the business expert leads to:
• A better coherence of ISS_SO (1.00 > 0.80), which is maximum;
• A better coupling of ISS_SO, which is minimum here;
• A constant coherence and a constant coupling of ISS_LA.

Fig. 20 – Illustration of the commercial system-of-services modification (enclosed) taking into account a
delivery inside the store.

On the one hand, this evolution of the business preferences imply optimal coherence
and coupling of the IS services conditioned by business services. On the other hand, the
coherence and the coupling of the LACs conditioned by the IS services stay constant.
This last result is due to the application of the System-of-Services-Logical-Architecture-
Design pattern, which provides a robust (do not depend on business services change)
definition of the LACs essential for coherence and of their dependencies at the origin of
the coupling.

5.2. Use case assessment

According to the use case, a first benefit of the packaging system properties is to allow a
measure of the improvement of the relevance of the business expert’s specifications. The
second benefit is due to the System-of-Services-Logical-Architecture-Design pattern,

38 J. Simonin et al.

which allows a high coupling of the LACs solving IS services and a low coherence of
these LACs. The application of the pattern means a constant coherence and coupling of
LACs, even if the IS services generation change after business services evolution. This
constancy can be considered as proving robustness property of the logical architecture of
a system-of-services based on the pattern.

The automatization of the generation of the IS services from business services
indicates a quasi-real time for the logical architecture design and the physical architecture
design, completed by architecture modeling and code automated generation, of the IS
services. The IS services architect's intervention is reduced to the production of the
alignment of the CIM with the TCMe, with the help of the business expert. However, this
alignment requires first the design of TCMe (LACs and LACDs) of a system-of-services
based on the pattern.

Besides, the proposed alternative designs have a significant cost. Indeed, this phase
requires an expert reflection, first on the proposed architecture models, then exchanges
with business experts in order to validate or not a solution. The prospect of automatizing
the design of alternative scenarios in an enterprise requires the integration of business
knowledge and logical architecture knowledge specific to the enterprise when generating
such scenarios. The following discussion is about this design and the robustness property
of the resulting logical architecture model.

6. Discussion

There is a gap between business specifications and the implementation (design of the
physical architecture and generation of the associated code) of an IS service. The simplest
development method is often to produce a textual description of the business service and
extract a diagram of the data entities, including their attributes, participating in the
service. The data entities are extracted because they are considered to be handled
specifically in the service. The first illustration of ordering a product for a customer can
thus induce two data entities: the product class that is selected from a sales catalog and
the order class where the customer and the order reference are created when an order is
placed. In a very simple way, the method would be to design the physical data model
from these data entities and their association, then the physical application components
managing these physical data, then the components managing the IS services and using
the previous physical application components, and finally the interface from which the
services are called by the user.

The first concern is the homogeneity of this service design, in the case where other
services make it possible to order another type of product, for example. We can imagine
in a second illustration that the customer is managed differently in the other application,
because the company wants to make him commercial offers. In this case, the previously
specified order data entity splits into a data entity dedicated only to the customer targeted
by the marketing service, and another data entity targeting the order reference. On the
other hand, it is also possible to imagine in a third illustration an order business service
with a single participating data entity grouping the order, the customer and the product
ordered, in the case, for example, of selling products in limited quantities and whose
management is not a concern of the company. The problem of flexibility of the system-

 IS Services Generation from Business Services Spec. and Based on a SoS Logical Architecture Pattern 39

of-services is thus raised because of the heterogeneity of services relating to the same
business activity (order a product for a customer), but treated differently during the
analysis, and therefore the implementation, of each IS service. This differentiated
treatment obviously depends on the intent driving the analysis.

In order to ensure a homogeneous implementation, the design of a logical architecture
common to all services of the system-of-services is proposed here. It automatically
generates an implementation based on an alignment of business need (data entity
attributes) with LACs. A point underlined for the use case is the necessary collaboration
between the business expert and the logical architecture designer of IS services to achieve
this alignment. As seen in this paper, the proposed pattern solves the problem of design
granularity. The solution at the logical level is based on the lifetime of attributes to define
consistent logical data. Stereotyping the LACs used in the pattern makes possible to
identify the LACs representing an activity. These LACs manage a date on which an
activity occurred or a reference associated with the activity. LACs with the stereotype
“activity” are made dependent if in the company these activities follow one another (an
activity depends on an activity if it precedes it in the activity diagram defining a business
process). Similarly, “person”, “document” or “reference” stereotypes allow tagging LACs
have a longer lifespan than a LAC stereotyped “activity”. A LAC stereotyped “activity”
may thus depend on them within the system-of-services. The definition of these LACs is
interesting for partitioning data at the logical level, such as for big data architecture,65 and
therefore its reliability.

These stereotypical LACs “activity” are in fact essential to ensure a low coupling
between IS services. For example, a HMI developer of an ordering IS service will request
an IS service allowing the selection of a one customer among the list of all customers. If
this solution were chosen by the IS service architect, then it would increase the coupling
of delivery, billing, or ordering IS services with this service in the commercial system-of-
services, assuming they use this customer selection IS service. The logical architecture of
this IS service is limited to the LAC of customer management (stereotyped “person” and
not “activity”). In this case, the coupling properties at the IS services level are less
efficient when it comes to defining a packaging system.

In order to define a packaging system, it therefore seems necessary to condition the
logical architecture of each IS service through the presence of a stereotyped LAC
“activity”. In the example of the customer list, this means that the business expert can be
interested in customers who have placed an order over a defined or indefinite period. In
this case, the service of reading a customer list will become the service of reading a list of
customers who have placed an order over a defined or indefinite period. If a filter on
customer addresses is expected, then this service will include in its signature the
definition of the filter on the customer's address. A solution is to overload the order
reading IS service with these filtering parameters. The overloading of each IS service
including at least one stereotyped LAC "activity" in its architecture reduces then the
coupling at the IS service level as it reduces the total amount of IS services. This
reinforces thus the packaging system properties of a system-of-services.

The multi-use of LACs designed with the System-of-Services-Logical-Architecture-
Design pattern is based on the use of CRUD, which limits the useful functions in each
LAC. This makes it easier to serendipitous reuse as proposed with the functions get, put,
post and delete in the context of Web architecture.66

40 J. Simonin et al.

The reliability and reusability properties highlighted as consequence of the pattern use
are interesting in the context of a sustainable system-of-services as defined in the EA
objective.

However, in some cases, mathematical functions are added to the CRUD functions in
a stereotyped “reference” LAC. This LAC, which can be assimilated to a mathematical
library, is such that the others depend on it according to the System-of-Services-Logical-
Architecture-Design pattern. This solution is interesting for technical functions such as,
explicit or implicit, authentication functions, for example, in order to integrate them into
the logic model of each IS service.

In addition, the reliability and reusability properties make it possible to design
alternative solutions, sources of possible improvements to business services, IS services
or logical architecture of the IS. The limit of the use of the algorithm and of these
potential improvements is not only a logical design of the IS conforming to the business,
but also an appropriation of this logical architecture by the designers and implementers of
IS services who have to develop business requirements.

7. Conclusion

The question of the gap between business view point and system viewpoint of EA stays
unavoidable when developing IS services of a system-of-services. Extending the concept
of transformation contextual model enriching the PIM to the CIM, our work proposes an
integration of a logical model of the system-of-services as context of the transformation
of CIM into PIM. This integration needing the collaboration between business experts
and IS service logical architects enable an automatization of the IS services generation
and logical architecture, from the specification of business services (see Generation of
Information System Services from Business Services algorithm). This IS services
generation and logical architecture is completed by a more traditional automatized
approach of IS services physical architecture modeling and coding.

The pattern enabling the design of a logical architecture model of a system-of-
services, and the algorithm of IS services generation based on the logical architecture
model of the system-of-services was tested on a use case. This test made it possible to
highlight the properties of packaging system that can be improved following changes in
business services that target an improvement in the business specification and not in the
architecture of the system-of-services. It allowed also checking the packaging system
properties at the LAC level thanks to the System-of-Services-Logical-Architecture-
Design pattern.

Moreover reliability and partitioning properties of a packaging system based on the
proposed pattern and algorithm have been underlined during the discussion in an EA
approach. Future works encompass an extension to new use cases in order to propose
other applications of the pattern, for example with robotic system.67 Indeed, the logical
model deduced from the pattern could be extended for an improved support of a business
specification (management service or real-time service). In addition, more relevant
measures of coupling and coherence within the packaging system will complete this
perspective.

 IS Services Generation from Business Services Spec. and Based on a SoS Logical Architecture Pattern 41

Appendix A. Implementation of Logical Application Component model checking

The code of the model transformation (lea2chk), which implements the checking of a
logical application component model, is the following one. The meta-model’s
aggregating concept is called “LDA” (Logical Dynamic Architecture) in this
implementation. It is used to describe the “lea” model of the checked logical enterprise
architecture.

transformation lea2chk(source:lea);

main()
{
 log("Begin of the LAC model checking");
 log("\nOrientation of LACDs from life duration rule");
 source.rootObjects()[LDA]->checkLogicalPattern();
 log("\nLAC cycle checking");
 source.rootObjects()[LDA]->checkLogicalLoop();
 log("\nEnd of the LAC model checking");
}

query LogicalApplicationComponent::
 testFollowingComponents
 (seqComponents : Sequence(LogicalApplicationComponent)) :

 LogicalApplicationComponent
{
 var followingLogicalComponent :=
 self.lda.logicalApplicationComponent->select

 (e : LogicalApplicationComponent |
 e.stereotype=self.stereotype and
 self.lda.logicalApplicationComponentDependency

 ->select(f :
 LogicalApplicationComponentDependency |
 seqComponents->select(g :
 LogicalApplicationComponent |
 g.name=f.source.name)->asSequence()->size()<>0

 and f.target.name=e.name)->asSequence()
 ->size()<>0)->asSequence();

 var test := true;
 var i := 1;
 while (i<=seqComponents->size() and test)
 {
 test := test and (seqComponents>at(i).name<>

 self.name);

42 J. Simonin et al.

 i := i + 1;
 };
 return(
 if test
 then
 if (followingLogicalComponent->size()<>0)
 then
 self.testFollowingComponents

 (followingLogicalComponent)
 else
 null
 endif
 else
 seqComponents->at(i - 1)
 endif);
}

query LDA::checkLogicalLoop()
{
 var i := 1;
 while (i<=self.logicalApplicationComponent->size())
 {
 var followingComponents :=
 self.logicalApplicationComponent->
 select(e : LogicalApplicationComponent |
 e.stereotype = self.logicalApplicationComponent->at(i).stereotype and

 self.logicalApplicationComponentDependency->
 select(f : LogicalApplicationComponentDependency |
 self.logicalApplicationComponent->at(i).name=f.source.name and

 f.target.name=e.name)->asSequence()->size()<>0)->asSequence();
 if (followingComponents->size()<>0)
 then
 if (self.logicalApplicationComponent->

 at(i).testFollowingComponents(followingComponents)<>null)
 then
 log("WARNING: there is a logical loop from " +

 self.logicalApplicationComponent->at(i).name + " to itself")
 endif
 endif;
 i := i + 1;
 };
}

 IS Services Generation from Business Services Spec. and Based on a SoS Logical Architecture Pattern 43

 query LDA::checkLogicalPattern()

{
 var seqfc := self.logicalApplicationComponent->
 select(e : LogicalApplicationComponent | e.stereotype<>"activity" and

 e.stereotype<>"person" and e.stereotype<>"document" and
 e.stereotype<>"reference")->asSequence();
 if (seqfc->size()=0)
 then
 {
 var seqdep := self.logicalApplicationComponentDependency;
 var i := 1;
 while (i<=seqdep->size())
 {
 if(((seqdep->at(i).source.stereotype="document" or
 seqdep>at(i).source.stereotype="person" or

 seqdep->at(i).source.stereotype="reference")
 and seqdep->at(i).target.stereotype="activity") or

 (seqdep->at(i).source.stereotype="person" and
 seqdep->at(i).target.stereotype="document") or

 (seqdep->at(i).source.stereotype="reference" and
 (seqdep->at(i).target.stereotype="person" or
 seqdep->at(i).target.stereotype="document" or
 seqdep->at(i).target.stereotype="activity")))

 then
 log("WARNING: the dependency from " +

 seqdep->at(i).source.name + " to " +
 seqdep->at(i).target.name + " does not satisfy the pattern : " +
 seqdep->at(i).target.stereotype + " to " +
 seqdep->at(i).source.stereotype)

 endif;
 i := i + 1;
 };
 }
 else
 {
 log("WARNING: the stereotypes of the LACs must be \"activity\" or \"person\"
 or \"document\" or \"reference\" => the pattern cannot be checked");
 var j := 1;
 while (j<=seqfc->size())
 {
 log(" - " + seqfc->at(j).name + " is stereotyped \"" + seqfc->at(j).stereotype +

44 J. Simonin et al.

 "\"");
 j := j + 1;
 };
 }
 endif;
}

Appendix B. Automatic generation of physical architecture design and code
generation for commercial system-of-services use case

The sequence of physical operations encapsulated in the loop combined fragment
contains:
• The ISSReadAProduct:readProduct_name IS service call with the

BOReadAProduct:readProduct_name business operation;
• The DOcreateProduct_name data operation carrying out the persistence of the

created data representing the product provided by
BOReadAProduct:readProduct_name;

• The DOcreateJointOrderProduct data operation carrying out the persistence of the
created joint of the product data and the order data previously (created just before the
loop combined fragment by the DOcreateOrder data operation).

The joint of the product data and the order data is also designed in the physical data
model in Fig. 21.

Fig. 21 – ISSCreateOrderExistingCustomer:createOrder_date IS service static physical data model (excerpted
from the physical data model) transformed into UML2 class diagram.

PDM contains the rules enabling the generation of a relational database, especially
those about the foreign key management:
• pdorderpdcustomer_fk, from PDOrder physical data to PDCustomer physical data;
• jointpdorderpdproductpdorder_fk from JointPDOrderPDProduct to PDOrder;
• jointpdorderpdproductpdproduct_fk from JointPDOrderPDProduct to PDProduct.

This excerpt of the database is generated from the SQL script automatically generated
by a model transformation. This transformation implements some rules constraining the
sequence of the table creations, and of the prior tables cleaning.

 IS Services Generation from Business Services Spec. and Based on a SoS Logical Architecture Pattern 45

The generation of Java code of the IS service on the business layer is in Fig. 22. The
code is simplified because it is not included into the contribution of this paper. However,
the relevancy of this code compared to the physical components sequence diagram (see
description above) is noteworthy.

@Override

public void BOCreateOrderExistingCustomer:createOrder_date(String nameCustomer, String

addressCustomer, String dateOrder,

int referenceOrder, String nameProduct, String costProduct)

{

 /**

 * Exception if not: <>null

 */

 customerDAO.DOreadCustomer_name(customer);

 /**

 * Exception if not: <>null

 */

 orderDAO.DOcreateOrder_date(order);

 /**

 * Loop start

 */

 Customer customer =

 this.BOReadAProduct:readProduct_name(nameCustomer,

 addressCustomer)

 productDAO.DOcreateProduct_name(product);

jointorderproductDAO.DOcreateJointOrderProduct

 (jointorderproduct);

 /**

 * Loop end

 */

}

Fig. 22 – ISSCreateOrderExistingCustomer:createOrder_date IS service simplified code (business layer).

References

1. K. Bennett, P. Layzell, D. Budgen, P. Brereton, L. Macaulay and M. Munro, Service-based
software: the future for flexible software, in Proceedings Seventh IEEE Asia-Pacific Software
Engeering Conference (APSEC) (2000), pp. 214–221.

2. D. Sprott and L. Wilkes, Understanding service-oriented architecture, The Architecture Journal
1(1) (2004), pp.10–17.

3. J. A. Zachman, The Zachman framework for enterprise architecture: primer for enterprise
engineering and manufacturing, Zachman International (2003).

4. A. Alwadain, E. Fielt, A. Korthaus and M. Rosemann, Where do we find services in enterprise
architectures? A comparative approach, in Proceedings of the 22nd Australasian Conference on
Information Systems (ACIS) (2011).

5. H. M. Chen, Towards service engineering: service orientation and business-IT alignment, in
Proceedings of the 41st IEEE Annual Hawaii International Conference on System Sciences
(HICSS) (2008), pp. 114–114.

6. H. Jonkers, M. Lankhorst, R. Van Buuren, S. Hoppenbrouwers, M. Bonsangue and L. Van Der
Torre, Concepts for modeling enterprise architectures, International Journal of Cooperative
Information Systems 13(03) (2004), pp. 257–287.

7. The Open Group, The TOGAF® Standard Version 9.2. [Accessed 10 04 2019] (2018),
http://pubs.opengroup.org/architecture/togaf9-doc/arch/index.html.

8. S. M. Glissmann and J. Sanz, An approach to building effective enterprise architectures, in
Proceedings of the 44th IEEE Hawaii International Conference on System Sciences (2001), pp.
1–10.

46 J. Simonin et al.

9. B. H. Cameron and E. McMillan, Analyzing the current trends in enterprise architecture

frameworks, in Proceeding of Journal of Enterprise Architecture 9(1) (2013), pp. 60-71.
10. A. Dongre, Data quality and integrity management for telecom operators, Telecom Business

Review 7(1) 2014, pp. 1–8.
11. B. Michelberger, B. Mutschler and M. Reichert, Process-oriented information logistics:

Aligning enterprise information with business processes, in Proceedings of the IEEE 16th
International Enterprise Distributed Object Computing (EDOC) (2012), pp. 21–30.

12. O. El-Telbany and A. Elragal, Business-information systems strategies: a focus on
misalignment, Procedia Technology 16 (2014), pp. 250–262.

13. D. Yue, L. Wanjun, L. Cuicui, F. Wenxiang, Based on SOA architecture and component
software reuse architecture research, in Proceedings of the 2nd IEEE International Conference
on Information Management and Engineering (2010), pp. 517–520.

14. C. Erbas and B. C. Erbas, On a theory of software engineering a proposal based on transaction
cost economics, in Proceedings of the 2nd IEEE SEMAT Workshop on a General Theory of
Software Engineering (GTSE) (2013), pp. 15–18.

15. B. Van Gils, Strategy and architecture–reconciling worldviews, in Proceedings of the Working
Conference on Practice-Driven Research on Enterprise Transformation (2009), pp. 181–196.

16. T. Erl, SOA Principles of Service Design, (Prentice Hall, 2007).
17. N. Bieberstein, S. Bose, L. Walker and A. Lynch, Impact of service-oriented architecture on

enterprise systems, organizational structures, and individuals, IBM systems journal 44(4)
(2005), pp. 691–708.

18. R. Perrey and M. Lycett, Service-oriented architecture, in Proceedings of IEEE Symposium on
Applications and the Internet Workshops (2003), pp. 116–119.

19. N. Joachim, D. Beimborn, F. Schlosser and T. Weitzel, Does SOA create or require IT/business
collaboration? Investigating SOA’s potential to reduce the gap between IT and business, 32nd
International Conference on Information Systems (ICIS) (2011).

20. B. Molnár and A. Tarcsi, Architecture and system design issues of contemporary web-based
information systems, in Proceedings of the 5th International IEEE Conference on Software,
Knowledge Information, Industrial Management and Applications (SKIMA) (2011), pp. 1–8.

21. S. Kotusev, Enterprise architecture: what did we study?, International Journal of Cooperative
Information Systems, 26(04) (2017), pp. 1730002-1–1730002-84.

22. M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, Service-oriented computing: a
research roadmap. International Journal of Cooperative Information Systems, 17(2) (2008), pp.
223–255.

23. D. Ameller, X. Burgués, O. Collell, D. Costal, X. Franch and M. P. Papazoglou, Development
of service-oriented architectures using model-driven development: A mapping study.
Information and Software Technology, 62 (2015), pp. 42–66.

24. M. López-Sanz and E. Marcos, ArchiMeDeS: A model-driven framework for the specification
of service-oriented architectures. Information Systems, 37(3) (2012), pp. 257-268.

25. J. Simonin and J. Puentes, Automatized integration of a contextual model into a process with
data variability, Computer Languages, Systems & Structures 54 (2018), pp. 156–182.

26. I. Todoran, Z. Hussain and N. Gromov, SOA integration modeling: An evaluation of how
SoaML completes UML modeling, in Proceedings of the 15th IEEE International Enterprise
Distributed Object Computing Conference Workshops (2011), pp. 57–66.

27. A. M. Olson, R. R. Raje, B. Devaraju and L. S. Gallege, Learning improves service discovery,
Concurrency and Computation: Practice and Experience 27(7) (2015), pp. 1679–1694.

28. R. Paul, W. T. Tsai and J. Bayne, The impact of SOA policy-based computing on C2
interoperation and computing, 10th international command and control research and
technology symposium (ICCRTS) (2005).

29. A. Zimmermann, K. Sandkuhl, M. Pretz, M. Falkenthal, D. Jugel and M. Wissotzki, Towards
an integrated service-oriented reference enterprise architecture, in Proceedings of the 2013
ACM International Workshop on Ecosystem Architectures (2013), pp. 26–30.

 IS Services Generation from Business Services Spec. and Based on a SoS Logical Architecture Pattern 47

30. S. Bondar, J. C. Hsu, A. Pfouga and J. Stjepandić, Agile digital transformation of System-of-

Systems architecture models using Zachman framework, Journal of Industrial Information
Integration 7 (2017), pp. 33–43.

31. S. Majd, M. H. Abel and M. Alok, An architectural model for system of information systems,
in Proceedings of the OTM Confederated International Conferences "On the Move to
Meaningful Internet Systems" (2015), pp. 411–420.

32. P. Salvaneschi, Modeling of information systems as systems of systems through DSM, in
Proceedings of the 4th IEEE/ACM International Workshop on Software Engineering for
Systems-of-Systems (SESoS) (2016), pp. 8–11.

33. J. Xiong, B. F. Ge, X. K. Zhang, K. W. Yang and Y. W. Chen, Evaluation method of system-
of-systems architecture using knowledge-based executable model, in Proceedings of 17th IEEE
Annual Conference International Conference on Management Science & Engineering (2010),
pp. 141–147.

34. T. Bianchi, D. S. Santos and K. R. Felizardo, Quality attributes of systems-of-systems: A
systematic literature review, in Proceedings of 3rd IEEE/ACM International Workshop on
Software Engineering for Systems-of-Systems (2015), pp. 23–30.

35. J. S. Topper and N. C. Horner, Model-based systems engineering in support of complex
systems development, Johns Hopkins APL technical digest 32(1) (2013).

36. Z. Stojanovic, A. Dahanayake and H. Sol, Modeling and design of service-oriented
architecture, in Proceedings of IEEE International Conference on Systems, Man and
Cybernetics 5 (2004), pp. 4147–4152.

37. M. Rosemann, P. Green, M. Indulska and J. C. Recker, Using ontology for the representational
analysis of process modelling techniques, International Journal of Business Process
Integration and Management 4(4) (2009), pp. 251–265.

38. R. Kazman, K. Schmid, C. B. Nielsen and J. Klein, Understanding patterns for system of
systems integration, in Proceedings of the 8th IEEE International Conference on System of
Systems Engineering (2013), pp. 141–146.

39. J. Klein and H. Van Vliet, A systematic review of system-of-systems architecture research, in
Proceedings of the 9th international ACM Sigsoft conference on Quality of software
architectures (2013), pp. 13–22.

40. I. G. Vargas, T. Gottardi and R. T. V. Braga, Approaches for integration in system of systems:
a systematic review, in Proceedings of the 4th IEEE/ACM International Workshop on Software
Engineering for Systems-of-Systems (SESoS) (2016), pp. 32–38.

41. B. Elvesæter, D. Panfilenko, S. Jacobi and C. Hahn, Aligning business and IT models in
service-oriented architectures using BPMN and SoaML. In Proceedings of the First
International Workshop on Model-Driven Interoperability (2010), pp. 61–68.

42. A. Delgado, F. Ruiz, I. G. R. de Guzmán and M. Piattini, Model transformations for Business-
IT alignment: from collaborative business process to SoaML service model. In Proceedings of
the 27th Annual ACM Symposium on Applied Computing (2012), pp. 1720-1722.

43. C. A. Whitcomb, M. Auguston and K. Giammarco, Composition of Behavior Models for
Systems Architecture 14 (John Wiley & Sons 2015), pp. 361–391.

44. N. Kulkarni and V. Dwivedi, The role of service granularity in a successful SOA realization a
case study, in Proceedings of the IEEE Congress on Services I (2008), pp. 423–430.

45. K. J. Sullivan, W. G. Griswold, Y. Cai and B. Hallen, The structure and value of modularity in
software design, in Proceedings of ACM SIGSOFT Software Engineering Notes 26(5) (2001),
pp. 99–108.

46. C. Pahl, P. Jamshidi and O. Zimmermann, Architectural principles for cloud software, ACM
Transactions on Internet Technology (TOIT) 18(2) (2018) 17.

47. A. K. Raz, C. R. Kenley and D. A. DeLaurentis, A System-of-Systems perspective for
information fusion system design and evaluation, Information Fusion 35 (2017), pp. 148–165.

48. B. Solaiman, É Bossé, L. Pigeon, D. Guériot and M. C. Florea, A conceptual definition of a
holonic processing framework to support the design of information fusion systems, Information
Fusion 21 (2015), pp. 85–99.

48 J. Simonin et al.

49. A. Giret, E. Garcia and V. Botti, An engineering framework for service-oriented intelligent

manufacturing systems, Computers in Industry 81 (2016), pp. 116–127.
50. R. J. Cloutier and D. Verma, Applying the concept of patterns to systems architecture. Systems

engineering 10(2) (2007), pp. 138–154.
51. S. Cook, Looking back at UML, Software & Systems Modeling 11(4) (2012), pp. 471–480.
52. E. C. Ferstl and D. Y. von Cramon, The role of coherence and cohesion in text comprehension:

an event-related fMRI study, Cognitive Brain Research 11(3) (2001), pp. 325–340.
53. A. Dillon, User acceptance of information technology (Taylor and Francis, London, 2001).
54. M.J. Shepperd and D. Ince, Derivation and Validation of Software Metrics (Oxford University

Press, 1993.
55. D. M. Eriksson, A principal exposition of Jean-Louis Le Moigne's systemic theory,

Cybernetics & Human Knowing 4(2–3) (1997).
56. G. Gui and P. D. Scott, Coupling and cohesion measures for evaluation of component

reusability, in Proceedings of the ACM international workshop on Mining software
repositories (2006), pp. 18–21.

57. K. M. Hansen and K. Manikas, (Automated) software modularization using community
detection, in Proceedings of European Conference on Software Architecture (2015), pp. 95-
102.

58. Object Management Group, UML 2.2 Unified Modeling Language [Accessed 04 30 2019]
(2009), http://www.omg.org/spec/UML/2.2/.

59. M. Hammer and J. Champy, Reengineering the Corporation (Harper Collins, New York,
1993).

60. S. W. Ambler, Process patterns: building large-scale systems using object technology,
(Cambridge university press, 1998).

61. C. Alexander, The timeless way of building (Oxford University Press, New York, 1979).
62. M. Hagen and V. Gruhn, Towards flexible software processes by using process patterns, in

Proceedings of the IASTED Conference on Software Engineering and Applications (2004), pp.
436–441.

63. Object Management Group, Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification [Accessed 10 04 2019] (2016), http://www.omg.org/spec/QVT/1.3.

64. J. Simonin, Method of modelling reference data and use of this method for localization of
reference data in an information system, U.S. Patent No. 7,249,134 (2007).

65. H. Salavati, T. J. Gandomani and R. Sadeghi, A robust software architecture based on
distributed systems in big data healthcare, in Proceedings of the IEEE International
Conference on Advances in Computing, Communications and Informatics (ICACCI) (2017),
pp. 1701–1705.

66. S. Vinoski, Serendipitous Reuse, IEEE Internet Computing 12(1) (2008), pp. 84–87.
67. A. Ahmad and M. A. Babar, Software architectures for robotic systems: A systematic mapping

study, Journal of Systems and Software 122 (2016), p. 16–39.

