N

N

Information System Services Generation of Business
Services Specification and Based on a System-of-Services
Logical Architecture Pattern

Jacques Simonin, Pierre-Yves Pillain, Didier Gueriot, Johanne Vincent

» To cite this version:

Jacques Simonin, Pierre-Yves Pillain, Didier Gueriot, Johanne Vincent. Information System Services
Generation of Business Services Specification and Based on a System-of-Services Logical Architec-
ture Pattern. International Journal of Cooperative Information Systems, 2020, 29 (03), pp.2050002.
10.1142/S0218843020500021 . hal-02953309

HAL Id: hal-02953309
https://hal.science/hal-02953309

Submitted on 17 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02953309
https://hal.archives-ouvertes.fr

World Scientific

www www.worldscientific.com

International Journal of Cooperative Informatiors®@yns ﬁ
0 World Scientific Publishing Company

INFORMATION SYSTEM SERVICES GENERATION FROM BUSINESS
SERVICES SPECIFICATION AND BASED ON A SYSTEM-OF-SERVICES
LOGICAL ARCHITECTURE PATTERN

JACQUES SIMONIN

IMT Atlantique, Lab-STICC, UMR CNRS 6285, Avenugeftthnopdle,
Brest, 29238, France
jacques.simonin@imt-atlantique.fr

PIERRE-YVES PILLAIN

Université de Bretagne Occidentale, Lab-STICC, UBNRS 6285, 6 Avenue Victor Le Gorgeu,
Brest, 29238, France
pierre-yves.pillain@univ-brest.fr

DIDIER GUERIOT

IMT Atlantique, Lab-STICC, UMR CNRS 6285, Avenugelthnopdle,
Brest, 29238, France
didier.gueriot@imt-atlantique.fr

JOHANNE VINCENT

IMT Atlantique, Lab-STICC, UMR CNRS 6285, Avenugelthnopdle,
Brest, 29238, France
johanne.vincent@imt-atlantique.fr

Received Day Month Day
Revised Day Month Day

The generation and design of the service architectdi an information system is complex. It
depends more on the vision of the service thanhernvision of the service inside an information
system. An information system is indeed a systeseofices that can contain thousands of services.
The lack of consideration of constraints imposedthsy information system makes it difficult to
reuse these services. Another strong constrathiatsan information system service must support a
business service. The proposed approach allowsniation system services to be generated in
accordance with the business services specificatiohtheir logical architecture to be automatically
designed by respecting a logical architecture pattd the system-of-services. An information
system services generation algorithm allows beimgsistent with the logical architecture pattern
during this generation. The definition of coheremeel coupling properties makes it possible to
evaluate the relevancy of the system-of-serviceasé case shows the value of these properties in
making the logical architecture of the service eystmore relevant to business services.

Keywords Business service; System-of-services; Informasigstem service; Model transformation.
1. Introduction

The complexity of an enterprise's Information SgstélS) is both quantitative since
several hundred or even several thousand applitatioexist there, but also qualitative

2 J. Simonin et al.

with the need for flexibility linked to the evoloti of the company's strategy, and for
agility that offers applications that meet userséds. Almost twenty years ago, the
service paradigm associated with an applicatioh offered an approach to reduce the
complexity of an IS appearéd.

This paradigm is extended with service-orientecigcture (SOA), which provides
a cohesive link between the enterprise's businedstiee 1S? Services that provide an
external view of IS applications, or IS servicese archestrated to deliver business
services, i.e. services that specify the companyséness processes. This orchestration is
made possible by a bus of services allowing acieti®e services offered by the various
IS applications.

The governance of these different IS applicatiangi most significant companies
managed within an Enterprise Architecture (EA) feavork® The alignment between
business services and supporting IS services &vast in an EA approach, as they
improve the IS governanéeThe definition of the services to be used in anmi$st be
consistent with the company's strategy, which fsrmulated, in part, with the business
services offered to customers. For example, if mroercial enterprise's strategy targets
the customer according to its market (enterprisendividual, for example), then an
ordering service provided by the IS should targgpecific market (a service specific to a
company and a service specific to an individuathaprevious example).

Interactions, whether at the business level (colation between the sales
department and the delivery department), or abfiication level (use of data produced
by an ordering application by a delivery applicajioare based on this service concept.
The dynamic aspect associated with these servMinesappears in all EA frameworks.
The use of a business service is dynamically reptes during the course of a
company's business process. Because of the aligrimemeen the business and the IS,
a dynamic representation of the IS services supypat business service is also relevant.
For example, the ArchiMate language, which is oh¢he basic languages associated
with EA, highlights service concepts and the relaships between thefnArchiMate
first uses the concept of organizational serviceefresent the external view of business
behavior, for example, the service of a vendorngkin order for a telecommunications
product. Then, the realization of this organizagioservice by IS application is carried
out using the application service concept, whicthésexternal view of an application. In
our example, it is a service providing the ordemfig telecommunications product for a
business customer assigned to the interface ohtarprise market control application
(API: Application Programming Interface). This ajgption service requires for its
deployment an infrastructure service defining teeful technologies. For example, the
application service can be deployed on JEE (Javierpmise Edition) infrastructure
services.

The EA's TOGAF (The Open Group Architecture Framégvéramework’ with the
method it proposes to design the EA allows a gotebration of the business during the
IS architecturé. This ADM (Architecture Development Method) is theajor choice
criterion of a large majority of companies for agie or hybrid EA’s framework That is

IS Services Generation from Business Services 8pddased on a SoS Logical Architecture Patter®

the reason why the meta-modeling used to autonfegel§ service development are
mostly chosen from TOGAF. Meta-modeling is the espntation of the concepts useful,
here, for IS service development, and their astoos (for example, the concept of "IS
service" associated with the concept of "platforerviee”, because the former is
deployed on the latter). Among the concepts conmgpgiese meta-models, two of them
are at the heart of our contribution which targéts generation of IS services from the
specification of business services: (1) the busingsrvice defined in the TOGAF
business architecture meta-model and (2) the ISicgelin the TOGAF application
architecture meta-model.

Data concepts make it possible to raise the isulata quality and integrity during
its life cycle, for example for the telecommunicas field® chosen for illustration in this
introduction. This alignment problem between a dattty (business architecture) and a
physical data (application architecture) is oneeaspof the misalignment between
business and 15. This misalignment between business and IS leadshi®ak between
the simultaneous consideration of strategy in thesiress and in the 8. The
implemented view of this IS, called IT (Informatidrechnology), when out of order,
even temporarily, is penalized by the developmesgts incurred by the evolutions
necessary to bring it into compliance with the hass. The logical enterprise
architecture is interesting in this context of wpt because it is the result of a broad
vision of the company that reconciles the compangsision-makers and those who
ensure IT governance.

However, the logical architecture of an IS is coempbecause of the abstract nature
of these components, grouping functions, and of téktionships between these
components. We have seen the effects of this coditplen 2nd year Master students (at
University and engineering school) during coursesu$ing on the architecture of a
software application, based on services, in théectrof EA. EA was proposed to them
as a constraint for their development, either bggical architecture pattern of the IS in
which the software was included, or by a J2E dguwmknt environment. What was
clearly missing to them was the justification oftproposed IS logical architecture
pattern, and the possibility of automating, frorhthe requirements, the design of the
logical architecture, then the physical architeetand finally the coding of IS services.
This is the reason why we propose, in the firstt gdrthe contribution, a pattern
establishing these relations from a typing of thgidal components of the IS. From this
logical architecture, the second part of the cbntion of the paper is an algorithm
resulting in the generation of information systegnvi&ces supporting a business service.
This generation is proposed here in a context efesy of information system services
characterizing SOA approach. In order to automatihes generation, a logical
architecture of the system of information systenvises is needed first. Our contribution
targets the transformation resulting in a logiagahéecture of an IS service, as a result of
the algorithm, which comes before the usual tramsédion resulting in a physical
architecture of an IS service. Each attribute afiven entity produced by a business
service can thus be contextually associated witbgaal application component. The

4 J. Simonin et al.

generation algorithm is based on this contextuabeiation allowing the design of
information system services supporting a businesgce. The automation of this design
is proposed within the framework of an MDA (Modetii@n Architecture) approach.
The automated generation of an information systemice means the implementation of
model transformations from the business servicdysisato the code via the logical
architecture and the resulting applicative archibec This approach should enable to
simplify the generation of servicéwhich is the basis of the orchestration of these
services in order to implement a business procEkseover, the definition of the
coherence and coupling properties of informatiostesy services in relation to the
business services, or of logical application congmirmodel in relation to information
system services, which we propose, allows us téuata@the relevance of a system-of-
services. The implications, of improving the evadabmeasure of these properties, on the
business services, on the generated informatiotersyservices or on the logical
application components, are particularly focusethéuse case.

The paper is organized as follows. Background atated work regarding system-of-
services, SOA, and service design are describ&kdation 2. The concept of packaging
system, such a system-of-services, is defined mpdoved in the Section 3 by a proposal
of pattern enabling to design the architecture sfstem-of-services. The usefulness of
this pattern to generate services of an IS fromusiness service is underlined by a
generation algorithm in Section 4. A use case esgmted in Section 5, applied to a
management IS. In Section 6, assessments reséibingthis example are described, as
well as risks for using such approach. Conclusiamg perspectives are summarized in
Section 7.

2. Background and Related Work

First, this section examines previous works on dlignment of IS viewpoints with
business viewpoint, as defined by EA, including S@gproach, and on abstract level
architecture for integration of a service into asteyn-of-services. Then, the section
presents related work about the generation of idc@s from business services.

2.1. Enterprise Architecture and system-of-services

A system-of-services is often described in compabig a catalogue of services offered
to IS users in order to carry out their activitisgh the help of IS applications. This

catalogue allows IS application developers to remdsting services that provide them
with the data their application needs. The orcldisin of such IS services, in order to
support a business service, highlights the relatigogs and interactions between the IS
services and justifies the term of system.

Alignment between the business and IT is a problemthe industry where
collaboration between business experts and IT desigis complex because of specific
contexts:* This complexity is induced by different points\oéw about the compary.
SOA with its properties of flexibility and agilitgllows the business to design IT services
with IT partners® These services are thus more explicit becauseareylesigned and

IS Services Generation from Business Services 8pdd@ased on a SoS Logical Architecture Patterd

orchestrated directly from the business point efwi’ The concept of service can thus
be applied to this business point of view in ortierdefine the business service as
expected by the business while the IT service nggllt from this business service taking
into account IT-specific constraintService oriented architecture can then be extended
to IS design with the concept of IS service, whidghlights the functional aspect of the
service compared to the IT serviceThis abstract level of a system-of-services is the
logical one, which maps with the system viewpoifitZachman’s framework This
functional aspect is integrated in the logical #eghure for EA’'s frameworks as
TOGAF, more precisely in the application architeetpart of this framework.

As pointed out in the introduction, there are twanaepts of TOGAF which are
chosen to frame the contribution of this paper:

« For business architecture, the concept of a busiseEwice associated with one or
more business processes (for example, the threedsssservices of reading the
catalogue of telecommunications products, creatinbusiness customer and
taking orders for a telecommunications product sugiport an order process).

- For application architecture, the concept of ISviser associated with the
automation of a business service (for example, Qrsdrvice for consulting a
catalogue of telecommunications products offeredhgy application managing
the computerized labels and prices of products).

These concepts compose a part of the TOGAF metainoddhe Services Extension.
They are completed in Fig. 1 by the logical appia@a component concept, which
specifies the application component concept defimetially in this extension. The
logical application component is another concephef TOGAF meta-model useful here
for the IS service logical architecture.

Business Service

| +realizes

Information System Service

l—umplemems

Logical Application Component

Fig. 1. TOGAF Services Extension meta-model.

For data architecture as defined by TOGAF, the epnof service does not exist, but
it is strongly linked to business architecture pplacation architecture. The concept of
data entity is indeed associated (provided or uséith) the concept of business service,
as well as that of physical data associated wighlghservice that provides or uses this
physical data (the physical data defining a prodwmith its wording and price is for
example provided by a service for consulting a logize of telecommunications
products).

The synergy between the system-of-services archite@s defined by SOA and EA
is nevertheless limited to the recommendation okcHjz technologied' Our

6 J. Simonin et al.

contribution proposes to extend this synergy toltggcal architecture of a system-of-
services and its counterpart in EA, for exampleapglication architecture in TOGAF.

The service concept is considered by the SOC (&=@riented Computing)
approach as central in the development of IS apiitins?® From this approach, the
usefulness of model-driven development becomegeistiag in order to ensure the
integrability and interoperability of IS serviceBhe use of MDA approach for SOA is
first and foremost classical in order to integr&@A technical solutions, resulting from
non-functional requirements, during service develept”® The design of services
addresses isolated IS services from one businegisesénstead of an exhaustive design
of IS services from an orchestration of businesgises. However, orchestration can be
handled in some frameworks, such as ArchiMefdéghanks to rules involving a PDM
(Platform Dependent Model) specific to SOA, thisanfirework transforms an
orchestration of a logical service model viewedaaBIM (PIM: Platform Independent
Model), into a PSM (PSM: Platform Specific Model)he orchestration of business
services is supported here by an orchestratiorBafdrvices. The completeness results
from the algorithm of generation constrained byatext that is the system-of-services.
Taking into account a context in the MDA apprddds interesting because it would
allow the automaticity of the generation proposedur contribution.

2.2. Generation of | S services from business services

The architecture defining how IS services must éeetbped in order to support business
services introduce the concept of system-of-sesvitde objective of this architecture is
the integration of an IS service into the systers@fices of the compar§.In this
system-of-services, the integration of an IS sergian be done by discovery (in order to
reuse iy’ or development (in order to support a businessicarrespecting the property
of low coupling between IS servicEsThe architecture of the IS services can be
integrated in EA in accordance with an ontologgéging integratiors® This integration
is also being studied from a systemic point of vi@system is composed of units that
can be linked by static relationships allowing théminteract dynamically) with the
concept of system-of-systems. An example is thegiattion, of computer applications,
which transforms these systems into subsystems @sing an IS The IS thus is a
system-of-systems. We find the architecture lagssociated with subsystems that make
up a system-of-systems. What is interesting is that lowest layer of the systemic
approach, that of the units composing the loweellsubsystem, is not addressed, in
particular the coupling property which is on theesthand highlighted for subsysteffis.
The system-of-systems is also better treated tharsystem-of-services in terms of
its architecture. This is the case, for exampletHe integration of a system into a system
of systems* An interesting point is that the modeling of anst®uld be considered first
at the abstract level of a system-of-systéfrignfortunately, this abstract level is not
emphasized much in the studies of systems-of-ssvithe evaluation of system-of-
systems architecture is rather achieved by expértmch level and based on a mapping
between activity and systethHowever, it does not benefit of development traditg

IS Services Generation from Business Services 8pddased on a SoS Logical Architecture Pattern

between these levels. Traceability is indeed aityuattribute of a system-of-systeris
and is essential for the life-cycle (developmenbcess, maintenance process, and
operating process) of a complex systesuch as a system-of-systems, or a system-of-
services. Traceability is generally based on a dweuation reproducing the activities of
the processes characterizing the processes ofshens life cycle. As mentioned above,
traceability in SOA focuses on the business andpthesical®® and therefore does not
take into account an abstract intermediate levéh®iystem-of-services.

The model-driven approach for this architectureusth@ssist the evaluation and the
traceability of a system-of-systems. More generatlye model-driven approach is
essential both for specifying business processdsf@ndeveloping the IS services that
support theni’ This approach is beneficial in the context of egstintegration in a
system-of-systems with patterfishut this solution suffers from the absence ofabal
system-of-systems architecture solutioffIndeed, each model transformation uses one
task as input and results into one IS service.

Still in the model-driven approach, transformatiafsbusiness processes modeled
with BPMN (Business Process Model and Notationd iatlogical service architecture
modeled with SoaML (Service oriented architectureodeling Language) are
implemented with any model transformation languafleese transformations consist
mainly either of transformations of message, wisitibulate data entities exchanges, into
service interface¥, or of transformations of task into servi¢é<Compared with these
two examples of the generation of IS services fbusiness processes, what is missing is
the failure to take into account the system-ofieewthat encapsulates the services of an
IS. Indeed, without this constraint for any IS seevogical architecture to conform to an
enterprise-specific system-of-services logical aechure, it is difficult to promote the
reuse of IS services by other IS services. Thithésfoundation of our contribution to
generate IS services from business services imsistent way across an enterprise's IS.
This logical architecture of a system-of-servicka company must therefore be designed
in advance of any generation of IS services in¢bimpany.

In a similar way to system integration in a systehsystems, the integration of a
service into a system of services requires thetioreaf abstract views of the developed
services 1S? Nevertheless, an abstract global view of the sergiystem is not deeply
treated. The global integration difficulty is theagularity of the design of the
components at the abstract level. A multi-levelrapph for the IS service is the most
common solution. Each level maps with a granulasfta service, which is associated to
a view of this service (process, business, composif* However, the modularity is
often based on environment criterions and can Isistad by an estimation of the
technical potential of each module in software gie$i Microservices designed in order
to develop adaptive system-of-services, as clostesy® are considered as independent
component containers. The sharing of componentseis difficult to apply during the
development of the IS services. Modularity is astundamental property in the design
of heterogeneous systems fusion architecture, wbffdrs solutions to the system of-
systems architectufé. Functions are grouped together based on the @eteof the

8 J. Simonin et al.

sharing of the same information in order to beaseea function. Nevertheless, there is
no a priori generation of these functions mergintha abstract levéf The creation of IS
services is covered iff, where an IS service is virtualized from the apibf an agent
responsible of the execution of a system’s use.cCHsis service engineering does not
take into account a priori global design of a gsystd-services favorable to the IS
services reuse, but the uses of this system.

One observation is that the appropriate transibetween business and IS is not
conducive to an automated development of IS sesvidestead of ontology and
hierarchical modeling solutions (i.e. refinemeniugons), we prefer to design a system-
of-services logic model, as global solution forsteystem, in which IS services must be
integrated, or reused. Indeed, on the one handntogy will specify a business model
of data entities based on the expertise of theemded business. The transformation of
such a model into a logical architecture model aksguires the consideration of the
business services as used in the company. Thessebsiservices are impacted by the
organization of the company. However, this orgaioraspecific to a company and an
ontology specific to a business domain in which twmnpany is working can be
contradictory. On the other hand, in the case fafiement, the problem is the granularity
of the logical operation when it is transformedoirt physical operation, i.e. ready for
implementation. The objective of automating theegation of the logical architecture of
IS services is difficult to achieve because of thigertainty. Another observation is the
usefulness of the lowest level of systemic appraachutomatically develop these IS
services (from IS services generation to IS sesviamding). The goal is to simplify the
interaction of business experts with IS serviceshiggcture through the functions
describing the system-of-services. For this purpaseasurable properties are proposed
below to define a suitable system-of-services.

Related work makes it possible to highlight thecHpsty of the contribution, where
the IS is considered as a constraining contextttier generation of IS services from
business services. This context must be sharedltgenerated IS services and must
therefore be designed beforehand. The first exfientaaddressed in section 3 is a
solution for modelling IS seen as system-of-sewstice

3. New Pattern for System-of-Services Design Based on Packaging System
Properties

We first define in this section a packaging systenose properties applied to a system-
of-services would automatically enable the genenatif IS services and their logical
architecture in relation to the specification ofbasiness service. This generation is
detailed in an algorithm in Section 4 where theigte®f IS services is guided by the
design of the logical architecture of the IS présérbelow. Then, a pattern is suggested
in order to design the logical architecture of astep-of-service$ satisfying the
properties of a packaging system.

IS Services Generation from Business Services 8pdd@ased on a SoS Logical Architecture Patter®

3.1. Packaging system definition

Properties defining a packaging system and illtistna of the expected properties of a
packaging system for three well-known systems, @ajjg a system-of-services, are
described in this section.

3.1.1. Packaging system properties

Packaging is defined here as in UML (Unified ModgliLanguage) by a grouping of
coherent elementd.A system is also defined by a grouping of coheseiisystems. The
coherence of a subsystem (differentiated from @besiony* is conditioned by the
requirements specification that the system’s subsys have to solve. A generic
definition of coherence is proposed below in orteextend the coherence property to
the subsystem’s units conditioned by the speciticabf each subsystem. A requirement
that conditions the subsystem design, and a sudmyitat conditions the units design,
define an expectation in the both following geneigfinitions. The following definitions
of coherence and coupling property are appliedeéments of a set SO of solutions that
should solve some elements of EX, set of expectatio
Definition of coherence. One element smf SOis coherent with the set of expectations
EX if Oex€ EX, such as so; solves ex1 and only ex1.

In Fig. 2, only sg sg and sg from SO are coherent with EX.

Fig. 2. Example of a solution set SO solving aEs¢étof expectations. A solution ggolves (at leastly partly)
one or more expectation X he relation “solves” between EX and SO is deth@®e

An evaluation of the coherence of SO could thugheeratio of the amount of SO
elements coherent with EX, to the SO total amountlements?® Let us therefore
consider a MCHmeasure of the coherence of a set SO conditioned by a set of
expectations EX:

MCH(SO, EX) = card({s& SO; so is coherent with EX}) / card(SO)) (1

wherecard(A) returns the cardinality of the set A.

The behavior of the MCH measurement is based offiolfeving two axioms™ (1)
The lower the coherence, the lower its measuremietiteases, and therefore, the closer
its evaluation is to 0. (2) The higher the coheeegrtioe higher its measurement increases,
and therefore, the closer its evaluation is to 1.

In Fig. 2, the measurement of the coherence o$¢h&O is MCH(SO,EX) =3 /5.

If each subsystem is designed from units, the unitsacting with each other during
an instantiation of a subsystem, and thus havirsgatic relationship between thém,

10 J. Simonin et al.

define a coupling property. The following extenddefinition of coupling property
enables to specify also the coupling between tk&egys subsystems conditioned by the
system requirements specification.

Definition of coupling. Two elements s@nd spfrom a set S@f solutions solving of a

set EX of expectations are coupled if they are linked by a static oriented relatiopsh
deduced from a dynamic interaction required byrateince of an expectation of EX.

Thus, spand spare coupled if either
(a) Cexe EX/sqsolves ex and gsolves ex,

(b) or soe SO/ so and sare coupled and so and ace coupled.

Then, thecoupled relation defines an equivalence relation on S@@wahg to build
P(SO), the set of its equivalence classes.

In Fig. 2, for instance soand sg, s@ and sg@, sq and sg are coupled through
condition (a) involving sQ s, sa, and seare coupled through condition (b). Onlysso
is not coupled with any other solution. Th&(SO) is here a two-elements ${SO) =
{{s01, so, sa, sa}.{sos}}

The evaluation of a coupling is more commd@ne MCUmeasure of the coupling
of a set of elements SO solving a set of expectatitX could be:

MCU(SO, EX) = 1drd(P(S0)) (2)
whereP(S0) is the partition of set SO built accordinghe coupled equivalence relation
existing on SO through the set EX and the “soledétion between SO and EX.

The behavior of the MCU measurement is also basevo axioms:* (1) The lower
the coupling, the lower its measurement decreaseitherefore, the closer its evaluation
is to 0. (2) The higher the coupling, the highserriteasurement increases, and therefore,
the closer its evaluation is to 1. Thus, the measdircoupling of the set SO in Fig. 2 is
MCU(SO,EX) =1/ 2.

We define a packaging system from coherence anglioguproperties to be verified
by the subsystems on one hand and by the unithemther hand. This definition is
based on the properties necessary for modularizatibich are low coupling between
modules and high consistency within each modul&. module for a system is a
subsystem of this one.

Definition of packaging system. Knowing a set of requirements specifying the syste

packaging system is a package of subsystems, exhibiting low cogplamd high

coherence between them. Each subsystem is compésedts with high coupling and
low coherence between them, knowing the specifioadi each subsystem.

The awaited packaging system properties are ifitetr below with system-of-
services compliant with the SOA approach.

Packaging systems are represented in this papeughrUMLZ® class diagrams,
where the dependency stereotypes “solves” from B@®ants on EX elements matches
with the R solving relationship expressed in the definitiohsoherence and coupling.

IS Services Generation from Business Services 8pédased on a SoS Logical Architecture Patterhl

3.1.2. Packaging system-of-services

As shown in Fig. 3, a system-of-services, whereraise is an IS service, is a potential
packaging system. In relation to the systemic aghipthe system is a set of IS services,
and an IS service is a subsystem. This systemrofess support the business services
triggered by the “customers” of these last otig8onsidering the logical architecture of
an IS service, the units of a subsystem are thed AGgical Application Components as
defined in the TOGAF meta-model) required during itstantiation of an IS service.
In Fig. 3, two relationgR exist:
« A‘“supports” relation, between ISS and BS, considgthe case where an IS service
solves a business service, for instance ISS1 Mcsesupports BS1 business service.
* A‘is required by” relation, between LAC and ISShem a LAC is required by an IS

service during the logical design, for instance UA&hd LAC2 LACs are required
by the ISS1 IS service.

reuse
BS, —— BS,
BT, ¥

Business Architecture

Alignment supports supports

I I
o= =
Realization ['\isrequiredb/ \ \ Logical Architecture
N\ /

\ N

[
e LAC, LAC, IAC, LACG,

Fig. 3 — Example of a system-of-services.

Application Architecture

The subsequent sections propose coherence (MCH3amding (MCU) evaluations
for several configurations of system-of-services,bmth levels: (a) IS services solving
business services and (b) logical application campts solving IS services.

3.1.2.1 Coherence and coupling evaluations for ISS suppgES

For the illustration of the IS services coherensee(Eq. 1) and coupling (see Eq. 2)
evaluations, two examples are proposed (see Figlndlexample ISS/BS#1, three IS
services are designed with one supporting a tagkran to two business services. In
Example ISS/BS#2, each business service is solyeté IS service.

About Example ISS/BSS#1, according to Eq. 1, tHeecence MCH is not maximal
because théSSReadDepartmen§ service supports both business services (a dhsk
reading a department is commonB8CreateEmployeand BSCreateDepartmentonly
two over three IS services are coherent with bgsirservices set. On the contrary, in
Example I1SS/BS#2, MCH is maximum because each ISicse solves only one
expectation

In ISS/BS#1, BSCreateEmployeeis supported by the orchestration of
ISSReadDepartmentand ISSCreateEmployeeand BSCreateDepartmentby the

12 J. Simonin et al.

orchestration oiSSReadDepartmerand ISSCreateDepartmenfhe partitioning gives
then only one subset due to the shared us8®ReadDepartmeirt both orchestrations.
According to Eq. 2, the coupling MCU is then a nmaxm.

Conversely, ISS/BS#2 shows a lower coupling siheget is no orchestration linking
the two IS services. The partitioning conditiongdtie business services, gives then two
complementary subsets of IS services and the caypleasure decreases to 0.5.

Example ISS/BS#1 Example ISS/BS#2

BSCreateEmployee| |BSCreateDepartment

BSCreateEmployee BSCreateDepartment

7% 7%

solves» / ", «solves

«solves» * «solves» !

1SSCreateEmployee | |ISSReadDepartment| |ISSCreateDepartment ISSCreateEmployee| |ISSCreateDepartment

MCH({ISSCreateEmployee, MCH({ISSCreateEmployee,
ISSCreateDepartment, ISSCreateDepartment},
ISSReadDepartment}, < {BSCreateEmployee,
{BSCreateEmployee, BSCreateDepartment}) =2/ 2

BSCreateDepartment}) =2/ 3

MCU({ISSCreateEmployee, MCU({ISSCreateEmployee,
ISSCreateDepartment, ISSCreateDepartment},
ISSReadDepartment}, > {BSCreateEmployee,
{BSCreateEmployee, BSCreateDepartment}) =1/ 2

BSCreateDepartment}) =1/1 i

Fig. 4 — Computing coherence and coupling for ISises supporting business services.

Conclusion: Adding an information system servicat {hartially resolves at least two
uncoupled business services decreases the vathe obherence and increases the value
of the coupling. That means that for a packagirgiesy, the IS service sharing should
not be considered when designing IS services. Pafidin of elements, defining IS
services, is thus possible if these elements stigpoidentical task of a business service.
However, as described in the following subsectiba,|S service logical architecture will
prohibit duplicating code when implementing theSesérvices. Obviously, the packaging
system definition enforces this desirable behavior.

IS Services Generation from Business Services 8pédased on a SoS Logical Architecture Patterh3

3.1.2.2.Coherence and coupling evaluations for LAC requingdSS

For the illustration of the logical application cpaments coherence (see Eq. 1) and
coupling (see EqQ. 2) evaluations, two examplespaoposed (see Fig. 5). LAC/ISS#1
solves two IS services with two LACs, one for orle. LAC/ISS#2 example,
LACDepartmentManagemeabmponent solves both IS services.

Example LAC/ISS#1 Example LAC/ISS#2

ISSCreateEmployee ISSCreateDepartment ISSCreateEmployee ISSCreateDepartment

<so:~esv~/"\ fso'”esf:\ «solvessA «solvesn® . vesyh
<solves» «soives» | WSl «SON .. «solves»'

LACEmployeeCreation LACDepartmentCreation LACEmployeeManagement| |LACDepartmentManagement

MCH({LACEmployeeCreation, MCH({
LACDepartmentCreation}, LACEmployeeManagement,
{ISSCreateEmployee, > LACDepartmentManagement},

ISSCreateDepartment}) =2/ 2 {ISSCreateEmployee,

ISSCreateDepartme) =1/ 2

MCU({ MCU({
LACEmployeeManagement, : LACEmployeeManagement,
LACDepartmentManagement}, < LACDepartmentManagement},

{ISSCreateEmployee,
ISSCreateDepartment}) =1/ 2

{ISSCreateEmployee,
ISSCreateDepartment}) =1/1

Fig. 5 — Computing coherence and coupling for LA€guired by business services.

In LAC/ISS#1 example, the design dfACEmployeeCreation(reading of a
department and creation of an employee) laA@DepartmentManagemefreading and
creation of a department) involves a maximal cohegeof the two LACs with the two IS
services as each LAC solves only one specific I8ice In that case, it is important to
note that the coherence MCH is maximized becaussh éAC implements the
“department reading” specified in both IS servicEke result of partitioning LAC sets
obviously gives two complementary subsets invoharigw MCU coupling measure.

About LAC/ISS#2, a lower coherence MCH IBACEmployeeManagemeftreation
of an employee) andACDepartmentManageme(reading and creation of a department)
is observed becauseACDepartmentManagemerdolves both IS services. On the
contrary, the coupling value MCU is maximal becaoisly one LACs subset exists.

Conclusion: Adding a logical application componsalving at least two IS services
decreases the value of the coherence and incréesgalue of the coupling. That means

14 J. Simonin et al.

that for a packaging system, sharing of logicalliapfion components in order to solve
IS services improves the packaging system propertie

3.1.2.3Designing a system-of-services satisfying packagpgtem
properties

Considering the previous examples and their MCHZAMevaluations for both levels, the
best design for the full system-of-services is giwe Fig. 6 combining ISS/BS#2 and
LAC/ISS#2, in order to comply with Definition 1 efpackaging system.

BSCreateEmployee BSCreateDepartment

5 5
|

: System-of-services !
«solves» i«solves»

ISSCreateEmployee ISSCreateDepartment
A A A
«solves» ! «solves» . «solves» !

LACEmployeeManagement LACDepartmentManagement

+createEmployee() +readDepartment()
+createDepartment()

Fig. 6 — lllustration of system-of-services satisfypackaging system properties.

Thus, for a system-of-services, alternative desfgndusiness services, information
system services or logical application componeatshe deduced from;

- the increasing variation in the measure of coherexml the decreasing variation

in the measure of coupling of information systemvises,

« the decreasing variation in the measure of coherand the increasing variation

in the measure of coupling of logical applicatiamponents.

Such alternative designs are discussed about thecase in Section 5.1.4. An
appropriate design solution shared by the diffecamtributors (business expert, system-
of-services logical architecture designer, IS serbgical architecture designer) can then
be extracted from these alternative designs.

Logical architecture is therefore central to oujechive of generating IS services
from business services. The difficulty in designsugh architecture is the multiplicity of
logical application components and the complexftthe dependencies between them. In
order to reduce this complexity, we propose a pattesponding to the problem of
designing the logical architecture of an IS.

IS Services Generation from Business Services 8péd@Based on a SoS Logical Architecture Patterh5

3.2. System-of-Services-Logical-Architecture-Design pattern

The achievement of logical architecture design gfagkaging system is enriched by
models and concepts defining process patférAsprocess pattern is a pattern as defined
which specifies activities for developméhtThese process patterns must solve a
recurrent problem with activities descripti¥fn.Activities description must contain
activity chaining and enterprise responsible focheactivity. Development recurrent
problem studied in this section is the logical dasif a system-of-services. TBgstem-
of-Services-Logical-Architecture-Design pattern is first detailed in Table 1 for the
general characteristics of the pattern, in Tabker2the process supporting the logical
architecture design of system-of-services, andabld 3 for the implementation.

Table 1 — System-of-Services-Logical-Architecturesign pattern — General characteristics.

Category System-of - Services-L ogical-Architecture-Design

Classification | Scale: logical architecture modeA@.and LACD) description.
Phase: logical architecture design.

Purpose: logical architecture model design metlodystem-of-
services having packaging system properties.

Scope: logical architecture.

Intent 1) Design of the LACs defining a systemsefvices and satisfying tq
typing of LACs and 2) design of dependencies betwle&Cs wherg
orientation depends on the types of the source oamt and of th
target component of each dependency.

Motivation Scenario illustrating the problem is the developt@#ra service, whic
belongs to a system-of-services having the progenif a packagp
system. The development should be based on thealogjichitecture (¢
the system-obervices in order to make easier the reuse of@hgceq
of the packaging system.

The logical architecture of a systemsamfrvices should minimize t
coupling betwen services composing the system and support
business service (high coherence and low coupling).

Applicability Logical architecture model of a systef-services has beforehand
be aligned with business services that it supports.

Consequences | This pattern assists the logicaltacthie designer of a system-of-
services and enables a use of the LAC model indewglopment of
service of the system-of-services.

Related PatterngAnalysis process patterns (before this pattern, floe businegs
requirements analysis).

Detailed design patterns (after this pattern, fier physical architectu
design).

16 J. Simonin et al.

Process, in Table 2, supporting the logical archite design of system-of-services is
useful to a physical architecture designer of aiser(transformation of a logical design
into a physical design). The design of these d@ifollows the experimentation of the
pattern in the field. The granularity of these tgs is intended to implement the pattern
directly through the precision of each of them.ogjital data is defined as produced by a
logical application component in the process.

Table 2 — System-of-Services-Logical-Architecturesign pattern — Process.

Process Following process activities and their chaining aepresented in

UML activity diagram (see Fig. 7):

+ Specification of LAC types from life duration crita: the system
of-services logical architecture designer definest fiwme type
associated to LACs consistently with the life dimatof thesq
components. A typing is relevant for large scalestay likg
Information System because the great number of Lé&ming the
system logical architecture.

- Design of logical data from business semaritiorder to design th
LACs, the logical architecture designer first desiga candidate
logical data, with their attributes. They have ®dligned with th
business services supported by the system of sgsfdra designe
can be assisted in this activity by the businegsirements analy
for the business understanding of the businesscestv

« Checking of logical data attributes life duratioorfeach datathe
logical architecture designer checks that thehattes of the san
candidate logicaldata satisfy the same life duration crite
associated to a type.

- Splitting of logical dataif the attributes of a candidategical datg
do not satisfy the same difduration criterion associated to a ty
then the logical architecture designer must shétdandidatéogical
data in order to design effectiMegical data having each so
attributes conforming to one criterion.

- Design and typing of LAC defined eaah managing one logic|
data if the attributes of each effectivegical data satisfy the sai
life duration criterion, the logical architecturesignercan desig
one LAC producing one effective logical data.

« Design of non-oriented LACDs from business sematite logica
architecture designer designs some dependencids atlka non
oriented (i.e. not yet orientedetween the LACs. They have to
aligned with the business services supported by system o
systems. The designer can be assisted $naittivity by the busine
requirements analyst for the business understarafinige busines
services.

+ Orientation of LACDs from life duration ruléor each norerienteq
dependency, which associates two LACs having &difft type, al
orientation of tle dependency is designed such a LAC havin
type defined by the longest life cycle duration elegs on the LA

IS Services Generation from Business Services 8péd@Based on a SoS Logical Architecture Patterh7

- Orientation of LACDs from business semarftit each noreriented

having the type defined by the shortest life cydileation. This rul
is referred subsequently to as theéomponent-Dependency-
BasedOn-Life-Duration-Rule.

dependency, which associates two LACs having amtichd type, a
orientation of the dependency is designed suchhgoaent needin
another component in the specificationbokiness services depe
on it. The designer can be assisted in this activity l&yhibsineg
requirements analyst for the business understarafinige busines
services.

- LAC cycle checkingat last, the logical architecture designer

checked that there is no cycle in the LAC modetlgyefinition
there is a LAC1 LAC, which depends on a LAC2 LAGffedent
from LAC1), which depends on ..., which depends orCl1A

Participants

Business requirements analystnalyst role is to assishd logica
architect for the business understanding of thénless services.
Logical architecture designethis architect has here to design a |
logical architecture model of the systemsefvices. The logic
architecture designer is responsibler fall the logical architectu
activities specified in the process.

Physical architecture designethis architect must design the phys
architecture of a service, part of the systenserfsices, whic
implements a set of LACs and LACDs. Thesemponents ar
dependencies are collected by the physical ar¢hieaesigner fro
the logical architecture of the systemsmfrvices. Moreover, th
physical architecture is deployed on technologyiéecture.

The process representation in Fig. 7 shows twosrolde triggering role is the
physical architecture designeole, who is responsible for the physical impletagon of
the logical architecture of IS services. The cdmitting role is thdogical architecture
designerrole, which has to design a static logical aratiitee model of the system-of-

services.

18 J. Simonin et al.

Physical archtecture designer Logeal archtecture designer

Specit of logical p types
Logical component model """?, ‘)[from Ide duration criterion J

|

_—

Design of logical data from business semantic

Checking of loqncal data attributes life
duration coherence for each data

NOK

Design and typing of logical component defined
each as managing one logical data

from b

[Gependent cwgms having same type]

0 of logical
dependencies from business semantic

|
=i

dependent components having diferent types
O of logical comp
depend s from life d rule

(Log-cal component cycle choolung}

>Lognoal component model receipt [OK] \X/I‘\‘OKI

Fig. 7 - System-of-Services-Logical-Architecturesidm process.

The implementation of the pattern deals with thgidal architecture model checking
based on MDA approach. The concepts used by tmsftranation (LAC and logical
application component dependency (LACD)) conformthe TOGAF meta-model's
concept (Application architecturé)The model transformation is implemented with
operational-QVT Languad&. The implementation targets the two process aisiuit

IS Services Generation from Business Services 8péd@Based on a SoS Logical Architecture Patterh9

Orientation of LACDs from life duration rulendLAC cycle checkingndeed these two
activities are the only ones that can be automdthd.others require the intervention of
the logical architecture designer, necessarily, , angtionally, of the business
requirements analyst.

A pattern implementation targeting the data prodo8etypes:Flow, Stock and
Category®® This pattern is adapted to LACs and experimemeskieral cases (teaching
and research). Following these experiments andapication of theComponent-
Dependency-BasedOn-Life-Duration-Rule, the Flow type becomes thactivity type, the
Stocktype is split into 2 typesPersonand Document and finally the typeCategory
becomes the typReference

Table 3 — System-of-Services-Logical-Architecturesign pattern description — Pattern implementation.

Implementation|For this implementation, the duration life is sfied with the

following typing of the LACs:

- Activity that is associated with the management of datg
references of a flow modifying a status of a docuina status of
person or a reference, such as ordering a produictvoicing it is
associated with a very short life cycle.

- Documentthat tagets documents such as commercial contf
associated with a product have a longer life cheleause the stat
of a document are changed by several activities,ef@ample th
order puts the contract in the created state esehace update pu
the contract in the changed state.

« Personwhich is associated to people such as the custaitier for
example, a first order that puts the customer & ¢reated staf
while a second order with the same customer plaesn the rea
state. In addition, the life cycle associated with Persontype ig
longer than that associated with thecumenttype, for example
customer may have several contracts, overlappimpor

- Referencavhich manages references such as those of a proda
catalogue, a type of commercial contract (afi@es service, etc.)
a customer market (company or general public) $eeated with
longer life cycle than the previous types sincallbws referencin
the three previous types.

The Component-Dependency-BasedOn-Life-Duration-Rule is adapte

to this typing.Based on the assumptions about the life cyclesateg

with each type, the pattern used for the implementacontains si

dependencies between the different types of LAE [4g. 8):

« From Activity to Document such as from a product order tq
contract associated with a product.

« From Activity to Person such as from a product order to
customer who placed the order.

- FromActivity to Referencesuch as from a product order to a ser
in the product catalogue.

- From Documentto Person such as a contract associated wi

20 J. Simonin et al.

product to the customer holding the contract.

« From Documentto Referencesuch as a contract associated wi
product to a type of contract defined by the seller

- From Personto Reference sich as a customer to the marke
which he belongs (general public or company fomepie).

Activity|
_____________________ ctivity |
g Y
Person L oy A Document
Y £
Reference

Fig. 8 - System-of-Services-Logical-Architecturesidm pattern for implementation.

The principle induced by this implemented patterthat anydocumen
or personis created in the course of antivity and that the followin
activities which are triggered by thidocumentor person depend o
the activity of creation, and not on thelocumentor person For thig
reason, there is no dependency of logical appdicatomponent, whig
is not typedActivity, on a logical application component, which
typed Activity, in the patternThe implementation of the checking
the logical architecture of the system-of-servicsas Appendix A.

Sample
Execution

The execution samples run three cases of design of ndepey
between LACs.

The first case (see Fig. 9Joes not satisfy the pattern about
orientation between components having differenesyp

«person» «reference»
LACEmployeeeManagement |«z.«--ccnuunn.d LACDepartmentManagement

Fig. 9 - lllustration of a logical architecture nebdhot satisfying th&ystem-of-Servics
Logical-Architecture-Desigpattern for implementation (see Fig. 8).

The execution result indicates a warning in refatigth the pattern.

<terminated> leachk-erample [Operational QVT Interpreter]In-process runner
Begin of the logical application component model checking

Orientati : TNt dependencies from life duration rule
(ARNING: the dependency from LACDepartmentManagenent to LACEmployeeManagement does not satisfy the pattern : person to referend

Logical component cycle checking

£nd of the logical application component model checking

The second one is an illustration of a loop (see F0) which concern

—

components having the same type.

IS Services Generation from Business Services 8pg@Based on a SoS Logical Architecture Patterdl

«person» L.s «person»

LACEmployeeManagement 2 LACServiceManagerManagement

: «reference» :
I R > LACDepartmentManagement oememeant

Fig. 10 - |lllustration of a logical architecture de with a loop betwee
LACEmployeeManagememtdLACServiceManagerManagement

The execution result indicates also warning mealtuops.
<terminated> lea2chk-example [Operational QVT Interpreter] In-process runner
Begin of the logical application component model checking

Orientation of logical component dependencies from life duration rule

Logi nt cycle checking
WARNING: there is a logical loop from LACEmployeeManagement to itself
WARNING: there is a logical loop from LACServiceManagerManagement to itself

End of the logical application component model checking

The third one in Fig. 11 is a correct applicatidnhe pattern.

«person» «reference»
LACEmployeeeManagement |- > LACDepartmentManagement

Fig. 11 — lllustration of a logical architecture deb satisfying theSystem-of-Servicgs-
Logical-Architecture-Desigpattern for implementation (see Fig. 8).

The execution result indicates no warning:
<terminated> lea2chk-example [Operational QVT Interpreter] In-process runner
Begin of the logical application component model checking

Orientation of logical component dependencies from life duration rule
Logical component cycle checking

End of the logical application component model checking

The design pattern of the logical architecture ofevice system meets only
functional expectations. The logical architectudelr@ssing non-functional requirements
is processed in the technical architecture modbErer a technical component satisfies
one or more non-functional requirements (mainly fesponse time). This part is not
detailed here, but is implemented in the transfoionaof the logical model into a
physical model of the IS services in a classicay wathe MDA approach, i.e. with a
PDM representing this technical architecture (sé¢ 4

3.3. Information system service definition

The definition of an IS service (the same concsghahe TOGAF meta-model) is based
here on the properties of a logical dependency(trBd) made of LACs.

Definition. A set of LACs LDT = {LACi such %i<n} is alogical dependency tree if it
conforms to an acyclic directed graph having orw:1id! LACroot OOLDT suchO LACi

22 J. Simonin et al.

OLDT with LACi # LACroot = path(LACI, LACroot) = falseandpath(LACroot, LACi)
= true.

The logical architecture in Fig. 11, which satisfige System-of-Services-Logical-
Architecture-Design pattern, is alogical dependency tree where LACroot =
LACEmployeeManagement with path(LACEmployeeManagame
LACDepartmentManagement) =true and path(LACDepartmentManagement,
LACEmployeeManagement) false

In order to express the coupling property of LAGsnposing an IS service, IS
service definition is based orl@gical dependency tree.

Definition. The logical architecture of an IS service, whieis o support all or part of a
business service, is defined by LACs and LACDs thiah alogical dependency tree.

An illustration is the definition of the IS servigeipporting theBSCreateEmployee
business service. The specificatiorB&CreateEmploye@sults in two business tasks:

0] Read a department
(i) Create an employee

Thelogical dependency tree in Fig. 11 allows to definéESSCreateEmployess an IS
service. The instantiation of LACs’ tree is undeeli by a UML sequence diagram
representing an instance of 1S CreateEmployd& service (see Fig. 12).

+1SSCreateEmployee || : LACEmployeeManagement | | : LACDepartmentManagement

T T T

1: createEmployee
».

2: readDepartment

e Ll Gornsnnasenans N

Fig. 12 - IS service supportiBSCreateEmploydeusiness service.

The logical dependency tree is completely instantiated because the two LAGs ar
instantiated, and because the LACD fromhACEmployeeManagementon
LACDepartmentManagemerig instantiated by theeadDepartmentrequest operation
instantiation. ThecreateEmployedogical operation olLACEmployeeManagemeand
the readDepartmentogical operation ofLACDepartmentManagememtre instantiated
whenlSSCreateEmployés instantiated.

The logical dependency tree in this example fully supports tH&@SCreateEmployee
business service. However, the LACs supportingsinegs service could be associated to
more than onéogical dependency tree, and thus define more than one IS services (one IS
service per onédogical dependency tree). Moreover, each LAC can support more than
one business service. In order to address this lexityy we define the LAC model of
the system-of-services as a contextual model otrdmesformation of business services
into 1S services.

Each logical dependency tree design should conform to the logical view of the
packaging system. The generation of a IS serviom fa business service must be thus

IS Services Generation from Business Services 8péd@Based on a SoS Logical Architecture Patter23

based on the logical architecture of the packagiysiem, which is the IS containing it
and which conforms to theystem-of-Services-L ogical-Architecture-Design pattern.

4. 1S Service Generation Algorithm for 1S Service Development

Knowing the logical architecture of a service sgsteith high consistency properties
induced by the supported business services, thelgmmoto be solved is to generate IS
services, from business services, with a low cogpbetween them, and so that each
service is composed of LACs with a high couplind adow coherence between them.

The definition of an IS service must then highlighe coupling property of the LACs
that describe it. One solution consists in consingi an IS service by the existence of
dependencies between its LACs. In order to defieel$ services that comply with this
solution, an IS services generation algorithm, dase a set of business services, is
proposed in this section. The model-driven apprao@achising a logical model of the
service system resulting from the pattern (seei@ec3.2) and reusing existing IS
services completes this section.

4.1. Contextual model transformations from business servicesto | S services

The complexity highlighted above can be considex®d problem of variability of "data"
related to an IS service development process. thdiee each business service, the IS
service architecture designer must 1) align thivise with the service system logic
model in order to automatically generate the 1Sises supporting the business service,
2) align the logical architecture of the IS sergicipporting the business service with
one or more existing IS services of the systemeo¥ises (external to the transformation)
in order to reuse them (conditioned by technoldgioasistency in the subsequent design
of the physical architecture). The IS service dettiure designer must therefore align 1)
a model of LACs of the service system (up to sdvewmndred components, each
supporting one or more business services) withtabks of a business service, and then
2) existing IS services (up to several thousandh ttie logical architecture of a business
service. These numerous "data" form a double goftitat induces 1) an integration with
enrichment by a logical model of the service systemd 2) an integration with
substitution by existing IS services.

The model-driven integration (useful for these méaata™) of this double integration
is proposed with a MDA-compliant development prec@e double integration is based
on the integration of a context into a MDA modelrsformatiorf” In this approach, the
authors integrate a contextual model (TCM: Tramsftion Context Model) into the PIM
before ST (Substitution Transformation) or ET (Bmtement Transformation)
applications resulting in a PSM under the technaaistraints of a PDM. The PICM
(Platform Independent Contextual Model) resultsrirhe integration of the TCM into a
PIM.

This integration must be extended to the full MDgpeoach. The business services
model is indeed a CIM (Computation Independent Mootethe MDA approach. This
means an adaptation to make of the contextual foanation (substitution or

24 J. Simonin et al.

enhancemerft) for the transformation of a CIM into a PIM. Thehamcement of CIM
with the logical architecture of the service syst@@Me: TCM for enhancement) leads
to the logical architecture model of IT servicepmurting business services (PIM).
Before obtaining the PIM, we propose an enrichifige Contextual transformation of the
CIM.

4.2. Enhancement contextual transformation of business services into IS services
logical model (CTe)

The CIM is a meta-model of a business service. Cié concepts target the description
of a business task composing a business servieseTtoncepts takes into account some
constraints making easier the generation of ISisesvcode. CIM’s concepts definition
and illustration in relation to the example in $&t#.1, are as follows:

* “Business Service” (the same concept as in the TP@#eta-model) describes a
business servicdSCreateEmployge

* “Business Task” specifies the order number of & tasnposing the business service
(1 for the Read a departmenbusiness task of th8SCreateEmployebusiness
service an for theCreate an employeask).

* “Verb” indicates the verb defining the busineskt@sadfor theRead a department
business task antteatefor the Create an employetask). The verb value is limited
to create read update and delete in order to make easier the transformation
resulting in code (with reference to CRUD desigmatihe four basic operations for
data persistence).

» ‘“Data Entity” (the same concept as in the TOGAF arabdel) represents a data
associated to a business task. The associationsntkarproduction of a data by a
business taskDepartmentfor the Read a departmertask andEmployeefor the
Create an employe@sk).

» “Attribute” refers to an attribute of the data éptiwhich is associated to the business
task. This attribute is directly related to thekt@isameattribute of theDepartment
data entity for theRead a departmeriiusiness task andame andsocial security
numberattributes of the&Employeedata entity for th&Create an employesk. The
attribute is essential for a task associated widsh In this case, only the attribute of
the data entity used for the test is associateth Wie task. For example, when
selecting an employee, only thecial security numbes associated with the reading
task.

* “Loop” indicates if the business task is iteratedhot. The loop value iBue or false

* “Condition” describes the condition that is asstemato a business task. A condition
targets an attribute characterizing a task, whpetties a test (for examplg>null
condition fornameattribute of theDepartmentata entity for th&kead a department
business task).

TCMe is the contextual model in relation to theegration with enhancement. This
enhancement by a logical architecture model of $lyetem-of-services needs the
following concepts of the TCMe meta-model:

e ‘“Logical Application Component” LACEmployeeManagemégntand “Logical
Application Component Dependency” LACEmployeeManagement on

IS Services Generation from Business Services 8pédased on a SoS Logical Architecture Patter®5

LACDepartmentManagemen)) as used in the System-of-Services-Logical-

Architecture-Design pattern.

The CICM (Computation Independent Contextual Model¢ta-model shows a
mapping relationship between a business serviceaays$tem-of-services logical model.
This mapping is achieved with the concept “Contakied Data Entity Attribute” that
links the attribute of a data entity (concepts ‘®&mntity” and “Attribute”) with a LAC
(concept “Logical Application Component”) (see Fit3). The attribute selection is
implicitly constrained by its membership of theigntlata. This mapping between units
(represented by-") specifying a business service and units charaitg a system-of-
services logical model is extended to a mappingvéen relationships (represented by
“—"). A sequence of business tasks (see the con@amifiess Task” composed of the
order number of the task) involves a relationshggween the associated data entity
attributes. The ruleCTe-RR defining a mapping of this relationship betweer th
associated data entity attributes with a LACD i$odisws.

CTe-RR. Let the contextual CTe-Transformation from CIM €Nle to CICM,DE1
— AlandDE2 - A2 two data entity attributes associated to two tess tasks in CIM,
resp.BT1landBT2suchBT1comes befor8T2, if OLAC1andLAC2in TCMe such:

CTeDE1 - A1 TCMe) =DE1 - Al— LAC1
CTe(DE2 - A2 TCMe) =DE2 — A2— LAC2
and ifJa dependencyl{fAC2onLAC1} in TCMe, then

CTe({DE1 — AlbeforeDE2 — A%, TCMe) =
{DE1 — Al beforeDE2 — A2— {LAC20nLACL}

Business Service

CIM
0..1|+isService
0.* 0.*
Loop +loop Business Task| +condition | Condition
0.1 0.+ 0.* 0.1
0 0..*| +entity 9.
0.1 0.1 0.*
Verb | -ver® Data Entity *+atribute Atribute

1=

+mapsWithDataEntity 1 | +mapsWithAttribute

0.* 0.*

1 | +mapsWithLogicalApplicationComponent

TCMe Logical Application Component
+source| 1 +target | 1
0.* 0.*

Logical Application Component Dependency

Fig. 13 — CICM meta-model including the mappingaen CIM concepts and TCMe concepts.

The contextual CTe-Transformation (from CIM x TCMe CICM) is illustrated
such

26 J. Simonin et al.

CTe(Department - name, {LACEmployeeManagement, L&G&tmentManagement})
= Department - name> LACDepartmentManagement
CTe(Employee - name, {LACEmployeeManagement, LAC&épentManagement}) =
Employee - name> LACEmployeeManagement
CTe(Employee - social security number, {LACEmployaagement,
LACDepartmentManagement}) =
Employee - social security number LACEmployeeManagement

CTe is applied to the CIM task sequenteRead a departmetiefore2. Create an
employee This task sequence means a sequenceD#partmentdata entity and its
attributenamebefore theEmployeedata entity and its attributesmeandsocial security
number From theCTe-RR rule, the relationshipepartment - naméeforeEmployee —
name & social security numbeanaps with the LACD.LACEmployeeManagemenn
LACDepartmentManagement

CTe({Department - name before Employee — name &assecurity number},
{LACEmployeeManagement on LACDepartmentManagement})
{Employee — name & social security number on Daparit — name}-
{LACEmployeeManagement on LACDepartmentManagement}

On the one hand, this mapping must be done byShsetvice architect. However,
this architecture designer needs business knowladgeful for understanding the
attributes of the data entities produced by theiness tasks. The integration with
enhancement is thus an activity of experts (corgnmass of the company and logical
architecture of the system-of-services) that tagyelomain model enhancement with a
mapping between the vocabulary that is familiathi® business core practitioners of the
domain and the vocabulary that is used by the doma$ practitioners. This activity
cannot thus be automated. This is why CICM retalmes computational independence
properties of CIM.

On the other hand, the transformation of CICM risglin the logical architecture of
the IS services (ET transformation) is automatizeith the implementation of the
following algorithm of generation of IS servicesiin a set of business services.

4.3. Algorithm of generation of information system services from business
services (ET)

We propose in this section an algorithm of genematf IS services from a set of
business services. The only rule that the busiagpert must satisfy here is a temporal
scheduling of the tasks composing the businesscegemnwithout conditional connection
(if then elseinstruction, for example). Each conditional corti@t involves a business
service (associated to thkthen part of the instruction and another business servi
associated to thelsepart, in the example).

The generation of IS services is based on the itiefinof alogical dependency tree
(see 4.1). Each business task is associated tdtrébuge of a data entity. Consistently
with the definition of a context associated to #nilaute of a data entity in CICM, each
business task can be associated with one or mofesLk relation to a set of business

IS Services Generation from Business Services 8péd@Based on a SoS Logical Architecture Patterd7

tasks composing a business service, a set of LAGsus instantiated for each business

service. In a simplified way, the splitting into kKrvices, implemented in ET, and

supporting this business service is based on tleatest logical dependency trees
composing this set of LACs. The reuse of the ISvises resulting from the

transformation is also addressed by ET, and theravtithe business tasks describing a

business service increase the complexity of tHitisg.

The precondition of th&eneration of Information System Services from Business
Services algorithm is the availability of CICM. The post atition if the set of IS services
that are instantiated for a set of business ses\dpecified with its enhancement context
in CICM.

The input data of the Generation of Information t8gs Services from Business
Services algorithm are:
 BSSa set of business services, each composed aofdassiasks (CIM).

* SO0SLACa set ofLACsof the system-of-services, agbSLACD a set ofLACDs of
the system-of-services that both result from tBgstem-of-Services-Logical-
Architecture-Design pattern application (TCMe).

The output data of the algorithm are:
 ThelSSISthat is a set of instances of IS services supmp#dibusiness service. The

reuse of generated IS service(s) is carried otéwlgorithm (PIM).

 TheLOIS, which is a set of logical operation instanceshseach logical operation
composes a LAC 050SLACand such the sé&tOISis useful to an instance of an IS
service ofiISSIS(PIM).

The algorithm and the needed functions are destribd=ig. 14. The algorithm is
written with pseudo-code language close to opearati@VT language.

Functions

/I Returns ISSIS including an instance of a geeerd® service, which can be reused,
/l instantiating a LOIS set of logical operatiostances.
update_information_system_instance (LOIS, ISSIS);

/I Returns the attributes, associated to BT taakadhe 1) mapped with LACs of SoSLAC,
/I 2) defined by data entity attributes’ context@® in Fig. 13), such these LACs and
/I the LACs encapsulating the instantiated logogaration of LOIS, composelogical
/I dependency tree (see 4.1), knowing the dependencies of SOSLACD.
test_mapping (LOIS, BT);

/I Returns LOIS including the instances of the dagjoperations defined by 1) the context
/I (LACs) of the data entity attributes associde&T (CICM in Fig. 13) and 2) the verp
/I characterizing BT
update_logical_operation_instance (BT.attribut&3l3);
EndFunctions

Algorithm

Generation of Information System Services from Business Services
BSS : Set(Business Service) := {BS defining a bessrservice};

/I SoOSLACandSoSLACDresulting from the

/I System-of-Services-L ogical-Architecture-Design pattern

28 J. Simonin et al.

SOSLAC : Set(LAC) := {LACO System-of-Services};
SOSLACD : Set(LACD) := {LACDO System-of-Services};
/I Generation of Information System Service(s) fritn@ Business Service(s) set
BS : Business Service := BSS->first();
/I lteration for each BS business service of BSS
while (BS<>null)
{
/I Initialization of ISSIS and OIS to empty $et each BS
ISSIS : Set(Information System Service Instdiutig := Set{};
LOIS : Set(Logical Operation Instantiation) :et{;
/I Selection of the last (temporal) BT task & B
BT : Business Task := BS.businessTasks->last();
/I Iteration (last to first one) for each BTkad BS
while (BT<>null)
{
if (test_mapping (LOIS, BT) = BT.attributes)
then
/I Update of the logical operation instaneewgithout yet the generation of an
[/l information system service instance
LOIS := update_logical_operation_insta(8€.attributes, LOIS)
else
/I The attributes conforming to a logidapendency tree do not recover all the
/I attributes of BT
if (test_mapping <> {})
then

{
/I Completion of LOIS with logical oion instances associated to attributes
Il conforming to the test of mapping
LOIS := update_logical_operation_ins&@a(LOIS, test_mapping);
/l Update of ISSIS based on updatedd_i@tluding the reuse or the generatio
/I one IS service
ISSIS := update_information_system dnse (LOIS, ISSIS);
/I Initialization of LOIS with the aifiutes of BT that do not satisfy the test of

/I mapping

LOIS := update_logical_operation_ins&a(BT.Attributes- test_mapping, {});
}
else

// Update of ISSIS based on updatedS.idtluding the reuse or the generatio
/Il one IS service
ISSIS := update_information_system anse (LOIS, ISSIS);
endif
endif;
BT := BT.previous;

endwhile;
/I Update of ISSIS based on updated LOIS indgdhe reuse or the generation of o
II'lS service

n of

n of

ISSIS := update_information_system_instance 8,0%SIS);

IS Services Generation from Business Services 8péd@Based on a SoS Logical Architecture Patter9

BS := BS.next;

endwhile;
EndAlgorithm

Fig. 14 — Generation of Information System Servifesn Business Services algorithm and associated
functions.

The illustration of the algorithm running is basedthe example of PICMe (see 4.2):
* BSS = BSCreateEmployée

SoSLAC= {LACEmployeeManagement, LACDepartmentManagément

SoSLACD= {LACEmployeeManagement bACDepartmentManagemént

LOIS = {}

ISSIS = {}

The first iteration targets the business task B Ereate an employegth
CTe(Employee - name, {LACEmployeeManagement, LAC&éapentManagement}) =

Employee - name»> LACEmployeeManageement
CTe(Employee - social security number, {LACEmployamagement,
LACDepartmentManagement}) =
Employee - social security number LACEmployeeManageement
= test_mapping ({}, Employee - namé&mployee - social security numbper
{2. Create an employgattributes (i.e. the attributes associated tolthsiness task)
= LOIS = {createEmploye@stance} and ISSIS = {}.

The second iteration targets the business task BTRead a departmemitith
CTe(Department - name, {LACEmployeeManagement, L&G&tmentManagement})
= Department - name> LACDepartmentManagement

= test_mapping ({createEmployee instance}, {Departmename} =

{1. Read a department }.attributes

because LACEmployeeDepartment, context of Emplayeiutes, and
LACDepartmentManagement, context of Departmenibaite, form a logical
dependency tree (see 4.1).

= LOIS = {createEmploye@stancereadDepartmeninstance}

= ISSIS = {SSCreateEmployaastance} designed as illustrated by the sequence
diagram in Fig. 11.

The low coupling between IS services is directhduteed from thetest mapping
function of the algorithm which split a BS servit#o IS services because a lack of
dependency of the system-of-services in order tmfalogical dependency tree, and
therefore a lack of coupling. However, this proparduces a coupling between the
instantiated LACs designed for an IS service insition. Coherence as defined in
Section 3.1 is low due to the partial coverage dfusiness process (triggered by an
external expectation) by the LACs of an IS service.

The Generation of Information System Services from Business Services algorithm
allows to generate the IS services, which are desigvith the logical architecture model
of the system-of-services. The implementation & #hgorithm automates this design.

30 J. Simonin et al.

The automation of IS services development also ireguthe automation of the
transformations of 1) the logical architecture madé a physical architecture model,
and 2) of this physical architecture model into ¢bée.

4.4. Subgtitution contextual transformation of 1S services logical model into IS
services physical model (CTs)

In order to deal with the ST logical architecturedal transformation into a physical
architecture model, a contextual transformatioovedl the reuse of IS services existing
before in the system-of-services. This reuse meansontextual transformation by
substitution. The substitution relates to an excefphe logical operations instantiated by
a new IS service, which map with the logical ogeret defining the logical architecture
of an existing IS service.
TCMs (TCM for substitution) meta-model, which isetleontextual model for this

integration with substitution, contains only onexcept:

« ‘“Information System Service” as defined in Sectdoh. An IS service describes only
an existing service (external to the transformatidie instantiation of this concept
means that the service can be reused.

The PICM meta-modéf, contains a concept “Contextualized Logical Operai
that enables a mapping between a set of logicaltipas and an existing IS service that

instantiates them (see Fig. 15).

Logical Operation | +mapsWithLogicalOperation 0."| Contextualized Logical Operations

1 +mappedWith

=}

+mappedWith

—

+mapsWithExistingInformationSystemService

Information System Service

+instantiatedLogicalOperations: Set(Logical Operation)

Fig. 15 — PICM meta-model including the mappingasstin PICM (Logical Operation) and TCMs (Information
System Service).

The contextual CTs-Transformation is a functionmir®IM x TCMs to PICM. In
order to illustrate it, The PIM’s illustration i®mpleted by one existing IS service called
ISSReadDepartmettiat supports theeadDepartmenkogical operation (notice that more
than one IS service could support the same setgiddl operations, with a specificity of
each one in relation to its execution environmerthsthose associated to Java or C++,

for example):
CTsteadDepartment{ISSReadDepartmégit= readDepartment->
ISSReadDepartment

IS Services Generation from Business Services 8péd@Based on a SoS Logical Architecture PatterBl

Justified by the supported logical operation oéESReadDepartmentthe
readDepartmentogical operation of thdSSCreateEmployebusiness service can be
associated tt5SReadDepartmeptement (represented by") in PICM.

By assumption, there is no existing IS service sujiiy acreateEmployedogical

operation:
CTs(createEmployed ISSReadDepartment= {J}

CTs cannot therefore be applied to the PIM relatigm (logical operations
dependency, for example) froomeateEmployeenreadDepartment

This mapping should be achieved by the architectlesigner of the IS services.
However, the attribute “instantiatedLogicalOperatiy which is a set of logical
operations, of the “Information System Service” T€Mconcept enables an
automatization of the reuse of an IS service. Thitomatization is the result of the
implementation of the ST transformation, which @ detailed in this section, because it
is much more common in the MDA approaches impleegttbday. The MDA approach
extended with the consideration of an enhancenmmtegt for the business model and a
substitution context for the logical architectureakles to log each step of the
development. The automatic modeling of the delibl® (architecture and code)
highlights the possibilities offered by the chamimf model transformations. This
transformation chaining is applied in the followisgction to two uses cases about 1)
management IS services and 2) real time IS services

5. Use Caseof IS Services Development from Business Services

The objective of the uses case is to check theeptieg of coherence and coupling
defining a system-of-services as a packaging systéis checking is based below on the
evaluation (see 3.1) of 1) the coherence by the tatween the number of IS services
(resp. LACs) that exhaustively support one busirsessice (resp. IS service) and the
total number of IS services (resp. LACs), and oth) coupling by the number equal to 1
divided by the minimum number of subset of IS seasi(resp. LACS) such that two IS
services (resp. LACs) belonging to two differenbsets cannot solve the same business
service (resp. IS service). The use case illusgadi management IS is based on practical
works on the alignment of an IS architecture with business processes description for
2nd year of Masters, at university and in a poshigate engineering school.

5.1. Use case of development of management information system services

The use case is practical works for the Informafsystem Management Master of the
Business Administration Institute (IAE) (WesternitBmy University (UBO)). The
system-of-services is a management IS dedicatedrtomercial services. These services
support commercial relationship management (CRM) @&woicing management. The
business process to be developed is a purchasitgsy in a large household appliance
store.

32 J. Simonin et al.

5.1.1. Commercial IS design fromSystem-of-Services-Logical-Architecture-
Design pattern application

The commercial IS has to support the businessiaesivof a large household appliance
store. The logical architecture of this commert$a(see Fig. 16) satisfies ti8ystem-of-
Services-Logical-Architecture-Design pattern (see 3.2). The LACs stereotyped “activity”
by the logical architecture designer of the comiaérS (role played by the teacher)
manage date or reference of an orddrAGQOrderManagemejit a payment
(LACPaymentManagemé@nta (de)stocking L(ACStockingManageméntand adelivery
(LACDeliveryManagement). These activities dependaoctustomer managed by a LAC
stereotyped “person’LACCustomerManagemé@neand by a product managed by a LAC
stereotyped ‘“reference”, which is relevant for astliof available products
(LACProductManagementand by payment means also managed by a LACotyped
“reference”, which is appropriate to a list of gotesl payment means by the store
(LACPaymentMeansManagemenbependencies that support the commercial busines
of the store satisfy the pattern in relation to stereotypes of the LACs.

«actvity» «activity»
LACStockingManagement k..« «..veeeueernuneniunmiiunnniunnnans LACDeliveryManagement

v

«activity» «activity»
i LACOrderManagement LACPaymentManagement
Vv y y
«reference» «person» «reference»
LACProductManagement LACCustomerManagement LACPaymentMeansManagement

Fig. 16 — UML 2.2 commercial system-of-servicesdagmodel (TCMe).

This logical model of the commercial system-of-segg drives the generation and
design of IS services supporting business servitégse services are designed by
students playing business expert role.

5.1.2. Commercial IS services generation fr@eneration of Information System
Services from Business Services algorithm

The business process represents the answer ddirtie household appliance store, split
into departmentssgles billing, supply anddeliverydepartments), to a customer request
about a list of products. All the activities, undbe responsibility of a department, are
inside the store. This means that the customerstite store to place an ord€rréate
order activity), pays Create bill and paymenactivity) and exits with the purchased

IS Services Generation from Business Services 8pg@Based on a SoS Logical Architecture Patter83

product Create product deliveractivity), which of course has been destocked fthen
warehouselestock one product activjty

Business services are specified from the previasinless process description. The
specification rule of a business service withouhditional connection described in
Section 4.4 is applied to the first activityreate order where a conditional connection is
associated to the preexistence of a customer dathe household appliance store. Two
business services are thus deduced from this BctiBSCreateOrderNewCustomer
when the customer is new, amBBECreateOrderExistingCustomewhen the customer
already exists for the store. The three other diets/led to the three following business
services:
« BSCreateBillAndPaymenteduced fronCreate bill and paymergctivity.
« BSDestockOneProdudieduced fronDestock one productctivity.
« BSCreateProductDeliverdeduced fronDestock one producand Create product

deliveryactivities.

Results of the transformations running, of fBeneration of Information System
Services from Business Services algorithm (see 4.4), are reported in Fig. 17.

I BSCreateOrderNewCustomer] [BSDestockOneProduct] [BSCreateBillAndPayment]
t] | j t j
A A ~
[BSCrea(eOrderExistingCustomer] [BSCreateProductDelivery]
t] it I
7.y I)

1

Qommercial system ‘of services :

«solves» + : «solves» * xsolves» : : «solves»

ISSCreateOrderNewCustomer I | ISSDestockOneProduct | I ISSCreateBillAndPayment E_'_'_' N
! it <
«solves»: AN . «solves»

[ISSCreateOrderExistingCustomer] [ISSCreateProductDelivery]
= . '
A

i : «solves»

- { LACCustomerManagement l.(
1

HH .. { LACDeliveryManagement]
«SOI.SI.éS» } . I 1

]
: «sol
[LACPaymen(MeansManagement

S .

«solé/.éé.;f - {[LACProductMangement I«solves»

C J

: «solves» : : : . :

LACOrderManagement |.. ccasszeeeeest : <LLACPaymentManagement |ff§?l_v_?§?

| «Solvess : «solve: t { :
) «solvess® R]

«solvEss "~ ‘I[
s

«solves>

[LACStockingManagement]
[1|

Fig. 17 — lllustration of a commercial system-ofv$ges supporting business services dedicated derioig,
billing and delivery.

From the logical architecture of the IS serviceppsuting the business process
representing the store activities triggered by atamer's request of products, the
transformations of models resulting in IS servicede and database’s generation SQL
script can be applied. Notice that the design & thchestration of the IS services
supporting the business services sequence compibgnmrocess is not processed by the
algorithm.

34 J. Simonin et al.

5.1.3. Business service's loop transformation illustration

To illustrate the commercial IS services automatidevelopment, we propose to focus
on the complete model transformations chaining lofop specified in a business service.
Fig. 18 represents the textual specificatiorB&CreateOrderExistingCustomek loop
targets the second task, which is the reading obmered product. Notice that the
business service specification must be checkedddedod by a business expert.

<Business Service><name>BSCreateOrderExistingCustomer</name>
<Business Task><order number>1</order number>
<Verb><crud>read</crud></Verb>

<Data Entity><name>Customer</name></Data Entity>
<Attribute><name>name</name><type>String</type></Attribute>
<Attr1bute><name>address</name><type>Str1ng</type></Attr1bute>
<Cond1t10n><guard> 0 3 d

Data Entity><name>Product</name></Data Entity>
KAttribute><name>name</name><type>String</type></Attribute>
KAttribute><name>cost</name><type>String</type></Attribute>
oop><115t>true</115t></Loop>

<Data Entity><name m y>
<Attr1bute><name>date</name><type>Str1ng</type></Attr1bute>
<Attribute><name>reference</name><type>Integer</type>
</Attribute>

</Business Task>

</Business Service>

Fig. 18 -BSCreateOrderExistingCustomieusiness service textual specification includiigap (enclosed).

The generation and the UML2 logical model designttef IS services needs an
alignment of the CIM entity attributes participafito BSCreateOrderExistingCustomer
with the TCMe LACs. Six contextualized entity ditites are designed in the CICM, by
the students, in relation BSCreateOrderExistingCustomer

CTe(Customer - namd.AC_SO) =Customer - name»> LACCustomerManagement

CTe(Customer - address AC_SO) =
Customer - address» LACCustomerManagement
CTe(Product - namegLAC_SO) =Product - name- LACProductManagement
CTe(Product - costLAC_SO) =Product - cost»> LACProductManagement
CTe(rder - date LAC_SO) =Order - date—~ LACOrderManagement
CTe(rder - referenceLAC_SO) =Order - reference-» LACOrderManagement

Fig. 19 illustrates the automatized transformatidrthe CICM into the PIM. The
dynamic logical architecture ofSSCreateOrderExistingCustomer:createOrder_date
which is represented by a UML2 sequence diagraghlights the dependencies from
LACOrderManagement on both LACCustomerManagement and
LACProductManagemerdesigned in the commercial 1S logical architect(see Fig.
16). The UML2 combined fragment (boucle = loop in Fréndesults from the
transformation of the loop specified@ECreateOrderExistingCustomf@ee Fig. 18).

IS Services Generation from Business Services 8péd@Based on a SoS Logical Architecture PatterB5

The transformation of the PIM into the PSM is cotuelized by the existing IS
services of the commercial IS. Only one IS serviseavailable in the TCMs:
ISSReadAProduct:readProduct_ngmehich implements theeadProduct_naméogical
operation and is deployed on the same technicakastricture than the

ISSCreateOrderExistingCustomer:createOrder_date IS service.
ISSReadAProduct:readProduct_nantan therefore be immediately reused if one
considers the dynamic logical model of

ISSCreateOrderExistingCustomer:createOrder_datee reuse is explicit in the dynamic
physical model of this IS service (see Appendix B).

H] 155CreateOrderExistingCustomencreateQrder_date

|;! :I55CreateOrderExistingCustomer:createOrder_date = |:lACOrderManagement = [:lACCustomerManagement = |:lACProductManagement

1: createCrder_date

2: readCustomer_name

3: readCustomer_name

1: readProduct_name

2: readProduct_name

4: createCrder_date

Fig. 19 —ISSCreateOrderExistingCustomer:createOrder_d&eservice dynamic logical model transformed
into UML2 sequence diagram including a loop comtifragment of theeadProduct_naméogical operation
(enclosed).

One question is then whether the packaging systeipepties of the commercial
system of services can be improved.

5.1.4. Commercial packaging system-of-services

An assessment of the coherence and the couplingheotommercial system-of-
services (see Fig. 17), is first made in orderrmppse an eventual improvement of the
packaging system properties.

About the generated IS servicek§SDestockOneProductolving two different
business serviceBSDestockOneProduend BSCreateProductDelivefyis a cause of
decreasing coherence.

Applying Eq. (1) with
BS_EX = {BSCreateOrderNewCustom@&SCreateOrderExistingCustomer

BSCreateBillAndPaymerBSDestockOneProdyct
BSCreateProductDelivefy

36 J. Simonin et al.

and
ISS_SO = {SSCreateOrderNewCustomé&s SCreateOrderExistingCustomer
ISSCreateBillAndPaymentSDestockOneProdyct
ISSCreateProductDeliveyy
MCH(ISS_SO, BS_EX)=4/5=0.80

The orchestration dSSDestockOneProduahdISSCreateDeliverywhich solves the
BSCreateProductDeliverybusiness service, increases the coupling of ISS SO
conditioned by BS_EX. There are indeed four completary subsets, including the one
containing ISSDestockOneProdu@nd ISSCreateDeliveryand the ISS_SO’s subsets
containing only one IS service among the remaitiimge. According to Eq. (2):

MCU(ISS_SO,BS_EX)=1/4=0.25

Regarding the LACs, LACStockingManagement solves only the
ISSDestockOneProduct IS service, LACPaymentMeans solves only
ISSCreateBillAndPayment and LACDeliveryManagement solves only
ISSCreateProductDeliveryrhese three LACs satisfy the coherence property.

Using Eq. (1), with:

ISS_EX = {ISSCreateOrderNewCustomer, 1SSCreate@rdstingCustomer,
ISSCreateBillAndPayment, 1SSibekOneProduct,
ISSCreateProductDelivery},

and

LAC_SO = {LACOrderManagement, LACCustomerManagement

LACProductManagement, LACPaythdanagement,
LACPaymentMeansManagement, BfgckingManagement,
LACDeliveryManagement}:

MCH(LAC_SO, ISS_EX)=3/7=0.43

There is none LAC that is coupled with none of titker LACs. According to Eq.
2):

@ MCU(LAC_SO, ISS_EX)=1/1=1.00

These four measures highlight a non-maximum coleeref ISS_SO (<1.00) and a
non-minimum coupling (> 1/5). About LAC_SO, the eobnce is much higher than the
minimum expected (0.00) when the coupling is opti(ta0).

The coherence and coupling properties of this coriglesystem-of-services can
only be improved from a business perspective. Quiireg the large household appliance
store, the delivery is only made inside the sttmethis case, the business expert could
consider only one business service, and thus olee t accomplish th®estock one
productactivity and theCreate product delivergctivity. Fig. 20 shows the result of the
generation of the IS services with a newBSDestockOneProductAnd
CreateProductDelivenusiness service. The running tBeneration of Information
System Services from Business Services algorithm results in a new
ISSDestockOneProductAndCreateProductDelively service because there is a
dependency fronhACDeliveryManagementn LACStockingManagemefisee Fig. 16).
Without this dependency, the algorithm should imblgenerate two different IS services

IS Services Generation from Business Services 8péd@ased on a SoS Logical Architecture Patterd7

for the destocking on the one hand, and for thivelsl on the other hand. The measures
of coherence and coupling properties become such:
MCH(ISS_SO, BS_EX)=4/4=1.00
MCU(ISS_SO,BS_EX)=1/4=0.25
MCH(LAC_SO, ISS_EX)=3/7=0.43
MCU(LAC_SO, ISS_EX)=1/1=1.00
Compared to the first designed commercial systeiseofices, the consideration of a
delivery inside the store by the business exparddéo:
e A better coherence of ISS_SO (1.00 > 0.80), wrsamaximum;
e A better coupling of ISS_SO, which is minimum here;
» A constant coherence and a constant coupling of LBS

| BSCreateOrderNewCustomer | I BSDestockOneProductAndCreateProductDelivery |
I il |

[14 L 1
~)
BSCreateOrderExistingCustomer] : BSCreateBillAndPayment L

: : ol K

)

Céornmer i em_of services
: «solves» |

wsolvess / =
|ISS(:rea.te0rderNewCustame{| ! ISSDestockOneProductAndCreateProductDelivery
I q

- 3
“solves':?\ M"‘V'\
I ISSCreateGrderExistinM i

051'95’3
[issc BiitARdPayment 221,
L =

= .I LACCustomerManagement E. e
|

i | LACDeliveryManagement
«solrbss I 3 1

olvesy

«solvess H
Sl i S
I] H

_____ [LACProductMangement [- ---------F |LacPaymentMeansManagement| i1}
I I b-iit

wsolvess:

!'Z<'sb‘tves» R
]

== .I LACOrderManagement
I «solvess | L

ol

SEAESS © I LACStockingManagement I
I 1

Fig. 20 — lllustration of the commercial systemsefvices modification (enclosed) taking into acdoan
delivery inside the store.

On the one hand, this evolution of the businesfemaces imply optimal coherence
and coupling of the IS services conditioned by hess services. On the other hand, the
coherence and the coupling of the LACs conditiobgdhe IS services stay constant.
This last result is due to the application of 8ystem-of-Services-Logical-Architecture-
Design pattern, which provides a robust (do not dependusiness services change)
definition of the LACs essential for coherence afidheir dependencies at the origin of
the coupling.

5.2. Use case assessment

According to the use case, a first benefit of thelkaging system properties is to allow a
measure of the improvement of the relevance obtigness expert’s specifications. The
second benefit is due to tHgystem-of-Services-Logical-Architecture-Design pattern,

38 J. Simonin et al.

which allows a high coupling of the LACs solving $8rvices and a low coherence of
these LACs. The application of the pattern meansrestant coherence and coupling of
LACs, even if the IS services generation changer dftisiness services evolution. This
constancy can be considered as proving robustmegenty of the logical architecture of

a system-of-services based on the pattern.

The automatization of the generation of the IS isess from business services
indicates a quasi-real time for the logical ardttitee design and the physical architecture
design, completed by architecture modeling and cagtemated generation, of the IS
services. The IS services architect's interventiomeduced to the production of the
alignment of the CIM with the TCMe, with the helptbe business expert. However, this
alignment requires first the design of TCMe (LAG&ld.ACDs) of a system-of-services
based on the pattern.

Besides, the proposed alternative designs havgnéfisant cost. Indeed, this phase
requires an expert reflection, first on the propbaechitecture models, then exchanges
with business experts in order to validate or neblation. The prospect of automatizing
the design of alternative scenarios in an entexprégjuires the integration of business
knowledge and logical architecture knowledge sjetif the enterprise when generating
such scenarios. The following discussion is abbistdesign and the robustness property
of the resulting logical architecture model.

6. Discussion

There is a gap between business specificationghtenanplementation (design of the
physical architecture and generation of the assatieode) of an IS service. The simplest
development method is often to produce a textustrijation of the business service and
extract a diagram of the data entities, includihgirt attributes, participating in the
service. The data entities are extracted becausg dne considered to be handled
specifically in the service. The first illustratiari ordering a product for a customer can
thus induce two data entities: the product claas i selected from a sales catalog and
the order class where the customer and the orfleneree are created when an order is
placed. In a very simple way, the method would dal¢sign the physical data model
from these data entities and their associatiom the physical application components
managing these physical data, then the componeatsging the IS services and using
the previous physical application components, andllf the interface from which the
services are called by the user.

The first concern is the homogeneity of this servitesign, in the case where other
services make it possible to order another typprofiuct, for example. We can imagine
in a second illustration that the customer is madadgjfferently in the other application,
because the company wants to make him commerdetsofin this case, the previously
specified order data entity splits into a datatgrtedicated only to the customer targeted
by the marketing service, and another data erditgeting the order reference. On the
other hand, it is also possible to imagine in adtliiustration an order business service
with a single participating data entity grouping thrder, the customer and the product
ordered, in the case, for example, of selling potslun limited quantities and whose
management is not a concern of the company. Thalgoof flexibility of the system-

IS Services Generation from Business Services 8pédd@Based on a SoS Logical Architecture Patter89

of-services is thus raised because of the heteeityeof services relating to the same
business activity (order a product for a custombut treated differently during the

analysis, and therefore the implementation, of ekghservice. This differentiated

treatment obviously depends on the intent driviiganalysis.

In order to ensure a homogeneous implementatiendésign of a logical architecture
common to all services of the system-of-serviceprisposed here. It automatically
generates an implementation based on an alignmeriusiness need (data entity
attributes) with LACs. A point underlined for theaucase is the necessary collaboration
between the business expert and the logical anthiee designer of IS services to achieve
this alignment. As seen in this paper, the propgsstern solves the problem of design
granularity. The solution at the logical level esled on the lifetime of attributes to define
consistent logical data. Stereotyping the LACs usedhe pattern makes possible to
identify the LACs representing an activity. ThesAQs manage a date on which an
activity occurred or a reference associated with dbtivity. LACs with the stereotype
“activity” are made dependent if in the companysthactivities follow one another (an
activity depends on an activity if it precedesithe activity diagram defining a business
process). Similarly, “person”, “document” or “reégice” stereotypes allow tagging LACs
have a longer lifespan than a LAC stereotyped Vigti A LAC stereotyped “activity”
may thus depend on them within the system-of-sesvighe definition of these LACs is
interesting for partitioning data at the logicaldé such as for big data architectftend
therefore its reliability.

These stereotypical LACs “activity” are in fact essal to ensure a low coupling
between IS services. For example, a HMI developanmrdering IS service will request
an IS service allowing the selection of a one austoamong the list of all customers. If
this solution were chosen by the IS service archithen it would increase the coupling
of delivery, billing, or ordering IS services withis service in the commercial system-of-
services, assuming they use this customer selei@isprvice. The logical architecture of
this IS service is limited to the LAC of customeamagement (stereotyped “person” and
not “activity”). In this case, the coupling propeg at the IS services level are less
efficient when it comes to defining a packagingteys

In order to define a packaging system, it theref@ems necessary to condition the
logical architecture of each IS service through titesence of a stereotyped LAC
“activity”. In the example of the customer listjghmeans that the business expert can be
interested in customers who have placed an order @wefined or indefinite period. In
this case, the service of reading a customer lifbacome the service of reading a list of
customers who have placed an order over a definaddefinite period. If a filter on
customer addresses is expected, then this serviteinglude in its signature the
definition of the filter on the customer's addreAssolution is to overload the order
reading IS service with these filtering parametdiise overloading of each IS service
including at least one stereotyped LAC "activityl' its architecture reduces then the
coupling at the IS service level as it reduces tihtal amount of IS services. This
reinforces thus the packaging system propertiessystem-of-services.

The multi-use of LACs designed with tt8ystem-of-Services-Logical-Architecture-
Design pattern is based on the use of CRUD, which linthits useful functions in each
LAC. This makes it easier to serendipitous reuspraposed with the functions get, put,
post and delete in the context of Web architecture.

40 J. Simonin et al.

The reliability and reusability properties highltgl as consequence of the pattern use
are interesting in the context of a sustainabldesyof-services as defined in the EA
objective.

However, in some cases, mathematical functionsdded to the CRUD functions in
a stereotyped “reference” LAC. This LAC, which dam assimilated to a mathematical
library, is such that the others depend on it adiogrto theSystem-of-Services-Logical-
Architecture-Design pattern. This solution is interesting for techhitanctions such as,
explicit or implicit, authentication functions, fexample, in order to integrate them into
the logic model of each IS service.

In addition, the reliability and reusability profies make it possible to design
alternative solutions, sources of possible impromets to business services, IS services
or logical architecture of the IS. The limit of these of the algorithm and of these
potential improvements is not only a logical desidrthe IS conforming to the business,
but also an appropriation of this logical architeetby the designers and implementers of
IS services who have to develop business requirtsnen

7. Conclusion

The question of the gap between business view poidtsystem viewpoint of EA stays
unavoidable when developing IS services of a systeservices. Extending the concept
of transformation contextual model enriching th&#Rb the CIM, our work proposes an
integration of a logical model of the system-ofvsegs as context of the transformation
of CIM into PIM. This integration needing the cditation between business experts
and IS service logical architects enable an autaatan of the IS services generation
and logical architecture, from the specificationbafsiness services (s&eneration of
Information System Services from Business Services algorithm). This IS services
generation and logical architecture is completed abynore traditional automatized
approach of IS services physical architecture modeind coding.

The pattern enabling the design of a logical aedhitre model of a system-of-
services, and the algorithm of IS services germmatiased on the logical architecture
model of the system-of-services was tested on acase. This test made it possible to
highlight the properties of packaging system ttaat be improved following changes in
business services that target an improvement ibtiseness specification and not in the
architecture of the system-of-services. It allovadslo checking the packaging system
properties at the LAC level thanks to tl8ystem-of-Services-Logical-Architecture-
Design pattern.

Moreover reliability and partitioning properties afpackaging system based on the
proposed pattern and algorithm have been underithethg the discussion in an EA
approach. Future works encompass an extensionwouse cases in order to propose
other applications of the pattern, for example withotic systeni’ Indeed, the logical
model deduced from the pattern could be extendedrfomproved support of a business
specification (management service or real-time isejv In addition, more relevant
measures of coupling and coherence within the macgasystem will complete this
perspective.

IS Services Generation from Business Services 8péd@Based on a SoS Logical Architecture Patterfl

Appendix A. Implementation of Logical Application Component model checking

The code of the model transformation (lea2chk),ciwimplements the checking of a
logical application component model, is the follogi one. The meta-model’s
aggregating concept is called “LDA” (Logical DynamiArchitecture) in this
implementation. It is used to describe the “lea"deloof the checked logical enterprise
architecture.

transformation lea2chk(source:lea);

main()

{
log("Begin of the LAC model checking");
log("\nOrientation of LACDs from life duratiomie");
source.rootObjects()[LDA]->checkLogicalPattern()
log("\nLAC cycle checking");
source.rootObjects()[LDA]->checkLogicalLoop();
log("\nEnd of the LAC model checking");

}

query LogicalApplicationComponent::
testFollowingComponents
(seqComponents : Sequence(LogicalApplicationGorapt)) :
LogicalApplicationComponent
{
var followingLogicalComponent :=
self.lda.logicalApplicationComponent->select
(e : LogicalApplicationComponent |
e.stereotype=self.stereotype and
self.lda.logicalApplicationComponentDependenc
->select(f :
LogicalApplicationComponentDependency |
seqComponents->select(qg :
LogicalApplicationComponent |
g.name=f.source.name)->asSequence()->siz@()<>
and f.target.name=e.name)->asSequence()
->size()<>0)->asSequence();
var test := true;

vari:=1,
while (ix<=seqComponents->size() and test)
{

test := test and (seqComponents>at(i).name<>
self.name);

42 J. Simonin et al.

i=i+1;
¥
return(
if test
then
if (followingLogicalComponent->size()<>0)
then
self.testFollowingComponents
(followingLogicalComponent)
else
null
endif
else
segComponents->at(i - 1)
endif);
}

query LDA::checkLogicalLoop()
{
vari:=1,;
while (i<=self.logicalApplicationComponent->si2e
{
var followingComponents :=
self.logicalApplicationComponent->
select(e : LogicalApplicationComponent |
e.stereotype = self.logicalApplicationCampnt->at(i).stereotype and
self.logicalApplicationComponentDegency->
select(f : LogicalApplicationComponentDagdency |
self.logicalApplicationComponent->at(i)me=f.source.name and
f.target.name=e.name)->asSequencetg()<>0)->asSequence();
if (followingComponents->size()<>0)
then
if (self.logicalApplicationComponent->
at(i).testFollowingComponentsidgalingComponents)<>null)
then
log("WARNING: there is a logical loopi " +
self.logicalApplicationCompante-at(i).name + " to itself")
endif
endif;
=i+
2
}

IS Services Generation from Business Services 8pdd@Based on a SoS Logical Architecture Patter#3

qguery LDA::checkLogicalPattern()
{

var seqfc := self.logicalApplicationComponent->
select(e : LogicalApplicationComponent |erasbtype<>"activity" and
e.stereotype<>"person" and e.stereetyfocument” and
e.stereotype<>"reference")->asSequence();

if (seqfc->size()=0)

then
{
var seqdep := self.logicalApplicationCompaiipendency;
vari:=1,;
while (i<=seqdep->size())
{

if(((seqdep->at(i).source.stereotype="dnent" or
seqdep>at(i).source.stereotype="person"
seqdep->at(i).source.stereotypefetence")
and seqdep->at(i).target.stengetyactivity") or
(seqdep->at(i).source.stereotype="peraod
seqdep->at(i).target.stereotyplestiment") or
(seqdep->at(i).source.stereotype="gzfee" and
(seqdep->at(i).target.stereotyperson” or
seqdep->at(i).target.stereotyplestiment" or
seqdep->at(i).target.stereotypetiVity")))
then
log("WARNING: the dependency from " +
seqdep->at(i).source.namea-""+
seqdep->at(i).target.namedoés not satisfy the pattern : " +
seqdep->at(i).target.stereetyp' to " +
seqdep->at(i).source.steres}yp

endif;
=i+l
%
}
else
{
log("WARNING: the stereotypes of the LACs rhbe \"activity\" or \"person\"
or \"document\" or \"reference\" => thettpen cannot be checked");
varj:=1,;
while (j<=seqgfc->size())
{

log(" -"+ seqfc->at(j).name + " ieeotyped \"" + seqfc->at(j).stereotype

44 J. Simonin et al.

Appendix B. Automatic generation of physical architecture design and code
generation for commercial system-of-services use case

The sequence of physical operations encapsulatatleifioop combined fragment
contains:

e The |ISSReadAProduct:ireadProduct namelS service call with the
BOReadAProduct:readProduct_narnesiness operation;

e The DOcreateProduct_namelata operation carrying out the persistence of the
created data representing the product provided by
BOReadAProduct:readProduct_name

e The DOcreateJointOrderProductiata operation carrying out the persistence of the
created joint of the product data and the ordea degviously (created just before the
loop combined fragment by ti#OcreateOrdedata operation).

The joint of the product data and the order datgs designed in the physical data

model in Fig. 21.

-] JointPDOrderPDProduct

=Y jointpdorderpdproductpdorder_fk
5 jointpdorderpdproductpdproduct_fk

-] PDOrder] PDProduct
g date Eg name
=8 reference (=Y cost
[~} pdorderpdcustomer_fk

-] PDCustomer
€@ name
6 2ddress

Fig. 21 —ISSCreateOrderExistingCustomer:createOrder_d&eservice static physical data model (excerpted
from the physical data model) transformed into UMil&ss diagram.

PDM contains the rules enabling the generation oflational database, especially
those about the foreign key management;
e pdorderpdcustomer_fikrom PDOrder physical data t&#DCustomephysical data;
* jointpdorderpdproductpdorder_fikom JointPDOrderPDProducto PDOrder,
* jointpdorderpdproductpdproduct_fkom JointPDOrderPDProducto PDProduct

This excerpt of the database is generated fron$@ie script automatically generated
by a model transformation. This transformation iempénts some rules constraining the
sequence of the table creations, and of the paldes$ cleaning.

IS Services Generation from Business Services 8péd@Based on a SoS Logical Architecture Patter#5

The generation of Java code of the IS service erbtlsiness layer is in Fig. 22. The

code is simplified because it is not included itite contribution of this paper. However,
the relevancy of this code compared to the physioaiponents sequence diagram (see
description above) is noteworthy.

@Override

public void BOCreateOrderExistingCustomer:createOrder_date(String nameCustomer, String
addressCustomer, String dateOrder,

int referenceOrder, String nameProduct, String costProduct)

{

¥

Vi
* Exception if not: <>null
*/
customerDAO.DOreadCustomer_name(customer);
/**
* Exception if not: <>null
*/
orderDAO.DOcreateOrder_date(order);
Vi
* Loop start
*/
Customer customer =
this.BOReadAProduct:readProduct_name(nameCustomer,
addressCustomer)
productDAO.DOcreateProduct_name(product);
jointorderproductDAO.DOcreateJointOrderProduct
(jointorderproduct);
/**
* Loop end
*/

Fig. 22 -ISSCreateOrderExistingCustomer:createOrder_d8tservice simplified code (business layer).

References

1. K. Bennett, P. Layzell, D. Budgen, P. Brereton, L. Mday and M. Munro, Service-based
software: the future for flexible software, Bioceedings Seventh IEEE Asia-Pacific Software
Engeering Conference (APSE@PO00), pp. 214221.

2. D. Sprott and L. Wilkes, Understanding service-atéel architecturelhe Architecture Journal
1(1) (2004), pp.10-17.

3. J. A. Zachman, The Zachman framework for entermisaitecture: primer for enterprise
engineering and manufacturinggchman Internationa2003).

4. A. Alwadain, E. Fielt, A. Korthaus and M. RosemaWhere do we find services in enterprise
architectures? A comparative approach?inceedings of the 22Australasian Conference on
Information Systems (ACI§011).

5. H. M. Chen, Towards service engineering: serviégendation and business-IT alignment, in
Proceedings of the 41st IEEE Annual Hawaii Inteimadl Conference on System Sciences
(HICSS)(2008), pp. 114-114.

6. H. Jonkers, M. Lankhorst, R. Van Buuren, S. Hoppambess, M. Bonsangue and L. Van Der
Torre, Concepts for modeling enterprise architestunéernational Journal of Cooperative
Information System#3(03) (2004), pp. 257-287.

7. The Open Group, The TOGAF® Standard Version 9.2cp&sed 10 04 2019] (2018),
http://pubs.opengroup.org/architecture/togaf9-datiéndex.html

8. S. M. Glissmann and J. Sanz, An approach to buyjldffective enterprise architectures, in

Proceedings of the #4EEE Hawaii International Conference on System i8me(2001), pp.
1-10.

46

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

J. Simonin et al.

B. H. Cameron and E. McMillan, Analyzing the currnends in enterprise architecture
frameworks, irProceeding of Journal of Enterprise Architect®@) (2013), pp. 60-71.

A. Dongre, Data quality and integrity managementébecom operator§,elecom Business
Review7(1) 2014, pp. 1-8.

B. Michelberger, B. Mutschler and M. Reichert, Proeas$snted information logistics:
Aligning enterprise information with business preges, irProceedings of the IEEE 16th
International Enterprise Distributed Object ComputitEDOC)(2012), pp. 21-30.

O. El-Telbany and A. Elragal, Business-informatigatesms strategies: a focus on
misalignmentProcedia Technolog$6 (2014), pp. 250-262.

D. Yue, L. Wanjun, L. Cuicui, F. Wenxiang, BasedSDA architecture and component
software reuse architecture researctRroceedings of the 2nd IEEE International Conference
on Information Management and Engineer{@§10), pp. 517-520.

C. Erbas and B. C. Erbas, On a theory of softwarénergng a proposal based on transaction
cost economics, iRroceedings of the"2 IEEE SEMAT Workshop on a General Theory of
Software Engineering (GTSE)013), pp. 15-18.

B. Van Gils, Strategy and architecture—reconciliragldviews, in Proceedings of the Working
Conference on Practice-Driven Research on Enterpragsformation (2009), pp. 181-196.
T. Erl, SOA Principles of Service DesigifPrentice Hall, 2007).

N. Bieberstein, S. Bose, L. Walker and A. Lynch, latpaf service-oriented architecture on
enterprise systems, organizational structuresjraididuals,|IBM systems journai4(4)

(2005), pp. 691-708.

R. Perrey and M. Lycett, Service-oriented architextin Proceedings of IEEE Symposium on
Applications and the Internet Worksha2€03), pp. 116-119.

N. Joachim, D. Beimborn, F. Schlosser and T. Wei2aeks SOA create or require IT/business
collaboration? Investigating SOA’s potential toued the gap between IT and busin@g¢
International Conference on Information Systems3)(2011).

B. Molnar and A. Tarcsi, Architecture and systemgtesssues of contemporary web-based
information systems, in Proceedings of the 5thrivetdonal IEEE Conference on Software,
Knowledge Information, Industrial Management angkgations (SKIMA) (2011), pp. 1-8.
S. Kotusev, Enterprise architecture: what did welg?,International Journal of Cooperative
Information System®26(04) (2017), pp. 1730002-1-1730002-84.

M. P. Papazoglou, P. Traverso, S. Dustdar, aneé¥miann, Service-oriented computing: a
research roadmagnternational Journal of Cooperative Informationsgsms17(2) (2008), pp.
223-255.

D. Ameller, X. Burgués, O. Collell, D. Costal, X.d@fch and M. P. Papazoglou, Development
of service-oriented architectures using model-drigtevelopment: A mapping study.
Information and Software Technolg® (2015), pp. 42—66.

M. Lépez-Sanz and E. Marcos, ArchiMeDeS: A modékait framework for the specification
of service-oriented architecturésformation System&87(3) (2012), pp. 257-268.

J. Simonin and J. Puentes, Automatized integratf@ancontextual model into a process with
data variability Computer Languages, Systems & Struct&e€018), pp. 156-182.

I. Todoran, Z. Hussain and N. Gromov, SOA integiratinodeling: An evaluation of how
SoaML completes UML modeling, iAroceedings of the 15th IEEE International Entespri
Distributed Object Computing Conference Worksh@@d.1), pp. 57—66.

A. M. Olson, R. R. Raje, B. Devaraju and L. S. Galldgearning improves service discovery,
Concurrency and Computation: Practice and Experie2&&) (2015), pp. 1679-1694.

R. Paul, W. T. Tsai and J. Bayne, The impact of SOWcp-based computing on C2
interoperation and computingQth international command and control research and
technology symposium (ICCRT&PO05).

A. Zimmermann, K. Sandkuhl, M. Pretz, M. Falkenthal Jugel and M. Wissotzki, Towards
an integrated service-oriented reference enterprig@tecture, ifProceedings of the 2013
ACM International Workshop on Ecosystem Architect{@613), pp. 26—30.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

IS Services Generation from Business Services 8pdd@Based on a SoS Logical Architecture Patter#7

S. Bondar, J. C. Hsu, A. Pfouga and J. Stjegardjile digital transformation of System-of-
Systems architecture models using Zachman framewotknal of Industrial Information
Integration7 (2017), pp. 33—43.

S. Majd, M. H. Abel and M. Alok, An architecturaloatel for system of information systems,
in Proceedings of the OTM Confederated Internationalf€amces "On the Move to
Meaningful Internet System&015), pp. 411-420.

P. Salvaneschi, Modeling of information systemsyagems of systems through DSM, in
Proceedings of the 4th IEEE/ACM International Workslon Software Engineering for
Systems-of-Systems (SESoS) (2016), pp. 8-11.

J. Xiong, B. F. Ge, X. K. Zhang, K. W. Yang andW. Chen, Evaluation method of system-
of-systems architecture using knowledge-based ¢ablaumodel, ifProceedings of 17th IEEE
Annual Conference International Conference on Managdr8cience & Engineerin@010),
pp. 141-147.

T. Bianchi, D. S. Santos and K. R. Felizardo, Qualitributes of systems-of-systems: A
systematic literature review, Proceedings of 3rd IEEE/ACM International Workstoop
Software Engineering for Systems-of-Syst@a45), pp. 23-30.

J. S. Topper and N. C. Horner, Model-based systaigiseering in support of complex
systems developmenlphns Hopkins APL technical dige32(1) (2013).

Z. Stojanovic, A. Dahanayake and H. Sol, Modelng design of service-oriented
architecture, ifProceedings of IEEE International Conference ori&ys, Man and
Cybernetics (2004), pp. 4147-4152.

M. Rosemann, P. Green, M. Indulska and J. C. Reclgnglbntology for the representational
analysis of process modelling techniquegegrnational Journal of Business Process
Integration and Manageme#(4) (2009), pp. 251-265.

R. Kazman, K. Schmid, C. B. Nielsen and J. Klein, Ustiading patterns for system of
systems integration, iRroceedings of the 8th IEEE International ConfereaneSystem of
Systems Engineerin@013), pp. 141-146.

J. Klein and H. Van Vliet, A systematic review g6em-of-systems architecture research, in
Proceedings of the 9th international ACM Sigsoftfecence on Quality of software
architectureq2013), pp. 13-22.

I. G. Vargas, T. Gottardi and R. T. V. Braga, Apptwscfor integration in system of systems:
a systematic review, iRroceedings of the 4th IEEE/ACM International Wodgslon Software
Engineering for Systems-of-Systems (SE&RY), pp. 32—38.

B. Elveseeter, D. Panfilenko, S. Jacobi and C. Hahgnig business and IT models in
service-oriented architectures using BPMN and SoadklProceedings of the First
International Workshop on Model-Driven Interopetitlyi (2010), pp. 61-68.

A. Delgado, F. Ruiz, I. G. R. de Guzman and M. RigtModel transformations for Business-
IT alignment: from collaborative business procesSoaML service model. [Rroceedings of
the 27th Annual ACM Symposium on Applied Compyfind?2), pp. 1720-1722.

C. A. Whitcomb, M. Auguston and K. Giammar&xpmposition of Behavior Models for
Systems Architectur®t (John Wiley & Sons 2015), pp. 361-391.

N. Kulkarni and V. Dwivedi, The role of service gtdarity in a successful SOA realization a
case study, ifProceedings of the IEEE Congress on Servig@908), pp. 423-430.

K. J. Sullivan, W. G. Griswold, Y. Cai and B. Halléhe structure and value of modularity in
software design, iProceedings of ACM SIGSOFT Software Engineering Na&g (2001),
pp. 99-108.

C. Pahl, P. Jamshidi and O. Zimmermann, Architetpniaciples for cloud softwarédCM
Transactions on Internet Technology (TO18J2) (2018) 17.

A. K. Raz, C. R. Kenley and D. A. DelLaurentis, A Systef-Systems perspective for
information fusion system design and evaluatlofgrmation Fusior85 (2017), pp. 148-165.
B. Solaiman, E Bossé, L. Pigeon, D. Guériot and MFlBrea, A conceptual definition of a
holonic processing framework to support the designformation fusion systeminformation
Fusion21 (2015), pp. 85—99.

48

49

50.

51.
52.

53.
54.

55.

56.

57.

58

59.

60.

61

62.

63.

64.

65.

66.

67

J. Simonin et al.

. A. Giret, E. Garcia and V. Botti, An engineeringrfiework for service-oriented intelligent

manufacturing system€omputers in Industrgl (2016), pp. 116-127.

R. J. Cloutier and D. Verma, Applying the conceppatterns to systems architectu8gstems

engineeringl0(2) (2007), pp. 138-154.

S. Cook, Looking back at UMLSoftware & Systems Modelidd(4) (2012), pp. 471-480.
E. C. Ferstl and D. Y. von Cramon, The role of coheeeand cohesion in text comprehension:

an event-related fMRI studgognitive Brain Researchl(3) (2001), pp. 325-340.

A. Dillon, User acceptance of information technold@yylor and Francis, London, 2001).
M.J. Shepperd and D. Indegrivation and Validation of Software Metri¢®xford University
Press, 1993.

D. M. Eriksson, A principal exposition of Jean-Lslie Moigne's systemic theory,

Cybernetics & Human Knowirg(2—3) (1997).

G. Gui and P. D. Scott, Coupling and cohesion nreasior evaluation of component

reusability, inProceedings of the ACM international workshop oniktrsoftware

repositories(2006), pp. 18-21.

K. M. Hansen and K. Manikas, (Automated) softwaxmiarization using community

detection, irProceedings of European Conference on Software #eatoire(2015), pp. 95-
102.

. Object Management Group, UML 2.2 Unified Modelingrniguage [Accessed 04 30 2019]

(2009),http://www.omg.org/spec/UML/2.2/

M. Hammer and J. ChampiReengineering the Corporatidilarper Collins, New York,

1993).

S. W. Ambler, Process patterns: building largeessgtstems using object technology,

(Cambridge university press, 1998).

. C. Alexander;The timeless way of buildiri@xford University Press, New York, 1979).

M. Hagen and V. Gruhn, Towards flexible softwareq@sses by using process patterns, in
Proceedings of the IASTED Conference on SoftwarinBagng and Application§2004), pp.

436-441.

Object Management Group, Meta Object Facility (MQF) Query/View/Transformation

Specification [Accessed 10 04 2019] (2018)p://www.omg.org/spec/QVT/1.3

J. Simonin, Method of modelling reference data asel of this method for localization of

reference data in an information system, U.S. R&ten7,249,134 (2007).

H. Salavati, T. J. Gandomani and R. Sadeghi, A rtodfsware architecture based on

distributed systems in big data healthcaréd®roceedings of the IEEE International

Conference on Advances in Computing, Communicatiodd$rdormatics (ICACCIf2017),

pp. 1701-1705.

S. Vinoski, Serendipitous ReusEEE Internet Computing2(1) (2008), pp. 84-87.

. A. Ahmad and M. A. Babar, Software architecturesrédiotic systems: A systematic mapping
study,Journal of Systems and Softwd2? (2016), p. 16—39.

